1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_priv { 435 struct kszphy_ptp_priv ptp_priv; 436 const struct kszphy_type *type; 437 struct clk *clk; 438 int led_mode; 439 u16 vct_ctrl1000; 440 bool rmii_ref_clk_sel; 441 bool rmii_ref_clk_sel_val; 442 bool clk_enable; 443 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 444 }; 445 446 static const struct kszphy_type lan8814_type = { 447 .led_mode_reg = ~LAN8814_LED_CTRL_1, 448 .cable_diag_reg = LAN8814_CABLE_DIAG, 449 .pair_mask = LAN8814_WIRE_PAIR_MASK, 450 }; 451 452 static const struct kszphy_type ksz886x_type = { 453 .cable_diag_reg = KSZ8081_LMD, 454 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz8021_type = { 458 .led_mode_reg = MII_KSZPHY_CTRL_2, 459 .has_broadcast_disable = true, 460 .has_nand_tree_disable = true, 461 .has_rmii_ref_clk_sel = true, 462 }; 463 464 static const struct kszphy_type ksz8041_type = { 465 .led_mode_reg = MII_KSZPHY_CTRL_1, 466 }; 467 468 static const struct kszphy_type ksz8051_type = { 469 .led_mode_reg = MII_KSZPHY_CTRL_2, 470 .has_nand_tree_disable = true, 471 }; 472 473 static const struct kszphy_type ksz8081_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_broadcast_disable = true, 476 .has_nand_tree_disable = true, 477 .has_rmii_ref_clk_sel = true, 478 }; 479 480 static const struct kszphy_type ks8737_type = { 481 .interrupt_level_mask = BIT(14), 482 }; 483 484 static const struct kszphy_type ksz9021_type = { 485 .interrupt_level_mask = BIT(14), 486 }; 487 488 static const struct kszphy_type ksz9131_type = { 489 .interrupt_level_mask = BIT(14), 490 .disable_dll_tx_bit = BIT(12), 491 .disable_dll_rx_bit = BIT(12), 492 .disable_dll_mask = BIT_MASK(12), 493 }; 494 495 static const struct kszphy_type lan8841_type = { 496 .disable_dll_tx_bit = BIT(14), 497 .disable_dll_rx_bit = BIT(14), 498 .disable_dll_mask = BIT_MASK(14), 499 .cable_diag_reg = LAN8814_CABLE_DIAG, 500 .pair_mask = LAN8814_WIRE_PAIR_MASK, 501 }; 502 503 static int kszphy_extended_write(struct phy_device *phydev, 504 u32 regnum, u16 val) 505 { 506 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 507 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 508 } 509 510 static int kszphy_extended_read(struct phy_device *phydev, 511 u32 regnum) 512 { 513 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 514 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 515 } 516 517 static int kszphy_ack_interrupt(struct phy_device *phydev) 518 { 519 /* bit[7..0] int status, which is a read and clear register. */ 520 int rc; 521 522 rc = phy_read(phydev, MII_KSZPHY_INTCS); 523 524 return (rc < 0) ? rc : 0; 525 } 526 527 static int kszphy_config_intr(struct phy_device *phydev) 528 { 529 const struct kszphy_type *type = phydev->drv->driver_data; 530 int temp, err; 531 u16 mask; 532 533 if (type && type->interrupt_level_mask) 534 mask = type->interrupt_level_mask; 535 else 536 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 537 538 /* set the interrupt pin active low */ 539 temp = phy_read(phydev, MII_KSZPHY_CTRL); 540 if (temp < 0) 541 return temp; 542 temp &= ~mask; 543 phy_write(phydev, MII_KSZPHY_CTRL, temp); 544 545 /* enable / disable interrupts */ 546 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 547 err = kszphy_ack_interrupt(phydev); 548 if (err) 549 return err; 550 551 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 552 } else { 553 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 554 if (err) 555 return err; 556 557 err = kszphy_ack_interrupt(phydev); 558 } 559 560 return err; 561 } 562 563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 564 { 565 int irq_status; 566 567 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 568 if (irq_status < 0) { 569 phy_error(phydev); 570 return IRQ_NONE; 571 } 572 573 if (!(irq_status & KSZPHY_INTCS_STATUS)) 574 return IRQ_NONE; 575 576 phy_trigger_machine(phydev); 577 578 return IRQ_HANDLED; 579 } 580 581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 582 { 583 int ctrl; 584 585 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 586 if (ctrl < 0) 587 return ctrl; 588 589 if (val) 590 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 591 else 592 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 593 594 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 595 } 596 597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 598 { 599 int rc, temp, shift; 600 601 switch (reg) { 602 case MII_KSZPHY_CTRL_1: 603 shift = 14; 604 break; 605 case MII_KSZPHY_CTRL_2: 606 shift = 4; 607 break; 608 default: 609 return -EINVAL; 610 } 611 612 temp = phy_read(phydev, reg); 613 if (temp < 0) { 614 rc = temp; 615 goto out; 616 } 617 618 temp &= ~(3 << shift); 619 temp |= val << shift; 620 rc = phy_write(phydev, reg, temp); 621 out: 622 if (rc < 0) 623 phydev_err(phydev, "failed to set led mode\n"); 624 625 return rc; 626 } 627 628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 629 * unique (non-broadcast) address on a shared bus. 630 */ 631 static int kszphy_broadcast_disable(struct phy_device *phydev) 632 { 633 int ret; 634 635 ret = phy_read(phydev, MII_KSZPHY_OMSO); 636 if (ret < 0) 637 goto out; 638 639 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 640 out: 641 if (ret) 642 phydev_err(phydev, "failed to disable broadcast address\n"); 643 644 return ret; 645 } 646 647 static int kszphy_nand_tree_disable(struct phy_device *phydev) 648 { 649 int ret; 650 651 ret = phy_read(phydev, MII_KSZPHY_OMSO); 652 if (ret < 0) 653 goto out; 654 655 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 656 return 0; 657 658 ret = phy_write(phydev, MII_KSZPHY_OMSO, 659 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 660 out: 661 if (ret) 662 phydev_err(phydev, "failed to disable NAND tree mode\n"); 663 664 return ret; 665 } 666 667 /* Some config bits need to be set again on resume, handle them here. */ 668 static int kszphy_config_reset(struct phy_device *phydev) 669 { 670 struct kszphy_priv *priv = phydev->priv; 671 int ret; 672 673 if (priv->rmii_ref_clk_sel) { 674 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 675 if (ret) { 676 phydev_err(phydev, 677 "failed to set rmii reference clock\n"); 678 return ret; 679 } 680 } 681 682 if (priv->type && priv->led_mode >= 0) 683 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 684 685 return 0; 686 } 687 688 static int kszphy_config_init(struct phy_device *phydev) 689 { 690 struct kszphy_priv *priv = phydev->priv; 691 const struct kszphy_type *type; 692 693 if (!priv) 694 return 0; 695 696 type = priv->type; 697 698 if (type && type->has_broadcast_disable) 699 kszphy_broadcast_disable(phydev); 700 701 if (type && type->has_nand_tree_disable) 702 kszphy_nand_tree_disable(phydev); 703 704 return kszphy_config_reset(phydev); 705 } 706 707 static int ksz8041_fiber_mode(struct phy_device *phydev) 708 { 709 struct device_node *of_node = phydev->mdio.dev.of_node; 710 711 return of_property_read_bool(of_node, "micrel,fiber-mode"); 712 } 713 714 static int ksz8041_config_init(struct phy_device *phydev) 715 { 716 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 717 718 /* Limit supported and advertised modes in fiber mode */ 719 if (ksz8041_fiber_mode(phydev)) { 720 phydev->dev_flags |= MICREL_PHY_FXEN; 721 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 722 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 723 724 linkmode_and(phydev->supported, phydev->supported, mask); 725 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 726 phydev->supported); 727 linkmode_and(phydev->advertising, phydev->advertising, mask); 728 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 729 phydev->advertising); 730 phydev->autoneg = AUTONEG_DISABLE; 731 } 732 733 return kszphy_config_init(phydev); 734 } 735 736 static int ksz8041_config_aneg(struct phy_device *phydev) 737 { 738 /* Skip auto-negotiation in fiber mode */ 739 if (phydev->dev_flags & MICREL_PHY_FXEN) { 740 phydev->speed = SPEED_100; 741 return 0; 742 } 743 744 return genphy_config_aneg(phydev); 745 } 746 747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 748 const bool ksz_8051) 749 { 750 int ret; 751 752 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 753 return 0; 754 755 ret = phy_read(phydev, MII_BMSR); 756 if (ret < 0) 757 return ret; 758 759 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 760 * exact PHY ID. However, they can be told apart by the extended 761 * capability registers presence. The KSZ8051 PHY has them while 762 * the switch does not. 763 */ 764 ret &= BMSR_ERCAP; 765 if (ksz_8051) 766 return ret; 767 else 768 return !ret; 769 } 770 771 static int ksz8051_match_phy_device(struct phy_device *phydev) 772 { 773 return ksz8051_ksz8795_match_phy_device(phydev, true); 774 } 775 776 static int ksz8081_config_init(struct phy_device *phydev) 777 { 778 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 779 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 780 * pull-down is missing, the factory test mode should be cleared by 781 * manually writing a 0. 782 */ 783 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 784 785 return kszphy_config_init(phydev); 786 } 787 788 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 789 { 790 u16 val; 791 792 switch (ctrl) { 793 case ETH_TP_MDI: 794 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 795 break; 796 case ETH_TP_MDI_X: 797 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 798 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 799 break; 800 case ETH_TP_MDI_AUTO: 801 val = 0; 802 break; 803 default: 804 return 0; 805 } 806 807 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 808 KSZ8081_CTRL2_HP_MDIX | 809 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 810 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 811 KSZ8081_CTRL2_HP_MDIX | val); 812 } 813 814 static int ksz8081_config_aneg(struct phy_device *phydev) 815 { 816 int ret; 817 818 ret = genphy_config_aneg(phydev); 819 if (ret) 820 return ret; 821 822 /* The MDI-X configuration is automatically changed by the PHY after 823 * switching from autoneg off to on. So, take MDI-X configuration under 824 * own control and set it after autoneg configuration was done. 825 */ 826 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 827 } 828 829 static int ksz8081_mdix_update(struct phy_device *phydev) 830 { 831 int ret; 832 833 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 834 if (ret < 0) 835 return ret; 836 837 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 838 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 839 phydev->mdix_ctrl = ETH_TP_MDI_X; 840 else 841 phydev->mdix_ctrl = ETH_TP_MDI; 842 } else { 843 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 844 } 845 846 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 847 if (ret < 0) 848 return ret; 849 850 if (ret & KSZ8081_CTRL1_MDIX_STAT) 851 phydev->mdix = ETH_TP_MDI; 852 else 853 phydev->mdix = ETH_TP_MDI_X; 854 855 return 0; 856 } 857 858 static int ksz8081_read_status(struct phy_device *phydev) 859 { 860 int ret; 861 862 ret = ksz8081_mdix_update(phydev); 863 if (ret < 0) 864 return ret; 865 866 return genphy_read_status(phydev); 867 } 868 869 static int ksz8061_config_init(struct phy_device *phydev) 870 { 871 int ret; 872 873 /* Chip can be powered down by the bootstrap code. */ 874 ret = phy_read(phydev, MII_BMCR); 875 if (ret < 0) 876 return ret; 877 if (ret & BMCR_PDOWN) { 878 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 879 if (ret < 0) 880 return ret; 881 usleep_range(1000, 2000); 882 } 883 884 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 885 if (ret) 886 return ret; 887 888 return kszphy_config_init(phydev); 889 } 890 891 static int ksz8795_match_phy_device(struct phy_device *phydev) 892 { 893 return ksz8051_ksz8795_match_phy_device(phydev, false); 894 } 895 896 static int ksz9021_load_values_from_of(struct phy_device *phydev, 897 const struct device_node *of_node, 898 u16 reg, 899 const char *field1, const char *field2, 900 const char *field3, const char *field4) 901 { 902 int val1 = -1; 903 int val2 = -2; 904 int val3 = -3; 905 int val4 = -4; 906 int newval; 907 int matches = 0; 908 909 if (!of_property_read_u32(of_node, field1, &val1)) 910 matches++; 911 912 if (!of_property_read_u32(of_node, field2, &val2)) 913 matches++; 914 915 if (!of_property_read_u32(of_node, field3, &val3)) 916 matches++; 917 918 if (!of_property_read_u32(of_node, field4, &val4)) 919 matches++; 920 921 if (!matches) 922 return 0; 923 924 if (matches < 4) 925 newval = kszphy_extended_read(phydev, reg); 926 else 927 newval = 0; 928 929 if (val1 != -1) 930 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 931 932 if (val2 != -2) 933 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 934 935 if (val3 != -3) 936 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 937 938 if (val4 != -4) 939 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 940 941 return kszphy_extended_write(phydev, reg, newval); 942 } 943 944 static int ksz9021_config_init(struct phy_device *phydev) 945 { 946 const struct device_node *of_node; 947 const struct device *dev_walker; 948 949 /* The Micrel driver has a deprecated option to place phy OF 950 * properties in the MAC node. Walk up the tree of devices to 951 * find a device with an OF node. 952 */ 953 dev_walker = &phydev->mdio.dev; 954 do { 955 of_node = dev_walker->of_node; 956 dev_walker = dev_walker->parent; 957 958 } while (!of_node && dev_walker); 959 960 if (of_node) { 961 ksz9021_load_values_from_of(phydev, of_node, 962 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 963 "txen-skew-ps", "txc-skew-ps", 964 "rxdv-skew-ps", "rxc-skew-ps"); 965 ksz9021_load_values_from_of(phydev, of_node, 966 MII_KSZPHY_RX_DATA_PAD_SKEW, 967 "rxd0-skew-ps", "rxd1-skew-ps", 968 "rxd2-skew-ps", "rxd3-skew-ps"); 969 ksz9021_load_values_from_of(phydev, of_node, 970 MII_KSZPHY_TX_DATA_PAD_SKEW, 971 "txd0-skew-ps", "txd1-skew-ps", 972 "txd2-skew-ps", "txd3-skew-ps"); 973 } 974 return 0; 975 } 976 977 #define KSZ9031_PS_TO_REG 60 978 979 /* Extended registers */ 980 /* MMD Address 0x0 */ 981 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 982 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 983 984 /* MMD Address 0x2 */ 985 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 986 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 987 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 988 989 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 990 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 991 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 992 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 993 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 994 995 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 996 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 997 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 998 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 999 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1000 1001 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1002 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1003 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1004 1005 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1006 * provide different RGMII options we need to configure delay offset 1007 * for each pad relative to build in delay. 1008 */ 1009 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1010 * 1.80ns 1011 */ 1012 #define RX_ID 0x7 1013 #define RX_CLK_ID 0x19 1014 1015 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1016 * internal 1.2ns delay. 1017 */ 1018 #define RX_ND 0xc 1019 #define RX_CLK_ND 0x0 1020 1021 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1022 #define TX_ID 0x0 1023 #define TX_CLK_ID 0x1f 1024 1025 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1026 * dealy 1027 */ 1028 #define TX_ND 0x7 1029 #define TX_CLK_ND 0xf 1030 1031 /* MMD Address 0x1C */ 1032 #define MII_KSZ9031RN_EDPD 0x23 1033 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1034 1035 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1036 int speed) 1037 { 1038 u16 ctl = BMCR_LOOPBACK; 1039 int val; 1040 1041 if (!enable) 1042 return genphy_loopback(phydev, enable, 0); 1043 1044 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1045 phydev->speed = speed; 1046 else if (speed) 1047 return -EINVAL; 1048 phydev->duplex = DUPLEX_FULL; 1049 1050 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1051 1052 phy_write(phydev, MII_BMCR, ctl); 1053 1054 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1055 5000, 500000, true); 1056 } 1057 1058 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1059 const struct device_node *of_node, 1060 u16 reg, size_t field_sz, 1061 const char *field[], u8 numfields, 1062 bool *update) 1063 { 1064 int val[4] = {-1, -2, -3, -4}; 1065 int matches = 0; 1066 u16 mask; 1067 u16 maxval; 1068 u16 newval; 1069 int i; 1070 1071 for (i = 0; i < numfields; i++) 1072 if (!of_property_read_u32(of_node, field[i], val + i)) 1073 matches++; 1074 1075 if (!matches) 1076 return 0; 1077 1078 *update |= true; 1079 1080 if (matches < numfields) 1081 newval = phy_read_mmd(phydev, 2, reg); 1082 else 1083 newval = 0; 1084 1085 maxval = (field_sz == 4) ? 0xf : 0x1f; 1086 for (i = 0; i < numfields; i++) 1087 if (val[i] != -(i + 1)) { 1088 mask = 0xffff; 1089 mask ^= maxval << (field_sz * i); 1090 newval = (newval & mask) | 1091 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1092 << (field_sz * i)); 1093 } 1094 1095 return phy_write_mmd(phydev, 2, reg, newval); 1096 } 1097 1098 /* Center KSZ9031RNX FLP timing at 16ms. */ 1099 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1100 { 1101 int result; 1102 1103 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1104 0x0006); 1105 if (result) 1106 return result; 1107 1108 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1109 0x1A80); 1110 if (result) 1111 return result; 1112 1113 return genphy_restart_aneg(phydev); 1114 } 1115 1116 /* Enable energy-detect power-down mode */ 1117 static int ksz9031_enable_edpd(struct phy_device *phydev) 1118 { 1119 int reg; 1120 1121 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1122 if (reg < 0) 1123 return reg; 1124 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1125 reg | MII_KSZ9031RN_EDPD_ENABLE); 1126 } 1127 1128 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1129 { 1130 u16 rx, tx, rx_clk, tx_clk; 1131 int ret; 1132 1133 switch (phydev->interface) { 1134 case PHY_INTERFACE_MODE_RGMII: 1135 tx = TX_ND; 1136 tx_clk = TX_CLK_ND; 1137 rx = RX_ND; 1138 rx_clk = RX_CLK_ND; 1139 break; 1140 case PHY_INTERFACE_MODE_RGMII_ID: 1141 tx = TX_ID; 1142 tx_clk = TX_CLK_ID; 1143 rx = RX_ID; 1144 rx_clk = RX_CLK_ID; 1145 break; 1146 case PHY_INTERFACE_MODE_RGMII_RXID: 1147 tx = TX_ND; 1148 tx_clk = TX_CLK_ND; 1149 rx = RX_ID; 1150 rx_clk = RX_CLK_ID; 1151 break; 1152 case PHY_INTERFACE_MODE_RGMII_TXID: 1153 tx = TX_ID; 1154 tx_clk = TX_CLK_ID; 1155 rx = RX_ND; 1156 rx_clk = RX_CLK_ND; 1157 break; 1158 default: 1159 return 0; 1160 } 1161 1162 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1163 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1164 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1165 if (ret < 0) 1166 return ret; 1167 1168 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1169 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1170 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1171 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1172 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1173 if (ret < 0) 1174 return ret; 1175 1176 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1177 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1178 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1179 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1180 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1181 if (ret < 0) 1182 return ret; 1183 1184 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1185 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1186 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1187 } 1188 1189 static int ksz9031_config_init(struct phy_device *phydev) 1190 { 1191 const struct device_node *of_node; 1192 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1193 static const char *rx_data_skews[4] = { 1194 "rxd0-skew-ps", "rxd1-skew-ps", 1195 "rxd2-skew-ps", "rxd3-skew-ps" 1196 }; 1197 static const char *tx_data_skews[4] = { 1198 "txd0-skew-ps", "txd1-skew-ps", 1199 "txd2-skew-ps", "txd3-skew-ps" 1200 }; 1201 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1202 const struct device *dev_walker; 1203 int result; 1204 1205 result = ksz9031_enable_edpd(phydev); 1206 if (result < 0) 1207 return result; 1208 1209 /* The Micrel driver has a deprecated option to place phy OF 1210 * properties in the MAC node. Walk up the tree of devices to 1211 * find a device with an OF node. 1212 */ 1213 dev_walker = &phydev->mdio.dev; 1214 do { 1215 of_node = dev_walker->of_node; 1216 dev_walker = dev_walker->parent; 1217 } while (!of_node && dev_walker); 1218 1219 if (of_node) { 1220 bool update = false; 1221 1222 if (phy_interface_is_rgmii(phydev)) { 1223 result = ksz9031_config_rgmii_delay(phydev); 1224 if (result < 0) 1225 return result; 1226 } 1227 1228 ksz9031_of_load_skew_values(phydev, of_node, 1229 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1230 clk_skews, 2, &update); 1231 1232 ksz9031_of_load_skew_values(phydev, of_node, 1233 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1234 control_skews, 2, &update); 1235 1236 ksz9031_of_load_skew_values(phydev, of_node, 1237 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1238 rx_data_skews, 4, &update); 1239 1240 ksz9031_of_load_skew_values(phydev, of_node, 1241 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1242 tx_data_skews, 4, &update); 1243 1244 if (update && !phy_interface_is_rgmii(phydev)) 1245 phydev_warn(phydev, 1246 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1247 1248 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1249 * When the device links in the 1000BASE-T slave mode only, 1250 * the optional 125MHz reference output clock (CLK125_NDO) 1251 * has wide duty cycle variation. 1252 * 1253 * The optional CLK125_NDO clock does not meet the RGMII 1254 * 45/55 percent (min/max) duty cycle requirement and therefore 1255 * cannot be used directly by the MAC side for clocking 1256 * applications that have setup/hold time requirements on 1257 * rising and falling clock edges. 1258 * 1259 * Workaround: 1260 * Force the phy to be the master to receive a stable clock 1261 * which meets the duty cycle requirement. 1262 */ 1263 if (of_property_read_bool(of_node, "micrel,force-master")) { 1264 result = phy_read(phydev, MII_CTRL1000); 1265 if (result < 0) 1266 goto err_force_master; 1267 1268 /* enable master mode, config & prefer master */ 1269 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1270 result = phy_write(phydev, MII_CTRL1000, result); 1271 if (result < 0) 1272 goto err_force_master; 1273 } 1274 } 1275 1276 return ksz9031_center_flp_timing(phydev); 1277 1278 err_force_master: 1279 phydev_err(phydev, "failed to force the phy to master mode\n"); 1280 return result; 1281 } 1282 1283 #define KSZ9131_SKEW_5BIT_MAX 2400 1284 #define KSZ9131_SKEW_4BIT_MAX 800 1285 #define KSZ9131_OFFSET 700 1286 #define KSZ9131_STEP 100 1287 1288 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1289 struct device_node *of_node, 1290 u16 reg, size_t field_sz, 1291 char *field[], u8 numfields) 1292 { 1293 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1294 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1295 int skewval, skewmax = 0; 1296 int matches = 0; 1297 u16 maxval; 1298 u16 newval; 1299 u16 mask; 1300 int i; 1301 1302 /* psec properties in dts should mean x pico seconds */ 1303 if (field_sz == 5) 1304 skewmax = KSZ9131_SKEW_5BIT_MAX; 1305 else 1306 skewmax = KSZ9131_SKEW_4BIT_MAX; 1307 1308 for (i = 0; i < numfields; i++) 1309 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1310 if (skewval < -KSZ9131_OFFSET) 1311 skewval = -KSZ9131_OFFSET; 1312 else if (skewval > skewmax) 1313 skewval = skewmax; 1314 1315 val[i] = skewval + KSZ9131_OFFSET; 1316 matches++; 1317 } 1318 1319 if (!matches) 1320 return 0; 1321 1322 if (matches < numfields) 1323 newval = phy_read_mmd(phydev, 2, reg); 1324 else 1325 newval = 0; 1326 1327 maxval = (field_sz == 4) ? 0xf : 0x1f; 1328 for (i = 0; i < numfields; i++) 1329 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1330 mask = 0xffff; 1331 mask ^= maxval << (field_sz * i); 1332 newval = (newval & mask) | 1333 (((val[i] / KSZ9131_STEP) & maxval) 1334 << (field_sz * i)); 1335 } 1336 1337 return phy_write_mmd(phydev, 2, reg, newval); 1338 } 1339 1340 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1341 #define KSZ9131RN_RXC_DLL_CTRL 76 1342 #define KSZ9131RN_TXC_DLL_CTRL 77 1343 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1344 1345 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1346 { 1347 const struct kszphy_type *type = phydev->drv->driver_data; 1348 u16 rxcdll_val, txcdll_val; 1349 int ret; 1350 1351 switch (phydev->interface) { 1352 case PHY_INTERFACE_MODE_RGMII: 1353 rxcdll_val = type->disable_dll_rx_bit; 1354 txcdll_val = type->disable_dll_tx_bit; 1355 break; 1356 case PHY_INTERFACE_MODE_RGMII_ID: 1357 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1358 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1359 break; 1360 case PHY_INTERFACE_MODE_RGMII_RXID: 1361 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1362 txcdll_val = type->disable_dll_tx_bit; 1363 break; 1364 case PHY_INTERFACE_MODE_RGMII_TXID: 1365 rxcdll_val = type->disable_dll_rx_bit; 1366 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1367 break; 1368 default: 1369 return 0; 1370 } 1371 1372 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1373 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1374 rxcdll_val); 1375 if (ret < 0) 1376 return ret; 1377 1378 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1379 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1380 txcdll_val); 1381 } 1382 1383 /* Silicon Errata DS80000693B 1384 * 1385 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1386 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1387 * according to the datasheet (off if there is no link). 1388 */ 1389 static int ksz9131_led_errata(struct phy_device *phydev) 1390 { 1391 int reg; 1392 1393 reg = phy_read_mmd(phydev, 2, 0); 1394 if (reg < 0) 1395 return reg; 1396 1397 if (!(reg & BIT(4))) 1398 return 0; 1399 1400 return phy_set_bits(phydev, 0x1e, BIT(9)); 1401 } 1402 1403 static int ksz9131_config_init(struct phy_device *phydev) 1404 { 1405 struct device_node *of_node; 1406 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1407 char *rx_data_skews[4] = { 1408 "rxd0-skew-psec", "rxd1-skew-psec", 1409 "rxd2-skew-psec", "rxd3-skew-psec" 1410 }; 1411 char *tx_data_skews[4] = { 1412 "txd0-skew-psec", "txd1-skew-psec", 1413 "txd2-skew-psec", "txd3-skew-psec" 1414 }; 1415 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1416 const struct device *dev_walker; 1417 int ret; 1418 1419 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1420 1421 dev_walker = &phydev->mdio.dev; 1422 do { 1423 of_node = dev_walker->of_node; 1424 dev_walker = dev_walker->parent; 1425 } while (!of_node && dev_walker); 1426 1427 if (!of_node) 1428 return 0; 1429 1430 if (phy_interface_is_rgmii(phydev)) { 1431 ret = ksz9131_config_rgmii_delay(phydev); 1432 if (ret < 0) 1433 return ret; 1434 } 1435 1436 ret = ksz9131_of_load_skew_values(phydev, of_node, 1437 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1438 clk_skews, 2); 1439 if (ret < 0) 1440 return ret; 1441 1442 ret = ksz9131_of_load_skew_values(phydev, of_node, 1443 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1444 control_skews, 2); 1445 if (ret < 0) 1446 return ret; 1447 1448 ret = ksz9131_of_load_skew_values(phydev, of_node, 1449 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1450 rx_data_skews, 4); 1451 if (ret < 0) 1452 return ret; 1453 1454 ret = ksz9131_of_load_skew_values(phydev, of_node, 1455 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1456 tx_data_skews, 4); 1457 if (ret < 0) 1458 return ret; 1459 1460 ret = ksz9131_led_errata(phydev); 1461 if (ret < 0) 1462 return ret; 1463 1464 return 0; 1465 } 1466 1467 #define MII_KSZ9131_AUTO_MDIX 0x1C 1468 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1469 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1470 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1471 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1472 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1473 1474 static int ksz9131_mdix_update(struct phy_device *phydev) 1475 { 1476 int ret; 1477 1478 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1479 phydev->mdix = phydev->mdix_ctrl; 1480 } else { 1481 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1482 if (ret < 0) 1483 return ret; 1484 1485 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1486 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1487 phydev->mdix = ETH_TP_MDI; 1488 else 1489 phydev->mdix = ETH_TP_MDI_X; 1490 } else { 1491 phydev->mdix = ETH_TP_MDI_INVALID; 1492 } 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1499 { 1500 u16 val; 1501 1502 switch (ctrl) { 1503 case ETH_TP_MDI: 1504 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1505 MII_KSZ9131_AUTO_MDI_SET; 1506 break; 1507 case ETH_TP_MDI_X: 1508 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1509 break; 1510 case ETH_TP_MDI_AUTO: 1511 val = 0; 1512 break; 1513 default: 1514 return 0; 1515 } 1516 1517 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1518 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1519 MII_KSZ9131_AUTO_MDI_SET, val); 1520 } 1521 1522 static int ksz9131_read_status(struct phy_device *phydev) 1523 { 1524 int ret; 1525 1526 ret = ksz9131_mdix_update(phydev); 1527 if (ret < 0) 1528 return ret; 1529 1530 return genphy_read_status(phydev); 1531 } 1532 1533 static int ksz9131_config_aneg(struct phy_device *phydev) 1534 { 1535 int ret; 1536 1537 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1538 if (ret) 1539 return ret; 1540 1541 return genphy_config_aneg(phydev); 1542 } 1543 1544 static int ksz9477_get_features(struct phy_device *phydev) 1545 { 1546 int ret; 1547 1548 ret = genphy_read_abilities(phydev); 1549 if (ret) 1550 return ret; 1551 1552 /* The "EEE control and capability 1" (Register 3.20) seems to be 1553 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1554 * on the 7.60 will affect 3.20. So, we need to construct our own list 1555 * of caps. 1556 * KSZ8563R should have 100BaseTX/Full only. 1557 */ 1558 linkmode_and(phydev->supported_eee, phydev->supported, 1559 PHY_EEE_CAP1_FEATURES); 1560 1561 return 0; 1562 } 1563 1564 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1565 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1566 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1567 static int ksz8873mll_read_status(struct phy_device *phydev) 1568 { 1569 int regval; 1570 1571 /* dummy read */ 1572 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1573 1574 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1575 1576 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1577 phydev->duplex = DUPLEX_HALF; 1578 else 1579 phydev->duplex = DUPLEX_FULL; 1580 1581 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1582 phydev->speed = SPEED_10; 1583 else 1584 phydev->speed = SPEED_100; 1585 1586 phydev->link = 1; 1587 phydev->pause = phydev->asym_pause = 0; 1588 1589 return 0; 1590 } 1591 1592 static int ksz9031_get_features(struct phy_device *phydev) 1593 { 1594 int ret; 1595 1596 ret = genphy_read_abilities(phydev); 1597 if (ret < 0) 1598 return ret; 1599 1600 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1601 * Whenever the device's Asymmetric Pause capability is set to 1, 1602 * link-up may fail after a link-up to link-down transition. 1603 * 1604 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1605 * 1606 * Workaround: 1607 * Do not enable the Asymmetric Pause capability bit. 1608 */ 1609 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1610 1611 /* We force setting the Pause capability as the core will force the 1612 * Asymmetric Pause capability to 1 otherwise. 1613 */ 1614 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1615 1616 return 0; 1617 } 1618 1619 static int ksz9031_read_status(struct phy_device *phydev) 1620 { 1621 int err; 1622 int regval; 1623 1624 err = genphy_read_status(phydev); 1625 if (err) 1626 return err; 1627 1628 /* Make sure the PHY is not broken. Read idle error count, 1629 * and reset the PHY if it is maxed out. 1630 */ 1631 regval = phy_read(phydev, MII_STAT1000); 1632 if ((regval & 0xFF) == 0xFF) { 1633 phy_init_hw(phydev); 1634 phydev->link = 0; 1635 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1636 phydev->drv->config_intr(phydev); 1637 return genphy_config_aneg(phydev); 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1644 { 1645 struct kszphy_priv *priv = phydev->priv; 1646 int ret; 1647 1648 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1649 * Prior to running the cable diagnostics, Auto-negotiation should 1650 * be disabled, full duplex set and the link speed set to 1000Mbps 1651 * via the Basic Control Register. 1652 */ 1653 ret = phy_modify(phydev, MII_BMCR, 1654 BMCR_SPEED1000 | BMCR_FULLDPLX | 1655 BMCR_ANENABLE | BMCR_SPEED100, 1656 BMCR_SPEED1000 | BMCR_FULLDPLX); 1657 if (ret) 1658 return ret; 1659 1660 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1661 * The Master-Slave configuration should be set to Slave by writing 1662 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1663 * Register. 1664 */ 1665 ret = phy_read(phydev, MII_CTRL1000); 1666 if (ret < 0) 1667 return ret; 1668 1669 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1670 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1671 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1672 ret |= CTL1000_ENABLE_MASTER; 1673 1674 return phy_write(phydev, MII_CTRL1000, ret); 1675 } 1676 1677 static int ksz9x31_cable_test_result_trans(u16 status) 1678 { 1679 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1680 case KSZ9x31_LMD_VCT_ST_NORMAL: 1681 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1682 case KSZ9x31_LMD_VCT_ST_OPEN: 1683 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1684 case KSZ9x31_LMD_VCT_ST_SHORT: 1685 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1686 case KSZ9x31_LMD_VCT_ST_FAIL: 1687 fallthrough; 1688 default: 1689 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1690 } 1691 } 1692 1693 static bool ksz9x31_cable_test_failed(u16 status) 1694 { 1695 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1696 1697 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1698 } 1699 1700 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1701 { 1702 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1703 case KSZ9x31_LMD_VCT_ST_OPEN: 1704 fallthrough; 1705 case KSZ9x31_LMD_VCT_ST_SHORT: 1706 return true; 1707 } 1708 return false; 1709 } 1710 1711 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1712 { 1713 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1714 1715 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1716 * 1717 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1718 */ 1719 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1720 dt = clamp(dt - 22, 0, 255); 1721 1722 return (dt * 400) / 10; 1723 } 1724 1725 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1726 { 1727 int val, ret; 1728 1729 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1730 !(val & KSZ9x31_LMD_VCT_EN), 1731 30000, 100000, true); 1732 1733 return ret < 0 ? ret : 0; 1734 } 1735 1736 static int ksz9x31_cable_test_get_pair(int pair) 1737 { 1738 static const int ethtool_pair[] = { 1739 ETHTOOL_A_CABLE_PAIR_A, 1740 ETHTOOL_A_CABLE_PAIR_B, 1741 ETHTOOL_A_CABLE_PAIR_C, 1742 ETHTOOL_A_CABLE_PAIR_D, 1743 }; 1744 1745 return ethtool_pair[pair]; 1746 } 1747 1748 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1749 { 1750 int ret, val; 1751 1752 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1753 * To test each individual cable pair, set the cable pair in the Cable 1754 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1755 * Diagnostic Register, along with setting the Cable Diagnostics Test 1756 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1757 * will self clear when the test is concluded. 1758 */ 1759 ret = phy_write(phydev, KSZ9x31_LMD, 1760 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1761 if (ret) 1762 return ret; 1763 1764 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1765 if (ret) 1766 return ret; 1767 1768 val = phy_read(phydev, KSZ9x31_LMD); 1769 if (val < 0) 1770 return val; 1771 1772 if (ksz9x31_cable_test_failed(val)) 1773 return -EAGAIN; 1774 1775 ret = ethnl_cable_test_result(phydev, 1776 ksz9x31_cable_test_get_pair(pair), 1777 ksz9x31_cable_test_result_trans(val)); 1778 if (ret) 1779 return ret; 1780 1781 if (!ksz9x31_cable_test_fault_length_valid(val)) 1782 return 0; 1783 1784 return ethnl_cable_test_fault_length(phydev, 1785 ksz9x31_cable_test_get_pair(pair), 1786 ksz9x31_cable_test_fault_length(phydev, val)); 1787 } 1788 1789 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1790 bool *finished) 1791 { 1792 struct kszphy_priv *priv = phydev->priv; 1793 unsigned long pair_mask = 0xf; 1794 int retries = 20; 1795 int pair, ret, rv; 1796 1797 *finished = false; 1798 1799 /* Try harder if link partner is active */ 1800 while (pair_mask && retries--) { 1801 for_each_set_bit(pair, &pair_mask, 4) { 1802 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1803 if (ret == -EAGAIN) 1804 continue; 1805 if (ret < 0) 1806 return ret; 1807 clear_bit(pair, &pair_mask); 1808 } 1809 /* If link partner is in autonegotiation mode it will send 2ms 1810 * of FLPs with at least 6ms of silence. 1811 * Add 2ms sleep to have better chances to hit this silence. 1812 */ 1813 if (pair_mask) 1814 usleep_range(2000, 3000); 1815 } 1816 1817 /* Report remaining unfinished pair result as unknown. */ 1818 for_each_set_bit(pair, &pair_mask, 4) { 1819 ret = ethnl_cable_test_result(phydev, 1820 ksz9x31_cable_test_get_pair(pair), 1821 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1822 } 1823 1824 *finished = true; 1825 1826 /* Restore cached bits from before LinkMD got started. */ 1827 rv = phy_modify(phydev, MII_CTRL1000, 1828 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1829 priv->vct_ctrl1000); 1830 if (rv) 1831 return rv; 1832 1833 return ret; 1834 } 1835 1836 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1837 { 1838 return 0; 1839 } 1840 1841 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1842 { 1843 u16 val; 1844 1845 switch (ctrl) { 1846 case ETH_TP_MDI: 1847 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1848 break; 1849 case ETH_TP_MDI_X: 1850 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1851 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1852 * sheet seems to be missing: 1853 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1854 * 0 = Normal operation (transmit on TX+/TX- pins) 1855 */ 1856 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1857 break; 1858 case ETH_TP_MDI_AUTO: 1859 val = 0; 1860 break; 1861 default: 1862 return 0; 1863 } 1864 1865 return phy_modify(phydev, MII_BMCR, 1866 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1867 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1868 KSZ886X_BMCR_HP_MDIX | val); 1869 } 1870 1871 static int ksz886x_config_aneg(struct phy_device *phydev) 1872 { 1873 int ret; 1874 1875 ret = genphy_config_aneg(phydev); 1876 if (ret) 1877 return ret; 1878 1879 if (phydev->autoneg != AUTONEG_ENABLE) { 1880 /* When autonegotation is disabled, we need to manually force 1881 * the link state. If we don't do this, the PHY will keep 1882 * sending Fast Link Pulses (FLPs) which are part of the 1883 * autonegotiation process. This is not desired when 1884 * autonegotiation is off. 1885 */ 1886 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1887 KSZ886X_CTRL_FORCE_LINK); 1888 if (ret) 1889 return ret; 1890 } else { 1891 /* If we had previously forced the link state, we need to 1892 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1893 * will not perform autonegotiation. 1894 */ 1895 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1896 KSZ886X_CTRL_FORCE_LINK); 1897 if (ret) 1898 return ret; 1899 } 1900 1901 /* The MDI-X configuration is automatically changed by the PHY after 1902 * switching from autoneg off to on. So, take MDI-X configuration under 1903 * own control and set it after autoneg configuration was done. 1904 */ 1905 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1906 } 1907 1908 static int ksz886x_mdix_update(struct phy_device *phydev) 1909 { 1910 int ret; 1911 1912 ret = phy_read(phydev, MII_BMCR); 1913 if (ret < 0) 1914 return ret; 1915 1916 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1917 if (ret & KSZ886X_BMCR_FORCE_MDI) 1918 phydev->mdix_ctrl = ETH_TP_MDI_X; 1919 else 1920 phydev->mdix_ctrl = ETH_TP_MDI; 1921 } else { 1922 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1923 } 1924 1925 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1926 if (ret < 0) 1927 return ret; 1928 1929 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1930 if (ret & KSZ886X_CTRL_MDIX_STAT) 1931 phydev->mdix = ETH_TP_MDI_X; 1932 else 1933 phydev->mdix = ETH_TP_MDI; 1934 1935 return 0; 1936 } 1937 1938 static int ksz886x_read_status(struct phy_device *phydev) 1939 { 1940 int ret; 1941 1942 ret = ksz886x_mdix_update(phydev); 1943 if (ret < 0) 1944 return ret; 1945 1946 return genphy_read_status(phydev); 1947 } 1948 1949 struct ksz9477_errata_write { 1950 u8 dev_addr; 1951 u8 reg_addr; 1952 u16 val; 1953 }; 1954 1955 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1956 /* Register settings are needed to improve PHY receive performance */ 1957 {0x01, 0x6f, 0xdd0b}, 1958 {0x01, 0x8f, 0x6032}, 1959 {0x01, 0x9d, 0x248c}, 1960 {0x01, 0x75, 0x0060}, 1961 {0x01, 0xd3, 0x7777}, 1962 {0x1c, 0x06, 0x3008}, 1963 {0x1c, 0x08, 0x2000}, 1964 1965 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1966 {0x1c, 0x04, 0x00d0}, 1967 1968 /* Register settings are required to meet data sheet supply current specifications */ 1969 {0x1c, 0x13, 0x6eff}, 1970 {0x1c, 0x14, 0xe6ff}, 1971 {0x1c, 0x15, 0x6eff}, 1972 {0x1c, 0x16, 0xe6ff}, 1973 {0x1c, 0x17, 0x00ff}, 1974 {0x1c, 0x18, 0x43ff}, 1975 {0x1c, 0x19, 0xc3ff}, 1976 {0x1c, 0x1a, 0x6fff}, 1977 {0x1c, 0x1b, 0x07ff}, 1978 {0x1c, 0x1c, 0x0fff}, 1979 {0x1c, 0x1d, 0xe7ff}, 1980 {0x1c, 0x1e, 0xefff}, 1981 {0x1c, 0x20, 0xeeee}, 1982 }; 1983 1984 static int ksz9477_phy_errata(struct phy_device *phydev) 1985 { 1986 int err; 1987 int i; 1988 1989 /* Apply PHY settings to address errata listed in 1990 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1991 * Silicon Errata and Data Sheet Clarification documents. 1992 * 1993 * Document notes: Before configuring the PHY MMD registers, it is 1994 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1995 * disabled by writing to register 0xN100-0xN101. After writing the 1996 * MMD registers, and after all errata workarounds that involve PHY 1997 * register settings, write register 0xN100-0xN101 again to enable 1998 * and restart auto-negotiation. 1999 */ 2000 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2001 if (err) 2002 return err; 2003 2004 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2005 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2006 2007 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2008 if (err) 2009 return err; 2010 } 2011 2012 err = genphy_restart_aneg(phydev); 2013 if (err) 2014 return err; 2015 2016 return err; 2017 } 2018 2019 static int ksz9477_config_init(struct phy_device *phydev) 2020 { 2021 int err; 2022 2023 /* Only KSZ9897 family of switches needs this fix. */ 2024 if ((phydev->phy_id & 0xf) == 1) { 2025 err = ksz9477_phy_errata(phydev); 2026 if (err) 2027 return err; 2028 } 2029 2030 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 2031 * in this switch shall be regarded as broken. 2032 */ 2033 if (phydev->dev_flags & MICREL_NO_EEE) 2034 phy_disable_eee(phydev); 2035 2036 return kszphy_config_init(phydev); 2037 } 2038 2039 static int kszphy_get_sset_count(struct phy_device *phydev) 2040 { 2041 return ARRAY_SIZE(kszphy_hw_stats); 2042 } 2043 2044 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2045 { 2046 int i; 2047 2048 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2049 ethtool_puts(&data, kszphy_hw_stats[i].string); 2050 } 2051 2052 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2053 { 2054 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2055 struct kszphy_priv *priv = phydev->priv; 2056 int val; 2057 u64 ret; 2058 2059 val = phy_read(phydev, stat.reg); 2060 if (val < 0) { 2061 ret = U64_MAX; 2062 } else { 2063 val = val & ((1 << stat.bits) - 1); 2064 priv->stats[i] += val; 2065 ret = priv->stats[i]; 2066 } 2067 2068 return ret; 2069 } 2070 2071 static void kszphy_get_stats(struct phy_device *phydev, 2072 struct ethtool_stats *stats, u64 *data) 2073 { 2074 int i; 2075 2076 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2077 data[i] = kszphy_get_stat(phydev, i); 2078 } 2079 2080 static void kszphy_enable_clk(struct phy_device *phydev) 2081 { 2082 struct kszphy_priv *priv = phydev->priv; 2083 2084 if (!priv->clk_enable && priv->clk) { 2085 clk_prepare_enable(priv->clk); 2086 priv->clk_enable = true; 2087 } 2088 } 2089 2090 static void kszphy_disable_clk(struct phy_device *phydev) 2091 { 2092 struct kszphy_priv *priv = phydev->priv; 2093 2094 if (priv->clk_enable && priv->clk) { 2095 clk_disable_unprepare(priv->clk); 2096 priv->clk_enable = false; 2097 } 2098 } 2099 2100 static int kszphy_generic_resume(struct phy_device *phydev) 2101 { 2102 kszphy_enable_clk(phydev); 2103 2104 return genphy_resume(phydev); 2105 } 2106 2107 static int kszphy_generic_suspend(struct phy_device *phydev) 2108 { 2109 int ret; 2110 2111 ret = genphy_suspend(phydev); 2112 if (ret) 2113 return ret; 2114 2115 kszphy_disable_clk(phydev); 2116 2117 return 0; 2118 } 2119 2120 static int kszphy_suspend(struct phy_device *phydev) 2121 { 2122 /* Disable PHY Interrupts */ 2123 if (phy_interrupt_is_valid(phydev)) { 2124 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2125 if (phydev->drv->config_intr) 2126 phydev->drv->config_intr(phydev); 2127 } 2128 2129 return kszphy_generic_suspend(phydev); 2130 } 2131 2132 static void kszphy_parse_led_mode(struct phy_device *phydev) 2133 { 2134 const struct kszphy_type *type = phydev->drv->driver_data; 2135 const struct device_node *np = phydev->mdio.dev.of_node; 2136 struct kszphy_priv *priv = phydev->priv; 2137 int ret; 2138 2139 if (type && type->led_mode_reg) { 2140 ret = of_property_read_u32(np, "micrel,led-mode", 2141 &priv->led_mode); 2142 2143 if (ret) 2144 priv->led_mode = -1; 2145 2146 if (priv->led_mode > 3) { 2147 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2148 priv->led_mode); 2149 priv->led_mode = -1; 2150 } 2151 } else { 2152 priv->led_mode = -1; 2153 } 2154 } 2155 2156 static int kszphy_resume(struct phy_device *phydev) 2157 { 2158 int ret; 2159 2160 ret = kszphy_generic_resume(phydev); 2161 if (ret) 2162 return ret; 2163 2164 /* After switching from power-down to normal mode, an internal global 2165 * reset is automatically generated. Wait a minimum of 1 ms before 2166 * read/write access to the PHY registers. 2167 */ 2168 usleep_range(1000, 2000); 2169 2170 ret = kszphy_config_reset(phydev); 2171 if (ret) 2172 return ret; 2173 2174 /* Enable PHY Interrupts */ 2175 if (phy_interrupt_is_valid(phydev)) { 2176 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2177 if (phydev->drv->config_intr) 2178 phydev->drv->config_intr(phydev); 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* Because of errata DS80000700A, receiver error following software 2185 * power down. Suspend and resume callbacks only disable and enable 2186 * external rmii reference clock. 2187 */ 2188 static int ksz8041_resume(struct phy_device *phydev) 2189 { 2190 kszphy_enable_clk(phydev); 2191 2192 return 0; 2193 } 2194 2195 static int ksz8041_suspend(struct phy_device *phydev) 2196 { 2197 kszphy_disable_clk(phydev); 2198 2199 return 0; 2200 } 2201 2202 static int ksz9477_resume(struct phy_device *phydev) 2203 { 2204 int ret; 2205 2206 /* No need to initialize registers if not powered down. */ 2207 ret = phy_read(phydev, MII_BMCR); 2208 if (ret < 0) 2209 return ret; 2210 if (!(ret & BMCR_PDOWN)) 2211 return 0; 2212 2213 genphy_resume(phydev); 2214 2215 /* After switching from power-down to normal mode, an internal global 2216 * reset is automatically generated. Wait a minimum of 1 ms before 2217 * read/write access to the PHY registers. 2218 */ 2219 usleep_range(1000, 2000); 2220 2221 /* Only KSZ9897 family of switches needs this fix. */ 2222 if ((phydev->phy_id & 0xf) == 1) { 2223 ret = ksz9477_phy_errata(phydev); 2224 if (ret) 2225 return ret; 2226 } 2227 2228 /* Enable PHY Interrupts */ 2229 if (phy_interrupt_is_valid(phydev)) { 2230 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2231 if (phydev->drv->config_intr) 2232 phydev->drv->config_intr(phydev); 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int ksz8061_resume(struct phy_device *phydev) 2239 { 2240 int ret; 2241 2242 /* This function can be called twice when the Ethernet device is on. */ 2243 ret = phy_read(phydev, MII_BMCR); 2244 if (ret < 0) 2245 return ret; 2246 if (!(ret & BMCR_PDOWN)) 2247 return 0; 2248 2249 ret = kszphy_generic_resume(phydev); 2250 if (ret) 2251 return ret; 2252 2253 usleep_range(1000, 2000); 2254 2255 /* Re-program the value after chip is reset. */ 2256 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2257 if (ret) 2258 return ret; 2259 2260 /* Enable PHY Interrupts */ 2261 if (phy_interrupt_is_valid(phydev)) { 2262 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2263 if (phydev->drv->config_intr) 2264 phydev->drv->config_intr(phydev); 2265 } 2266 2267 return 0; 2268 } 2269 2270 static int ksz8061_suspend(struct phy_device *phydev) 2271 { 2272 return kszphy_suspend(phydev); 2273 } 2274 2275 static int kszphy_probe(struct phy_device *phydev) 2276 { 2277 const struct kszphy_type *type = phydev->drv->driver_data; 2278 const struct device_node *np = phydev->mdio.dev.of_node; 2279 struct kszphy_priv *priv; 2280 struct clk *clk; 2281 2282 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2283 if (!priv) 2284 return -ENOMEM; 2285 2286 phydev->priv = priv; 2287 2288 priv->type = type; 2289 2290 kszphy_parse_led_mode(phydev); 2291 2292 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2293 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2294 if (!IS_ERR_OR_NULL(clk)) { 2295 unsigned long rate = clk_get_rate(clk); 2296 bool rmii_ref_clk_sel_25_mhz; 2297 2298 if (type) 2299 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2300 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2301 "micrel,rmii-reference-clock-select-25-mhz"); 2302 2303 if (rate > 24500000 && rate < 25500000) { 2304 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2305 } else if (rate > 49500000 && rate < 50500000) { 2306 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2307 } else { 2308 phydev_err(phydev, "Clock rate out of range: %ld\n", 2309 rate); 2310 return -EINVAL; 2311 } 2312 } else if (!clk) { 2313 /* unnamed clock from the generic ethernet-phy binding */ 2314 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2315 } 2316 2317 if (IS_ERR(clk)) 2318 return PTR_ERR(clk); 2319 2320 clk_disable_unprepare(clk); 2321 priv->clk = clk; 2322 2323 if (ksz8041_fiber_mode(phydev)) 2324 phydev->port = PORT_FIBRE; 2325 2326 /* Support legacy board-file configuration */ 2327 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2328 priv->rmii_ref_clk_sel = true; 2329 priv->rmii_ref_clk_sel_val = true; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static int lan8814_cable_test_start(struct phy_device *phydev) 2336 { 2337 /* If autoneg is enabled, we won't be able to test cross pair 2338 * short. In this case, the PHY will "detect" a link and 2339 * confuse the internal state machine - disable auto neg here. 2340 * Set the speed to 1000mbit and full duplex. 2341 */ 2342 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2343 BMCR_SPEED1000 | BMCR_FULLDPLX); 2344 } 2345 2346 static int ksz886x_cable_test_start(struct phy_device *phydev) 2347 { 2348 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2349 return -EOPNOTSUPP; 2350 2351 /* If autoneg is enabled, we won't be able to test cross pair 2352 * short. In this case, the PHY will "detect" a link and 2353 * confuse the internal state machine - disable auto neg here. 2354 * If autoneg is disabled, we should set the speed to 10mbit. 2355 */ 2356 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2357 } 2358 2359 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2360 { 2361 switch (FIELD_GET(mask, status)) { 2362 case KSZ8081_LMD_STAT_NORMAL: 2363 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2364 case KSZ8081_LMD_STAT_SHORT: 2365 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2366 case KSZ8081_LMD_STAT_OPEN: 2367 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2368 case KSZ8081_LMD_STAT_FAIL: 2369 fallthrough; 2370 default: 2371 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2372 } 2373 } 2374 2375 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2376 { 2377 return FIELD_GET(mask, status) == 2378 KSZ8081_LMD_STAT_FAIL; 2379 } 2380 2381 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2382 { 2383 switch (FIELD_GET(mask, status)) { 2384 case KSZ8081_LMD_STAT_OPEN: 2385 fallthrough; 2386 case KSZ8081_LMD_STAT_SHORT: 2387 return true; 2388 } 2389 return false; 2390 } 2391 2392 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2393 u16 status, u16 data_mask) 2394 { 2395 int dt; 2396 2397 /* According to the data sheet the distance to the fault is 2398 * DELTA_TIME * 0.4 meters for ksz phys. 2399 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2400 */ 2401 dt = FIELD_GET(data_mask, status); 2402 2403 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2404 return ((dt - 22) * 800) / 10; 2405 else 2406 return (dt * 400) / 10; 2407 } 2408 2409 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2410 { 2411 const struct kszphy_type *type = phydev->drv->driver_data; 2412 int val, ret; 2413 2414 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2415 !(val & KSZ8081_LMD_ENABLE_TEST), 2416 30000, 100000, true); 2417 2418 return ret < 0 ? ret : 0; 2419 } 2420 2421 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2422 { 2423 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2424 ETHTOOL_A_CABLE_PAIR_B, 2425 ETHTOOL_A_CABLE_PAIR_C, 2426 ETHTOOL_A_CABLE_PAIR_D, 2427 }; 2428 u32 fault_length; 2429 int ret; 2430 int val; 2431 2432 val = KSZ8081_LMD_ENABLE_TEST; 2433 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2434 2435 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2436 if (ret < 0) 2437 return ret; 2438 2439 ret = ksz886x_cable_test_wait_for_completion(phydev); 2440 if (ret) 2441 return ret; 2442 2443 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2444 if (val < 0) 2445 return val; 2446 2447 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2448 return -EAGAIN; 2449 2450 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2451 ksz886x_cable_test_result_trans(val, 2452 LAN8814_CABLE_DIAG_STAT_MASK 2453 )); 2454 if (ret) 2455 return ret; 2456 2457 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2458 return 0; 2459 2460 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2461 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2462 2463 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2464 } 2465 2466 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2467 { 2468 static const int ethtool_pair[] = { 2469 ETHTOOL_A_CABLE_PAIR_A, 2470 ETHTOOL_A_CABLE_PAIR_B, 2471 }; 2472 int ret, val, mdix; 2473 u32 fault_length; 2474 2475 /* There is no way to choice the pair, like we do one ksz9031. 2476 * We can workaround this limitation by using the MDI-X functionality. 2477 */ 2478 if (pair == 0) 2479 mdix = ETH_TP_MDI; 2480 else 2481 mdix = ETH_TP_MDI_X; 2482 2483 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2484 case PHY_ID_KSZ8081: 2485 ret = ksz8081_config_mdix(phydev, mdix); 2486 break; 2487 case PHY_ID_KSZ886X: 2488 ret = ksz886x_config_mdix(phydev, mdix); 2489 break; 2490 default: 2491 ret = -ENODEV; 2492 } 2493 2494 if (ret) 2495 return ret; 2496 2497 /* Now we are ready to fire. This command will send a 100ns pulse 2498 * to the pair. 2499 */ 2500 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2501 if (ret) 2502 return ret; 2503 2504 ret = ksz886x_cable_test_wait_for_completion(phydev); 2505 if (ret) 2506 return ret; 2507 2508 val = phy_read(phydev, KSZ8081_LMD); 2509 if (val < 0) 2510 return val; 2511 2512 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2513 return -EAGAIN; 2514 2515 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2516 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2517 if (ret) 2518 return ret; 2519 2520 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2521 return 0; 2522 2523 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2524 2525 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2526 } 2527 2528 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2529 bool *finished) 2530 { 2531 const struct kszphy_type *type = phydev->drv->driver_data; 2532 unsigned long pair_mask = type->pair_mask; 2533 int retries = 20; 2534 int ret = 0; 2535 int pair; 2536 2537 *finished = false; 2538 2539 /* Try harder if link partner is active */ 2540 while (pair_mask && retries--) { 2541 for_each_set_bit(pair, &pair_mask, 4) { 2542 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2543 ret = lan8814_cable_test_one_pair(phydev, pair); 2544 else 2545 ret = ksz886x_cable_test_one_pair(phydev, pair); 2546 if (ret == -EAGAIN) 2547 continue; 2548 if (ret < 0) 2549 return ret; 2550 clear_bit(pair, &pair_mask); 2551 } 2552 /* If link partner is in autonegotiation mode it will send 2ms 2553 * of FLPs with at least 6ms of silence. 2554 * Add 2ms sleep to have better chances to hit this silence. 2555 */ 2556 if (pair_mask) 2557 msleep(2); 2558 } 2559 2560 *finished = true; 2561 2562 return ret; 2563 } 2564 2565 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2566 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2567 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2568 2569 #define LAN8814_QSGMII_SOFT_RESET 0x43 2570 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2571 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2572 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2573 #define LAN8814_ALIGN_SWAP 0x4a 2574 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2575 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2576 2577 #define LAN8804_ALIGN_SWAP 0x4a 2578 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2579 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2580 #define LAN8814_CLOCK_MANAGEMENT 0xd 2581 #define LAN8814_LINK_QUALITY 0x8e 2582 2583 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2584 { 2585 int data; 2586 2587 phy_lock_mdio_bus(phydev); 2588 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2589 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2590 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2591 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2592 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2593 phy_unlock_mdio_bus(phydev); 2594 2595 return data; 2596 } 2597 2598 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2599 u16 val) 2600 { 2601 phy_lock_mdio_bus(phydev); 2602 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2603 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2604 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2605 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2606 2607 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2608 if (val != 0) 2609 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2610 val); 2611 phy_unlock_mdio_bus(phydev); 2612 return val; 2613 } 2614 2615 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2616 { 2617 u16 val = 0; 2618 2619 if (enable) 2620 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2621 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2622 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2623 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2624 2625 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2626 } 2627 2628 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2629 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2630 { 2631 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2632 *seconds = (*seconds << 16) | 2633 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2634 2635 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2636 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2637 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2638 2639 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2640 } 2641 2642 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2643 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2644 { 2645 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2646 *seconds = *seconds << 16 | 2647 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2648 2649 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2650 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2651 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2652 2653 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2654 } 2655 2656 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2657 { 2658 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2659 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2660 2661 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2662 SOF_TIMESTAMPING_RX_HARDWARE | 2663 SOF_TIMESTAMPING_RAW_HARDWARE; 2664 2665 info->phc_index = ptp_clock_index(shared->ptp_clock); 2666 2667 info->tx_types = 2668 (1 << HWTSTAMP_TX_OFF) | 2669 (1 << HWTSTAMP_TX_ON) | 2670 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2671 2672 info->rx_filters = 2673 (1 << HWTSTAMP_FILTER_NONE) | 2674 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2675 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2676 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2677 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2678 2679 return 0; 2680 } 2681 2682 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2683 { 2684 int i; 2685 2686 for (i = 0; i < FIFO_SIZE; ++i) 2687 lanphy_read_page_reg(phydev, 5, 2688 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2689 2690 /* Read to clear overflow status bit */ 2691 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2692 } 2693 2694 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2695 struct kernel_hwtstamp_config *config, 2696 struct netlink_ext_ack *extack) 2697 { 2698 struct kszphy_ptp_priv *ptp_priv = 2699 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2700 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2701 int txcfg = 0, rxcfg = 0; 2702 int pkt_ts_enable; 2703 int tx_mod; 2704 2705 ptp_priv->hwts_tx_type = config->tx_type; 2706 ptp_priv->rx_filter = config->rx_filter; 2707 2708 switch (config->rx_filter) { 2709 case HWTSTAMP_FILTER_NONE: 2710 ptp_priv->layer = 0; 2711 ptp_priv->version = 0; 2712 break; 2713 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2714 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2715 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2716 ptp_priv->layer = PTP_CLASS_L4; 2717 ptp_priv->version = PTP_CLASS_V2; 2718 break; 2719 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2720 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2721 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2722 ptp_priv->layer = PTP_CLASS_L2; 2723 ptp_priv->version = PTP_CLASS_V2; 2724 break; 2725 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2726 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2727 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2728 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2729 ptp_priv->version = PTP_CLASS_V2; 2730 break; 2731 default: 2732 return -ERANGE; 2733 } 2734 2735 if (ptp_priv->layer & PTP_CLASS_L2) { 2736 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2737 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2738 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2739 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2740 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2741 } 2742 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2743 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2744 2745 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2746 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2747 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2748 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2749 2750 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2751 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2752 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2753 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2754 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2755 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2756 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2757 } 2758 2759 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2760 lan8814_config_ts_intr(ptp_priv->phydev, true); 2761 else 2762 lan8814_config_ts_intr(ptp_priv->phydev, false); 2763 2764 /* In case of multiple starts and stops, these needs to be cleared */ 2765 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2766 list_del(&rx_ts->list); 2767 kfree(rx_ts); 2768 } 2769 skb_queue_purge(&ptp_priv->rx_queue); 2770 skb_queue_purge(&ptp_priv->tx_queue); 2771 2772 lan8814_flush_fifo(ptp_priv->phydev, false); 2773 lan8814_flush_fifo(ptp_priv->phydev, true); 2774 2775 return 0; 2776 } 2777 2778 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2779 struct sk_buff *skb, int type) 2780 { 2781 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2782 2783 switch (ptp_priv->hwts_tx_type) { 2784 case HWTSTAMP_TX_ONESTEP_SYNC: 2785 if (ptp_msg_is_sync(skb, type)) { 2786 kfree_skb(skb); 2787 return; 2788 } 2789 fallthrough; 2790 case HWTSTAMP_TX_ON: 2791 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2792 skb_queue_tail(&ptp_priv->tx_queue, skb); 2793 break; 2794 case HWTSTAMP_TX_OFF: 2795 default: 2796 kfree_skb(skb); 2797 break; 2798 } 2799 } 2800 2801 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2802 { 2803 struct ptp_header *ptp_header; 2804 u32 type; 2805 2806 skb_push(skb, ETH_HLEN); 2807 type = ptp_classify_raw(skb); 2808 ptp_header = ptp_parse_header(skb, type); 2809 skb_pull_inline(skb, ETH_HLEN); 2810 2811 if (!ptp_header) 2812 return false; 2813 2814 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2815 return true; 2816 } 2817 2818 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2819 struct sk_buff *skb) 2820 { 2821 struct skb_shared_hwtstamps *shhwtstamps; 2822 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2823 unsigned long flags; 2824 bool ret = false; 2825 u16 skb_sig; 2826 2827 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2828 return ret; 2829 2830 /* Iterate over all RX timestamps and match it with the received skbs */ 2831 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2832 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2833 /* Check if we found the signature we were looking for. */ 2834 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2835 continue; 2836 2837 shhwtstamps = skb_hwtstamps(skb); 2838 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2839 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2840 rx_ts->nsec); 2841 list_del(&rx_ts->list); 2842 kfree(rx_ts); 2843 2844 ret = true; 2845 break; 2846 } 2847 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2848 2849 if (ret) 2850 netif_rx(skb); 2851 return ret; 2852 } 2853 2854 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2855 { 2856 struct kszphy_ptp_priv *ptp_priv = 2857 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2858 2859 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2860 type == PTP_CLASS_NONE) 2861 return false; 2862 2863 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2864 return false; 2865 2866 /* If we failed to match then add it to the queue for when the timestamp 2867 * will come 2868 */ 2869 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2870 skb_queue_tail(&ptp_priv->rx_queue, skb); 2871 2872 return true; 2873 } 2874 2875 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2876 time64_t sec, u32 nsec) 2877 { 2878 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 2879 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 2880 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 2881 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 2882 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 2883 2884 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2885 } 2886 2887 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2888 time64_t *sec, u32 *nsec) 2889 { 2890 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2891 2892 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 2893 *sec <<= 16; 2894 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2895 *sec <<= 16; 2896 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2897 2898 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2899 *nsec <<= 16; 2900 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2901 } 2902 2903 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2904 struct timespec64 *ts) 2905 { 2906 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2907 ptp_clock_info); 2908 struct phy_device *phydev = shared->phydev; 2909 u32 nano_seconds; 2910 time64_t seconds; 2911 2912 mutex_lock(&shared->shared_lock); 2913 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2914 mutex_unlock(&shared->shared_lock); 2915 ts->tv_sec = seconds; 2916 ts->tv_nsec = nano_seconds; 2917 2918 return 0; 2919 } 2920 2921 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2922 const struct timespec64 *ts) 2923 { 2924 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2925 ptp_clock_info); 2926 struct phy_device *phydev = shared->phydev; 2927 2928 mutex_lock(&shared->shared_lock); 2929 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2930 mutex_unlock(&shared->shared_lock); 2931 2932 return 0; 2933 } 2934 2935 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 2936 s64 start_sec, u32 start_nsec) 2937 { 2938 /* Set the start time */ 2939 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 2940 lower_16_bits(start_sec)); 2941 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 2942 upper_16_bits(start_sec)); 2943 2944 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 2945 lower_16_bits(start_nsec)); 2946 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 2947 upper_16_bits(start_nsec) & 0x3fff); 2948 } 2949 2950 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 2951 { 2952 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 2953 sec + LAN8814_BUFFER_TIME, 0); 2954 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 2955 sec + LAN8814_BUFFER_TIME, 0); 2956 } 2957 2958 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2959 s64 time_step_ns) 2960 { 2961 u32 nano_seconds_step; 2962 u64 abs_time_step_ns; 2963 time64_t set_seconds; 2964 u32 nano_seconds; 2965 u32 remainder; 2966 s32 seconds; 2967 2968 if (time_step_ns > 15000000000LL) { 2969 /* convert to clock set */ 2970 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2971 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2972 &remainder); 2973 nano_seconds += remainder; 2974 if (nano_seconds >= 1000000000) { 2975 set_seconds++; 2976 nano_seconds -= 1000000000; 2977 } 2978 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2979 lan8814_ptp_update_target(phydev, set_seconds); 2980 return; 2981 } else if (time_step_ns < -15000000000LL) { 2982 /* convert to clock set */ 2983 time_step_ns = -time_step_ns; 2984 2985 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2986 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2987 &remainder); 2988 nano_seconds_step = remainder; 2989 if (nano_seconds < nano_seconds_step) { 2990 set_seconds--; 2991 nano_seconds += 1000000000; 2992 } 2993 nano_seconds -= nano_seconds_step; 2994 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2995 lan8814_ptp_update_target(phydev, set_seconds); 2996 return; 2997 } 2998 2999 /* do clock step */ 3000 if (time_step_ns >= 0) { 3001 abs_time_step_ns = (u64)time_step_ns; 3002 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3003 &remainder); 3004 nano_seconds = remainder; 3005 } else { 3006 abs_time_step_ns = (u64)(-time_step_ns); 3007 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3008 &remainder)); 3009 nano_seconds = remainder; 3010 if (nano_seconds > 0) { 3011 /* subtracting nano seconds is not allowed 3012 * convert to subtracting from seconds, 3013 * and adding to nanoseconds 3014 */ 3015 seconds--; 3016 nano_seconds = (1000000000 - nano_seconds); 3017 } 3018 } 3019 3020 if (nano_seconds > 0) { 3021 /* add 8 ns to cover the likely normal increment */ 3022 nano_seconds += 8; 3023 } 3024 3025 if (nano_seconds >= 1000000000) { 3026 /* carry into seconds */ 3027 seconds++; 3028 nano_seconds -= 1000000000; 3029 } 3030 3031 while (seconds) { 3032 u32 nsec; 3033 3034 if (seconds > 0) { 3035 u32 adjustment_value = (u32)seconds; 3036 u16 adjustment_value_lo, adjustment_value_hi; 3037 3038 if (adjustment_value > 0xF) 3039 adjustment_value = 0xF; 3040 3041 adjustment_value_lo = adjustment_value & 0xffff; 3042 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3043 3044 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3045 adjustment_value_lo); 3046 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3047 PTP_LTC_STEP_ADJ_DIR_ | 3048 adjustment_value_hi); 3049 seconds -= ((s32)adjustment_value); 3050 3051 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3052 set_seconds -= adjustment_value; 3053 lan8814_ptp_update_target(phydev, set_seconds); 3054 } else { 3055 u32 adjustment_value = (u32)(-seconds); 3056 u16 adjustment_value_lo, adjustment_value_hi; 3057 3058 if (adjustment_value > 0xF) 3059 adjustment_value = 0xF; 3060 3061 adjustment_value_lo = adjustment_value & 0xffff; 3062 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3063 3064 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3065 adjustment_value_lo); 3066 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3067 adjustment_value_hi); 3068 seconds += ((s32)adjustment_value); 3069 3070 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3071 set_seconds += adjustment_value; 3072 lan8814_ptp_update_target(phydev, set_seconds); 3073 } 3074 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3075 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3076 } 3077 if (nano_seconds) { 3078 u16 nano_seconds_lo; 3079 u16 nano_seconds_hi; 3080 3081 nano_seconds_lo = nano_seconds & 0xffff; 3082 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3083 3084 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3085 nano_seconds_lo); 3086 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3087 PTP_LTC_STEP_ADJ_DIR_ | 3088 nano_seconds_hi); 3089 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3090 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3091 } 3092 } 3093 3094 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3095 { 3096 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3097 ptp_clock_info); 3098 struct phy_device *phydev = shared->phydev; 3099 3100 mutex_lock(&shared->shared_lock); 3101 lan8814_ptp_clock_step(phydev, delta); 3102 mutex_unlock(&shared->shared_lock); 3103 3104 return 0; 3105 } 3106 3107 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3108 { 3109 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3110 ptp_clock_info); 3111 struct phy_device *phydev = shared->phydev; 3112 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3113 bool positive = true; 3114 u32 kszphy_rate_adj; 3115 3116 if (scaled_ppm < 0) { 3117 scaled_ppm = -scaled_ppm; 3118 positive = false; 3119 } 3120 3121 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3122 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3123 3124 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3125 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3126 3127 if (positive) 3128 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3129 3130 mutex_lock(&shared->shared_lock); 3131 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3132 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3133 mutex_unlock(&shared->shared_lock); 3134 3135 return 0; 3136 } 3137 3138 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3139 s64 period_sec, u32 period_nsec) 3140 { 3141 lanphy_write_page_reg(phydev, 4, 3142 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3143 lower_16_bits(period_sec)); 3144 lanphy_write_page_reg(phydev, 4, 3145 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3146 upper_16_bits(period_sec)); 3147 3148 lanphy_write_page_reg(phydev, 4, 3149 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3150 lower_16_bits(period_nsec)); 3151 lanphy_write_page_reg(phydev, 4, 3152 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3153 upper_16_bits(period_nsec) & 0x3fff); 3154 } 3155 3156 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3157 int pulse_width) 3158 { 3159 u16 val; 3160 3161 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3162 /* Set the pulse width of the event */ 3163 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3164 /* Make sure that the target clock will be incremented each time when 3165 * local time reaches or pass it 3166 */ 3167 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3168 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3169 /* Set the polarity high */ 3170 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3171 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3172 } 3173 3174 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3175 { 3176 u16 val; 3177 3178 /* Set target to too far in the future, effectively disabling it */ 3179 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3180 3181 /* And then reload once it recheas the target */ 3182 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3183 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3184 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3185 } 3186 3187 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3188 { 3189 u16 val; 3190 3191 /* Disable gpio alternate function, 3192 * 1: select as gpio, 3193 * 0: select alt func 3194 */ 3195 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3196 val |= LAN8814_GPIO_EN_BIT(pin); 3197 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3198 3199 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3200 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3201 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3202 3203 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3204 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3205 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3206 } 3207 3208 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3209 { 3210 int val; 3211 3212 /* Set as gpio output */ 3213 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3214 val |= LAN8814_GPIO_DIR_BIT(pin); 3215 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3216 3217 /* Enable gpio 0:for alternate function, 1:gpio */ 3218 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3219 val &= ~LAN8814_GPIO_EN_BIT(pin); 3220 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3221 3222 /* Set buffer type to push pull */ 3223 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3224 val |= LAN8814_GPIO_BUF_BIT(pin); 3225 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3226 } 3227 3228 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3229 struct ptp_clock_request *rq, int on) 3230 { 3231 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3232 ptp_clock_info); 3233 struct phy_device *phydev = shared->phydev; 3234 struct timespec64 ts_on, ts_period; 3235 s64 on_nsec, period_nsec; 3236 int pulse_width; 3237 int pin, event; 3238 3239 /* Reject requests with unsupported flags */ 3240 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 3241 return -EOPNOTSUPP; 3242 3243 mutex_lock(&shared->shared_lock); 3244 event = rq->perout.index; 3245 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3246 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3247 mutex_unlock(&shared->shared_lock); 3248 return -EBUSY; 3249 } 3250 3251 if (!on) { 3252 lan8814_ptp_perout_off(phydev, pin); 3253 lan8814_ptp_disable_event(phydev, event); 3254 mutex_unlock(&shared->shared_lock); 3255 return 0; 3256 } 3257 3258 ts_on.tv_sec = rq->perout.on.sec; 3259 ts_on.tv_nsec = rq->perout.on.nsec; 3260 on_nsec = timespec64_to_ns(&ts_on); 3261 3262 ts_period.tv_sec = rq->perout.period.sec; 3263 ts_period.tv_nsec = rq->perout.period.nsec; 3264 period_nsec = timespec64_to_ns(&ts_period); 3265 3266 if (period_nsec < 200) { 3267 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3268 phydev_name(phydev)); 3269 mutex_unlock(&shared->shared_lock); 3270 return -EOPNOTSUPP; 3271 } 3272 3273 if (on_nsec >= period_nsec) { 3274 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3275 phydev_name(phydev)); 3276 mutex_unlock(&shared->shared_lock); 3277 return -EINVAL; 3278 } 3279 3280 switch (on_nsec) { 3281 case 200000000: 3282 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3283 break; 3284 case 100000000: 3285 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3286 break; 3287 case 50000000: 3288 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3289 break; 3290 case 10000000: 3291 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3292 break; 3293 case 5000000: 3294 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3295 break; 3296 case 1000000: 3297 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3298 break; 3299 case 500000: 3300 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3301 break; 3302 case 100000: 3303 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3304 break; 3305 case 50000: 3306 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3307 break; 3308 case 10000: 3309 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3310 break; 3311 case 5000: 3312 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3313 break; 3314 case 1000: 3315 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3316 break; 3317 case 500: 3318 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3319 break; 3320 case 100: 3321 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3322 break; 3323 default: 3324 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3325 phydev_name(phydev)); 3326 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3327 break; 3328 } 3329 3330 /* Configure to pulse every period */ 3331 lan8814_ptp_enable_event(phydev, event, pulse_width); 3332 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3333 rq->perout.start.nsec); 3334 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3335 rq->perout.period.nsec); 3336 lan8814_ptp_perout_on(phydev, pin); 3337 mutex_unlock(&shared->shared_lock); 3338 3339 return 0; 3340 } 3341 3342 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3343 { 3344 u16 tmp; 3345 3346 /* Set as gpio input */ 3347 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3348 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3349 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3350 3351 /* Map the pin to ltc pin 0 of the capture map registers */ 3352 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3353 tmp |= pin; 3354 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3355 3356 /* Enable capture on the edges of the ltc pin */ 3357 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3358 if (flags & PTP_RISING_EDGE) 3359 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3360 if (flags & PTP_FALLING_EDGE) 3361 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3362 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3363 3364 /* Enable interrupt top interrupt */ 3365 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3366 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3367 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3368 } 3369 3370 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3371 { 3372 u16 tmp; 3373 3374 /* Set as gpio out */ 3375 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3376 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3377 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3378 3379 /* Enable alternate, 0:for alternate function, 1:gpio */ 3380 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3381 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3382 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3383 3384 /* Clear the mapping of pin to registers 0 of the capture registers */ 3385 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3386 tmp &= ~GENMASK(3, 0); 3387 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3388 3389 /* Disable capture on both of the edges */ 3390 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3391 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3392 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3393 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3394 3395 /* Disable interrupt top interrupt */ 3396 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3397 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3398 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3399 } 3400 3401 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3402 struct ptp_clock_request *rq, int on) 3403 { 3404 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3405 ptp_clock_info); 3406 struct phy_device *phydev = shared->phydev; 3407 int pin; 3408 3409 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 3410 PTP_EXTTS_EDGES | 3411 PTP_STRICT_FLAGS)) 3412 return -EOPNOTSUPP; 3413 3414 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3415 rq->extts.index); 3416 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3417 return -EINVAL; 3418 3419 mutex_lock(&shared->shared_lock); 3420 if (on) 3421 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3422 else 3423 lan8814_ptp_extts_off(phydev, pin); 3424 3425 mutex_unlock(&shared->shared_lock); 3426 3427 return 0; 3428 } 3429 3430 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3431 struct ptp_clock_request *rq, int on) 3432 { 3433 switch (rq->type) { 3434 case PTP_CLK_REQ_PEROUT: 3435 return lan8814_ptp_perout(ptpci, rq, on); 3436 case PTP_CLK_REQ_EXTTS: 3437 return lan8814_ptp_extts(ptpci, rq, on); 3438 default: 3439 return -EINVAL; 3440 } 3441 } 3442 3443 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3444 enum ptp_pin_function func, unsigned int chan) 3445 { 3446 switch (func) { 3447 case PTP_PF_NONE: 3448 case PTP_PF_PEROUT: 3449 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3450 * there is only chan 0 (event A) and for pin 1 there is only 3451 * chan 1 (event B) 3452 */ 3453 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3454 return -1; 3455 break; 3456 case PTP_PF_EXTTS: 3457 if (pin != LAN8814_PTP_EXTTS_NUM) 3458 return -1; 3459 break; 3460 default: 3461 return -1; 3462 } 3463 3464 return 0; 3465 } 3466 3467 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3468 { 3469 struct ptp_header *ptp_header; 3470 u32 type; 3471 3472 type = ptp_classify_raw(skb); 3473 ptp_header = ptp_parse_header(skb, type); 3474 3475 if (!ptp_header) 3476 return false; 3477 3478 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3479 return true; 3480 } 3481 3482 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3483 u32 seconds, u32 nsec, u16 seq_id) 3484 { 3485 struct skb_shared_hwtstamps shhwtstamps; 3486 struct sk_buff *skb, *skb_tmp; 3487 unsigned long flags; 3488 bool ret = false; 3489 u16 skb_sig; 3490 3491 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3492 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3493 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3494 continue; 3495 3496 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3497 continue; 3498 3499 __skb_unlink(skb, &ptp_priv->tx_queue); 3500 ret = true; 3501 break; 3502 } 3503 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3504 3505 if (ret) { 3506 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3507 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3508 skb_complete_tx_timestamp(skb, &shhwtstamps); 3509 } 3510 } 3511 3512 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3513 { 3514 struct phy_device *phydev = ptp_priv->phydev; 3515 u32 seconds, nsec; 3516 u16 seq_id; 3517 3518 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3519 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3520 } 3521 3522 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3523 { 3524 struct phy_device *phydev = ptp_priv->phydev; 3525 u32 reg; 3526 3527 do { 3528 lan8814_dequeue_tx_skb(ptp_priv); 3529 3530 /* If other timestamps are available in the FIFO, 3531 * process them. 3532 */ 3533 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3534 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3535 } 3536 3537 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3538 struct lan8814_ptp_rx_ts *rx_ts) 3539 { 3540 struct skb_shared_hwtstamps *shhwtstamps; 3541 struct sk_buff *skb, *skb_tmp; 3542 unsigned long flags; 3543 bool ret = false; 3544 u16 skb_sig; 3545 3546 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3547 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3548 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3549 continue; 3550 3551 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3552 continue; 3553 3554 __skb_unlink(skb, &ptp_priv->rx_queue); 3555 3556 ret = true; 3557 break; 3558 } 3559 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3560 3561 if (ret) { 3562 shhwtstamps = skb_hwtstamps(skb); 3563 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3564 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3565 netif_rx(skb); 3566 } 3567 3568 return ret; 3569 } 3570 3571 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3572 struct lan8814_ptp_rx_ts *rx_ts) 3573 { 3574 unsigned long flags; 3575 3576 /* If we failed to match the skb add it to the queue for when 3577 * the frame will come 3578 */ 3579 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3580 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3581 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3582 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3583 } else { 3584 kfree(rx_ts); 3585 } 3586 } 3587 3588 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3589 { 3590 struct phy_device *phydev = ptp_priv->phydev; 3591 struct lan8814_ptp_rx_ts *rx_ts; 3592 u32 reg; 3593 3594 do { 3595 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3596 if (!rx_ts) 3597 return; 3598 3599 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3600 &rx_ts->seq_id); 3601 lan8814_match_rx_ts(ptp_priv, rx_ts); 3602 3603 /* If other timestamps are available in the FIFO, 3604 * process them. 3605 */ 3606 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3607 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3608 } 3609 3610 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3611 { 3612 struct kszphy_priv *priv = phydev->priv; 3613 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3614 3615 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3616 lan8814_get_tx_ts(ptp_priv); 3617 3618 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3619 lan8814_get_rx_ts(ptp_priv); 3620 3621 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3622 lan8814_flush_fifo(phydev, true); 3623 skb_queue_purge(&ptp_priv->tx_queue); 3624 } 3625 3626 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3627 lan8814_flush_fifo(phydev, false); 3628 skb_queue_purge(&ptp_priv->rx_queue); 3629 } 3630 } 3631 3632 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3633 { 3634 struct phy_device *phydev = shared->phydev; 3635 struct ptp_clock_event ptp_event = {0}; 3636 unsigned long nsec; 3637 s64 sec; 3638 u16 tmp; 3639 3640 /* This is 0 because whatever was the input pin it was mapped it to 3641 * ltc gpio pin 0 3642 */ 3643 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3644 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3645 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3646 3647 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3648 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3649 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3650 return -1; 3651 3652 if (tmp & BIT(0)) { 3653 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3654 sec <<= 16; 3655 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3656 3657 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3658 nsec <<= 16; 3659 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3660 } else { 3661 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3662 sec <<= 16; 3663 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3664 3665 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3666 nsec <<= 16; 3667 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3668 } 3669 3670 ptp_event.index = 0; 3671 ptp_event.timestamp = ktime_set(sec, nsec); 3672 ptp_event.type = PTP_CLOCK_EXTTS; 3673 ptp_clock_event(shared->ptp_clock, &ptp_event); 3674 3675 return 0; 3676 } 3677 3678 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3679 { 3680 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3681 int ret; 3682 3683 mutex_lock(&shared->shared_lock); 3684 ret = lan8814_gpio_process_cap(shared); 3685 mutex_unlock(&shared->shared_lock); 3686 3687 return ret; 3688 } 3689 3690 static int lan8804_config_init(struct phy_device *phydev) 3691 { 3692 int val; 3693 3694 /* MDI-X setting for swap A,B transmit */ 3695 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3696 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3697 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3698 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3699 3700 /* Make sure that the PHY will not stop generating the clock when the 3701 * link partner goes down 3702 */ 3703 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3704 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3705 3706 return 0; 3707 } 3708 3709 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3710 { 3711 int status; 3712 3713 status = phy_read(phydev, LAN8814_INTS); 3714 if (status < 0) { 3715 phy_error(phydev); 3716 return IRQ_NONE; 3717 } 3718 3719 if (status > 0) 3720 phy_trigger_machine(phydev); 3721 3722 return IRQ_HANDLED; 3723 } 3724 3725 #define LAN8804_OUTPUT_CONTROL 25 3726 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3727 #define LAN8804_CONTROL 31 3728 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3729 3730 static int lan8804_config_intr(struct phy_device *phydev) 3731 { 3732 int err; 3733 3734 /* This is an internal PHY of lan966x and is not possible to change the 3735 * polarity on the GIC found in lan966x, therefore change the polarity 3736 * of the interrupt in the PHY from being active low instead of active 3737 * high. 3738 */ 3739 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3740 3741 /* By default interrupt buffer is open-drain in which case the interrupt 3742 * can be active only low. Therefore change the interrupt buffer to be 3743 * push-pull to be able to change interrupt polarity 3744 */ 3745 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3746 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3747 3748 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3749 err = phy_read(phydev, LAN8814_INTS); 3750 if (err < 0) 3751 return err; 3752 3753 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3754 if (err) 3755 return err; 3756 } else { 3757 err = phy_write(phydev, LAN8814_INTC, 0); 3758 if (err) 3759 return err; 3760 3761 err = phy_read(phydev, LAN8814_INTS); 3762 if (err < 0) 3763 return err; 3764 } 3765 3766 return 0; 3767 } 3768 3769 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3770 { 3771 int ret = IRQ_NONE; 3772 int irq_status; 3773 3774 irq_status = phy_read(phydev, LAN8814_INTS); 3775 if (irq_status < 0) { 3776 phy_error(phydev); 3777 return IRQ_NONE; 3778 } 3779 3780 if (irq_status & LAN8814_INT_LINK) { 3781 phy_trigger_machine(phydev); 3782 ret = IRQ_HANDLED; 3783 } 3784 3785 while (true) { 3786 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3787 if (!irq_status) 3788 break; 3789 3790 lan8814_handle_ptp_interrupt(phydev, irq_status); 3791 ret = IRQ_HANDLED; 3792 } 3793 3794 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 3795 ret = IRQ_HANDLED; 3796 3797 return ret; 3798 } 3799 3800 static int lan8814_ack_interrupt(struct phy_device *phydev) 3801 { 3802 /* bit[12..0] int status, which is a read and clear register. */ 3803 int rc; 3804 3805 rc = phy_read(phydev, LAN8814_INTS); 3806 3807 return (rc < 0) ? rc : 0; 3808 } 3809 3810 static int lan8814_config_intr(struct phy_device *phydev) 3811 { 3812 int err; 3813 3814 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3815 LAN8814_INTR_CTRL_REG_POLARITY | 3816 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3817 3818 /* enable / disable interrupts */ 3819 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3820 err = lan8814_ack_interrupt(phydev); 3821 if (err) 3822 return err; 3823 3824 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3825 } else { 3826 err = phy_write(phydev, LAN8814_INTC, 0); 3827 if (err) 3828 return err; 3829 3830 err = lan8814_ack_interrupt(phydev); 3831 } 3832 3833 return err; 3834 } 3835 3836 static void lan8814_ptp_init(struct phy_device *phydev) 3837 { 3838 struct kszphy_priv *priv = phydev->priv; 3839 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3840 u32 temp; 3841 3842 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3843 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3844 return; 3845 3846 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3847 3848 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3849 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3850 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3851 3852 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3853 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3854 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3855 3856 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3857 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3858 3859 /* Removing default registers configs related to L2 and IP */ 3860 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3861 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3862 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3863 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3864 3865 /* Disable checking for minorVersionPTP field */ 3866 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 3867 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3868 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 3869 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3870 3871 skb_queue_head_init(&ptp_priv->tx_queue); 3872 skb_queue_head_init(&ptp_priv->rx_queue); 3873 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3874 spin_lock_init(&ptp_priv->rx_ts_lock); 3875 3876 ptp_priv->phydev = phydev; 3877 3878 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3879 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3880 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3881 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3882 3883 phydev->mii_ts = &ptp_priv->mii_ts; 3884 3885 /* Timestamp selected by default to keep legacy API */ 3886 phydev->default_timestamp = true; 3887 } 3888 3889 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3890 { 3891 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3892 3893 /* Initialise shared lock for clock*/ 3894 mutex_init(&shared->shared_lock); 3895 3896 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 3897 LAN8814_PTP_GPIO_NUM, 3898 sizeof(*shared->pin_config), 3899 GFP_KERNEL); 3900 if (!shared->pin_config) 3901 return -ENOMEM; 3902 3903 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 3904 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 3905 3906 memset(ptp_pin, 0, sizeof(*ptp_pin)); 3907 snprintf(ptp_pin->name, 3908 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 3909 ptp_pin->index = i; 3910 ptp_pin->func = PTP_PF_NONE; 3911 } 3912 3913 shared->ptp_clock_info.owner = THIS_MODULE; 3914 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3915 shared->ptp_clock_info.max_adj = 31249999; 3916 shared->ptp_clock_info.n_alarm = 0; 3917 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 3918 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 3919 shared->ptp_clock_info.pps = 0; 3920 shared->ptp_clock_info.pin_config = shared->pin_config; 3921 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 3922 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3923 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3924 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3925 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3926 shared->ptp_clock_info.getcrosststamp = NULL; 3927 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 3928 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 3929 3930 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3931 &phydev->mdio.dev); 3932 if (IS_ERR(shared->ptp_clock)) { 3933 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3934 PTR_ERR(shared->ptp_clock)); 3935 return -EINVAL; 3936 } 3937 3938 /* Check if PHC support is missing at the configuration level */ 3939 if (!shared->ptp_clock) 3940 return 0; 3941 3942 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3943 3944 shared->phydev = phydev; 3945 3946 /* The EP.4 is shared between all the PHYs in the package and also it 3947 * can be accessed by any of the PHYs 3948 */ 3949 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3950 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3951 PTP_OPERATING_MODE_STANDALONE_); 3952 3953 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 3954 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 3955 3956 return 0; 3957 } 3958 3959 static void lan8814_setup_led(struct phy_device *phydev, int val) 3960 { 3961 int temp; 3962 3963 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3964 3965 if (val) 3966 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3967 else 3968 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3969 3970 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3971 } 3972 3973 static int lan8814_config_init(struct phy_device *phydev) 3974 { 3975 struct kszphy_priv *lan8814 = phydev->priv; 3976 int val; 3977 3978 /* Reset the PHY */ 3979 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3980 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3981 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3982 3983 /* Disable ANEG with QSGMII PCS Host side */ 3984 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3985 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3986 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3987 3988 /* MDI-X setting for swap A,B transmit */ 3989 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3990 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3991 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3992 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3993 3994 if (lan8814->led_mode >= 0) 3995 lan8814_setup_led(phydev, lan8814->led_mode); 3996 3997 return 0; 3998 } 3999 4000 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4001 * function called in suspend. Because the GPIO line can be shared, so if one of 4002 * the phys goes back in coma mode, then all the other PHYs will go, which is 4003 * wrong. 4004 */ 4005 static int lan8814_release_coma_mode(struct phy_device *phydev) 4006 { 4007 struct gpio_desc *gpiod; 4008 4009 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4010 GPIOD_OUT_HIGH_OPEN_DRAIN | 4011 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4012 if (IS_ERR(gpiod)) 4013 return PTR_ERR(gpiod); 4014 4015 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4016 gpiod_set_value_cansleep(gpiod, 0); 4017 4018 return 0; 4019 } 4020 4021 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4022 { 4023 u16 val; 4024 4025 /* It was noticed that when traffic is passing through the PHY and the 4026 * cable is removed then the LED was still one even though there is no 4027 * link 4028 */ 4029 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4030 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4031 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4032 } 4033 4034 static void lan8814_update_meas_time(struct phy_device *phydev) 4035 { 4036 u16 val; 4037 4038 /* By setting the measure time to a value of 0xb this will allow cables 4039 * longer than 100m to be used. This configuration can be used 4040 * regardless of the mode of operation of the PHY 4041 */ 4042 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4043 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4044 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4045 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4046 } 4047 4048 static int lan8814_probe(struct phy_device *phydev) 4049 { 4050 const struct kszphy_type *type = phydev->drv->driver_data; 4051 struct kszphy_priv *priv; 4052 u16 addr; 4053 int err; 4054 4055 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4056 if (!priv) 4057 return -ENOMEM; 4058 4059 phydev->priv = priv; 4060 4061 priv->type = type; 4062 4063 kszphy_parse_led_mode(phydev); 4064 4065 /* Strap-in value for PHY address, below register read gives starting 4066 * phy address value 4067 */ 4068 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4069 devm_phy_package_join(&phydev->mdio.dev, phydev, 4070 addr, sizeof(struct lan8814_shared_priv)); 4071 4072 if (phy_package_init_once(phydev)) { 4073 err = lan8814_release_coma_mode(phydev); 4074 if (err) 4075 return err; 4076 4077 err = lan8814_ptp_probe_once(phydev); 4078 if (err) 4079 return err; 4080 } 4081 4082 lan8814_ptp_init(phydev); 4083 4084 /* Errata workarounds */ 4085 lan8814_clear_2psp_bit(phydev); 4086 lan8814_update_meas_time(phydev); 4087 4088 return 0; 4089 } 4090 4091 #define LAN8841_MMD_TIMER_REG 0 4092 #define LAN8841_MMD0_REGISTER_17 17 4093 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4094 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4095 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4096 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4097 #define LAN8841_MMD_ANALOG_REG 28 4098 #define LAN8841_ANALOG_CONTROL_1 1 4099 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4100 #define LAN8841_ANALOG_CONTROL_10 13 4101 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4102 #define LAN8841_ANALOG_CONTROL_11 14 4103 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4104 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4105 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4106 #define LAN8841_BTRX_POWER_DOWN 70 4107 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4108 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4109 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4110 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4111 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4112 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4113 #define LAN8841_ADC_CHANNEL_MASK 198 4114 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4115 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4116 #define LAN8841_PTP_RX_VERSION 374 4117 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4118 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4119 #define LAN8841_PTP_TX_VERSION 438 4120 #define LAN8841_PTP_CMD_CTL 256 4121 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4122 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4123 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4124 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4125 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4126 #define LAN8841_PTP_RX_MODE 381 4127 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4128 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4129 4130 static int lan8841_config_init(struct phy_device *phydev) 4131 { 4132 int ret; 4133 4134 ret = ksz9131_config_init(phydev); 4135 if (ret) 4136 return ret; 4137 4138 /* Initialize the HW by resetting everything */ 4139 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4140 LAN8841_PTP_CMD_CTL, 4141 LAN8841_PTP_CMD_CTL_PTP_RESET, 4142 LAN8841_PTP_CMD_CTL_PTP_RESET); 4143 4144 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4145 LAN8841_PTP_CMD_CTL, 4146 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4147 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4148 4149 /* Don't process any frames */ 4150 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4151 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4152 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4153 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4154 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4155 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4156 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4157 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4158 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4159 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4160 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4161 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4162 4163 /* Disable checking for minorVersionPTP field */ 4164 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4165 LAN8841_PTP_RX_VERSION, 0xff00); 4166 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4167 LAN8841_PTP_TX_VERSION, 0xff00); 4168 4169 /* 100BT Clause 40 improvenent errata */ 4170 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4171 LAN8841_ANALOG_CONTROL_1, 4172 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4173 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4174 LAN8841_ANALOG_CONTROL_10, 4175 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4176 4177 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4178 * Magnetics 4179 */ 4180 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4181 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4182 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4183 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4184 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4185 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4186 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4187 LAN8841_BTRX_POWER_DOWN, 4188 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4189 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4190 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4191 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4192 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4193 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4194 } 4195 4196 /* LDO Adjustment errata */ 4197 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4198 LAN8841_ANALOG_CONTROL_11, 4199 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4200 4201 /* 100BT RGMII latency tuning errata */ 4202 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4203 LAN8841_ADC_CHANNEL_MASK, 0x0); 4204 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4205 LAN8841_MMD0_REGISTER_17, 4206 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4207 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4208 4209 return 0; 4210 } 4211 4212 #define LAN8841_OUTPUT_CTRL 25 4213 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4214 #define LAN8841_INT_PTP BIT(9) 4215 4216 static int lan8841_config_intr(struct phy_device *phydev) 4217 { 4218 int err; 4219 4220 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4221 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4222 4223 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4224 err = phy_read(phydev, LAN8814_INTS); 4225 if (err < 0) 4226 return err; 4227 4228 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4229 * even if it PTP is not enabled. Because the underneath blocks 4230 * will not enable the PTP so we will never get the PTP 4231 * interrupt. 4232 */ 4233 err = phy_write(phydev, LAN8814_INTC, 4234 LAN8814_INT_LINK | LAN8841_INT_PTP); 4235 } else { 4236 err = phy_write(phydev, LAN8814_INTC, 0); 4237 if (err) 4238 return err; 4239 4240 err = phy_read(phydev, LAN8814_INTS); 4241 if (err < 0) 4242 return err; 4243 4244 /* Getting a positive value doesn't mean that is an error, it 4245 * just indicates what was the status. Therefore make sure to 4246 * clear the value and say that there is no error. 4247 */ 4248 err = 0; 4249 } 4250 4251 return err; 4252 } 4253 4254 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4255 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4256 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4257 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4258 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4259 #define LAN8841_PTP_TX_MSG_HEADER2 455 4260 4261 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4262 u32 *sec, u32 *nsec, u16 *seq) 4263 { 4264 struct phy_device *phydev = ptp_priv->phydev; 4265 4266 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4267 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4268 return false; 4269 4270 *nsec = ((*nsec & 0x3fff) << 16); 4271 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4272 4273 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4274 *sec = *sec << 16; 4275 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4276 4277 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4278 4279 return true; 4280 } 4281 4282 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4283 { 4284 u32 sec, nsec; 4285 u16 seq; 4286 4287 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4288 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4289 } 4290 4291 #define LAN8841_PTP_INT_STS 259 4292 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4293 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4294 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4295 4296 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4297 { 4298 struct phy_device *phydev = ptp_priv->phydev; 4299 int i; 4300 4301 for (i = 0; i < FIFO_SIZE; ++i) 4302 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4303 4304 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4305 } 4306 4307 #define LAN8841_PTP_GPIO_CAP_STS 506 4308 #define LAN8841_PTP_GPIO_SEL 327 4309 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4310 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4311 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4312 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4313 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4314 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4315 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4316 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4317 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4318 4319 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4320 { 4321 struct phy_device *phydev = ptp_priv->phydev; 4322 struct ptp_clock_event ptp_event = {0}; 4323 int pin, ret, tmp; 4324 s32 sec, nsec; 4325 4326 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4327 if (pin == -1) 4328 return; 4329 4330 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4331 if (tmp < 0) 4332 return; 4333 4334 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4335 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4336 if (ret) 4337 return; 4338 4339 mutex_lock(&ptp_priv->ptp_lock); 4340 if (tmp & BIT(pin)) { 4341 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4342 sec <<= 16; 4343 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4344 4345 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4346 nsec <<= 16; 4347 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4348 } else { 4349 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4350 sec <<= 16; 4351 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4352 4353 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4354 nsec <<= 16; 4355 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4356 } 4357 mutex_unlock(&ptp_priv->ptp_lock); 4358 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4359 if (ret) 4360 return; 4361 4362 ptp_event.index = 0; 4363 ptp_event.timestamp = ktime_set(sec, nsec); 4364 ptp_event.type = PTP_CLOCK_EXTTS; 4365 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4366 } 4367 4368 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4369 { 4370 struct kszphy_priv *priv = phydev->priv; 4371 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4372 u16 status; 4373 4374 do { 4375 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4376 4377 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4378 lan8841_ptp_process_tx_ts(ptp_priv); 4379 4380 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4381 lan8841_gpio_process_cap(ptp_priv); 4382 4383 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4384 lan8841_ptp_flush_fifo(ptp_priv); 4385 skb_queue_purge(&ptp_priv->tx_queue); 4386 } 4387 4388 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4389 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4390 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4391 } 4392 4393 #define LAN8841_INTS_PTP BIT(9) 4394 4395 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4396 { 4397 irqreturn_t ret = IRQ_NONE; 4398 int irq_status; 4399 4400 irq_status = phy_read(phydev, LAN8814_INTS); 4401 if (irq_status < 0) { 4402 phy_error(phydev); 4403 return IRQ_NONE; 4404 } 4405 4406 if (irq_status & LAN8814_INT_LINK) { 4407 phy_trigger_machine(phydev); 4408 ret = IRQ_HANDLED; 4409 } 4410 4411 if (irq_status & LAN8841_INTS_PTP) { 4412 lan8841_handle_ptp_interrupt(phydev); 4413 ret = IRQ_HANDLED; 4414 } 4415 4416 return ret; 4417 } 4418 4419 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4420 struct kernel_ethtool_ts_info *info) 4421 { 4422 struct kszphy_ptp_priv *ptp_priv; 4423 4424 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4425 4426 info->phc_index = ptp_priv->ptp_clock ? 4427 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4428 if (info->phc_index == -1) 4429 return 0; 4430 4431 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4432 SOF_TIMESTAMPING_RX_HARDWARE | 4433 SOF_TIMESTAMPING_RAW_HARDWARE; 4434 4435 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4436 (1 << HWTSTAMP_TX_ON) | 4437 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4438 4439 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4440 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4441 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4442 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4443 4444 return 0; 4445 } 4446 4447 #define LAN8841_PTP_INT_EN 260 4448 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4449 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4450 4451 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4452 bool enable) 4453 { 4454 struct phy_device *phydev = ptp_priv->phydev; 4455 4456 if (enable) { 4457 /* Enable interrupts on the TX side */ 4458 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4459 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4460 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4461 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4462 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4463 4464 /* Enable the modification of the frame on RX side, 4465 * this will add the ns and 2 bits of sec in the reserved field 4466 * of the PTP header 4467 */ 4468 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4469 LAN8841_PTP_RX_MODE, 4470 LAN8841_PTP_INSERT_TS_EN | 4471 LAN8841_PTP_INSERT_TS_32BIT, 4472 LAN8841_PTP_INSERT_TS_EN | 4473 LAN8841_PTP_INSERT_TS_32BIT); 4474 4475 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4476 } else { 4477 /* Disable interrupts on the TX side */ 4478 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4479 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4480 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4481 4482 /* Disable modification of the RX frames */ 4483 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4484 LAN8841_PTP_RX_MODE, 4485 LAN8841_PTP_INSERT_TS_EN | 4486 LAN8841_PTP_INSERT_TS_32BIT, 0); 4487 4488 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4489 } 4490 } 4491 4492 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4493 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4494 #define LAN8841_PTP_TX_MOD 445 4495 4496 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4497 struct kernel_hwtstamp_config *config, 4498 struct netlink_ext_ack *extack) 4499 { 4500 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4501 struct phy_device *phydev = ptp_priv->phydev; 4502 int txcfg = 0, rxcfg = 0; 4503 int pkt_ts_enable; 4504 4505 ptp_priv->hwts_tx_type = config->tx_type; 4506 ptp_priv->rx_filter = config->rx_filter; 4507 4508 switch (config->rx_filter) { 4509 case HWTSTAMP_FILTER_NONE: 4510 ptp_priv->layer = 0; 4511 ptp_priv->version = 0; 4512 break; 4513 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4514 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4515 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4516 ptp_priv->layer = PTP_CLASS_L4; 4517 ptp_priv->version = PTP_CLASS_V2; 4518 break; 4519 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4520 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4521 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4522 ptp_priv->layer = PTP_CLASS_L2; 4523 ptp_priv->version = PTP_CLASS_V2; 4524 break; 4525 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4526 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4527 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4528 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4529 ptp_priv->version = PTP_CLASS_V2; 4530 break; 4531 default: 4532 return -ERANGE; 4533 } 4534 4535 /* Setup parsing of the frames and enable the timestamping for ptp 4536 * frames 4537 */ 4538 if (ptp_priv->layer & PTP_CLASS_L2) { 4539 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4540 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4541 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4542 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4543 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4544 } 4545 4546 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4547 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4548 4549 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4550 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4551 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4552 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4553 4554 /* Enable / disable of the TX timestamp in the SYNC frames */ 4555 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4556 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4557 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4558 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4559 4560 /* Now enable/disable the timestamping */ 4561 lan8841_ptp_enable_processing(ptp_priv, 4562 config->rx_filter != HWTSTAMP_FILTER_NONE); 4563 4564 skb_queue_purge(&ptp_priv->tx_queue); 4565 4566 lan8841_ptp_flush_fifo(ptp_priv); 4567 4568 return 0; 4569 } 4570 4571 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4572 struct sk_buff *skb, int type) 4573 { 4574 struct kszphy_ptp_priv *ptp_priv = 4575 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4576 struct ptp_header *header = ptp_parse_header(skb, type); 4577 struct skb_shared_hwtstamps *shhwtstamps; 4578 struct timespec64 ts; 4579 unsigned long flags; 4580 u32 ts_header; 4581 4582 if (!header) 4583 return false; 4584 4585 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4586 type == PTP_CLASS_NONE) 4587 return false; 4588 4589 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4590 return false; 4591 4592 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4593 ts.tv_sec = ptp_priv->seconds; 4594 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4595 ts_header = __be32_to_cpu(header->reserved2); 4596 4597 shhwtstamps = skb_hwtstamps(skb); 4598 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4599 4600 /* Check for any wrap arounds for the second part */ 4601 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4602 ts.tv_sec -= GENMASK(1, 0) + 1; 4603 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4604 ts.tv_sec += 1; 4605 4606 shhwtstamps->hwtstamp = 4607 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4608 ts_header & GENMASK(29, 0)); 4609 header->reserved2 = 0; 4610 4611 netif_rx(skb); 4612 4613 return true; 4614 } 4615 4616 #define LAN8841_EVENT_A 0 4617 #define LAN8841_EVENT_B 1 4618 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4619 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4620 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4621 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4622 4623 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4624 s64 sec, u32 nsec) 4625 { 4626 struct phy_device *phydev = ptp_priv->phydev; 4627 int ret; 4628 4629 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4630 upper_16_bits(sec)); 4631 if (ret) 4632 return ret; 4633 4634 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4635 lower_16_bits(sec)); 4636 if (ret) 4637 return ret; 4638 4639 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4640 upper_16_bits(nsec)); 4641 if (ret) 4642 return ret; 4643 4644 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4645 lower_16_bits(nsec)); 4646 } 4647 4648 #define LAN8841_BUFFER_TIME 2 4649 4650 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4651 const struct timespec64 *ts) 4652 { 4653 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4654 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4655 } 4656 4657 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4658 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4659 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4660 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4661 4662 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4663 s64 sec, u32 nsec) 4664 { 4665 struct phy_device *phydev = ptp_priv->phydev; 4666 int ret; 4667 4668 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4669 upper_16_bits(sec)); 4670 if (ret) 4671 return ret; 4672 4673 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4674 lower_16_bits(sec)); 4675 if (ret) 4676 return ret; 4677 4678 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4679 upper_16_bits(nsec)); 4680 if (ret) 4681 return ret; 4682 4683 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4684 lower_16_bits(nsec)); 4685 } 4686 4687 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4688 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4689 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4690 #define LAN8841_PTP_LTC_SET_NS_HI 265 4691 #define LAN8841_PTP_LTC_SET_NS_LO 266 4692 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4693 4694 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4695 const struct timespec64 *ts) 4696 { 4697 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4698 ptp_clock_info); 4699 struct phy_device *phydev = ptp_priv->phydev; 4700 unsigned long flags; 4701 int ret; 4702 4703 /* Set the value to be stored */ 4704 mutex_lock(&ptp_priv->ptp_lock); 4705 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4706 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4707 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4708 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4709 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4710 4711 /* Set the command to load the LTC */ 4712 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4713 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4714 ret = lan8841_ptp_update_target(ptp_priv, ts); 4715 mutex_unlock(&ptp_priv->ptp_lock); 4716 4717 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4718 ptp_priv->seconds = ts->tv_sec; 4719 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4720 4721 return ret; 4722 } 4723 4724 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4725 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4726 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4727 #define LAN8841_PTP_LTC_RD_NS_HI 361 4728 #define LAN8841_PTP_LTC_RD_NS_LO 362 4729 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4730 4731 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4732 struct timespec64 *ts) 4733 { 4734 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4735 ptp_clock_info); 4736 struct phy_device *phydev = ptp_priv->phydev; 4737 time64_t s; 4738 s64 ns; 4739 4740 mutex_lock(&ptp_priv->ptp_lock); 4741 /* Issue the command to read the LTC */ 4742 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4743 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4744 4745 /* Read the LTC */ 4746 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4747 s <<= 16; 4748 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4749 s <<= 16; 4750 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4751 4752 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4753 ns <<= 16; 4754 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4755 mutex_unlock(&ptp_priv->ptp_lock); 4756 4757 set_normalized_timespec64(ts, s, ns); 4758 return 0; 4759 } 4760 4761 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4762 struct timespec64 *ts) 4763 { 4764 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4765 ptp_clock_info); 4766 struct phy_device *phydev = ptp_priv->phydev; 4767 time64_t s; 4768 4769 mutex_lock(&ptp_priv->ptp_lock); 4770 /* Issue the command to read the LTC */ 4771 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4772 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4773 4774 /* Read the LTC */ 4775 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4776 s <<= 16; 4777 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4778 s <<= 16; 4779 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4780 mutex_unlock(&ptp_priv->ptp_lock); 4781 4782 set_normalized_timespec64(ts, s, 0); 4783 } 4784 4785 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4786 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4787 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4788 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4789 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4790 4791 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4792 { 4793 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4794 ptp_clock_info); 4795 struct phy_device *phydev = ptp_priv->phydev; 4796 struct timespec64 ts; 4797 bool add = true; 4798 u32 nsec; 4799 s32 sec; 4800 int ret; 4801 4802 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4803 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4804 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4805 * increment so the value can be bigger than 15 sec. Therefore limit the 4806 * possible adjustments so we will not have these corner cases 4807 */ 4808 if (delta > 10000000000LL || delta < -10000000000LL) { 4809 /* The timeadjustment is too big, so fall back using set time */ 4810 u64 now; 4811 4812 ptp->gettime64(ptp, &ts); 4813 4814 now = ktime_to_ns(timespec64_to_ktime(ts)); 4815 ts = ns_to_timespec64(now + delta); 4816 4817 ptp->settime64(ptp, &ts); 4818 return 0; 4819 } 4820 4821 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4822 if (delta < 0 && nsec != 0) { 4823 /* It is not allowed to adjust low the nsec part, therefore 4824 * subtract more from second part and add to nanosecond such 4825 * that would roll over, so the second part will increase 4826 */ 4827 sec--; 4828 nsec = NSEC_PER_SEC - nsec; 4829 } 4830 4831 /* Calculate the adjustments and the direction */ 4832 if (delta < 0) 4833 add = false; 4834 4835 if (nsec > 0) 4836 /* add 8 ns to cover the likely normal increment */ 4837 nsec += 8; 4838 4839 if (nsec >= NSEC_PER_SEC) { 4840 /* carry into seconds */ 4841 sec++; 4842 nsec -= NSEC_PER_SEC; 4843 } 4844 4845 mutex_lock(&ptp_priv->ptp_lock); 4846 if (sec) { 4847 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4848 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4849 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4850 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4851 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4852 } 4853 4854 if (nsec) { 4855 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4856 nsec & 0xffff); 4857 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4858 (nsec >> 16) & 0x3fff); 4859 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4860 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4861 } 4862 mutex_unlock(&ptp_priv->ptp_lock); 4863 4864 /* Update the target clock */ 4865 ptp->gettime64(ptp, &ts); 4866 mutex_lock(&ptp_priv->ptp_lock); 4867 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4868 mutex_unlock(&ptp_priv->ptp_lock); 4869 4870 return ret; 4871 } 4872 4873 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4874 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4875 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4876 4877 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4878 { 4879 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4880 ptp_clock_info); 4881 struct phy_device *phydev = ptp_priv->phydev; 4882 bool faster = true; 4883 u32 rate; 4884 4885 if (!scaled_ppm) 4886 return 0; 4887 4888 if (scaled_ppm < 0) { 4889 scaled_ppm = -scaled_ppm; 4890 faster = false; 4891 } 4892 4893 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4894 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4895 4896 mutex_lock(&ptp_priv->ptp_lock); 4897 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4898 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4899 : upper_16_bits(rate) & 0x3fff); 4900 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4901 mutex_unlock(&ptp_priv->ptp_lock); 4902 4903 return 0; 4904 } 4905 4906 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4907 enum ptp_pin_function func, unsigned int chan) 4908 { 4909 switch (func) { 4910 case PTP_PF_NONE: 4911 case PTP_PF_PEROUT: 4912 case PTP_PF_EXTTS: 4913 break; 4914 default: 4915 return -1; 4916 } 4917 4918 return 0; 4919 } 4920 4921 #define LAN8841_PTP_GPIO_NUM 10 4922 #define LAN8841_GPIO_EN 128 4923 #define LAN8841_GPIO_DIR 129 4924 #define LAN8841_GPIO_BUF 130 4925 4926 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4927 { 4928 struct phy_device *phydev = ptp_priv->phydev; 4929 int ret; 4930 4931 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4932 if (ret) 4933 return ret; 4934 4935 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4936 if (ret) 4937 return ret; 4938 4939 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4940 } 4941 4942 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4943 { 4944 struct phy_device *phydev = ptp_priv->phydev; 4945 int ret; 4946 4947 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4948 if (ret) 4949 return ret; 4950 4951 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4952 if (ret) 4953 return ret; 4954 4955 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4956 } 4957 4958 #define LAN8841_GPIO_DATA_SEL1 131 4959 #define LAN8841_GPIO_DATA_SEL2 132 4960 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4961 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4962 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4963 #define LAN8841_PTP_GENERAL_CONFIG 257 4964 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4965 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4966 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4967 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4968 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4969 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4970 4971 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4972 u8 event) 4973 { 4974 struct phy_device *phydev = ptp_priv->phydev; 4975 u16 tmp; 4976 int ret; 4977 4978 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4979 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4980 * depending on the pin, it requires to read a different register 4981 */ 4982 if (pin < 5) { 4983 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4984 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4985 } else { 4986 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4987 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4988 } 4989 if (ret) 4990 return ret; 4991 4992 /* Disable the event */ 4993 if (event == LAN8841_EVENT_A) 4994 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4995 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4996 else 4997 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4998 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4999 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5000 } 5001 5002 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5003 u8 event, int pulse_width) 5004 { 5005 struct phy_device *phydev = ptp_priv->phydev; 5006 u16 tmp; 5007 int ret; 5008 5009 /* Enable the event */ 5010 if (event == LAN8841_EVENT_A) 5011 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5012 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5013 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5014 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5015 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5016 else 5017 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5018 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5019 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5020 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5021 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5022 if (ret) 5023 return ret; 5024 5025 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5026 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5027 * depending on the pin, it requires to read a different register 5028 */ 5029 if (event == LAN8841_EVENT_A) 5030 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5031 else 5032 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5033 5034 if (pin < 5) 5035 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5036 tmp << (3 * pin)); 5037 else 5038 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5039 tmp << (3 * (pin - 5))); 5040 5041 return ret; 5042 } 5043 5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5049 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5050 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5051 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5052 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5053 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5054 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5055 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5056 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5057 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5058 5059 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5060 struct ptp_clock_request *rq, int on) 5061 { 5062 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5063 ptp_clock_info); 5064 struct phy_device *phydev = ptp_priv->phydev; 5065 struct timespec64 ts_on, ts_period; 5066 s64 on_nsec, period_nsec; 5067 int pulse_width; 5068 int pin; 5069 int ret; 5070 5071 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 5072 return -EOPNOTSUPP; 5073 5074 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5075 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5076 return -EINVAL; 5077 5078 if (!on) { 5079 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5080 if (ret) 5081 return ret; 5082 5083 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5084 } 5085 5086 ts_on.tv_sec = rq->perout.on.sec; 5087 ts_on.tv_nsec = rq->perout.on.nsec; 5088 on_nsec = timespec64_to_ns(&ts_on); 5089 5090 ts_period.tv_sec = rq->perout.period.sec; 5091 ts_period.tv_nsec = rq->perout.period.nsec; 5092 period_nsec = timespec64_to_ns(&ts_period); 5093 5094 if (period_nsec < 200) { 5095 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5096 phydev_name(phydev)); 5097 return -EOPNOTSUPP; 5098 } 5099 5100 if (on_nsec >= period_nsec) { 5101 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5102 phydev_name(phydev)); 5103 return -EINVAL; 5104 } 5105 5106 switch (on_nsec) { 5107 case 200000000: 5108 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5109 break; 5110 case 100000000: 5111 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5112 break; 5113 case 50000000: 5114 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5115 break; 5116 case 10000000: 5117 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5118 break; 5119 case 5000000: 5120 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5121 break; 5122 case 1000000: 5123 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5124 break; 5125 case 500000: 5126 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5127 break; 5128 case 100000: 5129 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5130 break; 5131 case 50000: 5132 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5133 break; 5134 case 10000: 5135 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5136 break; 5137 case 5000: 5138 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5139 break; 5140 case 1000: 5141 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5142 break; 5143 case 500: 5144 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5145 break; 5146 case 100: 5147 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5148 break; 5149 default: 5150 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5151 phydev_name(phydev)); 5152 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5153 break; 5154 } 5155 5156 mutex_lock(&ptp_priv->ptp_lock); 5157 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5158 rq->perout.start.nsec); 5159 mutex_unlock(&ptp_priv->ptp_lock); 5160 if (ret) 5161 return ret; 5162 5163 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5164 rq->perout.period.nsec); 5165 if (ret) 5166 return ret; 5167 5168 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5169 pulse_width); 5170 if (ret) 5171 return ret; 5172 5173 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5174 if (ret) 5175 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5176 5177 return ret; 5178 } 5179 5180 #define LAN8841_PTP_GPIO_CAP_EN 496 5181 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5182 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5183 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5184 5185 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5186 u32 flags) 5187 { 5188 struct phy_device *phydev = ptp_priv->phydev; 5189 u16 tmp = 0; 5190 int ret; 5191 5192 /* Set GPIO to be intput */ 5193 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5194 if (ret) 5195 return ret; 5196 5197 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5198 if (ret) 5199 return ret; 5200 5201 /* Enable capture on the edges of the pin */ 5202 if (flags & PTP_RISING_EDGE) 5203 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5204 if (flags & PTP_FALLING_EDGE) 5205 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5206 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5207 if (ret) 5208 return ret; 5209 5210 /* Enable interrupt */ 5211 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5212 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5213 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5214 } 5215 5216 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5217 { 5218 struct phy_device *phydev = ptp_priv->phydev; 5219 int ret; 5220 5221 /* Set GPIO to be output */ 5222 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5223 if (ret) 5224 return ret; 5225 5226 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5227 if (ret) 5228 return ret; 5229 5230 /* Disable capture on both of the edges */ 5231 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5232 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5233 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5234 0); 5235 if (ret) 5236 return ret; 5237 5238 /* Disable interrupt */ 5239 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5240 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5241 0); 5242 } 5243 5244 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5245 struct ptp_clock_request *rq, int on) 5246 { 5247 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5248 ptp_clock_info); 5249 int pin; 5250 int ret; 5251 5252 /* Reject requests with unsupported flags */ 5253 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5254 PTP_EXTTS_EDGES | 5255 PTP_STRICT_FLAGS)) 5256 return -EOPNOTSUPP; 5257 5258 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5259 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5260 return -EINVAL; 5261 5262 mutex_lock(&ptp_priv->ptp_lock); 5263 if (on) 5264 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5265 else 5266 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5267 mutex_unlock(&ptp_priv->ptp_lock); 5268 5269 return ret; 5270 } 5271 5272 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5273 struct ptp_clock_request *rq, int on) 5274 { 5275 switch (rq->type) { 5276 case PTP_CLK_REQ_EXTTS: 5277 return lan8841_ptp_extts(ptp, rq, on); 5278 case PTP_CLK_REQ_PEROUT: 5279 return lan8841_ptp_perout(ptp, rq, on); 5280 default: 5281 return -EOPNOTSUPP; 5282 } 5283 5284 return 0; 5285 } 5286 5287 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5288 { 5289 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5290 ptp_clock_info); 5291 struct timespec64 ts; 5292 unsigned long flags; 5293 5294 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5295 5296 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5297 ptp_priv->seconds = ts.tv_sec; 5298 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5299 5300 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5301 } 5302 5303 static struct ptp_clock_info lan8841_ptp_clock_info = { 5304 .owner = THIS_MODULE, 5305 .name = "lan8841 ptp", 5306 .max_adj = 31249999, 5307 .gettime64 = lan8841_ptp_gettime64, 5308 .settime64 = lan8841_ptp_settime64, 5309 .adjtime = lan8841_ptp_adjtime, 5310 .adjfine = lan8841_ptp_adjfine, 5311 .verify = lan8841_ptp_verify, 5312 .enable = lan8841_ptp_enable, 5313 .do_aux_work = lan8841_ptp_do_aux_work, 5314 .n_per_out = LAN8841_PTP_GPIO_NUM, 5315 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5316 .n_pins = LAN8841_PTP_GPIO_NUM, 5317 }; 5318 5319 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5320 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5321 5322 static int lan8841_probe(struct phy_device *phydev) 5323 { 5324 struct kszphy_ptp_priv *ptp_priv; 5325 struct kszphy_priv *priv; 5326 int err; 5327 5328 err = kszphy_probe(phydev); 5329 if (err) 5330 return err; 5331 5332 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5333 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5334 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5335 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5336 5337 /* Register the clock */ 5338 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5339 return 0; 5340 5341 priv = phydev->priv; 5342 ptp_priv = &priv->ptp_priv; 5343 5344 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5345 LAN8841_PTP_GPIO_NUM, 5346 sizeof(*ptp_priv->pin_config), 5347 GFP_KERNEL); 5348 if (!ptp_priv->pin_config) 5349 return -ENOMEM; 5350 5351 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5352 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5353 5354 snprintf(p->name, sizeof(p->name), "pin%d", i); 5355 p->index = i; 5356 p->func = PTP_PF_NONE; 5357 } 5358 5359 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5360 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5361 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5362 &phydev->mdio.dev); 5363 if (IS_ERR(ptp_priv->ptp_clock)) { 5364 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5365 PTR_ERR(ptp_priv->ptp_clock)); 5366 return -EINVAL; 5367 } 5368 5369 if (!ptp_priv->ptp_clock) 5370 return 0; 5371 5372 /* Initialize the SW */ 5373 skb_queue_head_init(&ptp_priv->tx_queue); 5374 ptp_priv->phydev = phydev; 5375 mutex_init(&ptp_priv->ptp_lock); 5376 spin_lock_init(&ptp_priv->seconds_lock); 5377 5378 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5379 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5380 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5381 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5382 5383 phydev->mii_ts = &ptp_priv->mii_ts; 5384 5385 /* Timestamp selected by default to keep legacy API */ 5386 phydev->default_timestamp = true; 5387 5388 return 0; 5389 } 5390 5391 static int lan8804_resume(struct phy_device *phydev) 5392 { 5393 return kszphy_resume(phydev); 5394 } 5395 5396 static int lan8804_suspend(struct phy_device *phydev) 5397 { 5398 return kszphy_generic_suspend(phydev); 5399 } 5400 5401 static int lan8841_resume(struct phy_device *phydev) 5402 { 5403 return kszphy_generic_resume(phydev); 5404 } 5405 5406 static int lan8841_suspend(struct phy_device *phydev) 5407 { 5408 struct kszphy_priv *priv = phydev->priv; 5409 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5410 5411 if (ptp_priv->ptp_clock) 5412 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5413 5414 return kszphy_generic_suspend(phydev); 5415 } 5416 5417 static struct phy_driver ksphy_driver[] = { 5418 { 5419 .phy_id = PHY_ID_KS8737, 5420 .phy_id_mask = MICREL_PHY_ID_MASK, 5421 .name = "Micrel KS8737", 5422 /* PHY_BASIC_FEATURES */ 5423 .driver_data = &ks8737_type, 5424 .probe = kszphy_probe, 5425 .config_init = kszphy_config_init, 5426 .config_intr = kszphy_config_intr, 5427 .handle_interrupt = kszphy_handle_interrupt, 5428 .suspend = kszphy_suspend, 5429 .resume = kszphy_resume, 5430 }, { 5431 .phy_id = PHY_ID_KSZ8021, 5432 .phy_id_mask = 0x00ffffff, 5433 .name = "Micrel KSZ8021 or KSZ8031", 5434 /* PHY_BASIC_FEATURES */ 5435 .driver_data = &ksz8021_type, 5436 .probe = kszphy_probe, 5437 .config_init = kszphy_config_init, 5438 .config_intr = kszphy_config_intr, 5439 .handle_interrupt = kszphy_handle_interrupt, 5440 .get_sset_count = kszphy_get_sset_count, 5441 .get_strings = kszphy_get_strings, 5442 .get_stats = kszphy_get_stats, 5443 .suspend = kszphy_suspend, 5444 .resume = kszphy_resume, 5445 }, { 5446 .phy_id = PHY_ID_KSZ8031, 5447 .phy_id_mask = 0x00ffffff, 5448 .name = "Micrel KSZ8031", 5449 /* PHY_BASIC_FEATURES */ 5450 .driver_data = &ksz8021_type, 5451 .probe = kszphy_probe, 5452 .config_init = kszphy_config_init, 5453 .config_intr = kszphy_config_intr, 5454 .handle_interrupt = kszphy_handle_interrupt, 5455 .get_sset_count = kszphy_get_sset_count, 5456 .get_strings = kszphy_get_strings, 5457 .get_stats = kszphy_get_stats, 5458 .suspend = kszphy_suspend, 5459 .resume = kszphy_resume, 5460 }, { 5461 .phy_id = PHY_ID_KSZ8041, 5462 .phy_id_mask = MICREL_PHY_ID_MASK, 5463 .name = "Micrel KSZ8041", 5464 /* PHY_BASIC_FEATURES */ 5465 .driver_data = &ksz8041_type, 5466 .probe = kszphy_probe, 5467 .config_init = ksz8041_config_init, 5468 .config_aneg = ksz8041_config_aneg, 5469 .config_intr = kszphy_config_intr, 5470 .handle_interrupt = kszphy_handle_interrupt, 5471 .get_sset_count = kszphy_get_sset_count, 5472 .get_strings = kszphy_get_strings, 5473 .get_stats = kszphy_get_stats, 5474 .suspend = ksz8041_suspend, 5475 .resume = ksz8041_resume, 5476 }, { 5477 .phy_id = PHY_ID_KSZ8041RNLI, 5478 .phy_id_mask = MICREL_PHY_ID_MASK, 5479 .name = "Micrel KSZ8041RNLI", 5480 /* PHY_BASIC_FEATURES */ 5481 .driver_data = &ksz8041_type, 5482 .probe = kszphy_probe, 5483 .config_init = kszphy_config_init, 5484 .config_intr = kszphy_config_intr, 5485 .handle_interrupt = kszphy_handle_interrupt, 5486 .get_sset_count = kszphy_get_sset_count, 5487 .get_strings = kszphy_get_strings, 5488 .get_stats = kszphy_get_stats, 5489 .suspend = kszphy_suspend, 5490 .resume = kszphy_resume, 5491 }, { 5492 .name = "Micrel KSZ8051", 5493 /* PHY_BASIC_FEATURES */ 5494 .driver_data = &ksz8051_type, 5495 .probe = kszphy_probe, 5496 .config_init = kszphy_config_init, 5497 .config_intr = kszphy_config_intr, 5498 .handle_interrupt = kszphy_handle_interrupt, 5499 .get_sset_count = kszphy_get_sset_count, 5500 .get_strings = kszphy_get_strings, 5501 .get_stats = kszphy_get_stats, 5502 .match_phy_device = ksz8051_match_phy_device, 5503 .suspend = kszphy_suspend, 5504 .resume = kszphy_resume, 5505 }, { 5506 .phy_id = PHY_ID_KSZ8001, 5507 .name = "Micrel KSZ8001 or KS8721", 5508 .phy_id_mask = 0x00fffffc, 5509 /* PHY_BASIC_FEATURES */ 5510 .driver_data = &ksz8041_type, 5511 .probe = kszphy_probe, 5512 .config_init = kszphy_config_init, 5513 .config_intr = kszphy_config_intr, 5514 .handle_interrupt = kszphy_handle_interrupt, 5515 .get_sset_count = kszphy_get_sset_count, 5516 .get_strings = kszphy_get_strings, 5517 .get_stats = kszphy_get_stats, 5518 .suspend = kszphy_suspend, 5519 .resume = kszphy_resume, 5520 }, { 5521 .phy_id = PHY_ID_KSZ8081, 5522 .name = "Micrel KSZ8081 or KSZ8091", 5523 .phy_id_mask = MICREL_PHY_ID_MASK, 5524 .flags = PHY_POLL_CABLE_TEST, 5525 /* PHY_BASIC_FEATURES */ 5526 .driver_data = &ksz8081_type, 5527 .probe = kszphy_probe, 5528 .config_init = ksz8081_config_init, 5529 .soft_reset = genphy_soft_reset, 5530 .config_aneg = ksz8081_config_aneg, 5531 .read_status = ksz8081_read_status, 5532 .config_intr = kszphy_config_intr, 5533 .handle_interrupt = kszphy_handle_interrupt, 5534 .get_sset_count = kszphy_get_sset_count, 5535 .get_strings = kszphy_get_strings, 5536 .get_stats = kszphy_get_stats, 5537 .suspend = kszphy_suspend, 5538 .resume = kszphy_resume, 5539 .cable_test_start = ksz886x_cable_test_start, 5540 .cable_test_get_status = ksz886x_cable_test_get_status, 5541 }, { 5542 .phy_id = PHY_ID_KSZ8061, 5543 .name = "Micrel KSZ8061", 5544 .phy_id_mask = MICREL_PHY_ID_MASK, 5545 /* PHY_BASIC_FEATURES */ 5546 .probe = kszphy_probe, 5547 .config_init = ksz8061_config_init, 5548 .soft_reset = genphy_soft_reset, 5549 .config_intr = kszphy_config_intr, 5550 .handle_interrupt = kszphy_handle_interrupt, 5551 .suspend = ksz8061_suspend, 5552 .resume = ksz8061_resume, 5553 }, { 5554 .phy_id = PHY_ID_KSZ9021, 5555 .phy_id_mask = 0x000ffffe, 5556 .name = "Micrel KSZ9021 Gigabit PHY", 5557 /* PHY_GBIT_FEATURES */ 5558 .driver_data = &ksz9021_type, 5559 .probe = kszphy_probe, 5560 .get_features = ksz9031_get_features, 5561 .config_init = ksz9021_config_init, 5562 .config_intr = kszphy_config_intr, 5563 .handle_interrupt = kszphy_handle_interrupt, 5564 .get_sset_count = kszphy_get_sset_count, 5565 .get_strings = kszphy_get_strings, 5566 .get_stats = kszphy_get_stats, 5567 .suspend = kszphy_suspend, 5568 .resume = kszphy_resume, 5569 .read_mmd = genphy_read_mmd_unsupported, 5570 .write_mmd = genphy_write_mmd_unsupported, 5571 }, { 5572 .phy_id = PHY_ID_KSZ9031, 5573 .phy_id_mask = MICREL_PHY_ID_MASK, 5574 .name = "Micrel KSZ9031 Gigabit PHY", 5575 .flags = PHY_POLL_CABLE_TEST, 5576 .driver_data = &ksz9021_type, 5577 .probe = kszphy_probe, 5578 .get_features = ksz9031_get_features, 5579 .config_init = ksz9031_config_init, 5580 .soft_reset = genphy_soft_reset, 5581 .read_status = ksz9031_read_status, 5582 .config_intr = kszphy_config_intr, 5583 .handle_interrupt = kszphy_handle_interrupt, 5584 .get_sset_count = kszphy_get_sset_count, 5585 .get_strings = kszphy_get_strings, 5586 .get_stats = kszphy_get_stats, 5587 .suspend = kszphy_suspend, 5588 .resume = kszphy_resume, 5589 .cable_test_start = ksz9x31_cable_test_start, 5590 .cable_test_get_status = ksz9x31_cable_test_get_status, 5591 .set_loopback = ksz9031_set_loopback, 5592 }, { 5593 .phy_id = PHY_ID_LAN8814, 5594 .phy_id_mask = MICREL_PHY_ID_MASK, 5595 .name = "Microchip INDY Gigabit Quad PHY", 5596 .flags = PHY_POLL_CABLE_TEST, 5597 .config_init = lan8814_config_init, 5598 .driver_data = &lan8814_type, 5599 .probe = lan8814_probe, 5600 .soft_reset = genphy_soft_reset, 5601 .read_status = ksz9031_read_status, 5602 .get_sset_count = kszphy_get_sset_count, 5603 .get_strings = kszphy_get_strings, 5604 .get_stats = kszphy_get_stats, 5605 .suspend = genphy_suspend, 5606 .resume = kszphy_resume, 5607 .config_intr = lan8814_config_intr, 5608 .handle_interrupt = lan8814_handle_interrupt, 5609 .cable_test_start = lan8814_cable_test_start, 5610 .cable_test_get_status = ksz886x_cable_test_get_status, 5611 }, { 5612 .phy_id = PHY_ID_LAN8804, 5613 .phy_id_mask = MICREL_PHY_ID_MASK, 5614 .name = "Microchip LAN966X Gigabit PHY", 5615 .config_init = lan8804_config_init, 5616 .driver_data = &ksz9021_type, 5617 .probe = kszphy_probe, 5618 .soft_reset = genphy_soft_reset, 5619 .read_status = ksz9031_read_status, 5620 .get_sset_count = kszphy_get_sset_count, 5621 .get_strings = kszphy_get_strings, 5622 .get_stats = kszphy_get_stats, 5623 .suspend = lan8804_suspend, 5624 .resume = lan8804_resume, 5625 .config_intr = lan8804_config_intr, 5626 .handle_interrupt = lan8804_handle_interrupt, 5627 }, { 5628 .phy_id = PHY_ID_LAN8841, 5629 .phy_id_mask = MICREL_PHY_ID_MASK, 5630 .name = "Microchip LAN8841 Gigabit PHY", 5631 .flags = PHY_POLL_CABLE_TEST, 5632 .driver_data = &lan8841_type, 5633 .config_init = lan8841_config_init, 5634 .probe = lan8841_probe, 5635 .soft_reset = genphy_soft_reset, 5636 .config_intr = lan8841_config_intr, 5637 .handle_interrupt = lan8841_handle_interrupt, 5638 .get_sset_count = kszphy_get_sset_count, 5639 .get_strings = kszphy_get_strings, 5640 .get_stats = kszphy_get_stats, 5641 .suspend = lan8841_suspend, 5642 .resume = lan8841_resume, 5643 .cable_test_start = lan8814_cable_test_start, 5644 .cable_test_get_status = ksz886x_cable_test_get_status, 5645 }, { 5646 .phy_id = PHY_ID_KSZ9131, 5647 .phy_id_mask = MICREL_PHY_ID_MASK, 5648 .name = "Microchip KSZ9131 Gigabit PHY", 5649 /* PHY_GBIT_FEATURES */ 5650 .flags = PHY_POLL_CABLE_TEST, 5651 .driver_data = &ksz9131_type, 5652 .probe = kszphy_probe, 5653 .soft_reset = genphy_soft_reset, 5654 .config_init = ksz9131_config_init, 5655 .config_intr = kszphy_config_intr, 5656 .config_aneg = ksz9131_config_aneg, 5657 .read_status = ksz9131_read_status, 5658 .handle_interrupt = kszphy_handle_interrupt, 5659 .get_sset_count = kszphy_get_sset_count, 5660 .get_strings = kszphy_get_strings, 5661 .get_stats = kszphy_get_stats, 5662 .suspend = kszphy_suspend, 5663 .resume = kszphy_resume, 5664 .cable_test_start = ksz9x31_cable_test_start, 5665 .cable_test_get_status = ksz9x31_cable_test_get_status, 5666 .get_features = ksz9477_get_features, 5667 }, { 5668 .phy_id = PHY_ID_KSZ8873MLL, 5669 .phy_id_mask = MICREL_PHY_ID_MASK, 5670 .name = "Micrel KSZ8873MLL Switch", 5671 /* PHY_BASIC_FEATURES */ 5672 .config_init = kszphy_config_init, 5673 .config_aneg = ksz8873mll_config_aneg, 5674 .read_status = ksz8873mll_read_status, 5675 .suspend = genphy_suspend, 5676 .resume = genphy_resume, 5677 }, { 5678 .phy_id = PHY_ID_KSZ886X, 5679 .phy_id_mask = MICREL_PHY_ID_MASK, 5680 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5681 .driver_data = &ksz886x_type, 5682 /* PHY_BASIC_FEATURES */ 5683 .flags = PHY_POLL_CABLE_TEST, 5684 .config_init = kszphy_config_init, 5685 .config_aneg = ksz886x_config_aneg, 5686 .read_status = ksz886x_read_status, 5687 .suspend = genphy_suspend, 5688 .resume = genphy_resume, 5689 .cable_test_start = ksz886x_cable_test_start, 5690 .cable_test_get_status = ksz886x_cable_test_get_status, 5691 }, { 5692 .name = "Micrel KSZ87XX Switch", 5693 /* PHY_BASIC_FEATURES */ 5694 .config_init = kszphy_config_init, 5695 .match_phy_device = ksz8795_match_phy_device, 5696 .suspend = genphy_suspend, 5697 .resume = genphy_resume, 5698 }, { 5699 .phy_id = PHY_ID_KSZ9477, 5700 .phy_id_mask = MICREL_PHY_ID_MASK, 5701 .name = "Microchip KSZ9477", 5702 /* PHY_GBIT_FEATURES */ 5703 .config_init = ksz9477_config_init, 5704 .config_intr = kszphy_config_intr, 5705 .handle_interrupt = kszphy_handle_interrupt, 5706 .suspend = genphy_suspend, 5707 .resume = ksz9477_resume, 5708 .get_features = ksz9477_get_features, 5709 } }; 5710 5711 module_phy_driver(ksphy_driver); 5712 5713 MODULE_DESCRIPTION("Micrel PHY driver"); 5714 MODULE_AUTHOR("David J. Choi"); 5715 MODULE_LICENSE("GPL"); 5716 5717 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5718 { PHY_ID_KSZ9021, 0x000ffffe }, 5719 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5720 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5721 { PHY_ID_KSZ8001, 0x00fffffc }, 5722 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5723 { PHY_ID_KSZ8021, 0x00ffffff }, 5724 { PHY_ID_KSZ8031, 0x00ffffff }, 5725 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5726 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5727 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5728 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5729 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5730 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5731 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5732 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5733 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5734 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5735 { } 5736 }; 5737 5738 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5739