1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_FLF BIT(15) 111 #define LAN8814_INT_LINK_DOWN BIT(2) 112 #define LAN8814_INT_LINK_UP BIT(0) 113 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 114 LAN8814_INT_LINK_DOWN) 115 116 #define LAN8814_INTR_CTRL_REG 0x34 117 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 118 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 119 120 #define LAN8814_EEE_STATE 0x38 121 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 122 123 #define LAN8814_PD_CONTROLS 0x9d 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 125 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 126 127 /* Represents 1ppm adjustment in 2^32 format with 128 * each nsec contains 4 clock cycles. 129 * The value is calculated as following: (1/1000000)/((2^-32)/4) 130 */ 131 #define LAN8814_1PPM_FORMAT 17179 132 133 /* Represents 1ppm adjustment in 2^32 format with 134 * each nsec contains 8 clock cycles. 135 * The value is calculated as following: (1/1000000)/((2^-32)/8) 136 */ 137 #define LAN8841_1PPM_FORMAT 34360 138 139 #define PTP_RX_VERSION 0x0248 140 #define PTP_TX_VERSION 0x0288 141 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 142 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 143 144 #define PTP_RX_MOD 0x024F 145 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 146 #define PTP_RX_TIMESTAMP_EN 0x024D 147 #define PTP_TX_TIMESTAMP_EN 0x028D 148 149 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 150 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 151 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 152 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 153 154 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 155 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 156 157 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 158 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 159 #define LTC_HARD_RESET 0x023F 160 #define LTC_HARD_RESET_ BIT(0) 161 162 #define TSU_HARD_RESET 0x02C1 163 #define TSU_HARD_RESET_ BIT(0) 164 165 #define PTP_CMD_CTL 0x0200 166 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 167 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 168 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 169 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 171 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 172 173 #define PTP_COMMON_INT_ENA 0x0204 174 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 175 176 #define PTP_CLOCK_SET_SEC_HI 0x0205 177 #define PTP_CLOCK_SET_SEC_MID 0x0206 178 #define PTP_CLOCK_SET_SEC_LO 0x0207 179 #define PTP_CLOCK_SET_NS_HI 0x0208 180 #define PTP_CLOCK_SET_NS_LO 0x0209 181 182 #define PTP_CLOCK_READ_SEC_HI 0x0229 183 #define PTP_CLOCK_READ_SEC_MID 0x022A 184 #define PTP_CLOCK_READ_SEC_LO 0x022B 185 #define PTP_CLOCK_READ_NS_HI 0x022C 186 #define PTP_CLOCK_READ_NS_LO 0x022D 187 188 #define PTP_GPIO_SEL 0x0230 189 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 190 #define PTP_GPIO_CAP_MAP_LO 0x0232 191 192 #define PTP_GPIO_CAP_EN 0x0233 193 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 194 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 195 196 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 197 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 198 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 199 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 200 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 201 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 202 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 203 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 204 205 #define PTP_GPIO_CAP_STS 0x023D 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 207 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 208 209 #define PTP_OPERATING_MODE 0x0241 210 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 211 212 #define PTP_TX_MOD 0x028F 213 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 214 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 215 216 #define PTP_RX_PARSE_CONFIG 0x0242 217 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 218 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 219 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 220 221 #define PTP_TX_PARSE_CONFIG 0x0282 222 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 223 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 224 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 225 226 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 227 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 228 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 229 230 #define PTP_LTC_STEP_ADJ_HI 0x0212 231 #define PTP_LTC_STEP_ADJ_LO 0x0213 232 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 233 234 #define LAN8814_INTR_STS_REG 0x0033 235 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 236 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 237 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 238 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 239 240 #define PTP_CAP_INFO 0x022A 241 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 242 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 243 244 #define PTP_TX_EGRESS_SEC_HI 0x0296 245 #define PTP_TX_EGRESS_SEC_LO 0x0297 246 #define PTP_TX_EGRESS_NS_HI 0x0294 247 #define PTP_TX_EGRESS_NS_LO 0x0295 248 #define PTP_TX_MSG_HEADER2 0x0299 249 250 #define PTP_RX_INGRESS_SEC_HI 0x0256 251 #define PTP_RX_INGRESS_SEC_LO 0x0257 252 #define PTP_RX_INGRESS_NS_HI 0x0254 253 #define PTP_RX_INGRESS_NS_LO 0x0255 254 #define PTP_RX_MSG_HEADER2 0x0259 255 256 #define PTP_TSU_INT_EN 0x0200 257 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 258 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 260 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 261 262 #define PTP_TSU_INT_STS 0x0201 263 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 264 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 266 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 267 268 #define LAN8814_LED_CTRL_1 0x0 269 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 270 #define LAN8814_LED_CTRL_2 0x1 271 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 272 273 /* PHY Control 1 */ 274 #define MII_KSZPHY_CTRL_1 0x1e 275 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 276 277 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 278 #define MII_KSZPHY_CTRL_2 0x1f 279 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 280 /* bitmap of PHY register to set interrupt mode */ 281 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 282 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 283 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 284 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 285 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 286 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 287 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 288 289 /* Write/read to/from extended registers */ 290 #define MII_KSZPHY_EXTREG 0x0b 291 #define KSZPHY_EXTREG_WRITE 0x8000 292 293 #define MII_KSZPHY_EXTREG_WRITE 0x0c 294 #define MII_KSZPHY_EXTREG_READ 0x0d 295 296 /* Extended registers */ 297 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 298 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 299 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 300 301 #define PS_TO_REG 200 302 #define FIFO_SIZE 8 303 304 #define LAN8814_PTP_GPIO_NUM 24 305 #define LAN8814_PTP_PEROUT_NUM 2 306 #define LAN8814_PTP_EXTTS_NUM 3 307 308 #define LAN8814_BUFFER_TIME 2 309 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 324 325 #define LAN8814_GPIO_EN1 0x20 326 #define LAN8814_GPIO_EN2 0x21 327 #define LAN8814_GPIO_DIR1 0x22 328 #define LAN8814_GPIO_DIR2 0x23 329 #define LAN8814_GPIO_BUF1 0x24 330 #define LAN8814_GPIO_BUF2 0x25 331 332 #define LAN8814_GPIO_EN_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 334 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_DIR_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 337 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 338 #define LAN8814_GPIO_BUF_ADDR(pin) \ 339 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 340 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 341 342 #define LAN8814_EVENT_A 0 343 #define LAN8814_EVENT_B 1 344 345 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 346 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 347 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 349 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 350 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 351 ((event) ? BIT(2) : BIT(0)) 352 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 353 ((event) ? BIT(3) : BIT(1)) 354 355 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 356 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 357 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 358 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 359 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 361 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 364 365 /* Delay used to get the second part from the LTC */ 366 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 367 368 #define LAN8842_REV_8832 0x8832 369 370 struct kszphy_hw_stat { 371 const char *string; 372 u8 reg; 373 u8 bits; 374 }; 375 376 static struct kszphy_hw_stat kszphy_hw_stats[] = { 377 { "phy_receive_errors", 21, 16}, 378 { "phy_idle_errors", 10, 8 }, 379 }; 380 381 struct kszphy_type { 382 u32 led_mode_reg; 383 u16 interrupt_level_mask; 384 u16 cable_diag_reg; 385 unsigned long pair_mask; 386 u16 disable_dll_tx_bit; 387 u16 disable_dll_rx_bit; 388 u16 disable_dll_mask; 389 bool has_broadcast_disable; 390 bool has_nand_tree_disable; 391 bool has_rmii_ref_clk_sel; 392 }; 393 394 /* Shared structure between the PHYs of the same package. */ 395 struct lan8814_shared_priv { 396 struct phy_device *phydev; 397 struct ptp_clock *ptp_clock; 398 struct ptp_clock_info ptp_clock_info; 399 struct ptp_pin_desc *pin_config; 400 401 /* Lock for ptp_clock */ 402 struct mutex shared_lock; 403 }; 404 405 struct lan8814_ptp_rx_ts { 406 struct list_head list; 407 u32 seconds; 408 u32 nsec; 409 u16 seq_id; 410 }; 411 412 struct kszphy_ptp_priv { 413 struct mii_timestamper mii_ts; 414 struct phy_device *phydev; 415 416 struct sk_buff_head tx_queue; 417 struct sk_buff_head rx_queue; 418 419 struct list_head rx_ts_list; 420 /* Lock for Rx ts fifo */ 421 spinlock_t rx_ts_lock; 422 423 int hwts_tx_type; 424 enum hwtstamp_rx_filters rx_filter; 425 int layer; 426 int version; 427 428 struct ptp_clock *ptp_clock; 429 struct ptp_clock_info ptp_clock_info; 430 /* Lock for ptp_clock */ 431 struct mutex ptp_lock; 432 struct ptp_pin_desc *pin_config; 433 434 s64 seconds; 435 /* Lock for accessing seconds */ 436 spinlock_t seconds_lock; 437 }; 438 439 struct kszphy_phy_stats { 440 u64 rx_err_pkt_cnt; 441 }; 442 443 struct kszphy_priv { 444 struct kszphy_ptp_priv ptp_priv; 445 const struct kszphy_type *type; 446 struct clk *clk; 447 int led_mode; 448 u16 vct_ctrl1000; 449 bool rmii_ref_clk_sel; 450 bool rmii_ref_clk_sel_val; 451 bool clk_enable; 452 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 453 struct kszphy_phy_stats phy_stats; 454 }; 455 456 struct lan8842_phy_stats { 457 u64 rx_packets; 458 u64 rx_errors; 459 u64 tx_packets; 460 u64 tx_errors; 461 }; 462 463 struct lan8842_priv { 464 struct lan8842_phy_stats phy_stats; 465 struct kszphy_ptp_priv ptp_priv; 466 u16 rev; 467 }; 468 469 struct lanphy_reg_data { 470 int page; 471 u16 addr; 472 u16 val; 473 }; 474 475 static const struct kszphy_type lan8814_type = { 476 .led_mode_reg = ~LAN8814_LED_CTRL_1, 477 .cable_diag_reg = LAN8814_CABLE_DIAG, 478 .pair_mask = LAN8814_WIRE_PAIR_MASK, 479 }; 480 481 static const struct kszphy_type ksz886x_type = { 482 .cable_diag_reg = KSZ8081_LMD, 483 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 484 }; 485 486 static const struct kszphy_type ksz8021_type = { 487 .led_mode_reg = MII_KSZPHY_CTRL_2, 488 .has_broadcast_disable = true, 489 .has_nand_tree_disable = true, 490 .has_rmii_ref_clk_sel = true, 491 }; 492 493 static const struct kszphy_type ksz8041_type = { 494 .led_mode_reg = MII_KSZPHY_CTRL_1, 495 }; 496 497 static const struct kszphy_type ksz8051_type = { 498 .led_mode_reg = MII_KSZPHY_CTRL_2, 499 .has_nand_tree_disable = true, 500 }; 501 502 static const struct kszphy_type ksz8081_type = { 503 .led_mode_reg = MII_KSZPHY_CTRL_2, 504 .cable_diag_reg = KSZ8081_LMD, 505 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 506 .has_broadcast_disable = true, 507 .has_nand_tree_disable = true, 508 .has_rmii_ref_clk_sel = true, 509 }; 510 511 static const struct kszphy_type ks8737_type = { 512 .interrupt_level_mask = BIT(14), 513 }; 514 515 static const struct kszphy_type ksz9021_type = { 516 .interrupt_level_mask = BIT(14), 517 }; 518 519 static const struct kszphy_type ksz9131_type = { 520 .interrupt_level_mask = BIT(14), 521 .disable_dll_tx_bit = BIT(12), 522 .disable_dll_rx_bit = BIT(12), 523 .disable_dll_mask = BIT_MASK(12), 524 }; 525 526 static const struct kszphy_type lan8841_type = { 527 .disable_dll_tx_bit = BIT(14), 528 .disable_dll_rx_bit = BIT(14), 529 .disable_dll_mask = BIT_MASK(14), 530 .cable_diag_reg = LAN8814_CABLE_DIAG, 531 .pair_mask = LAN8814_WIRE_PAIR_MASK, 532 }; 533 534 static int kszphy_extended_write(struct phy_device *phydev, 535 u32 regnum, u16 val) 536 { 537 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 538 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 539 } 540 541 static int kszphy_extended_read(struct phy_device *phydev, 542 u32 regnum) 543 { 544 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 545 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 546 } 547 548 static int kszphy_ack_interrupt(struct phy_device *phydev) 549 { 550 /* bit[7..0] int status, which is a read and clear register. */ 551 int rc; 552 553 rc = phy_read(phydev, MII_KSZPHY_INTCS); 554 555 return (rc < 0) ? rc : 0; 556 } 557 558 static int kszphy_config_intr(struct phy_device *phydev) 559 { 560 const struct kszphy_type *type = phydev->drv->driver_data; 561 int temp, err; 562 u16 mask; 563 564 if (type && type->interrupt_level_mask) 565 mask = type->interrupt_level_mask; 566 else 567 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 568 569 /* set the interrupt pin active low */ 570 temp = phy_read(phydev, MII_KSZPHY_CTRL); 571 if (temp < 0) 572 return temp; 573 temp &= ~mask; 574 phy_write(phydev, MII_KSZPHY_CTRL, temp); 575 576 /* enable / disable interrupts */ 577 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 578 err = kszphy_ack_interrupt(phydev); 579 if (err) 580 return err; 581 582 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 583 } else { 584 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 585 if (err) 586 return err; 587 588 err = kszphy_ack_interrupt(phydev); 589 } 590 591 return err; 592 } 593 594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 595 { 596 int irq_status; 597 598 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 599 if (irq_status < 0) { 600 phy_error(phydev); 601 return IRQ_NONE; 602 } 603 604 if (!(irq_status & KSZPHY_INTCS_STATUS)) 605 return IRQ_NONE; 606 607 phy_trigger_machine(phydev); 608 609 return IRQ_HANDLED; 610 } 611 612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 613 { 614 int ctrl; 615 616 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 617 if (ctrl < 0) 618 return ctrl; 619 620 if (val) 621 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 622 else 623 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 624 625 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 626 } 627 628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 629 { 630 int rc, temp, shift; 631 632 switch (reg) { 633 case MII_KSZPHY_CTRL_1: 634 shift = 14; 635 break; 636 case MII_KSZPHY_CTRL_2: 637 shift = 4; 638 break; 639 default: 640 return -EINVAL; 641 } 642 643 temp = phy_read(phydev, reg); 644 if (temp < 0) { 645 rc = temp; 646 goto out; 647 } 648 649 temp &= ~(3 << shift); 650 temp |= val << shift; 651 rc = phy_write(phydev, reg, temp); 652 out: 653 if (rc < 0) 654 phydev_err(phydev, "failed to set led mode\n"); 655 656 return rc; 657 } 658 659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 660 * unique (non-broadcast) address on a shared bus. 661 */ 662 static int kszphy_broadcast_disable(struct phy_device *phydev) 663 { 664 int ret; 665 666 ret = phy_read(phydev, MII_KSZPHY_OMSO); 667 if (ret < 0) 668 goto out; 669 670 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 671 out: 672 if (ret) 673 phydev_err(phydev, "failed to disable broadcast address\n"); 674 675 return ret; 676 } 677 678 static int kszphy_nand_tree_disable(struct phy_device *phydev) 679 { 680 int ret; 681 682 ret = phy_read(phydev, MII_KSZPHY_OMSO); 683 if (ret < 0) 684 goto out; 685 686 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 687 return 0; 688 689 ret = phy_write(phydev, MII_KSZPHY_OMSO, 690 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 691 out: 692 if (ret) 693 phydev_err(phydev, "failed to disable NAND tree mode\n"); 694 695 return ret; 696 } 697 698 /* Some config bits need to be set again on resume, handle them here. */ 699 static int kszphy_config_reset(struct phy_device *phydev) 700 { 701 struct kszphy_priv *priv = phydev->priv; 702 int ret; 703 704 if (priv->rmii_ref_clk_sel) { 705 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 706 if (ret) { 707 phydev_err(phydev, 708 "failed to set rmii reference clock\n"); 709 return ret; 710 } 711 } 712 713 if (priv->type && priv->led_mode >= 0) 714 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 715 716 return 0; 717 } 718 719 static int kszphy_config_init(struct phy_device *phydev) 720 { 721 struct kszphy_priv *priv = phydev->priv; 722 const struct kszphy_type *type; 723 724 if (!priv) 725 return 0; 726 727 type = priv->type; 728 729 if (type && type->has_broadcast_disable) 730 kszphy_broadcast_disable(phydev); 731 732 if (type && type->has_nand_tree_disable) 733 kszphy_nand_tree_disable(phydev); 734 735 return kszphy_config_reset(phydev); 736 } 737 738 static int ksz8041_fiber_mode(struct phy_device *phydev) 739 { 740 struct device_node *of_node = phydev->mdio.dev.of_node; 741 742 return of_property_read_bool(of_node, "micrel,fiber-mode"); 743 } 744 745 static int ksz8041_config_init(struct phy_device *phydev) 746 { 747 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 748 749 /* Limit supported and advertised modes in fiber mode */ 750 if (ksz8041_fiber_mode(phydev)) { 751 phydev->dev_flags |= MICREL_PHY_FXEN; 752 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 753 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 754 755 linkmode_and(phydev->supported, phydev->supported, mask); 756 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 757 phydev->supported); 758 linkmode_and(phydev->advertising, phydev->advertising, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 760 phydev->advertising); 761 phydev->autoneg = AUTONEG_DISABLE; 762 } 763 764 return kszphy_config_init(phydev); 765 } 766 767 static int ksz8041_config_aneg(struct phy_device *phydev) 768 { 769 /* Skip auto-negotiation in fiber mode */ 770 if (phydev->dev_flags & MICREL_PHY_FXEN) { 771 phydev->speed = SPEED_100; 772 return 0; 773 } 774 775 return genphy_config_aneg(phydev); 776 } 777 778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 779 const bool ksz_8051) 780 { 781 int ret; 782 783 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 784 return 0; 785 786 ret = phy_read(phydev, MII_BMSR); 787 if (ret < 0) 788 return ret; 789 790 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 791 * exact PHY ID. However, they can be told apart by the extended 792 * capability registers presence. The KSZ8051 PHY has them while 793 * the switch does not. 794 */ 795 ret &= BMSR_ERCAP; 796 if (ksz_8051) 797 return ret; 798 else 799 return !ret; 800 } 801 802 static int ksz8051_match_phy_device(struct phy_device *phydev, 803 const struct phy_driver *phydrv) 804 { 805 return ksz8051_ksz8795_match_phy_device(phydev, true); 806 } 807 808 static int ksz8081_config_init(struct phy_device *phydev) 809 { 810 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 811 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 812 * pull-down is missing, the factory test mode should be cleared by 813 * manually writing a 0. 814 */ 815 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 816 817 return kszphy_config_init(phydev); 818 } 819 820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 821 { 822 u16 val; 823 824 switch (ctrl) { 825 case ETH_TP_MDI: 826 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 827 break; 828 case ETH_TP_MDI_X: 829 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 830 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 831 break; 832 case ETH_TP_MDI_AUTO: 833 val = 0; 834 break; 835 default: 836 return 0; 837 } 838 839 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 840 KSZ8081_CTRL2_HP_MDIX | 841 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 842 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 843 KSZ8081_CTRL2_HP_MDIX | val); 844 } 845 846 static int ksz8081_config_aneg(struct phy_device *phydev) 847 { 848 int ret; 849 850 ret = genphy_config_aneg(phydev); 851 if (ret) 852 return ret; 853 854 /* The MDI-X configuration is automatically changed by the PHY after 855 * switching from autoneg off to on. So, take MDI-X configuration under 856 * own control and set it after autoneg configuration was done. 857 */ 858 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 859 } 860 861 static int ksz8081_mdix_update(struct phy_device *phydev) 862 { 863 int ret; 864 865 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 866 if (ret < 0) 867 return ret; 868 869 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 870 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 871 phydev->mdix_ctrl = ETH_TP_MDI_X; 872 else 873 phydev->mdix_ctrl = ETH_TP_MDI; 874 } else { 875 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 876 } 877 878 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 879 if (ret < 0) 880 return ret; 881 882 if (ret & KSZ8081_CTRL1_MDIX_STAT) 883 phydev->mdix = ETH_TP_MDI; 884 else 885 phydev->mdix = ETH_TP_MDI_X; 886 887 return 0; 888 } 889 890 static int ksz8081_read_status(struct phy_device *phydev) 891 { 892 int ret; 893 894 ret = ksz8081_mdix_update(phydev); 895 if (ret < 0) 896 return ret; 897 898 return genphy_read_status(phydev); 899 } 900 901 static int ksz8061_config_init(struct phy_device *phydev) 902 { 903 int ret; 904 905 /* Chip can be powered down by the bootstrap code. */ 906 ret = phy_read(phydev, MII_BMCR); 907 if (ret < 0) 908 return ret; 909 if (ret & BMCR_PDOWN) { 910 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 911 if (ret < 0) 912 return ret; 913 usleep_range(1000, 2000); 914 } 915 916 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 917 if (ret) 918 return ret; 919 920 return kszphy_config_init(phydev); 921 } 922 923 static int ksz8795_match_phy_device(struct phy_device *phydev, 924 const struct phy_driver *phydrv) 925 { 926 return ksz8051_ksz8795_match_phy_device(phydev, false); 927 } 928 929 static int ksz9021_load_values_from_of(struct phy_device *phydev, 930 const struct device_node *of_node, 931 u16 reg, 932 const char *field1, const char *field2, 933 const char *field3, const char *field4) 934 { 935 int val1 = -1; 936 int val2 = -2; 937 int val3 = -3; 938 int val4 = -4; 939 int newval; 940 int matches = 0; 941 942 if (!of_property_read_u32(of_node, field1, &val1)) 943 matches++; 944 945 if (!of_property_read_u32(of_node, field2, &val2)) 946 matches++; 947 948 if (!of_property_read_u32(of_node, field3, &val3)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field4, &val4)) 952 matches++; 953 954 if (!matches) 955 return 0; 956 957 if (matches < 4) 958 newval = kszphy_extended_read(phydev, reg); 959 else 960 newval = 0; 961 962 if (val1 != -1) 963 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 964 965 if (val2 != -2) 966 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 967 968 if (val3 != -3) 969 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 970 971 if (val4 != -4) 972 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 973 974 return kszphy_extended_write(phydev, reg, newval); 975 } 976 977 static int ksz9021_config_init(struct phy_device *phydev) 978 { 979 const struct device_node *of_node; 980 const struct device *dev_walker; 981 982 /* The Micrel driver has a deprecated option to place phy OF 983 * properties in the MAC node. Walk up the tree of devices to 984 * find a device with an OF node. 985 */ 986 dev_walker = &phydev->mdio.dev; 987 do { 988 of_node = dev_walker->of_node; 989 dev_walker = dev_walker->parent; 990 991 } while (!of_node && dev_walker); 992 993 if (of_node) { 994 ksz9021_load_values_from_of(phydev, of_node, 995 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 996 "txen-skew-ps", "txc-skew-ps", 997 "rxdv-skew-ps", "rxc-skew-ps"); 998 ksz9021_load_values_from_of(phydev, of_node, 999 MII_KSZPHY_RX_DATA_PAD_SKEW, 1000 "rxd0-skew-ps", "rxd1-skew-ps", 1001 "rxd2-skew-ps", "rxd3-skew-ps"); 1002 ksz9021_load_values_from_of(phydev, of_node, 1003 MII_KSZPHY_TX_DATA_PAD_SKEW, 1004 "txd0-skew-ps", "txd1-skew-ps", 1005 "txd2-skew-ps", "txd3-skew-ps"); 1006 } 1007 return 0; 1008 } 1009 1010 #define KSZ9031_PS_TO_REG 60 1011 1012 /* Extended registers */ 1013 /* MMD Address 0x0 */ 1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1016 1017 /* MMD Address 0x2 */ 1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1019 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1020 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1021 1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1023 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1024 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1025 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1026 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1029 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1030 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1031 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1032 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1033 1034 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1035 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1036 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1037 1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1039 * provide different RGMII options we need to configure delay offset 1040 * for each pad relative to build in delay. 1041 */ 1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1043 * 1.80ns 1044 */ 1045 #define RX_ID 0x7 1046 #define RX_CLK_ID 0x19 1047 1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1049 * internal 1.2ns delay. 1050 */ 1051 #define RX_ND 0xc 1052 #define RX_CLK_ND 0x0 1053 1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1055 #define TX_ID 0x0 1056 #define TX_CLK_ID 0x1f 1057 1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1059 * dealy 1060 */ 1061 #define TX_ND 0x7 1062 #define TX_CLK_ND 0xf 1063 1064 /* MMD Address 0x1C */ 1065 #define MII_KSZ9031RN_EDPD 0x23 1066 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1067 1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1069 int speed) 1070 { 1071 u16 ctl = BMCR_LOOPBACK; 1072 int val; 1073 1074 if (!enable) 1075 return genphy_loopback(phydev, enable, 0); 1076 1077 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1078 phydev->speed = speed; 1079 else if (speed) 1080 return -EINVAL; 1081 phydev->duplex = DUPLEX_FULL; 1082 1083 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1084 1085 phy_write(phydev, MII_BMCR, ctl); 1086 1087 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1088 5000, 500000, true); 1089 } 1090 1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1092 const struct device_node *of_node, 1093 u16 reg, size_t field_sz, 1094 const char *field[], u8 numfields, 1095 bool *update) 1096 { 1097 int val[4] = {-1, -2, -3, -4}; 1098 int matches = 0; 1099 u16 mask; 1100 u16 maxval; 1101 u16 newval; 1102 int i; 1103 1104 for (i = 0; i < numfields; i++) 1105 if (!of_property_read_u32(of_node, field[i], val + i)) 1106 matches++; 1107 1108 if (!matches) 1109 return 0; 1110 1111 *update |= true; 1112 1113 if (matches < numfields) 1114 newval = phy_read_mmd(phydev, 2, reg); 1115 else 1116 newval = 0; 1117 1118 maxval = (field_sz == 4) ? 0xf : 0x1f; 1119 for (i = 0; i < numfields; i++) 1120 if (val[i] != -(i + 1)) { 1121 mask = 0xffff; 1122 mask ^= maxval << (field_sz * i); 1123 newval = (newval & mask) | 1124 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1125 << (field_sz * i)); 1126 } 1127 1128 return phy_write_mmd(phydev, 2, reg, newval); 1129 } 1130 1131 /* Center KSZ9031RNX FLP timing at 16ms. */ 1132 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1133 { 1134 int result; 1135 1136 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1137 0x0006); 1138 if (result) 1139 return result; 1140 1141 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1142 0x1A80); 1143 if (result) 1144 return result; 1145 1146 return genphy_restart_aneg(phydev); 1147 } 1148 1149 /* Enable energy-detect power-down mode */ 1150 static int ksz9031_enable_edpd(struct phy_device *phydev) 1151 { 1152 int reg; 1153 1154 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1155 if (reg < 0) 1156 return reg; 1157 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1158 reg | MII_KSZ9031RN_EDPD_ENABLE); 1159 } 1160 1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1162 { 1163 u16 rx, tx, rx_clk, tx_clk; 1164 int ret; 1165 1166 switch (phydev->interface) { 1167 case PHY_INTERFACE_MODE_RGMII: 1168 tx = TX_ND; 1169 tx_clk = TX_CLK_ND; 1170 rx = RX_ND; 1171 rx_clk = RX_CLK_ND; 1172 break; 1173 case PHY_INTERFACE_MODE_RGMII_ID: 1174 tx = TX_ID; 1175 tx_clk = TX_CLK_ID; 1176 rx = RX_ID; 1177 rx_clk = RX_CLK_ID; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_RXID: 1180 tx = TX_ND; 1181 tx_clk = TX_CLK_ND; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_TXID: 1186 tx = TX_ID; 1187 tx_clk = TX_CLK_ID; 1188 rx = RX_ND; 1189 rx_clk = RX_CLK_ND; 1190 break; 1191 default: 1192 return 0; 1193 } 1194 1195 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1196 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1197 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1198 if (ret < 0) 1199 return ret; 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1204 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1205 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1206 if (ret < 0) 1207 return ret; 1208 1209 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1210 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1211 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1212 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1213 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1214 if (ret < 0) 1215 return ret; 1216 1217 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1218 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1219 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1220 } 1221 1222 static int ksz9031_config_init(struct phy_device *phydev) 1223 { 1224 const struct device_node *of_node; 1225 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1226 static const char *rx_data_skews[4] = { 1227 "rxd0-skew-ps", "rxd1-skew-ps", 1228 "rxd2-skew-ps", "rxd3-skew-ps" 1229 }; 1230 static const char *tx_data_skews[4] = { 1231 "txd0-skew-ps", "txd1-skew-ps", 1232 "txd2-skew-ps", "txd3-skew-ps" 1233 }; 1234 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1235 const struct device *dev_walker; 1236 int result; 1237 1238 result = ksz9031_enable_edpd(phydev); 1239 if (result < 0) 1240 return result; 1241 1242 /* The Micrel driver has a deprecated option to place phy OF 1243 * properties in the MAC node. Walk up the tree of devices to 1244 * find a device with an OF node. 1245 */ 1246 dev_walker = &phydev->mdio.dev; 1247 do { 1248 of_node = dev_walker->of_node; 1249 dev_walker = dev_walker->parent; 1250 } while (!of_node && dev_walker); 1251 1252 if (of_node) { 1253 bool update = false; 1254 1255 if (phy_interface_is_rgmii(phydev)) { 1256 result = ksz9031_config_rgmii_delay(phydev); 1257 if (result < 0) 1258 return result; 1259 } 1260 1261 ksz9031_of_load_skew_values(phydev, of_node, 1262 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1263 clk_skews, 2, &update); 1264 1265 ksz9031_of_load_skew_values(phydev, of_node, 1266 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1267 control_skews, 2, &update); 1268 1269 ksz9031_of_load_skew_values(phydev, of_node, 1270 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1271 rx_data_skews, 4, &update); 1272 1273 ksz9031_of_load_skew_values(phydev, of_node, 1274 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1275 tx_data_skews, 4, &update); 1276 1277 if (update && !phy_interface_is_rgmii(phydev)) 1278 phydev_warn(phydev, 1279 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1280 1281 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1282 * When the device links in the 1000BASE-T slave mode only, 1283 * the optional 125MHz reference output clock (CLK125_NDO) 1284 * has wide duty cycle variation. 1285 * 1286 * The optional CLK125_NDO clock does not meet the RGMII 1287 * 45/55 percent (min/max) duty cycle requirement and therefore 1288 * cannot be used directly by the MAC side for clocking 1289 * applications that have setup/hold time requirements on 1290 * rising and falling clock edges. 1291 * 1292 * Workaround: 1293 * Force the phy to be the master to receive a stable clock 1294 * which meets the duty cycle requirement. 1295 */ 1296 if (of_property_read_bool(of_node, "micrel,force-master")) { 1297 result = phy_read(phydev, MII_CTRL1000); 1298 if (result < 0) 1299 goto err_force_master; 1300 1301 /* enable master mode, config & prefer master */ 1302 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1303 result = phy_write(phydev, MII_CTRL1000, result); 1304 if (result < 0) 1305 goto err_force_master; 1306 } 1307 } 1308 1309 return ksz9031_center_flp_timing(phydev); 1310 1311 err_force_master: 1312 phydev_err(phydev, "failed to force the phy to master mode\n"); 1313 return result; 1314 } 1315 1316 #define KSZ9131_SKEW_5BIT_MAX 2400 1317 #define KSZ9131_SKEW_4BIT_MAX 800 1318 #define KSZ9131_OFFSET 700 1319 #define KSZ9131_STEP 100 1320 1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1322 struct device_node *of_node, 1323 u16 reg, size_t field_sz, 1324 char *field[], u8 numfields) 1325 { 1326 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1327 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1328 int skewval, skewmax = 0; 1329 int matches = 0; 1330 u16 maxval; 1331 u16 newval; 1332 u16 mask; 1333 int i; 1334 1335 /* psec properties in dts should mean x pico seconds */ 1336 if (field_sz == 5) 1337 skewmax = KSZ9131_SKEW_5BIT_MAX; 1338 else 1339 skewmax = KSZ9131_SKEW_4BIT_MAX; 1340 1341 for (i = 0; i < numfields; i++) 1342 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1343 if (skewval < -KSZ9131_OFFSET) 1344 skewval = -KSZ9131_OFFSET; 1345 else if (skewval > skewmax) 1346 skewval = skewmax; 1347 1348 val[i] = skewval + KSZ9131_OFFSET; 1349 matches++; 1350 } 1351 1352 if (!matches) 1353 return 0; 1354 1355 if (matches < numfields) 1356 newval = phy_read_mmd(phydev, 2, reg); 1357 else 1358 newval = 0; 1359 1360 maxval = (field_sz == 4) ? 0xf : 0x1f; 1361 for (i = 0; i < numfields; i++) 1362 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1363 mask = 0xffff; 1364 mask ^= maxval << (field_sz * i); 1365 newval = (newval & mask) | 1366 (((val[i] / KSZ9131_STEP) & maxval) 1367 << (field_sz * i)); 1368 } 1369 1370 return phy_write_mmd(phydev, 2, reg, newval); 1371 } 1372 1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1374 #define KSZ9131RN_RXC_DLL_CTRL 76 1375 #define KSZ9131RN_TXC_DLL_CTRL 77 1376 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1377 1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1379 { 1380 const struct kszphy_type *type = phydev->drv->driver_data; 1381 u16 rxcdll_val, txcdll_val; 1382 int ret; 1383 1384 switch (phydev->interface) { 1385 case PHY_INTERFACE_MODE_RGMII: 1386 rxcdll_val = type->disable_dll_rx_bit; 1387 txcdll_val = type->disable_dll_tx_bit; 1388 break; 1389 case PHY_INTERFACE_MODE_RGMII_ID: 1390 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1391 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1392 break; 1393 case PHY_INTERFACE_MODE_RGMII_RXID: 1394 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1395 txcdll_val = type->disable_dll_tx_bit; 1396 break; 1397 case PHY_INTERFACE_MODE_RGMII_TXID: 1398 rxcdll_val = type->disable_dll_rx_bit; 1399 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1400 break; 1401 default: 1402 return 0; 1403 } 1404 1405 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1406 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1407 rxcdll_val); 1408 if (ret < 0) 1409 return ret; 1410 1411 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1413 txcdll_val); 1414 } 1415 1416 /* Silicon Errata DS80000693B 1417 * 1418 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1419 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1420 * according to the datasheet (off if there is no link). 1421 */ 1422 static int ksz9131_led_errata(struct phy_device *phydev) 1423 { 1424 int reg; 1425 1426 reg = phy_read_mmd(phydev, 2, 0); 1427 if (reg < 0) 1428 return reg; 1429 1430 if (!(reg & BIT(4))) 1431 return 0; 1432 1433 return phy_set_bits(phydev, 0x1e, BIT(9)); 1434 } 1435 1436 static int ksz9131_config_init(struct phy_device *phydev) 1437 { 1438 struct device_node *of_node; 1439 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1440 char *rx_data_skews[4] = { 1441 "rxd0-skew-psec", "rxd1-skew-psec", 1442 "rxd2-skew-psec", "rxd3-skew-psec" 1443 }; 1444 char *tx_data_skews[4] = { 1445 "txd0-skew-psec", "txd1-skew-psec", 1446 "txd2-skew-psec", "txd3-skew-psec" 1447 }; 1448 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1449 const struct device *dev_walker; 1450 int ret; 1451 1452 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1453 1454 dev_walker = &phydev->mdio.dev; 1455 do { 1456 of_node = dev_walker->of_node; 1457 dev_walker = dev_walker->parent; 1458 } while (!of_node && dev_walker); 1459 1460 if (!of_node) 1461 return 0; 1462 1463 if (phy_interface_is_rgmii(phydev)) { 1464 ret = ksz9131_config_rgmii_delay(phydev); 1465 if (ret < 0) 1466 return ret; 1467 } 1468 1469 ret = ksz9131_of_load_skew_values(phydev, of_node, 1470 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1471 clk_skews, 2); 1472 if (ret < 0) 1473 return ret; 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1477 control_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1483 rx_data_skews, 4); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1489 tx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_led_errata(phydev); 1494 if (ret < 0) 1495 return ret; 1496 1497 return 0; 1498 } 1499 1500 #define MII_KSZ9131_AUTO_MDIX 0x1C 1501 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1503 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1506 1507 static int ksz9131_mdix_update(struct phy_device *phydev) 1508 { 1509 int ret; 1510 1511 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1512 phydev->mdix = phydev->mdix_ctrl; 1513 } else { 1514 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1515 if (ret < 0) 1516 return ret; 1517 1518 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1519 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1520 phydev->mdix = ETH_TP_MDI; 1521 else 1522 phydev->mdix = ETH_TP_MDI_X; 1523 } else { 1524 phydev->mdix = ETH_TP_MDI_INVALID; 1525 } 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1532 { 1533 u16 val; 1534 1535 switch (ctrl) { 1536 case ETH_TP_MDI: 1537 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1538 MII_KSZ9131_AUTO_MDI_SET; 1539 break; 1540 case ETH_TP_MDI_X: 1541 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1542 break; 1543 case ETH_TP_MDI_AUTO: 1544 val = 0; 1545 break; 1546 default: 1547 return 0; 1548 } 1549 1550 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1551 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1552 MII_KSZ9131_AUTO_MDI_SET, val); 1553 } 1554 1555 static int ksz9131_read_status(struct phy_device *phydev) 1556 { 1557 int ret; 1558 1559 ret = ksz9131_mdix_update(phydev); 1560 if (ret < 0) 1561 return ret; 1562 1563 return genphy_read_status(phydev); 1564 } 1565 1566 static int ksz9131_config_aneg(struct phy_device *phydev) 1567 { 1568 int ret; 1569 1570 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1571 if (ret) 1572 return ret; 1573 1574 return genphy_config_aneg(phydev); 1575 } 1576 1577 static int ksz9477_get_features(struct phy_device *phydev) 1578 { 1579 int ret; 1580 1581 ret = genphy_read_abilities(phydev); 1582 if (ret) 1583 return ret; 1584 1585 /* The "EEE control and capability 1" (Register 3.20) seems to be 1586 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1587 * on the 7.60 will affect 3.20. So, we need to construct our own list 1588 * of caps. 1589 * KSZ8563R should have 100BaseTX/Full only. 1590 */ 1591 linkmode_and(phydev->supported_eee, phydev->supported, 1592 PHY_EEE_CAP1_FEATURES); 1593 1594 return 0; 1595 } 1596 1597 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1600 static int ksz8873mll_read_status(struct phy_device *phydev) 1601 { 1602 int regval; 1603 1604 /* dummy read */ 1605 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1606 1607 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1608 1609 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1610 phydev->duplex = DUPLEX_HALF; 1611 else 1612 phydev->duplex = DUPLEX_FULL; 1613 1614 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1615 phydev->speed = SPEED_10; 1616 else 1617 phydev->speed = SPEED_100; 1618 1619 phydev->link = 1; 1620 phydev->pause = phydev->asym_pause = 0; 1621 1622 return 0; 1623 } 1624 1625 static int ksz9031_get_features(struct phy_device *phydev) 1626 { 1627 int ret; 1628 1629 ret = genphy_read_abilities(phydev); 1630 if (ret < 0) 1631 return ret; 1632 1633 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1634 * Whenever the device's Asymmetric Pause capability is set to 1, 1635 * link-up may fail after a link-up to link-down transition. 1636 * 1637 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1638 * 1639 * Workaround: 1640 * Do not enable the Asymmetric Pause capability bit. 1641 */ 1642 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1643 1644 /* We force setting the Pause capability as the core will force the 1645 * Asymmetric Pause capability to 1 otherwise. 1646 */ 1647 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1648 1649 return 0; 1650 } 1651 1652 static int ksz9031_read_status(struct phy_device *phydev) 1653 { 1654 int err; 1655 int regval; 1656 1657 err = genphy_read_status(phydev); 1658 if (err) 1659 return err; 1660 1661 /* Make sure the PHY is not broken. Read idle error count, 1662 * and reset the PHY if it is maxed out. 1663 */ 1664 regval = phy_read(phydev, MII_STAT1000); 1665 if ((regval & 0xFF) == 0xFF) { 1666 phy_init_hw(phydev); 1667 phydev->link = 0; 1668 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1669 phydev->drv->config_intr(phydev); 1670 return genphy_config_aneg(phydev); 1671 } 1672 1673 return 0; 1674 } 1675 1676 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1677 { 1678 struct kszphy_priv *priv = phydev->priv; 1679 int ret; 1680 1681 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1682 * Prior to running the cable diagnostics, Auto-negotiation should 1683 * be disabled, full duplex set and the link speed set to 1000Mbps 1684 * via the Basic Control Register. 1685 */ 1686 ret = phy_modify(phydev, MII_BMCR, 1687 BMCR_SPEED1000 | BMCR_FULLDPLX | 1688 BMCR_ANENABLE | BMCR_SPEED100, 1689 BMCR_SPEED1000 | BMCR_FULLDPLX); 1690 if (ret) 1691 return ret; 1692 1693 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1694 * The Master-Slave configuration should be set to Slave by writing 1695 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1696 * Register. 1697 */ 1698 ret = phy_read(phydev, MII_CTRL1000); 1699 if (ret < 0) 1700 return ret; 1701 1702 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1703 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1704 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1705 ret |= CTL1000_ENABLE_MASTER; 1706 1707 return phy_write(phydev, MII_CTRL1000, ret); 1708 } 1709 1710 static int ksz9x31_cable_test_result_trans(u16 status) 1711 { 1712 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1713 case KSZ9x31_LMD_VCT_ST_NORMAL: 1714 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1715 case KSZ9x31_LMD_VCT_ST_OPEN: 1716 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1717 case KSZ9x31_LMD_VCT_ST_SHORT: 1718 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1719 case KSZ9x31_LMD_VCT_ST_FAIL: 1720 fallthrough; 1721 default: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1723 } 1724 } 1725 1726 static bool ksz9x31_cable_test_failed(u16 status) 1727 { 1728 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1729 1730 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1731 } 1732 1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1734 { 1735 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1736 case KSZ9x31_LMD_VCT_ST_OPEN: 1737 fallthrough; 1738 case KSZ9x31_LMD_VCT_ST_SHORT: 1739 return true; 1740 } 1741 return false; 1742 } 1743 1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1745 { 1746 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1747 1748 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1749 * 1750 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1751 */ 1752 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1753 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1754 dt = clamp(dt - 22, 0, 255); 1755 1756 return (dt * 400) / 10; 1757 } 1758 1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1760 { 1761 int val, ret; 1762 1763 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1764 !(val & KSZ9x31_LMD_VCT_EN), 1765 30000, 100000, true); 1766 1767 return ret < 0 ? ret : 0; 1768 } 1769 1770 static int ksz9x31_cable_test_get_pair(int pair) 1771 { 1772 static const int ethtool_pair[] = { 1773 ETHTOOL_A_CABLE_PAIR_A, 1774 ETHTOOL_A_CABLE_PAIR_B, 1775 ETHTOOL_A_CABLE_PAIR_C, 1776 ETHTOOL_A_CABLE_PAIR_D, 1777 }; 1778 1779 return ethtool_pair[pair]; 1780 } 1781 1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1783 { 1784 int ret, val; 1785 1786 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1787 * To test each individual cable pair, set the cable pair in the Cable 1788 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1789 * Diagnostic Register, along with setting the Cable Diagnostics Test 1790 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1791 * will self clear when the test is concluded. 1792 */ 1793 ret = phy_write(phydev, KSZ9x31_LMD, 1794 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1795 if (ret) 1796 return ret; 1797 1798 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1799 if (ret) 1800 return ret; 1801 1802 val = phy_read(phydev, KSZ9x31_LMD); 1803 if (val < 0) 1804 return val; 1805 1806 if (ksz9x31_cable_test_failed(val)) 1807 return -EAGAIN; 1808 1809 ret = ethnl_cable_test_result(phydev, 1810 ksz9x31_cable_test_get_pair(pair), 1811 ksz9x31_cable_test_result_trans(val)); 1812 if (ret) 1813 return ret; 1814 1815 if (!ksz9x31_cable_test_fault_length_valid(val)) 1816 return 0; 1817 1818 return ethnl_cable_test_fault_length(phydev, 1819 ksz9x31_cable_test_get_pair(pair), 1820 ksz9x31_cable_test_fault_length(phydev, val)); 1821 } 1822 1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1824 bool *finished) 1825 { 1826 struct kszphy_priv *priv = phydev->priv; 1827 unsigned long pair_mask; 1828 int retries = 20; 1829 int pair, ret, rv; 1830 1831 *finished = false; 1832 1833 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1834 phydev->supported) || 1835 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1836 phydev->supported)) 1837 pair_mask = 0xf; /* All pairs */ 1838 else 1839 pair_mask = 0x3; /* Pairs A and B only */ 1840 1841 /* Try harder if link partner is active */ 1842 while (pair_mask && retries--) { 1843 for_each_set_bit(pair, &pair_mask, 4) { 1844 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1845 if (ret == -EAGAIN) 1846 continue; 1847 if (ret < 0) 1848 return ret; 1849 clear_bit(pair, &pair_mask); 1850 } 1851 /* If link partner is in autonegotiation mode it will send 2ms 1852 * of FLPs with at least 6ms of silence. 1853 * Add 2ms sleep to have better chances to hit this silence. 1854 */ 1855 if (pair_mask) 1856 usleep_range(2000, 3000); 1857 } 1858 1859 /* Report remaining unfinished pair result as unknown. */ 1860 for_each_set_bit(pair, &pair_mask, 4) { 1861 ret = ethnl_cable_test_result(phydev, 1862 ksz9x31_cable_test_get_pair(pair), 1863 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1864 } 1865 1866 *finished = true; 1867 1868 /* Restore cached bits from before LinkMD got started. */ 1869 rv = phy_modify(phydev, MII_CTRL1000, 1870 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1871 priv->vct_ctrl1000); 1872 if (rv) 1873 return rv; 1874 1875 return ret; 1876 } 1877 1878 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1879 { 1880 return 0; 1881 } 1882 1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1884 { 1885 u16 val; 1886 1887 switch (ctrl) { 1888 case ETH_TP_MDI: 1889 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1890 break; 1891 case ETH_TP_MDI_X: 1892 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1893 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1894 * sheet seems to be missing: 1895 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1896 * 0 = Normal operation (transmit on TX+/TX- pins) 1897 */ 1898 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1899 break; 1900 case ETH_TP_MDI_AUTO: 1901 val = 0; 1902 break; 1903 default: 1904 return 0; 1905 } 1906 1907 return phy_modify(phydev, MII_BMCR, 1908 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1909 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1910 KSZ886X_BMCR_HP_MDIX | val); 1911 } 1912 1913 static int ksz886x_config_aneg(struct phy_device *phydev) 1914 { 1915 int ret; 1916 1917 ret = genphy_config_aneg(phydev); 1918 if (ret) 1919 return ret; 1920 1921 if (phydev->autoneg != AUTONEG_ENABLE) { 1922 /* When autonegotation is disabled, we need to manually force 1923 * the link state. If we don't do this, the PHY will keep 1924 * sending Fast Link Pulses (FLPs) which are part of the 1925 * autonegotiation process. This is not desired when 1926 * autonegotiation is off. 1927 */ 1928 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1929 KSZ886X_CTRL_FORCE_LINK); 1930 if (ret) 1931 return ret; 1932 } else { 1933 /* If we had previously forced the link state, we need to 1934 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1935 * will not perform autonegotiation. 1936 */ 1937 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1938 KSZ886X_CTRL_FORCE_LINK); 1939 if (ret) 1940 return ret; 1941 } 1942 1943 /* The MDI-X configuration is automatically changed by the PHY after 1944 * switching from autoneg off to on. So, take MDI-X configuration under 1945 * own control and set it after autoneg configuration was done. 1946 */ 1947 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1948 } 1949 1950 static int ksz886x_mdix_update(struct phy_device *phydev) 1951 { 1952 int ret; 1953 1954 ret = phy_read(phydev, MII_BMCR); 1955 if (ret < 0) 1956 return ret; 1957 1958 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1959 if (ret & KSZ886X_BMCR_FORCE_MDI) 1960 phydev->mdix_ctrl = ETH_TP_MDI_X; 1961 else 1962 phydev->mdix_ctrl = ETH_TP_MDI; 1963 } else { 1964 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1965 } 1966 1967 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1968 if (ret < 0) 1969 return ret; 1970 1971 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1972 if (ret & KSZ886X_CTRL_MDIX_STAT) 1973 phydev->mdix = ETH_TP_MDI_X; 1974 else 1975 phydev->mdix = ETH_TP_MDI; 1976 1977 return 0; 1978 } 1979 1980 static int ksz886x_read_status(struct phy_device *phydev) 1981 { 1982 int ret; 1983 1984 ret = ksz886x_mdix_update(phydev); 1985 if (ret < 0) 1986 return ret; 1987 1988 return genphy_read_status(phydev); 1989 } 1990 1991 static int ksz9477_mdix_update(struct phy_device *phydev) 1992 { 1993 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1994 phydev->mdix = phydev->mdix_ctrl; 1995 else 1996 phydev->mdix = ETH_TP_MDI_INVALID; 1997 1998 return 0; 1999 } 2000 2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2002 { 2003 int val; 2004 2005 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2006 if (val < 0) 2007 return val; 2008 2009 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2010 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2011 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2012 phydev->mdix_ctrl = ETH_TP_MDI; 2013 else 2014 phydev->mdix_ctrl = ETH_TP_MDI_X; 2015 2016 return 0; 2017 } 2018 2019 static int ksz9477_read_status(struct phy_device *phydev) 2020 { 2021 int ret; 2022 2023 ret = ksz9477_mdix_update(phydev); 2024 if (ret) 2025 return ret; 2026 2027 return genphy_read_status(phydev); 2028 } 2029 2030 static int ksz9477_config_aneg(struct phy_device *phydev) 2031 { 2032 int ret; 2033 2034 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2035 if (ret) 2036 return ret; 2037 2038 return genphy_config_aneg(phydev); 2039 } 2040 2041 struct ksz9477_errata_write { 2042 u8 dev_addr; 2043 u8 reg_addr; 2044 u16 val; 2045 }; 2046 2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2048 /* Register settings are needed to improve PHY receive performance */ 2049 {0x01, 0x6f, 0xdd0b}, 2050 {0x01, 0x8f, 0x6032}, 2051 {0x01, 0x9d, 0x248c}, 2052 {0x01, 0x75, 0x0060}, 2053 {0x01, 0xd3, 0x7777}, 2054 {0x1c, 0x06, 0x3008}, 2055 {0x1c, 0x08, 0x2000}, 2056 2057 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2058 {0x1c, 0x04, 0x00d0}, 2059 2060 /* Register settings are required to meet data sheet supply current specifications */ 2061 {0x1c, 0x13, 0x6eff}, 2062 {0x1c, 0x14, 0xe6ff}, 2063 {0x1c, 0x15, 0x6eff}, 2064 {0x1c, 0x16, 0xe6ff}, 2065 {0x1c, 0x17, 0x00ff}, 2066 {0x1c, 0x18, 0x43ff}, 2067 {0x1c, 0x19, 0xc3ff}, 2068 {0x1c, 0x1a, 0x6fff}, 2069 {0x1c, 0x1b, 0x07ff}, 2070 {0x1c, 0x1c, 0x0fff}, 2071 {0x1c, 0x1d, 0xe7ff}, 2072 {0x1c, 0x1e, 0xefff}, 2073 {0x1c, 0x20, 0xeeee}, 2074 }; 2075 2076 static int ksz9477_phy_errata(struct phy_device *phydev) 2077 { 2078 int err; 2079 int i; 2080 2081 /* Apply PHY settings to address errata listed in 2082 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2083 * Silicon Errata and Data Sheet Clarification documents. 2084 * 2085 * Document notes: Before configuring the PHY MMD registers, it is 2086 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2087 * disabled by writing to register 0xN100-0xN101. After writing the 2088 * MMD registers, and after all errata workarounds that involve PHY 2089 * register settings, write register 0xN100-0xN101 again to enable 2090 * and restart auto-negotiation. 2091 */ 2092 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2093 if (err) 2094 return err; 2095 2096 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2097 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2098 2099 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2100 if (err) 2101 return err; 2102 } 2103 2104 err = genphy_restart_aneg(phydev); 2105 if (err) 2106 return err; 2107 2108 return err; 2109 } 2110 2111 static int ksz9477_config_init(struct phy_device *phydev) 2112 { 2113 int err; 2114 2115 /* Only KSZ9897 family of switches needs this fix. */ 2116 if ((phydev->phy_id & 0xf) == 1) { 2117 err = ksz9477_phy_errata(phydev); 2118 if (err) 2119 return err; 2120 } 2121 2122 /* Read initial MDI-X config state. So, we do not need to poll it 2123 * later on. 2124 */ 2125 err = ksz9477_read_mdix_ctrl(phydev); 2126 if (err) 2127 return err; 2128 2129 return kszphy_config_init(phydev); 2130 } 2131 2132 static int kszphy_get_sset_count(struct phy_device *phydev) 2133 { 2134 return ARRAY_SIZE(kszphy_hw_stats); 2135 } 2136 2137 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2138 { 2139 int i; 2140 2141 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2142 ethtool_puts(&data, kszphy_hw_stats[i].string); 2143 } 2144 2145 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2146 { 2147 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2148 struct kszphy_priv *priv = phydev->priv; 2149 int val; 2150 u64 ret; 2151 2152 val = phy_read(phydev, stat.reg); 2153 if (val < 0) { 2154 ret = U64_MAX; 2155 } else { 2156 val = val & ((1 << stat.bits) - 1); 2157 priv->stats[i] += val; 2158 ret = priv->stats[i]; 2159 } 2160 2161 return ret; 2162 } 2163 2164 static void kszphy_get_stats(struct phy_device *phydev, 2165 struct ethtool_stats *stats, u64 *data) 2166 { 2167 int i; 2168 2169 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2170 data[i] = kszphy_get_stat(phydev, i); 2171 } 2172 2173 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2174 * etc. The counter is incremented when the PHY receives a frame with one or 2175 * more symbol errors. The counter is cleared when the register is read. 2176 */ 2177 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2178 2179 static int kszphy_update_stats(struct phy_device *phydev) 2180 { 2181 struct kszphy_priv *priv = phydev->priv; 2182 int ret; 2183 2184 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2185 if (ret < 0) 2186 return ret; 2187 2188 priv->phy_stats.rx_err_pkt_cnt += ret; 2189 2190 return 0; 2191 } 2192 2193 static void kszphy_get_phy_stats(struct phy_device *phydev, 2194 struct ethtool_eth_phy_stats *eth_stats, 2195 struct ethtool_phy_stats *stats) 2196 { 2197 struct kszphy_priv *priv = phydev->priv; 2198 2199 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2200 } 2201 2202 /* Base register for Signal Quality Indicator (SQI) - Channel A 2203 * 2204 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2205 * Register: 0xAC (Channel A) 2206 * Each channel (pair) has its own register: 2207 * Channel A: 0xAC 2208 * Channel B: 0xAD 2209 * Channel C: 0xAE 2210 * Channel D: 0xAF 2211 */ 2212 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2213 2214 /* SQI field mask for bits [14:8] 2215 * 2216 * SQI indicates relative quality of the signal. 2217 * A lower value indicates better signal quality. 2218 */ 2219 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2220 2221 #define KSZ9477_MAX_CHANNELS 4 2222 #define KSZ9477_SQI_MAX 7 2223 2224 /* Number of SQI samples to average for a stable result. 2225 * 2226 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2227 * For noisy environments, a minimum of 30–50 readings is recommended. 2228 */ 2229 #define KSZ9477_SQI_SAMPLE_COUNT 40 2230 2231 /* The hardware SQI register provides a raw value from 0-127, where a lower 2232 * value indicates better signal quality. However, empirical testing has 2233 * shown that only the 0-7 range is relevant for a functional link. A raw 2234 * value of 8 or higher was measured directly before link drop. This aligns 2235 * with the OPEN Alliance recommendation that SQI=0 should represent the 2236 * pre-failure state. 2237 * 2238 * This table provides a non-linear mapping from the useful raw hardware 2239 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2240 */ 2241 static const u8 ksz_sqi_mapping[] = { 2242 7, /* raw 0 -> SQI 7 */ 2243 7, /* raw 1 -> SQI 7 */ 2244 6, /* raw 2 -> SQI 6 */ 2245 5, /* raw 3 -> SQI 5 */ 2246 4, /* raw 4 -> SQI 4 */ 2247 3, /* raw 5 -> SQI 3 */ 2248 2, /* raw 6 -> SQI 2 */ 2249 1, /* raw 7 -> SQI 1 */ 2250 }; 2251 2252 /** 2253 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2254 * @phydev: the PHY device 2255 * 2256 * This function reads and processes the raw Signal Quality Index from the 2257 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2258 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2259 * mapped to the standard 0-7 SQI scale via a lookup table. 2260 * 2261 * Return: SQI value (0–7), or a negative errno on failure. 2262 */ 2263 static int kszphy_get_sqi(struct phy_device *phydev) 2264 { 2265 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2266 int worst_sqi = KSZ9477_SQI_MAX; 2267 int i, val, raw_sqi, ch; 2268 u8 channels; 2269 2270 /* Determine applicable channels based on link speed */ 2271 if (phydev->speed == SPEED_1000) 2272 channels = 4; 2273 else if (phydev->speed == SPEED_100) 2274 channels = 1; 2275 else 2276 return -EOPNOTSUPP; 2277 2278 /* Sample and accumulate SQI readings for each pair (currently only one). 2279 * 2280 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2281 * - The SQI register is updated every 2 µs. 2282 * - Values may fluctuate significantly, even in low-noise environments. 2283 * - For reliable estimation, average a minimum of 30–50 samples 2284 * (recommended for noisy environments) 2285 * - In noisy environments, individual readings are highly unreliable. 2286 * 2287 * We use 40 samples per pair with a delay of 3 µs between each 2288 * read to ensure new values are captured (2 µs update interval). 2289 */ 2290 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2291 for (ch = 0; ch < channels; ch++) { 2292 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2293 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2294 if (val < 0) 2295 return val; 2296 2297 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2298 sum[ch] += raw_sqi; 2299 2300 /* We communicate with the PHY via MDIO via SPI or 2301 * I2C, which is relatively slow. At least slower than 2302 * the update interval of the SQI register. 2303 * So, we can skip the delay between reads. 2304 */ 2305 } 2306 } 2307 2308 /* Calculate average for each channel and find the worst SQI */ 2309 for (ch = 0; ch < channels; ch++) { 2310 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2311 int mapped_sqi; 2312 2313 /* Handle the pre-fail/failed state first. */ 2314 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2315 mapped_sqi = 0; 2316 else 2317 /* Use the lookup table for the good signal range. */ 2318 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2319 2320 if (mapped_sqi < worst_sqi) 2321 worst_sqi = mapped_sqi; 2322 } 2323 2324 return worst_sqi; 2325 } 2326 2327 static int kszphy_get_sqi_max(struct phy_device *phydev) 2328 { 2329 return KSZ9477_SQI_MAX; 2330 } 2331 2332 static void kszphy_enable_clk(struct phy_device *phydev) 2333 { 2334 struct kszphy_priv *priv = phydev->priv; 2335 2336 if (!priv->clk_enable && priv->clk) { 2337 clk_prepare_enable(priv->clk); 2338 priv->clk_enable = true; 2339 } 2340 } 2341 2342 static void kszphy_disable_clk(struct phy_device *phydev) 2343 { 2344 struct kszphy_priv *priv = phydev->priv; 2345 2346 if (priv->clk_enable && priv->clk) { 2347 clk_disable_unprepare(priv->clk); 2348 priv->clk_enable = false; 2349 } 2350 } 2351 2352 static int kszphy_generic_resume(struct phy_device *phydev) 2353 { 2354 kszphy_enable_clk(phydev); 2355 2356 return genphy_resume(phydev); 2357 } 2358 2359 static int kszphy_generic_suspend(struct phy_device *phydev) 2360 { 2361 int ret; 2362 2363 ret = genphy_suspend(phydev); 2364 if (ret) 2365 return ret; 2366 2367 kszphy_disable_clk(phydev); 2368 2369 return 0; 2370 } 2371 2372 static int kszphy_suspend(struct phy_device *phydev) 2373 { 2374 /* Disable PHY Interrupts */ 2375 if (phy_interrupt_is_valid(phydev)) { 2376 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2377 if (phydev->drv->config_intr) 2378 phydev->drv->config_intr(phydev); 2379 } 2380 2381 return kszphy_generic_suspend(phydev); 2382 } 2383 2384 static void kszphy_parse_led_mode(struct phy_device *phydev) 2385 { 2386 const struct kszphy_type *type = phydev->drv->driver_data; 2387 const struct device_node *np = phydev->mdio.dev.of_node; 2388 struct kszphy_priv *priv = phydev->priv; 2389 int ret; 2390 2391 if (type && type->led_mode_reg) { 2392 ret = of_property_read_u32(np, "micrel,led-mode", 2393 &priv->led_mode); 2394 2395 if (ret) 2396 priv->led_mode = -1; 2397 2398 if (priv->led_mode > 3) { 2399 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2400 priv->led_mode); 2401 priv->led_mode = -1; 2402 } 2403 } else { 2404 priv->led_mode = -1; 2405 } 2406 } 2407 2408 static int kszphy_resume(struct phy_device *phydev) 2409 { 2410 int ret; 2411 2412 ret = kszphy_generic_resume(phydev); 2413 if (ret) 2414 return ret; 2415 2416 /* After switching from power-down to normal mode, an internal global 2417 * reset is automatically generated. Wait a minimum of 1 ms before 2418 * read/write access to the PHY registers. 2419 */ 2420 usleep_range(1000, 2000); 2421 2422 ret = kszphy_config_reset(phydev); 2423 if (ret) 2424 return ret; 2425 2426 /* Enable PHY Interrupts */ 2427 if (phy_interrupt_is_valid(phydev)) { 2428 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2429 if (phydev->drv->config_intr) 2430 phydev->drv->config_intr(phydev); 2431 } 2432 2433 return 0; 2434 } 2435 2436 /* Because of errata DS80000700A, receiver error following software 2437 * power down. Suspend and resume callbacks only disable and enable 2438 * external rmii reference clock. 2439 */ 2440 static int ksz8041_resume(struct phy_device *phydev) 2441 { 2442 kszphy_enable_clk(phydev); 2443 2444 return 0; 2445 } 2446 2447 static int ksz8041_suspend(struct phy_device *phydev) 2448 { 2449 kszphy_disable_clk(phydev); 2450 2451 return 0; 2452 } 2453 2454 static int ksz9477_resume(struct phy_device *phydev) 2455 { 2456 int ret; 2457 2458 /* No need to initialize registers if not powered down. */ 2459 ret = phy_read(phydev, MII_BMCR); 2460 if (ret < 0) 2461 return ret; 2462 if (!(ret & BMCR_PDOWN)) 2463 return 0; 2464 2465 genphy_resume(phydev); 2466 2467 /* After switching from power-down to normal mode, an internal global 2468 * reset is automatically generated. Wait a minimum of 1 ms before 2469 * read/write access to the PHY registers. 2470 */ 2471 usleep_range(1000, 2000); 2472 2473 /* Only KSZ9897 family of switches needs this fix. */ 2474 if ((phydev->phy_id & 0xf) == 1) { 2475 ret = ksz9477_phy_errata(phydev); 2476 if (ret) 2477 return ret; 2478 } 2479 2480 /* Enable PHY Interrupts */ 2481 if (phy_interrupt_is_valid(phydev)) { 2482 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2483 if (phydev->drv->config_intr) 2484 phydev->drv->config_intr(phydev); 2485 } 2486 2487 return 0; 2488 } 2489 2490 static int ksz8061_resume(struct phy_device *phydev) 2491 { 2492 int ret; 2493 2494 /* This function can be called twice when the Ethernet device is on. */ 2495 ret = phy_read(phydev, MII_BMCR); 2496 if (ret < 0) 2497 return ret; 2498 if (!(ret & BMCR_PDOWN)) 2499 return 0; 2500 2501 ret = kszphy_generic_resume(phydev); 2502 if (ret) 2503 return ret; 2504 2505 usleep_range(1000, 2000); 2506 2507 /* Re-program the value after chip is reset. */ 2508 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2509 if (ret) 2510 return ret; 2511 2512 /* Enable PHY Interrupts */ 2513 if (phy_interrupt_is_valid(phydev)) { 2514 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2515 if (phydev->drv->config_intr) 2516 phydev->drv->config_intr(phydev); 2517 } 2518 2519 return 0; 2520 } 2521 2522 static int ksz8061_suspend(struct phy_device *phydev) 2523 { 2524 return kszphy_suspend(phydev); 2525 } 2526 2527 static int kszphy_probe(struct phy_device *phydev) 2528 { 2529 const struct kszphy_type *type = phydev->drv->driver_data; 2530 const struct device_node *np = phydev->mdio.dev.of_node; 2531 struct kszphy_priv *priv; 2532 struct clk *clk; 2533 2534 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2535 if (!priv) 2536 return -ENOMEM; 2537 2538 phydev->priv = priv; 2539 2540 priv->type = type; 2541 2542 kszphy_parse_led_mode(phydev); 2543 2544 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2545 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2546 if (!IS_ERR_OR_NULL(clk)) { 2547 unsigned long rate = clk_get_rate(clk); 2548 bool rmii_ref_clk_sel_25_mhz; 2549 2550 if (type) 2551 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2552 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2553 "micrel,rmii-reference-clock-select-25-mhz"); 2554 2555 if (rate > 24500000 && rate < 25500000) { 2556 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2557 } else if (rate > 49500000 && rate < 50500000) { 2558 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2559 } else { 2560 phydev_err(phydev, "Clock rate out of range: %ld\n", 2561 rate); 2562 return -EINVAL; 2563 } 2564 } else if (!clk) { 2565 /* unnamed clock from the generic ethernet-phy binding */ 2566 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2567 } 2568 2569 if (IS_ERR(clk)) 2570 return PTR_ERR(clk); 2571 2572 clk_disable_unprepare(clk); 2573 priv->clk = clk; 2574 2575 if (ksz8041_fiber_mode(phydev)) 2576 phydev->port = PORT_FIBRE; 2577 2578 /* Support legacy board-file configuration */ 2579 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2580 priv->rmii_ref_clk_sel = true; 2581 priv->rmii_ref_clk_sel_val = true; 2582 } 2583 2584 return 0; 2585 } 2586 2587 static int lan8814_cable_test_start(struct phy_device *phydev) 2588 { 2589 /* If autoneg is enabled, we won't be able to test cross pair 2590 * short. In this case, the PHY will "detect" a link and 2591 * confuse the internal state machine - disable auto neg here. 2592 * Set the speed to 1000mbit and full duplex. 2593 */ 2594 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2595 BMCR_SPEED1000 | BMCR_FULLDPLX); 2596 } 2597 2598 static int ksz886x_cable_test_start(struct phy_device *phydev) 2599 { 2600 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2601 return -EOPNOTSUPP; 2602 2603 /* If autoneg is enabled, we won't be able to test cross pair 2604 * short. In this case, the PHY will "detect" a link and 2605 * confuse the internal state machine - disable auto neg here. 2606 * If autoneg is disabled, we should set the speed to 10mbit. 2607 */ 2608 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2609 } 2610 2611 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2612 { 2613 switch (FIELD_GET(mask, status)) { 2614 case KSZ8081_LMD_STAT_NORMAL: 2615 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2616 case KSZ8081_LMD_STAT_SHORT: 2617 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2618 case KSZ8081_LMD_STAT_OPEN: 2619 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2620 case KSZ8081_LMD_STAT_FAIL: 2621 fallthrough; 2622 default: 2623 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2624 } 2625 } 2626 2627 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2628 { 2629 return FIELD_GET(mask, status) == 2630 KSZ8081_LMD_STAT_FAIL; 2631 } 2632 2633 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2634 { 2635 switch (FIELD_GET(mask, status)) { 2636 case KSZ8081_LMD_STAT_OPEN: 2637 fallthrough; 2638 case KSZ8081_LMD_STAT_SHORT: 2639 return true; 2640 } 2641 return false; 2642 } 2643 2644 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2645 u16 status, u16 data_mask) 2646 { 2647 int dt; 2648 2649 /* According to the data sheet the distance to the fault is 2650 * DELTA_TIME * 0.4 meters for ksz phys. 2651 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2652 */ 2653 dt = FIELD_GET(data_mask, status); 2654 2655 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2656 return ((dt - 22) * 800) / 10; 2657 else 2658 return (dt * 400) / 10; 2659 } 2660 2661 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2662 { 2663 const struct kszphy_type *type = phydev->drv->driver_data; 2664 int val, ret; 2665 2666 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2667 !(val & KSZ8081_LMD_ENABLE_TEST), 2668 30000, 100000, true); 2669 2670 return ret < 0 ? ret : 0; 2671 } 2672 2673 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2674 { 2675 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2676 ETHTOOL_A_CABLE_PAIR_B, 2677 ETHTOOL_A_CABLE_PAIR_C, 2678 ETHTOOL_A_CABLE_PAIR_D, 2679 }; 2680 u32 fault_length; 2681 int ret; 2682 int val; 2683 2684 val = KSZ8081_LMD_ENABLE_TEST; 2685 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2686 2687 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2688 if (ret < 0) 2689 return ret; 2690 2691 ret = ksz886x_cable_test_wait_for_completion(phydev); 2692 if (ret) 2693 return ret; 2694 2695 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2696 if (val < 0) 2697 return val; 2698 2699 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2700 return -EAGAIN; 2701 2702 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2703 ksz886x_cable_test_result_trans(val, 2704 LAN8814_CABLE_DIAG_STAT_MASK 2705 )); 2706 if (ret) 2707 return ret; 2708 2709 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2710 return 0; 2711 2712 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2713 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2714 2715 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2716 } 2717 2718 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2719 { 2720 static const int ethtool_pair[] = { 2721 ETHTOOL_A_CABLE_PAIR_A, 2722 ETHTOOL_A_CABLE_PAIR_B, 2723 }; 2724 int ret, val, mdix; 2725 u32 fault_length; 2726 2727 /* There is no way to choice the pair, like we do one ksz9031. 2728 * We can workaround this limitation by using the MDI-X functionality. 2729 */ 2730 if (pair == 0) 2731 mdix = ETH_TP_MDI; 2732 else 2733 mdix = ETH_TP_MDI_X; 2734 2735 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2736 case PHY_ID_KSZ8081: 2737 ret = ksz8081_config_mdix(phydev, mdix); 2738 break; 2739 case PHY_ID_KSZ886X: 2740 ret = ksz886x_config_mdix(phydev, mdix); 2741 break; 2742 default: 2743 ret = -ENODEV; 2744 } 2745 2746 if (ret) 2747 return ret; 2748 2749 /* Now we are ready to fire. This command will send a 100ns pulse 2750 * to the pair. 2751 */ 2752 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2753 if (ret) 2754 return ret; 2755 2756 ret = ksz886x_cable_test_wait_for_completion(phydev); 2757 if (ret) 2758 return ret; 2759 2760 val = phy_read(phydev, KSZ8081_LMD); 2761 if (val < 0) 2762 return val; 2763 2764 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2765 return -EAGAIN; 2766 2767 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2768 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2769 if (ret) 2770 return ret; 2771 2772 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2773 return 0; 2774 2775 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2776 2777 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2778 } 2779 2780 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2781 bool *finished) 2782 { 2783 const struct kszphy_type *type = phydev->drv->driver_data; 2784 unsigned long pair_mask = type->pair_mask; 2785 int retries = 20; 2786 int ret = 0; 2787 int pair; 2788 2789 *finished = false; 2790 2791 /* Try harder if link partner is active */ 2792 while (pair_mask && retries--) { 2793 for_each_set_bit(pair, &pair_mask, 4) { 2794 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2795 ret = lan8814_cable_test_one_pair(phydev, pair); 2796 else 2797 ret = ksz886x_cable_test_one_pair(phydev, pair); 2798 if (ret == -EAGAIN) 2799 continue; 2800 if (ret < 0) 2801 return ret; 2802 clear_bit(pair, &pair_mask); 2803 } 2804 /* If link partner is in autonegotiation mode it will send 2ms 2805 * of FLPs with at least 6ms of silence. 2806 * Add 2ms sleep to have better chances to hit this silence. 2807 */ 2808 if (pair_mask) 2809 msleep(2); 2810 } 2811 2812 *finished = true; 2813 2814 return ret; 2815 } 2816 2817 /** 2818 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2819 * 2820 * This page contains timers used for auto-negotiation, debug registers and 2821 * register to configure fast link failure. 2822 */ 2823 #define LAN8814_PAGE_PCS 0 2824 2825 /** 2826 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2827 * 2828 * This page appears to control the Analog Front-End (AFE) and Physical 2829 * Medium Attachment (PMA) layers. It is used to access registers like 2830 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2831 */ 2832 #define LAN8814_PAGE_AFE_PMA 1 2833 2834 /** 2835 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2836 * 2837 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2838 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2839 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2840 * and self-test counters in the LAN8842. 2841 */ 2842 #define LAN8814_PAGE_PCS_DIGITAL 2 2843 2844 /** 2845 * LAN8814_PAGE_EEE - Selects Extended Page 3. 2846 * 2847 * This page contains EEE registers 2848 */ 2849 #define LAN8814_PAGE_EEE 3 2850 2851 /** 2852 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2853 * 2854 * This page contains device-common registers that affect the entire chip. 2855 * It includes controls for chip-level resets, strap status, GPIO, 2856 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2857 */ 2858 #define LAN8814_PAGE_COMMON_REGS 4 2859 2860 /** 2861 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2862 * 2863 * This page contains port-specific registers that must be accessed 2864 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2865 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2866 */ 2867 #define LAN8814_PAGE_PORT_REGS 5 2868 2869 /** 2870 * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28. 2871 * 2872 * This page contains analog control registers and power mode registers. 2873 */ 2874 #define LAN8814_PAGE_POWER_REGS 28 2875 2876 /** 2877 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2878 * 2879 * This page appears to hold fundamental system or global controls. In the 2880 * driver, it is used by the related LAN8804 to access the 2881 * LAN8814_CLOCK_MANAGEMENT register. 2882 */ 2883 #define LAN8814_PAGE_SYSTEM_CTRL 31 2884 2885 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2886 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2887 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2888 2889 #define LAN8814_QSGMII_SOFT_RESET 0x43 2890 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2891 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2892 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2893 #define LAN8814_ALIGN_SWAP 0x4a 2894 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2895 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2896 2897 #define LAN8804_ALIGN_SWAP 0x4a 2898 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2899 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2900 #define LAN8814_CLOCK_MANAGEMENT 0xd 2901 #define LAN8814_LINK_QUALITY 0x8e 2902 2903 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2904 { 2905 int data; 2906 2907 phy_lock_mdio_bus(phydev); 2908 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2909 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2910 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2911 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2912 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2913 phy_unlock_mdio_bus(phydev); 2914 2915 return data; 2916 } 2917 2918 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2919 u16 val) 2920 { 2921 phy_lock_mdio_bus(phydev); 2922 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2923 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2924 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2925 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2926 2927 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2928 if (val != 0) 2929 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2930 val); 2931 phy_unlock_mdio_bus(phydev); 2932 return val; 2933 } 2934 2935 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 2936 u16 mask, u16 set) 2937 { 2938 int ret; 2939 2940 phy_lock_mdio_bus(phydev); 2941 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2942 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2943 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2944 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2945 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 2946 mask, set); 2947 phy_unlock_mdio_bus(phydev); 2948 2949 if (ret < 0) 2950 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 2951 ERR_PTR(ret)); 2952 2953 return ret; 2954 } 2955 2956 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2957 { 2958 u16 val = 0; 2959 2960 if (enable) 2961 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2962 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2963 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2964 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2965 2966 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2967 PTP_TSU_INT_EN, val); 2968 } 2969 2970 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2971 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2972 { 2973 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2974 PTP_RX_INGRESS_SEC_HI); 2975 *seconds = (*seconds << 16) | 2976 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2977 PTP_RX_INGRESS_SEC_LO); 2978 2979 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2980 PTP_RX_INGRESS_NS_HI); 2981 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2982 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2983 PTP_RX_INGRESS_NS_LO); 2984 2985 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2986 PTP_RX_MSG_HEADER2); 2987 } 2988 2989 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2990 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2991 { 2992 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2993 PTP_TX_EGRESS_SEC_HI); 2994 *seconds = *seconds << 16 | 2995 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2996 PTP_TX_EGRESS_SEC_LO); 2997 2998 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2999 PTP_TX_EGRESS_NS_HI); 3000 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3001 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3002 PTP_TX_EGRESS_NS_LO); 3003 3004 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3005 PTP_TX_MSG_HEADER2); 3006 } 3007 3008 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 3009 { 3010 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3011 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 3012 3013 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3014 SOF_TIMESTAMPING_RX_HARDWARE | 3015 SOF_TIMESTAMPING_RAW_HARDWARE; 3016 3017 info->phc_index = ptp_clock_index(shared->ptp_clock); 3018 3019 info->tx_types = 3020 (1 << HWTSTAMP_TX_OFF) | 3021 (1 << HWTSTAMP_TX_ON) | 3022 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3023 3024 info->rx_filters = 3025 (1 << HWTSTAMP_FILTER_NONE) | 3026 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3027 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3028 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3029 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3030 3031 return 0; 3032 } 3033 3034 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3035 { 3036 int i; 3037 3038 for (i = 0; i < FIFO_SIZE; ++i) 3039 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3040 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3041 3042 /* Read to clear overflow status bit */ 3043 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3044 } 3045 3046 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 3047 struct kernel_hwtstamp_config *config, 3048 struct netlink_ext_ack *extack) 3049 { 3050 struct kszphy_ptp_priv *ptp_priv = 3051 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3052 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3053 int txcfg = 0, rxcfg = 0; 3054 int pkt_ts_enable; 3055 3056 ptp_priv->hwts_tx_type = config->tx_type; 3057 ptp_priv->rx_filter = config->rx_filter; 3058 3059 switch (config->rx_filter) { 3060 case HWTSTAMP_FILTER_NONE: 3061 ptp_priv->layer = 0; 3062 ptp_priv->version = 0; 3063 break; 3064 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3065 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3066 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3067 ptp_priv->layer = PTP_CLASS_L4; 3068 ptp_priv->version = PTP_CLASS_V2; 3069 break; 3070 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3071 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3072 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3073 ptp_priv->layer = PTP_CLASS_L2; 3074 ptp_priv->version = PTP_CLASS_V2; 3075 break; 3076 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3077 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3078 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3079 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3080 ptp_priv->version = PTP_CLASS_V2; 3081 break; 3082 default: 3083 return -ERANGE; 3084 } 3085 3086 if (ptp_priv->layer & PTP_CLASS_L2) { 3087 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3088 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3089 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3090 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3091 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3092 } 3093 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3094 PTP_RX_PARSE_CONFIG, rxcfg); 3095 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3096 PTP_TX_PARSE_CONFIG, txcfg); 3097 3098 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3099 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3100 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3101 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3102 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3103 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3104 3105 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3106 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3107 PTP_TX_MOD, 3108 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3109 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3110 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3111 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3112 PTP_TX_MOD, 3113 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3114 0); 3115 } 3116 3117 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3118 lan8814_config_ts_intr(ptp_priv->phydev, true); 3119 else 3120 lan8814_config_ts_intr(ptp_priv->phydev, false); 3121 3122 /* In case of multiple starts and stops, these needs to be cleared */ 3123 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3124 list_del(&rx_ts->list); 3125 kfree(rx_ts); 3126 } 3127 skb_queue_purge(&ptp_priv->rx_queue); 3128 skb_queue_purge(&ptp_priv->tx_queue); 3129 3130 lan8814_flush_fifo(ptp_priv->phydev, false); 3131 lan8814_flush_fifo(ptp_priv->phydev, true); 3132 3133 return 0; 3134 } 3135 3136 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3137 struct sk_buff *skb, int type) 3138 { 3139 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3140 3141 switch (ptp_priv->hwts_tx_type) { 3142 case HWTSTAMP_TX_ONESTEP_SYNC: 3143 if (ptp_msg_is_sync(skb, type)) { 3144 kfree_skb(skb); 3145 return; 3146 } 3147 fallthrough; 3148 case HWTSTAMP_TX_ON: 3149 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3150 skb_queue_tail(&ptp_priv->tx_queue, skb); 3151 break; 3152 case HWTSTAMP_TX_OFF: 3153 default: 3154 kfree_skb(skb); 3155 break; 3156 } 3157 } 3158 3159 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3160 { 3161 struct ptp_header *ptp_header; 3162 u32 type; 3163 3164 skb_push(skb, ETH_HLEN); 3165 type = ptp_classify_raw(skb); 3166 ptp_header = ptp_parse_header(skb, type); 3167 skb_pull_inline(skb, ETH_HLEN); 3168 3169 if (!ptp_header) 3170 return false; 3171 3172 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3173 return true; 3174 } 3175 3176 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3177 struct sk_buff *skb) 3178 { 3179 struct skb_shared_hwtstamps *shhwtstamps; 3180 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3181 unsigned long flags; 3182 bool ret = false; 3183 u16 skb_sig; 3184 3185 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3186 return ret; 3187 3188 /* Iterate over all RX timestamps and match it with the received skbs */ 3189 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3190 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3191 /* Check if we found the signature we were looking for. */ 3192 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3193 continue; 3194 3195 shhwtstamps = skb_hwtstamps(skb); 3196 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3197 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3198 rx_ts->nsec); 3199 list_del(&rx_ts->list); 3200 kfree(rx_ts); 3201 3202 ret = true; 3203 break; 3204 } 3205 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3206 3207 if (ret) 3208 netif_rx(skb); 3209 return ret; 3210 } 3211 3212 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3213 { 3214 struct kszphy_ptp_priv *ptp_priv = 3215 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3216 3217 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3218 type == PTP_CLASS_NONE) 3219 return false; 3220 3221 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3222 return false; 3223 3224 /* If we failed to match then add it to the queue for when the timestamp 3225 * will come 3226 */ 3227 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3228 skb_queue_tail(&ptp_priv->rx_queue, skb); 3229 3230 return true; 3231 } 3232 3233 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3234 time64_t sec, u32 nsec) 3235 { 3236 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3237 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3238 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3239 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3240 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3241 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3242 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3243 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3244 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3245 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3246 3247 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3248 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3249 } 3250 3251 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3252 time64_t *sec, u32 *nsec) 3253 { 3254 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3255 PTP_CMD_CTL_PTP_CLOCK_READ_); 3256 3257 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3258 PTP_CLOCK_READ_SEC_HI); 3259 *sec <<= 16; 3260 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3261 PTP_CLOCK_READ_SEC_MID); 3262 *sec <<= 16; 3263 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3264 PTP_CLOCK_READ_SEC_LO); 3265 3266 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3267 PTP_CLOCK_READ_NS_HI); 3268 *nsec <<= 16; 3269 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3270 PTP_CLOCK_READ_NS_LO); 3271 } 3272 3273 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3274 struct timespec64 *ts) 3275 { 3276 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3277 ptp_clock_info); 3278 struct phy_device *phydev = shared->phydev; 3279 u32 nano_seconds; 3280 time64_t seconds; 3281 3282 mutex_lock(&shared->shared_lock); 3283 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3284 mutex_unlock(&shared->shared_lock); 3285 ts->tv_sec = seconds; 3286 ts->tv_nsec = nano_seconds; 3287 3288 return 0; 3289 } 3290 3291 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3292 const struct timespec64 *ts) 3293 { 3294 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3295 ptp_clock_info); 3296 struct phy_device *phydev = shared->phydev; 3297 3298 mutex_lock(&shared->shared_lock); 3299 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3300 mutex_unlock(&shared->shared_lock); 3301 3302 return 0; 3303 } 3304 3305 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3306 s64 start_sec, u32 start_nsec) 3307 { 3308 /* Set the start time */ 3309 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3310 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3311 lower_16_bits(start_sec)); 3312 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3313 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3314 upper_16_bits(start_sec)); 3315 3316 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3317 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3318 lower_16_bits(start_nsec)); 3319 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3320 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3321 upper_16_bits(start_nsec) & 0x3fff); 3322 } 3323 3324 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3325 { 3326 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3327 sec + LAN8814_BUFFER_TIME, 0); 3328 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3329 sec + LAN8814_BUFFER_TIME, 0); 3330 } 3331 3332 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3333 s64 time_step_ns) 3334 { 3335 u32 nano_seconds_step; 3336 u64 abs_time_step_ns; 3337 time64_t set_seconds; 3338 u32 nano_seconds; 3339 u32 remainder; 3340 s32 seconds; 3341 3342 if (time_step_ns > 15000000000LL) { 3343 /* convert to clock set */ 3344 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3345 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3346 &remainder); 3347 nano_seconds += remainder; 3348 if (nano_seconds >= 1000000000) { 3349 set_seconds++; 3350 nano_seconds -= 1000000000; 3351 } 3352 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3353 lan8814_ptp_update_target(phydev, set_seconds); 3354 return; 3355 } else if (time_step_ns < -15000000000LL) { 3356 /* convert to clock set */ 3357 time_step_ns = -time_step_ns; 3358 3359 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3360 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3361 &remainder); 3362 nano_seconds_step = remainder; 3363 if (nano_seconds < nano_seconds_step) { 3364 set_seconds--; 3365 nano_seconds += 1000000000; 3366 } 3367 nano_seconds -= nano_seconds_step; 3368 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3369 lan8814_ptp_update_target(phydev, set_seconds); 3370 return; 3371 } 3372 3373 /* do clock step */ 3374 if (time_step_ns >= 0) { 3375 abs_time_step_ns = (u64)time_step_ns; 3376 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3377 &remainder); 3378 nano_seconds = remainder; 3379 } else { 3380 abs_time_step_ns = (u64)(-time_step_ns); 3381 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3382 &remainder)); 3383 nano_seconds = remainder; 3384 if (nano_seconds > 0) { 3385 /* subtracting nano seconds is not allowed 3386 * convert to subtracting from seconds, 3387 * and adding to nanoseconds 3388 */ 3389 seconds--; 3390 nano_seconds = (1000000000 - nano_seconds); 3391 } 3392 } 3393 3394 if (nano_seconds > 0) { 3395 /* add 8 ns to cover the likely normal increment */ 3396 nano_seconds += 8; 3397 } 3398 3399 if (nano_seconds >= 1000000000) { 3400 /* carry into seconds */ 3401 seconds++; 3402 nano_seconds -= 1000000000; 3403 } 3404 3405 while (seconds) { 3406 u32 nsec; 3407 3408 if (seconds > 0) { 3409 u32 adjustment_value = (u32)seconds; 3410 u16 adjustment_value_lo, adjustment_value_hi; 3411 3412 if (adjustment_value > 0xF) 3413 adjustment_value = 0xF; 3414 3415 adjustment_value_lo = adjustment_value & 0xffff; 3416 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3417 3418 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3419 PTP_LTC_STEP_ADJ_LO, 3420 adjustment_value_lo); 3421 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3422 PTP_LTC_STEP_ADJ_HI, 3423 PTP_LTC_STEP_ADJ_DIR_ | 3424 adjustment_value_hi); 3425 seconds -= ((s32)adjustment_value); 3426 3427 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3428 set_seconds -= adjustment_value; 3429 lan8814_ptp_update_target(phydev, set_seconds); 3430 } else { 3431 u32 adjustment_value = (u32)(-seconds); 3432 u16 adjustment_value_lo, adjustment_value_hi; 3433 3434 if (adjustment_value > 0xF) 3435 adjustment_value = 0xF; 3436 3437 adjustment_value_lo = adjustment_value & 0xffff; 3438 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3439 3440 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3441 PTP_LTC_STEP_ADJ_LO, 3442 adjustment_value_lo); 3443 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3444 PTP_LTC_STEP_ADJ_HI, 3445 adjustment_value_hi); 3446 seconds += ((s32)adjustment_value); 3447 3448 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3449 set_seconds += adjustment_value; 3450 lan8814_ptp_update_target(phydev, set_seconds); 3451 } 3452 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3453 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3454 } 3455 if (nano_seconds) { 3456 u16 nano_seconds_lo; 3457 u16 nano_seconds_hi; 3458 3459 nano_seconds_lo = nano_seconds & 0xffff; 3460 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3461 3462 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3463 PTP_LTC_STEP_ADJ_LO, 3464 nano_seconds_lo); 3465 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3466 PTP_LTC_STEP_ADJ_HI, 3467 PTP_LTC_STEP_ADJ_DIR_ | 3468 nano_seconds_hi); 3469 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3470 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3471 } 3472 } 3473 3474 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3475 { 3476 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3477 ptp_clock_info); 3478 struct phy_device *phydev = shared->phydev; 3479 3480 mutex_lock(&shared->shared_lock); 3481 lan8814_ptp_clock_step(phydev, delta); 3482 mutex_unlock(&shared->shared_lock); 3483 3484 return 0; 3485 } 3486 3487 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3488 { 3489 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3490 ptp_clock_info); 3491 struct phy_device *phydev = shared->phydev; 3492 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3493 bool positive = true; 3494 u32 kszphy_rate_adj; 3495 3496 if (scaled_ppm < 0) { 3497 scaled_ppm = -scaled_ppm; 3498 positive = false; 3499 } 3500 3501 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3502 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3503 3504 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3505 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3506 3507 if (positive) 3508 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3509 3510 mutex_lock(&shared->shared_lock); 3511 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3512 kszphy_rate_adj_hi); 3513 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3514 kszphy_rate_adj_lo); 3515 mutex_unlock(&shared->shared_lock); 3516 3517 return 0; 3518 } 3519 3520 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3521 s64 period_sec, u32 period_nsec) 3522 { 3523 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3524 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3525 lower_16_bits(period_sec)); 3526 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3527 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3528 upper_16_bits(period_sec)); 3529 3530 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3531 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3532 lower_16_bits(period_nsec)); 3533 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3534 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3535 upper_16_bits(period_nsec) & 0x3fff); 3536 } 3537 3538 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3539 int pulse_width) 3540 { 3541 /* Set the pulse width of the event, 3542 * Make sure that the target clock will be incremented each time when 3543 * local time reaches or pass it 3544 * Set the polarity high 3545 */ 3546 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3547 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3548 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3549 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3550 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3551 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3552 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3553 } 3554 3555 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3556 { 3557 /* Set target to too far in the future, effectively disabling it */ 3558 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3559 3560 /* And then reload once it recheas the target */ 3561 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3562 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3563 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3564 } 3565 3566 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3567 { 3568 /* Disable gpio alternate function, 3569 * 1: select as gpio, 3570 * 0: select alt func 3571 */ 3572 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3573 LAN8814_GPIO_EN_ADDR(pin), 3574 LAN8814_GPIO_EN_BIT(pin), 3575 LAN8814_GPIO_EN_BIT(pin)); 3576 3577 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3578 LAN8814_GPIO_DIR_ADDR(pin), 3579 LAN8814_GPIO_DIR_BIT(pin), 3580 0); 3581 3582 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3583 LAN8814_GPIO_BUF_ADDR(pin), 3584 LAN8814_GPIO_BUF_BIT(pin), 3585 0); 3586 } 3587 3588 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3589 { 3590 /* Set as gpio output */ 3591 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3592 LAN8814_GPIO_DIR_ADDR(pin), 3593 LAN8814_GPIO_DIR_BIT(pin), 3594 LAN8814_GPIO_DIR_BIT(pin)); 3595 3596 /* Enable gpio 0:for alternate function, 1:gpio */ 3597 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3598 LAN8814_GPIO_EN_ADDR(pin), 3599 LAN8814_GPIO_EN_BIT(pin), 3600 0); 3601 3602 /* Set buffer type to push pull */ 3603 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3604 LAN8814_GPIO_BUF_ADDR(pin), 3605 LAN8814_GPIO_BUF_BIT(pin), 3606 LAN8814_GPIO_BUF_BIT(pin)); 3607 } 3608 3609 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3610 struct ptp_clock_request *rq, int on) 3611 { 3612 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3613 ptp_clock_info); 3614 struct phy_device *phydev = shared->phydev; 3615 struct timespec64 ts_on, ts_period; 3616 s64 on_nsec, period_nsec; 3617 int pulse_width; 3618 int pin, event; 3619 3620 mutex_lock(&shared->shared_lock); 3621 event = rq->perout.index; 3622 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3623 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3624 mutex_unlock(&shared->shared_lock); 3625 return -EBUSY; 3626 } 3627 3628 if (!on) { 3629 lan8814_ptp_perout_off(phydev, pin); 3630 lan8814_ptp_disable_event(phydev, event); 3631 mutex_unlock(&shared->shared_lock); 3632 return 0; 3633 } 3634 3635 ts_on.tv_sec = rq->perout.on.sec; 3636 ts_on.tv_nsec = rq->perout.on.nsec; 3637 on_nsec = timespec64_to_ns(&ts_on); 3638 3639 ts_period.tv_sec = rq->perout.period.sec; 3640 ts_period.tv_nsec = rq->perout.period.nsec; 3641 period_nsec = timespec64_to_ns(&ts_period); 3642 3643 if (period_nsec < 200) { 3644 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3645 phydev_name(phydev)); 3646 mutex_unlock(&shared->shared_lock); 3647 return -EOPNOTSUPP; 3648 } 3649 3650 if (on_nsec >= period_nsec) { 3651 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3652 phydev_name(phydev)); 3653 mutex_unlock(&shared->shared_lock); 3654 return -EINVAL; 3655 } 3656 3657 switch (on_nsec) { 3658 case 200000000: 3659 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3660 break; 3661 case 100000000: 3662 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3663 break; 3664 case 50000000: 3665 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3666 break; 3667 case 10000000: 3668 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3669 break; 3670 case 5000000: 3671 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3672 break; 3673 case 1000000: 3674 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3675 break; 3676 case 500000: 3677 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3678 break; 3679 case 100000: 3680 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3681 break; 3682 case 50000: 3683 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3684 break; 3685 case 10000: 3686 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3687 break; 3688 case 5000: 3689 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3690 break; 3691 case 1000: 3692 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3693 break; 3694 case 500: 3695 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3696 break; 3697 case 100: 3698 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3699 break; 3700 default: 3701 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3702 phydev_name(phydev)); 3703 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3704 break; 3705 } 3706 3707 /* Configure to pulse every period */ 3708 lan8814_ptp_enable_event(phydev, event, pulse_width); 3709 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3710 rq->perout.start.nsec); 3711 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3712 rq->perout.period.nsec); 3713 lan8814_ptp_perout_on(phydev, pin); 3714 mutex_unlock(&shared->shared_lock); 3715 3716 return 0; 3717 } 3718 3719 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3720 { 3721 /* Set as gpio input */ 3722 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3723 LAN8814_GPIO_DIR_ADDR(pin), 3724 LAN8814_GPIO_DIR_BIT(pin), 3725 0); 3726 3727 /* Map the pin to ltc pin 0 of the capture map registers */ 3728 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3729 PTP_GPIO_CAP_MAP_LO, pin, pin); 3730 3731 /* Enable capture on the edges of the ltc pin */ 3732 if (flags & PTP_RISING_EDGE) 3733 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3734 PTP_GPIO_CAP_EN, 3735 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3736 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3737 if (flags & PTP_FALLING_EDGE) 3738 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3739 PTP_GPIO_CAP_EN, 3740 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3741 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3742 3743 /* Enable interrupt top interrupt */ 3744 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3745 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3746 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3747 } 3748 3749 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3750 { 3751 /* Set as gpio out */ 3752 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3753 LAN8814_GPIO_DIR_ADDR(pin), 3754 LAN8814_GPIO_DIR_BIT(pin), 3755 LAN8814_GPIO_DIR_BIT(pin)); 3756 3757 /* Enable alternate, 0:for alternate function, 1:gpio */ 3758 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3759 LAN8814_GPIO_EN_ADDR(pin), 3760 LAN8814_GPIO_EN_BIT(pin), 3761 0); 3762 3763 /* Clear the mapping of pin to registers 0 of the capture registers */ 3764 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3765 PTP_GPIO_CAP_MAP_LO, 3766 GENMASK(3, 0), 3767 0); 3768 3769 /* Disable capture on both of the edges */ 3770 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3771 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3772 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3773 0); 3774 3775 /* Disable interrupt top interrupt */ 3776 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3777 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3778 0); 3779 } 3780 3781 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3782 struct ptp_clock_request *rq, int on) 3783 { 3784 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3785 ptp_clock_info); 3786 struct phy_device *phydev = shared->phydev; 3787 int pin; 3788 3789 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3790 rq->extts.index); 3791 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3792 return -EINVAL; 3793 3794 mutex_lock(&shared->shared_lock); 3795 if (on) 3796 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3797 else 3798 lan8814_ptp_extts_off(phydev, pin); 3799 3800 mutex_unlock(&shared->shared_lock); 3801 3802 return 0; 3803 } 3804 3805 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3806 struct ptp_clock_request *rq, int on) 3807 { 3808 switch (rq->type) { 3809 case PTP_CLK_REQ_PEROUT: 3810 return lan8814_ptp_perout(ptpci, rq, on); 3811 case PTP_CLK_REQ_EXTTS: 3812 return lan8814_ptp_extts(ptpci, rq, on); 3813 default: 3814 return -EINVAL; 3815 } 3816 } 3817 3818 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3819 enum ptp_pin_function func, unsigned int chan) 3820 { 3821 switch (func) { 3822 case PTP_PF_NONE: 3823 case PTP_PF_PEROUT: 3824 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3825 * there is only chan 0 (event A) and for pin 1 there is only 3826 * chan 1 (event B) 3827 */ 3828 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3829 return -1; 3830 break; 3831 case PTP_PF_EXTTS: 3832 if (pin != LAN8814_PTP_EXTTS_NUM) 3833 return -1; 3834 break; 3835 default: 3836 return -1; 3837 } 3838 3839 return 0; 3840 } 3841 3842 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3843 { 3844 struct ptp_header *ptp_header; 3845 u32 type; 3846 3847 type = ptp_classify_raw(skb); 3848 ptp_header = ptp_parse_header(skb, type); 3849 3850 if (!ptp_header) 3851 return false; 3852 3853 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3854 return true; 3855 } 3856 3857 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3858 u32 seconds, u32 nsec, u16 seq_id) 3859 { 3860 struct skb_shared_hwtstamps shhwtstamps; 3861 struct sk_buff *skb, *skb_tmp; 3862 unsigned long flags; 3863 bool ret = false; 3864 u16 skb_sig; 3865 3866 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3867 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3868 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3869 continue; 3870 3871 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3872 continue; 3873 3874 __skb_unlink(skb, &ptp_priv->tx_queue); 3875 ret = true; 3876 break; 3877 } 3878 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3879 3880 if (ret) { 3881 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3882 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3883 skb_complete_tx_timestamp(skb, &shhwtstamps); 3884 } 3885 } 3886 3887 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3888 { 3889 struct phy_device *phydev = ptp_priv->phydev; 3890 u32 seconds, nsec; 3891 u16 seq_id; 3892 3893 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3894 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3895 } 3896 3897 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3898 { 3899 struct phy_device *phydev = ptp_priv->phydev; 3900 u32 reg; 3901 3902 do { 3903 lan8814_dequeue_tx_skb(ptp_priv); 3904 3905 /* If other timestamps are available in the FIFO, 3906 * process them. 3907 */ 3908 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3909 PTP_CAP_INFO); 3910 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3911 } 3912 3913 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3914 struct lan8814_ptp_rx_ts *rx_ts) 3915 { 3916 struct skb_shared_hwtstamps *shhwtstamps; 3917 struct sk_buff *skb, *skb_tmp; 3918 unsigned long flags; 3919 bool ret = false; 3920 u16 skb_sig; 3921 3922 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3923 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3924 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3925 continue; 3926 3927 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3928 continue; 3929 3930 __skb_unlink(skb, &ptp_priv->rx_queue); 3931 3932 ret = true; 3933 break; 3934 } 3935 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3936 3937 if (ret) { 3938 shhwtstamps = skb_hwtstamps(skb); 3939 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3940 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3941 netif_rx(skb); 3942 } 3943 3944 return ret; 3945 } 3946 3947 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3948 struct lan8814_ptp_rx_ts *rx_ts) 3949 { 3950 unsigned long flags; 3951 3952 /* If we failed to match the skb add it to the queue for when 3953 * the frame will come 3954 */ 3955 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3956 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3957 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3958 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3959 } else { 3960 kfree(rx_ts); 3961 } 3962 } 3963 3964 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3965 { 3966 struct phy_device *phydev = ptp_priv->phydev; 3967 struct lan8814_ptp_rx_ts *rx_ts; 3968 u32 reg; 3969 3970 do { 3971 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3972 if (!rx_ts) 3973 return; 3974 3975 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3976 &rx_ts->seq_id); 3977 lan8814_match_rx_ts(ptp_priv, rx_ts); 3978 3979 /* If other timestamps are available in the FIFO, 3980 * process them. 3981 */ 3982 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3983 PTP_CAP_INFO); 3984 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3985 } 3986 3987 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3988 { 3989 struct kszphy_priv *priv = phydev->priv; 3990 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3991 3992 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3993 lan8814_get_tx_ts(ptp_priv); 3994 3995 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3996 lan8814_get_rx_ts(ptp_priv); 3997 3998 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3999 lan8814_flush_fifo(phydev, true); 4000 skb_queue_purge(&ptp_priv->tx_queue); 4001 } 4002 4003 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 4004 lan8814_flush_fifo(phydev, false); 4005 skb_queue_purge(&ptp_priv->rx_queue); 4006 } 4007 } 4008 4009 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 4010 { 4011 struct phy_device *phydev = shared->phydev; 4012 struct ptp_clock_event ptp_event = {0}; 4013 unsigned long nsec; 4014 s64 sec; 4015 u16 tmp; 4016 4017 /* This is 0 because whatever was the input pin it was mapped it to 4018 * ltc gpio pin 0 4019 */ 4020 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4021 PTP_GPIO_SEL_GPIO_SEL(0), 4022 PTP_GPIO_SEL_GPIO_SEL(0)); 4023 4024 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4025 PTP_GPIO_CAP_STS); 4026 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4027 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4028 return -1; 4029 4030 if (tmp & BIT(0)) { 4031 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4032 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4033 sec <<= 16; 4034 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4035 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4036 4037 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4038 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4039 nsec <<= 16; 4040 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4041 PTP_GPIO_RE_LTC_NS_LO_CAP); 4042 } else { 4043 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4044 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4045 sec <<= 16; 4046 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4047 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4048 4049 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4050 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4051 nsec <<= 16; 4052 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4053 PTP_GPIO_RE_LTC_NS_LO_CAP); 4054 } 4055 4056 ptp_event.index = 0; 4057 ptp_event.timestamp = ktime_set(sec, nsec); 4058 ptp_event.type = PTP_CLOCK_EXTTS; 4059 ptp_clock_event(shared->ptp_clock, &ptp_event); 4060 4061 return 0; 4062 } 4063 4064 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4065 { 4066 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4067 int ret; 4068 4069 mutex_lock(&shared->shared_lock); 4070 ret = lan8814_gpio_process_cap(shared); 4071 mutex_unlock(&shared->shared_lock); 4072 4073 return ret; 4074 } 4075 4076 static int lan8804_config_init(struct phy_device *phydev) 4077 { 4078 /* MDI-X setting for swap A,B transmit */ 4079 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4080 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4081 LAN8804_ALIGN_TX_A_B_SWAP); 4082 4083 /* Make sure that the PHY will not stop generating the clock when the 4084 * link partner goes down 4085 */ 4086 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4087 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4088 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4089 4090 return 0; 4091 } 4092 4093 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4094 { 4095 int status; 4096 4097 status = phy_read(phydev, LAN8814_INTS); 4098 if (status < 0) { 4099 phy_error(phydev); 4100 return IRQ_NONE; 4101 } 4102 4103 if (status > 0) 4104 phy_trigger_machine(phydev); 4105 4106 return IRQ_HANDLED; 4107 } 4108 4109 #define LAN8804_OUTPUT_CONTROL 25 4110 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4111 #define LAN8804_CONTROL 31 4112 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4113 4114 static int lan8804_config_intr(struct phy_device *phydev) 4115 { 4116 int err; 4117 4118 /* This is an internal PHY of lan966x and is not possible to change the 4119 * polarity on the GIC found in lan966x, therefore change the polarity 4120 * of the interrupt in the PHY from being active low instead of active 4121 * high. 4122 */ 4123 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4124 4125 /* By default interrupt buffer is open-drain in which case the interrupt 4126 * can be active only low. Therefore change the interrupt buffer to be 4127 * push-pull to be able to change interrupt polarity 4128 */ 4129 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4130 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4131 4132 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4133 err = phy_read(phydev, LAN8814_INTS); 4134 if (err < 0) 4135 return err; 4136 4137 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4138 if (err) 4139 return err; 4140 } else { 4141 err = phy_write(phydev, LAN8814_INTC, 0); 4142 if (err) 4143 return err; 4144 4145 err = phy_read(phydev, LAN8814_INTS); 4146 if (err < 0) 4147 return err; 4148 } 4149 4150 return 0; 4151 } 4152 4153 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4154 { 4155 int ret = IRQ_NONE; 4156 int irq_status; 4157 4158 irq_status = phy_read(phydev, LAN8814_INTS); 4159 if (irq_status < 0) { 4160 phy_error(phydev); 4161 return IRQ_NONE; 4162 } 4163 4164 if (irq_status & LAN8814_INT_LINK) { 4165 phy_trigger_machine(phydev); 4166 ret = IRQ_HANDLED; 4167 } 4168 4169 while (true) { 4170 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4171 PTP_TSU_INT_STS); 4172 if (!irq_status) 4173 break; 4174 4175 lan8814_handle_ptp_interrupt(phydev, irq_status); 4176 ret = IRQ_HANDLED; 4177 } 4178 4179 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4180 ret = IRQ_HANDLED; 4181 4182 return ret; 4183 } 4184 4185 static int lan8814_ack_interrupt(struct phy_device *phydev) 4186 { 4187 /* bit[12..0] int status, which is a read and clear register. */ 4188 int rc; 4189 4190 rc = phy_read(phydev, LAN8814_INTS); 4191 4192 return (rc < 0) ? rc : 0; 4193 } 4194 4195 static int lan8814_config_intr(struct phy_device *phydev) 4196 { 4197 int err; 4198 4199 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4200 LAN8814_INTR_CTRL_REG_POLARITY | 4201 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4202 4203 /* enable / disable interrupts */ 4204 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4205 err = lan8814_ack_interrupt(phydev); 4206 if (err) 4207 return err; 4208 4209 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4210 } else { 4211 err = phy_write(phydev, LAN8814_INTC, 0); 4212 if (err) 4213 return err; 4214 4215 err = lan8814_ack_interrupt(phydev); 4216 } 4217 4218 return err; 4219 } 4220 4221 static void lan8814_ptp_init(struct phy_device *phydev) 4222 { 4223 struct kszphy_priv *priv = phydev->priv; 4224 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4225 4226 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4227 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4228 return; 4229 4230 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4231 TSU_HARD_RESET, TSU_HARD_RESET_); 4232 4233 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4234 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4235 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4236 4237 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4238 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4239 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4240 4241 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4242 PTP_RX_PARSE_CONFIG, 0); 4243 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4244 PTP_TX_PARSE_CONFIG, 0); 4245 4246 /* Removing default registers configs related to L2 and IP */ 4247 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4248 PTP_TX_PARSE_L2_ADDR_EN, 0); 4249 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4250 PTP_RX_PARSE_L2_ADDR_EN, 0); 4251 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4252 PTP_TX_PARSE_IP_ADDR_EN, 0); 4253 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4254 PTP_RX_PARSE_IP_ADDR_EN, 0); 4255 4256 /* Disable checking for minorVersionPTP field */ 4257 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4258 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4259 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4260 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4261 4262 skb_queue_head_init(&ptp_priv->tx_queue); 4263 skb_queue_head_init(&ptp_priv->rx_queue); 4264 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4265 spin_lock_init(&ptp_priv->rx_ts_lock); 4266 4267 ptp_priv->phydev = phydev; 4268 4269 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4270 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4271 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4272 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4273 4274 phydev->mii_ts = &ptp_priv->mii_ts; 4275 4276 /* Timestamp selected by default to keep legacy API */ 4277 phydev->default_timestamp = true; 4278 } 4279 4280 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4281 int gpios) 4282 { 4283 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4284 4285 shared->phydev = phydev; 4286 4287 /* Initialise shared lock for clock*/ 4288 mutex_init(&shared->shared_lock); 4289 4290 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4291 gpios, 4292 sizeof(*shared->pin_config), 4293 GFP_KERNEL); 4294 if (!shared->pin_config) 4295 return -ENOMEM; 4296 4297 for (int i = 0; i < gpios; i++) { 4298 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4299 4300 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4301 snprintf(ptp_pin->name, 4302 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4303 ptp_pin->index = i; 4304 ptp_pin->func = PTP_PF_NONE; 4305 } 4306 4307 shared->ptp_clock_info.owner = THIS_MODULE; 4308 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4309 shared->ptp_clock_info.max_adj = 31249999; 4310 shared->ptp_clock_info.n_alarm = 0; 4311 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4312 shared->ptp_clock_info.n_pins = gpios; 4313 shared->ptp_clock_info.pps = 0; 4314 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4315 PTP_FALLING_EDGE | 4316 PTP_STRICT_FLAGS; 4317 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4318 shared->ptp_clock_info.pin_config = shared->pin_config; 4319 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4320 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4321 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4322 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4323 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4324 shared->ptp_clock_info.getcrosststamp = NULL; 4325 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4326 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4327 4328 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4329 &phydev->mdio.dev); 4330 if (IS_ERR(shared->ptp_clock)) { 4331 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4332 shared->ptp_clock); 4333 return -EINVAL; 4334 } 4335 4336 /* Check if PHC support is missing at the configuration level */ 4337 if (!shared->ptp_clock) 4338 return 0; 4339 4340 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4341 4342 /* The EP.4 is shared between all the PHYs in the package and also it 4343 * can be accessed by any of the PHYs 4344 */ 4345 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4346 LTC_HARD_RESET, LTC_HARD_RESET_); 4347 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4348 PTP_OPERATING_MODE_STANDALONE_); 4349 4350 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4351 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4352 PTP_CMD_CTL_PTP_ENABLE_); 4353 4354 return 0; 4355 } 4356 4357 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4358 { 4359 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4360 LAN8814_PTP_GPIO_NUM); 4361 } 4362 4363 static void lan8814_setup_led(struct phy_device *phydev, int val) 4364 { 4365 int temp; 4366 4367 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4368 LAN8814_LED_CTRL_1); 4369 4370 if (val) 4371 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4372 else 4373 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4374 4375 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4376 LAN8814_LED_CTRL_1, temp); 4377 } 4378 4379 static int lan8814_config_init(struct phy_device *phydev) 4380 { 4381 struct kszphy_priv *lan8814 = phydev->priv; 4382 4383 /* Reset the PHY */ 4384 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4385 LAN8814_QSGMII_SOFT_RESET, 4386 LAN8814_QSGMII_SOFT_RESET_BIT, 4387 LAN8814_QSGMII_SOFT_RESET_BIT); 4388 4389 /* Disable ANEG with QSGMII PCS Host side */ 4390 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4391 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 4392 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 4393 0); 4394 4395 /* MDI-X setting for swap A,B transmit */ 4396 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4397 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4398 LAN8814_ALIGN_TX_A_B_SWAP); 4399 4400 if (lan8814->led_mode >= 0) 4401 lan8814_setup_led(phydev, lan8814->led_mode); 4402 4403 return 0; 4404 } 4405 4406 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4407 * function called in suspend. Because the GPIO line can be shared, so if one of 4408 * the phys goes back in coma mode, then all the other PHYs will go, which is 4409 * wrong. 4410 */ 4411 static int lan8814_release_coma_mode(struct phy_device *phydev) 4412 { 4413 struct gpio_desc *gpiod; 4414 4415 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4416 GPIOD_OUT_HIGH_OPEN_DRAIN | 4417 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4418 if (IS_ERR(gpiod)) 4419 return PTR_ERR(gpiod); 4420 4421 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4422 gpiod_set_value_cansleep(gpiod, 0); 4423 4424 return 0; 4425 } 4426 4427 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4428 { 4429 /* It was noticed that when traffic is passing through the PHY and the 4430 * cable is removed then the LED was still one even though there is no 4431 * link 4432 */ 4433 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4434 LAN8814_EEE_STATE_MASK2P5P, 4435 0); 4436 } 4437 4438 static void lan8814_update_meas_time(struct phy_device *phydev) 4439 { 4440 /* By setting the measure time to a value of 0xb this will allow cables 4441 * longer than 100m to be used. This configuration can be used 4442 * regardless of the mode of operation of the PHY 4443 */ 4444 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4445 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4446 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4447 } 4448 4449 static int lan8814_probe(struct phy_device *phydev) 4450 { 4451 const struct kszphy_type *type = phydev->drv->driver_data; 4452 struct kszphy_priv *priv; 4453 u16 addr; 4454 int err; 4455 4456 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4457 if (!priv) 4458 return -ENOMEM; 4459 4460 phydev->priv = priv; 4461 4462 priv->type = type; 4463 4464 kszphy_parse_led_mode(phydev); 4465 4466 /* Strap-in value for PHY address, below register read gives starting 4467 * phy address value 4468 */ 4469 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4470 devm_phy_package_join(&phydev->mdio.dev, phydev, 4471 addr, sizeof(struct lan8814_shared_priv)); 4472 4473 if (phy_package_init_once(phydev)) { 4474 err = lan8814_release_coma_mode(phydev); 4475 if (err) 4476 return err; 4477 4478 err = lan8814_ptp_probe_once(phydev); 4479 if (err) 4480 return err; 4481 } 4482 4483 lan8814_ptp_init(phydev); 4484 4485 /* Errata workarounds */ 4486 lan8814_clear_2psp_bit(phydev); 4487 lan8814_update_meas_time(phydev); 4488 4489 return 0; 4490 } 4491 4492 #define LAN8841_MMD_TIMER_REG 0 4493 #define LAN8841_MMD0_REGISTER_17 17 4494 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4495 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4496 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4497 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4498 #define LAN8841_MMD_ANALOG_REG 28 4499 #define LAN8841_ANALOG_CONTROL_1 1 4500 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4501 #define LAN8841_ANALOG_CONTROL_10 13 4502 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4503 #define LAN8841_ANALOG_CONTROL_11 14 4504 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4505 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4506 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4507 #define LAN8841_BTRX_POWER_DOWN 70 4508 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4509 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4510 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4511 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4512 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4513 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4514 #define LAN8841_ADC_CHANNEL_MASK 198 4515 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4516 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4517 #define LAN8841_PTP_RX_VERSION 374 4518 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4519 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4520 #define LAN8841_PTP_TX_VERSION 438 4521 #define LAN8841_PTP_CMD_CTL 256 4522 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4523 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4524 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4525 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4526 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4527 #define LAN8841_PTP_RX_MODE 381 4528 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4529 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4530 4531 static int lan8841_config_init(struct phy_device *phydev) 4532 { 4533 int ret; 4534 4535 ret = ksz9131_config_init(phydev); 4536 if (ret) 4537 return ret; 4538 4539 /* Initialize the HW by resetting everything */ 4540 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4541 LAN8841_PTP_CMD_CTL, 4542 LAN8841_PTP_CMD_CTL_PTP_RESET, 4543 LAN8841_PTP_CMD_CTL_PTP_RESET); 4544 4545 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4546 LAN8841_PTP_CMD_CTL, 4547 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4548 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4549 4550 /* Don't process any frames */ 4551 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4552 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4553 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4554 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4555 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4556 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4557 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4558 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4559 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4560 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4561 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4562 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4563 4564 /* Disable checking for minorVersionPTP field */ 4565 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4566 LAN8841_PTP_RX_VERSION, 0xff00); 4567 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4568 LAN8841_PTP_TX_VERSION, 0xff00); 4569 4570 /* 100BT Clause 40 improvenent errata */ 4571 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4572 LAN8841_ANALOG_CONTROL_1, 4573 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4574 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4575 LAN8841_ANALOG_CONTROL_10, 4576 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4577 4578 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4579 * Magnetics 4580 */ 4581 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4582 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4583 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4584 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4585 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4586 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4587 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4588 LAN8841_BTRX_POWER_DOWN, 4589 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4590 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4591 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4592 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4593 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4594 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4595 } 4596 4597 /* LDO Adjustment errata */ 4598 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4599 LAN8841_ANALOG_CONTROL_11, 4600 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4601 4602 /* 100BT RGMII latency tuning errata */ 4603 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4604 LAN8841_ADC_CHANNEL_MASK, 0x0); 4605 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4606 LAN8841_MMD0_REGISTER_17, 4607 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4608 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4609 4610 return 0; 4611 } 4612 4613 #define LAN8841_OUTPUT_CTRL 25 4614 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4615 #define LAN8841_INT_PTP BIT(9) 4616 4617 static int lan8841_config_intr(struct phy_device *phydev) 4618 { 4619 int err; 4620 4621 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4622 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4623 4624 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4625 err = phy_read(phydev, LAN8814_INTS); 4626 if (err < 0) 4627 return err; 4628 4629 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4630 * even if it PTP is not enabled. Because the underneath blocks 4631 * will not enable the PTP so we will never get the PTP 4632 * interrupt. 4633 */ 4634 err = phy_write(phydev, LAN8814_INTC, 4635 LAN8814_INT_LINK | LAN8841_INT_PTP); 4636 } else { 4637 err = phy_write(phydev, LAN8814_INTC, 0); 4638 if (err) 4639 return err; 4640 4641 err = phy_read(phydev, LAN8814_INTS); 4642 if (err < 0) 4643 return err; 4644 4645 /* Getting a positive value doesn't mean that is an error, it 4646 * just indicates what was the status. Therefore make sure to 4647 * clear the value and say that there is no error. 4648 */ 4649 err = 0; 4650 } 4651 4652 return err; 4653 } 4654 4655 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4656 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4657 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4658 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4659 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4660 #define LAN8841_PTP_TX_MSG_HEADER2 455 4661 4662 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4663 u32 *sec, u32 *nsec, u16 *seq) 4664 { 4665 struct phy_device *phydev = ptp_priv->phydev; 4666 4667 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4668 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4669 return false; 4670 4671 *nsec = ((*nsec & 0x3fff) << 16); 4672 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4673 4674 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4675 *sec = *sec << 16; 4676 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4677 4678 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4679 4680 return true; 4681 } 4682 4683 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4684 { 4685 u32 sec, nsec; 4686 u16 seq; 4687 4688 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4689 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4690 } 4691 4692 #define LAN8841_PTP_INT_STS 259 4693 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4694 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4695 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4696 4697 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4698 { 4699 struct phy_device *phydev = ptp_priv->phydev; 4700 int i; 4701 4702 for (i = 0; i < FIFO_SIZE; ++i) 4703 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4704 4705 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4706 } 4707 4708 #define LAN8841_PTP_GPIO_CAP_STS 506 4709 #define LAN8841_PTP_GPIO_SEL 327 4710 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4711 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4712 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4713 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4714 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4715 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4716 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4717 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4718 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4719 4720 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4721 { 4722 struct phy_device *phydev = ptp_priv->phydev; 4723 struct ptp_clock_event ptp_event = {0}; 4724 int pin, ret, tmp; 4725 s32 sec, nsec; 4726 4727 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4728 if (pin == -1) 4729 return; 4730 4731 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4732 if (tmp < 0) 4733 return; 4734 4735 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4736 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4737 if (ret) 4738 return; 4739 4740 mutex_lock(&ptp_priv->ptp_lock); 4741 if (tmp & BIT(pin)) { 4742 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4743 sec <<= 16; 4744 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4745 4746 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4747 nsec <<= 16; 4748 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4749 } else { 4750 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4751 sec <<= 16; 4752 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4753 4754 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4755 nsec <<= 16; 4756 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4757 } 4758 mutex_unlock(&ptp_priv->ptp_lock); 4759 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4760 if (ret) 4761 return; 4762 4763 ptp_event.index = 0; 4764 ptp_event.timestamp = ktime_set(sec, nsec); 4765 ptp_event.type = PTP_CLOCK_EXTTS; 4766 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4767 } 4768 4769 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4770 { 4771 struct kszphy_priv *priv = phydev->priv; 4772 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4773 u16 status; 4774 4775 do { 4776 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4777 4778 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4779 lan8841_ptp_process_tx_ts(ptp_priv); 4780 4781 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4782 lan8841_gpio_process_cap(ptp_priv); 4783 4784 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4785 lan8841_ptp_flush_fifo(ptp_priv); 4786 skb_queue_purge(&ptp_priv->tx_queue); 4787 } 4788 4789 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4790 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4791 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4792 } 4793 4794 #define LAN8841_INTS_PTP BIT(9) 4795 4796 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4797 { 4798 irqreturn_t ret = IRQ_NONE; 4799 int irq_status; 4800 4801 irq_status = phy_read(phydev, LAN8814_INTS); 4802 if (irq_status < 0) { 4803 phy_error(phydev); 4804 return IRQ_NONE; 4805 } 4806 4807 if (irq_status & LAN8814_INT_LINK) { 4808 phy_trigger_machine(phydev); 4809 ret = IRQ_HANDLED; 4810 } 4811 4812 if (irq_status & LAN8841_INTS_PTP) { 4813 lan8841_handle_ptp_interrupt(phydev); 4814 ret = IRQ_HANDLED; 4815 } 4816 4817 return ret; 4818 } 4819 4820 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4821 struct kernel_ethtool_ts_info *info) 4822 { 4823 struct kszphy_ptp_priv *ptp_priv; 4824 4825 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4826 4827 info->phc_index = ptp_priv->ptp_clock ? 4828 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4829 if (info->phc_index == -1) 4830 return 0; 4831 4832 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4833 SOF_TIMESTAMPING_RX_HARDWARE | 4834 SOF_TIMESTAMPING_RAW_HARDWARE; 4835 4836 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4837 (1 << HWTSTAMP_TX_ON) | 4838 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4839 4840 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4841 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4842 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4843 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4844 4845 return 0; 4846 } 4847 4848 #define LAN8841_PTP_INT_EN 260 4849 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4850 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4851 4852 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4853 bool enable) 4854 { 4855 struct phy_device *phydev = ptp_priv->phydev; 4856 4857 if (enable) { 4858 /* Enable interrupts on the TX side */ 4859 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4860 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4861 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4862 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4863 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4864 4865 /* Enable the modification of the frame on RX side, 4866 * this will add the ns and 2 bits of sec in the reserved field 4867 * of the PTP header 4868 */ 4869 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4870 LAN8841_PTP_RX_MODE, 4871 LAN8841_PTP_INSERT_TS_EN | 4872 LAN8841_PTP_INSERT_TS_32BIT, 4873 LAN8841_PTP_INSERT_TS_EN | 4874 LAN8841_PTP_INSERT_TS_32BIT); 4875 4876 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4877 } else { 4878 /* Disable interrupts on the TX side */ 4879 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4880 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4881 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4882 4883 /* Disable modification of the RX frames */ 4884 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4885 LAN8841_PTP_RX_MODE, 4886 LAN8841_PTP_INSERT_TS_EN | 4887 LAN8841_PTP_INSERT_TS_32BIT, 0); 4888 4889 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4890 } 4891 } 4892 4893 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4894 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4895 #define LAN8841_PTP_TX_MOD 445 4896 4897 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4898 struct kernel_hwtstamp_config *config, 4899 struct netlink_ext_ack *extack) 4900 { 4901 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4902 struct phy_device *phydev = ptp_priv->phydev; 4903 int txcfg = 0, rxcfg = 0; 4904 int pkt_ts_enable; 4905 4906 ptp_priv->hwts_tx_type = config->tx_type; 4907 ptp_priv->rx_filter = config->rx_filter; 4908 4909 switch (config->rx_filter) { 4910 case HWTSTAMP_FILTER_NONE: 4911 ptp_priv->layer = 0; 4912 ptp_priv->version = 0; 4913 break; 4914 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4915 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4916 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4917 ptp_priv->layer = PTP_CLASS_L4; 4918 ptp_priv->version = PTP_CLASS_V2; 4919 break; 4920 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4921 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4922 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4923 ptp_priv->layer = PTP_CLASS_L2; 4924 ptp_priv->version = PTP_CLASS_V2; 4925 break; 4926 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4927 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4928 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4929 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4930 ptp_priv->version = PTP_CLASS_V2; 4931 break; 4932 default: 4933 return -ERANGE; 4934 } 4935 4936 /* Setup parsing of the frames and enable the timestamping for ptp 4937 * frames 4938 */ 4939 if (ptp_priv->layer & PTP_CLASS_L2) { 4940 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4941 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4942 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4943 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4944 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4945 } 4946 4947 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4948 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4949 4950 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4951 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4952 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4953 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4954 4955 /* Enable / disable of the TX timestamp in the SYNC frames */ 4956 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4957 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4958 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4959 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4960 4961 /* Now enable/disable the timestamping */ 4962 lan8841_ptp_enable_processing(ptp_priv, 4963 config->rx_filter != HWTSTAMP_FILTER_NONE); 4964 4965 skb_queue_purge(&ptp_priv->tx_queue); 4966 4967 lan8841_ptp_flush_fifo(ptp_priv); 4968 4969 return 0; 4970 } 4971 4972 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4973 struct sk_buff *skb, int type) 4974 { 4975 struct kszphy_ptp_priv *ptp_priv = 4976 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4977 struct ptp_header *header = ptp_parse_header(skb, type); 4978 struct skb_shared_hwtstamps *shhwtstamps; 4979 struct timespec64 ts; 4980 unsigned long flags; 4981 u32 ts_header; 4982 4983 if (!header) 4984 return false; 4985 4986 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4987 type == PTP_CLASS_NONE) 4988 return false; 4989 4990 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4991 return false; 4992 4993 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4994 ts.tv_sec = ptp_priv->seconds; 4995 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4996 ts_header = __be32_to_cpu(header->reserved2); 4997 4998 shhwtstamps = skb_hwtstamps(skb); 4999 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5000 5001 /* Check for any wrap arounds for the second part */ 5002 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5003 ts.tv_sec -= GENMASK(1, 0) + 1; 5004 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5005 ts.tv_sec += 1; 5006 5007 shhwtstamps->hwtstamp = 5008 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5009 ts_header & GENMASK(29, 0)); 5010 header->reserved2 = 0; 5011 5012 netif_rx(skb); 5013 5014 return true; 5015 } 5016 5017 #define LAN8841_EVENT_A 0 5018 #define LAN8841_EVENT_B 1 5019 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5020 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5021 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5022 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5023 5024 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5025 s64 sec, u32 nsec) 5026 { 5027 struct phy_device *phydev = ptp_priv->phydev; 5028 int ret; 5029 5030 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5031 upper_16_bits(sec)); 5032 if (ret) 5033 return ret; 5034 5035 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5036 lower_16_bits(sec)); 5037 if (ret) 5038 return ret; 5039 5040 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5041 upper_16_bits(nsec)); 5042 if (ret) 5043 return ret; 5044 5045 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5046 lower_16_bits(nsec)); 5047 } 5048 5049 #define LAN8841_BUFFER_TIME 2 5050 5051 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5052 const struct timespec64 *ts) 5053 { 5054 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5055 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5056 } 5057 5058 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5059 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5060 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5061 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5062 5063 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5064 s64 sec, u32 nsec) 5065 { 5066 struct phy_device *phydev = ptp_priv->phydev; 5067 int ret; 5068 5069 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5070 upper_16_bits(sec)); 5071 if (ret) 5072 return ret; 5073 5074 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5075 lower_16_bits(sec)); 5076 if (ret) 5077 return ret; 5078 5079 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5080 upper_16_bits(nsec)); 5081 if (ret) 5082 return ret; 5083 5084 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5085 lower_16_bits(nsec)); 5086 } 5087 5088 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5089 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5090 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5091 #define LAN8841_PTP_LTC_SET_NS_HI 265 5092 #define LAN8841_PTP_LTC_SET_NS_LO 266 5093 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5094 5095 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5096 const struct timespec64 *ts) 5097 { 5098 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5099 ptp_clock_info); 5100 struct phy_device *phydev = ptp_priv->phydev; 5101 unsigned long flags; 5102 int ret; 5103 5104 /* Set the value to be stored */ 5105 mutex_lock(&ptp_priv->ptp_lock); 5106 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5107 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5108 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5109 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5110 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5111 5112 /* Set the command to load the LTC */ 5113 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5114 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5115 ret = lan8841_ptp_update_target(ptp_priv, ts); 5116 mutex_unlock(&ptp_priv->ptp_lock); 5117 5118 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5119 ptp_priv->seconds = ts->tv_sec; 5120 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5121 5122 return ret; 5123 } 5124 5125 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5126 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5127 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5128 #define LAN8841_PTP_LTC_RD_NS_HI 361 5129 #define LAN8841_PTP_LTC_RD_NS_LO 362 5130 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5131 5132 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5133 struct timespec64 *ts) 5134 { 5135 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5136 ptp_clock_info); 5137 struct phy_device *phydev = ptp_priv->phydev; 5138 time64_t s; 5139 s64 ns; 5140 5141 mutex_lock(&ptp_priv->ptp_lock); 5142 /* Issue the command to read the LTC */ 5143 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5144 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5145 5146 /* Read the LTC */ 5147 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5148 s <<= 16; 5149 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5150 s <<= 16; 5151 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5152 5153 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5154 ns <<= 16; 5155 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5156 mutex_unlock(&ptp_priv->ptp_lock); 5157 5158 set_normalized_timespec64(ts, s, ns); 5159 return 0; 5160 } 5161 5162 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5163 struct timespec64 *ts) 5164 { 5165 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5166 ptp_clock_info); 5167 struct phy_device *phydev = ptp_priv->phydev; 5168 time64_t s; 5169 5170 mutex_lock(&ptp_priv->ptp_lock); 5171 /* Issue the command to read the LTC */ 5172 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5173 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5174 5175 /* Read the LTC */ 5176 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5177 s <<= 16; 5178 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5179 s <<= 16; 5180 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5181 mutex_unlock(&ptp_priv->ptp_lock); 5182 5183 set_normalized_timespec64(ts, s, 0); 5184 } 5185 5186 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5187 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5188 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5189 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5190 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5191 5192 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5193 { 5194 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5195 ptp_clock_info); 5196 struct phy_device *phydev = ptp_priv->phydev; 5197 struct timespec64 ts; 5198 bool add = true; 5199 u32 nsec; 5200 s32 sec; 5201 int ret; 5202 5203 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5204 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5205 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5206 * increment so the value can be bigger than 15 sec. Therefore limit the 5207 * possible adjustments so we will not have these corner cases 5208 */ 5209 if (delta > 10000000000LL || delta < -10000000000LL) { 5210 /* The timeadjustment is too big, so fall back using set time */ 5211 u64 now; 5212 5213 ptp->gettime64(ptp, &ts); 5214 5215 now = ktime_to_ns(timespec64_to_ktime(ts)); 5216 ts = ns_to_timespec64(now + delta); 5217 5218 ptp->settime64(ptp, &ts); 5219 return 0; 5220 } 5221 5222 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5223 if (delta < 0 && nsec != 0) { 5224 /* It is not allowed to adjust low the nsec part, therefore 5225 * subtract more from second part and add to nanosecond such 5226 * that would roll over, so the second part will increase 5227 */ 5228 sec--; 5229 nsec = NSEC_PER_SEC - nsec; 5230 } 5231 5232 /* Calculate the adjustments and the direction */ 5233 if (delta < 0) 5234 add = false; 5235 5236 if (nsec > 0) 5237 /* add 8 ns to cover the likely normal increment */ 5238 nsec += 8; 5239 5240 if (nsec >= NSEC_PER_SEC) { 5241 /* carry into seconds */ 5242 sec++; 5243 nsec -= NSEC_PER_SEC; 5244 } 5245 5246 mutex_lock(&ptp_priv->ptp_lock); 5247 if (sec) { 5248 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5249 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5250 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5251 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5252 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5253 } 5254 5255 if (nsec) { 5256 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5257 nsec & 0xffff); 5258 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5259 (nsec >> 16) & 0x3fff); 5260 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5261 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5262 } 5263 mutex_unlock(&ptp_priv->ptp_lock); 5264 5265 /* Update the target clock */ 5266 ptp->gettime64(ptp, &ts); 5267 mutex_lock(&ptp_priv->ptp_lock); 5268 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5269 mutex_unlock(&ptp_priv->ptp_lock); 5270 5271 return ret; 5272 } 5273 5274 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5275 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5276 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5277 5278 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5279 { 5280 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5281 ptp_clock_info); 5282 struct phy_device *phydev = ptp_priv->phydev; 5283 bool faster = true; 5284 u32 rate; 5285 5286 if (!scaled_ppm) 5287 return 0; 5288 5289 if (scaled_ppm < 0) { 5290 scaled_ppm = -scaled_ppm; 5291 faster = false; 5292 } 5293 5294 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5295 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5296 5297 mutex_lock(&ptp_priv->ptp_lock); 5298 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5299 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5300 : upper_16_bits(rate) & 0x3fff); 5301 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5302 mutex_unlock(&ptp_priv->ptp_lock); 5303 5304 return 0; 5305 } 5306 5307 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5308 enum ptp_pin_function func, unsigned int chan) 5309 { 5310 switch (func) { 5311 case PTP_PF_NONE: 5312 case PTP_PF_PEROUT: 5313 case PTP_PF_EXTTS: 5314 break; 5315 default: 5316 return -1; 5317 } 5318 5319 return 0; 5320 } 5321 5322 #define LAN8841_PTP_GPIO_NUM 10 5323 #define LAN8841_GPIO_EN 128 5324 #define LAN8841_GPIO_DIR 129 5325 #define LAN8841_GPIO_BUF 130 5326 5327 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5328 { 5329 struct phy_device *phydev = ptp_priv->phydev; 5330 int ret; 5331 5332 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5333 if (ret) 5334 return ret; 5335 5336 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5337 if (ret) 5338 return ret; 5339 5340 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5341 } 5342 5343 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5344 { 5345 struct phy_device *phydev = ptp_priv->phydev; 5346 int ret; 5347 5348 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5349 if (ret) 5350 return ret; 5351 5352 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5353 if (ret) 5354 return ret; 5355 5356 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5357 } 5358 5359 #define LAN8841_GPIO_DATA_SEL1 131 5360 #define LAN8841_GPIO_DATA_SEL2 132 5361 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5362 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5363 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5364 #define LAN8841_PTP_GENERAL_CONFIG 257 5365 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5366 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5367 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5368 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5369 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5370 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5371 5372 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5373 u8 event) 5374 { 5375 struct phy_device *phydev = ptp_priv->phydev; 5376 u16 tmp; 5377 int ret; 5378 5379 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5380 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5381 * depending on the pin, it requires to read a different register 5382 */ 5383 if (pin < 5) { 5384 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5385 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5386 } else { 5387 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5388 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5389 } 5390 if (ret) 5391 return ret; 5392 5393 /* Disable the event */ 5394 if (event == LAN8841_EVENT_A) 5395 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5396 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5397 else 5398 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5399 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5400 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5401 } 5402 5403 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5404 u8 event, int pulse_width) 5405 { 5406 struct phy_device *phydev = ptp_priv->phydev; 5407 u16 tmp; 5408 int ret; 5409 5410 /* Enable the event */ 5411 if (event == LAN8841_EVENT_A) 5412 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5413 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5414 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5415 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5416 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5417 else 5418 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5419 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5420 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5421 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5422 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5423 if (ret) 5424 return ret; 5425 5426 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5427 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5428 * depending on the pin, it requires to read a different register 5429 */ 5430 if (event == LAN8841_EVENT_A) 5431 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5432 else 5433 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5434 5435 if (pin < 5) 5436 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5437 tmp << (3 * pin)); 5438 else 5439 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5440 tmp << (3 * (pin - 5))); 5441 5442 return ret; 5443 } 5444 5445 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5446 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5447 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5448 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5449 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5450 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5451 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5452 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5453 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5454 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5455 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5456 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5457 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5458 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5459 5460 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5461 struct ptp_clock_request *rq, int on) 5462 { 5463 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5464 ptp_clock_info); 5465 struct phy_device *phydev = ptp_priv->phydev; 5466 struct timespec64 ts_on, ts_period; 5467 s64 on_nsec, period_nsec; 5468 int pulse_width; 5469 int pin; 5470 int ret; 5471 5472 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5473 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5474 return -EINVAL; 5475 5476 if (!on) { 5477 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5478 if (ret) 5479 return ret; 5480 5481 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5482 } 5483 5484 ts_on.tv_sec = rq->perout.on.sec; 5485 ts_on.tv_nsec = rq->perout.on.nsec; 5486 on_nsec = timespec64_to_ns(&ts_on); 5487 5488 ts_period.tv_sec = rq->perout.period.sec; 5489 ts_period.tv_nsec = rq->perout.period.nsec; 5490 period_nsec = timespec64_to_ns(&ts_period); 5491 5492 if (period_nsec < 200) { 5493 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5494 phydev_name(phydev)); 5495 return -EOPNOTSUPP; 5496 } 5497 5498 if (on_nsec >= period_nsec) { 5499 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5500 phydev_name(phydev)); 5501 return -EINVAL; 5502 } 5503 5504 switch (on_nsec) { 5505 case 200000000: 5506 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5507 break; 5508 case 100000000: 5509 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5510 break; 5511 case 50000000: 5512 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5513 break; 5514 case 10000000: 5515 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5516 break; 5517 case 5000000: 5518 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5519 break; 5520 case 1000000: 5521 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5522 break; 5523 case 500000: 5524 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5525 break; 5526 case 100000: 5527 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5528 break; 5529 case 50000: 5530 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5531 break; 5532 case 10000: 5533 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5534 break; 5535 case 5000: 5536 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5537 break; 5538 case 1000: 5539 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5540 break; 5541 case 500: 5542 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5543 break; 5544 case 100: 5545 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5546 break; 5547 default: 5548 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5549 phydev_name(phydev)); 5550 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5551 break; 5552 } 5553 5554 mutex_lock(&ptp_priv->ptp_lock); 5555 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5556 rq->perout.start.nsec); 5557 mutex_unlock(&ptp_priv->ptp_lock); 5558 if (ret) 5559 return ret; 5560 5561 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5562 rq->perout.period.nsec); 5563 if (ret) 5564 return ret; 5565 5566 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5567 pulse_width); 5568 if (ret) 5569 return ret; 5570 5571 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5572 if (ret) 5573 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5574 5575 return ret; 5576 } 5577 5578 #define LAN8841_PTP_GPIO_CAP_EN 496 5579 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5580 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5581 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5582 5583 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5584 u32 flags) 5585 { 5586 struct phy_device *phydev = ptp_priv->phydev; 5587 u16 tmp = 0; 5588 int ret; 5589 5590 /* Set GPIO to be intput */ 5591 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5592 if (ret) 5593 return ret; 5594 5595 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5596 if (ret) 5597 return ret; 5598 5599 /* Enable capture on the edges of the pin */ 5600 if (flags & PTP_RISING_EDGE) 5601 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5602 if (flags & PTP_FALLING_EDGE) 5603 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5604 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5605 if (ret) 5606 return ret; 5607 5608 /* Enable interrupt */ 5609 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5610 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5611 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5612 } 5613 5614 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5615 { 5616 struct phy_device *phydev = ptp_priv->phydev; 5617 int ret; 5618 5619 /* Set GPIO to be output */ 5620 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5621 if (ret) 5622 return ret; 5623 5624 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5625 if (ret) 5626 return ret; 5627 5628 /* Disable capture on both of the edges */ 5629 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5630 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5631 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5632 0); 5633 if (ret) 5634 return ret; 5635 5636 /* Disable interrupt */ 5637 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5638 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5639 0); 5640 } 5641 5642 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5643 struct ptp_clock_request *rq, int on) 5644 { 5645 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5646 ptp_clock_info); 5647 int pin; 5648 int ret; 5649 5650 /* Reject requests with unsupported flags */ 5651 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5652 PTP_EXTTS_EDGES | 5653 PTP_STRICT_FLAGS)) 5654 return -EOPNOTSUPP; 5655 5656 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5657 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5658 return -EINVAL; 5659 5660 mutex_lock(&ptp_priv->ptp_lock); 5661 if (on) 5662 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5663 else 5664 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5665 mutex_unlock(&ptp_priv->ptp_lock); 5666 5667 return ret; 5668 } 5669 5670 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5671 struct ptp_clock_request *rq, int on) 5672 { 5673 switch (rq->type) { 5674 case PTP_CLK_REQ_EXTTS: 5675 return lan8841_ptp_extts(ptp, rq, on); 5676 case PTP_CLK_REQ_PEROUT: 5677 return lan8841_ptp_perout(ptp, rq, on); 5678 default: 5679 return -EOPNOTSUPP; 5680 } 5681 5682 return 0; 5683 } 5684 5685 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5686 { 5687 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5688 ptp_clock_info); 5689 struct timespec64 ts; 5690 unsigned long flags; 5691 5692 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5693 5694 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5695 ptp_priv->seconds = ts.tv_sec; 5696 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5697 5698 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5699 } 5700 5701 static struct ptp_clock_info lan8841_ptp_clock_info = { 5702 .owner = THIS_MODULE, 5703 .name = "lan8841 ptp", 5704 .max_adj = 31249999, 5705 .gettime64 = lan8841_ptp_gettime64, 5706 .settime64 = lan8841_ptp_settime64, 5707 .adjtime = lan8841_ptp_adjtime, 5708 .adjfine = lan8841_ptp_adjfine, 5709 .verify = lan8841_ptp_verify, 5710 .enable = lan8841_ptp_enable, 5711 .do_aux_work = lan8841_ptp_do_aux_work, 5712 .n_per_out = LAN8841_PTP_GPIO_NUM, 5713 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5714 .n_pins = LAN8841_PTP_GPIO_NUM, 5715 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5716 }; 5717 5718 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5719 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5720 5721 static int lan8841_probe(struct phy_device *phydev) 5722 { 5723 struct kszphy_ptp_priv *ptp_priv; 5724 struct kszphy_priv *priv; 5725 int err; 5726 5727 err = kszphy_probe(phydev); 5728 if (err) 5729 return err; 5730 5731 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5732 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5733 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5734 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5735 5736 /* Register the clock */ 5737 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5738 return 0; 5739 5740 priv = phydev->priv; 5741 ptp_priv = &priv->ptp_priv; 5742 5743 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5744 LAN8841_PTP_GPIO_NUM, 5745 sizeof(*ptp_priv->pin_config), 5746 GFP_KERNEL); 5747 if (!ptp_priv->pin_config) 5748 return -ENOMEM; 5749 5750 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5751 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5752 5753 snprintf(p->name, sizeof(p->name), "pin%d", i); 5754 p->index = i; 5755 p->func = PTP_PF_NONE; 5756 } 5757 5758 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5759 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5760 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5761 &phydev->mdio.dev); 5762 if (IS_ERR(ptp_priv->ptp_clock)) { 5763 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5764 ptp_priv->ptp_clock); 5765 return -EINVAL; 5766 } 5767 5768 if (!ptp_priv->ptp_clock) 5769 return 0; 5770 5771 /* Initialize the SW */ 5772 skb_queue_head_init(&ptp_priv->tx_queue); 5773 ptp_priv->phydev = phydev; 5774 mutex_init(&ptp_priv->ptp_lock); 5775 spin_lock_init(&ptp_priv->seconds_lock); 5776 5777 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5778 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5779 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5780 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5781 5782 phydev->mii_ts = &ptp_priv->mii_ts; 5783 5784 /* Timestamp selected by default to keep legacy API */ 5785 phydev->default_timestamp = true; 5786 5787 return 0; 5788 } 5789 5790 static int lan8804_resume(struct phy_device *phydev) 5791 { 5792 return kszphy_resume(phydev); 5793 } 5794 5795 static int lan8804_suspend(struct phy_device *phydev) 5796 { 5797 return kszphy_generic_suspend(phydev); 5798 } 5799 5800 static int lan8841_resume(struct phy_device *phydev) 5801 { 5802 return kszphy_generic_resume(phydev); 5803 } 5804 5805 static int lan8841_suspend(struct phy_device *phydev) 5806 { 5807 struct kszphy_priv *priv = phydev->priv; 5808 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5809 5810 if (ptp_priv->ptp_clock) 5811 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5812 5813 return kszphy_generic_suspend(phydev); 5814 } 5815 5816 static int ksz9131_resume(struct phy_device *phydev) 5817 { 5818 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5819 ksz9131_config_rgmii_delay(phydev); 5820 5821 return kszphy_resume(phydev); 5822 } 5823 5824 #define LAN8842_PTP_GPIO_NUM 16 5825 5826 static int lan8842_ptp_probe_once(struct phy_device *phydev) 5827 { 5828 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5829 LAN8842_PTP_GPIO_NUM); 5830 } 5831 5832 #define LAN8842_STRAP_REG 0 /* 0x0 */ 5833 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5834 #define LAN8842_SKU_REG 11 /* 0x0b */ 5835 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5836 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5837 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5838 5839 static int lan8842_probe(struct phy_device *phydev) 5840 { 5841 struct lan8842_priv *priv; 5842 int addr; 5843 int ret; 5844 5845 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5846 if (!priv) 5847 return -ENOMEM; 5848 5849 phydev->priv = priv; 5850 5851 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 5852 * to enable to pass any traffic through it. Therefore use the same 5853 * function as lan8814 5854 */ 5855 ret = lan8814_release_coma_mode(phydev); 5856 if (ret) 5857 return ret; 5858 5859 /* Enable to count the RX and TX packets */ 5860 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5861 LAN8842_SELF_TEST, 5862 LAN8842_SELF_TEST_RX_CNT_ENA | 5863 LAN8842_SELF_TEST_TX_CNT_ENA); 5864 if (ret < 0) 5865 return ret; 5866 5867 /* Revision lan8832 doesn't have support for PTP, therefore don't add 5868 * any PTP clocks 5869 */ 5870 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5871 LAN8842_SKU_REG); 5872 if (ret < 0) 5873 return ret; 5874 5875 priv->rev = ret; 5876 if (priv->rev == LAN8842_REV_8832) 5877 return 0; 5878 5879 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 5880 * only difference is the number of the GPIOs, then make sure that the 5881 * lan8842 initialized also the shared data pointer as this is used in 5882 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 5883 * PHYs in the same package. 5884 */ 5885 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5886 LAN8842_STRAP_REG); 5887 if (addr < 0) 5888 return addr; 5889 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 5890 5891 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 5892 sizeof(struct lan8814_shared_priv)); 5893 if (ret) 5894 return ret; 5895 5896 if (phy_package_init_once(phydev)) { 5897 ret = lan8842_ptp_probe_once(phydev); 5898 if (ret) 5899 return ret; 5900 } 5901 5902 lan8814_ptp_init(phydev); 5903 5904 return 0; 5905 } 5906 5907 #define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI 0x13 5908 #define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX 0x14 5909 #define LAN8814_POWER_MGMT_MODE_5_10BT_MDI 0x15 5910 #define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX 0x16 5911 #define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN 0x17 5912 #define LAN8814_POWER_MGMT_MODE_8_100BT_MDI 0x18 5913 #define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX 0x19 5914 #define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX 0x1a 5915 #define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX 0x1b 5916 #define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX 0x1c 5917 #define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX 0x1d 5918 #define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX 0x1e 5919 5920 #define LAN8814_POWER_MGMT_DLLPD_D BIT(0) 5921 #define LAN8814_POWER_MGMT_ADCPD_D BIT(1) 5922 #define LAN8814_POWER_MGMT_PGAPD_D BIT(2) 5923 #define LAN8814_POWER_MGMT_TXPD_D BIT(3) 5924 #define LAN8814_POWER_MGMT_DLLPD_C BIT(4) 5925 #define LAN8814_POWER_MGMT_ADCPD_C BIT(5) 5926 #define LAN8814_POWER_MGMT_PGAPD_C BIT(6) 5927 #define LAN8814_POWER_MGMT_TXPD_C BIT(7) 5928 #define LAN8814_POWER_MGMT_DLLPD_B BIT(8) 5929 #define LAN8814_POWER_MGMT_ADCPD_B BIT(9) 5930 #define LAN8814_POWER_MGMT_PGAPD_B BIT(10) 5931 #define LAN8814_POWER_MGMT_TXPD_B BIT(11) 5932 #define LAN8814_POWER_MGMT_DLLPD_A BIT(12) 5933 #define LAN8814_POWER_MGMT_ADCPD_A BIT(13) 5934 #define LAN8814_POWER_MGMT_PGAPD_A BIT(14) 5935 #define LAN8814_POWER_MGMT_TXPD_A BIT(15) 5936 5937 #define LAN8814_POWER_MGMT_C_D (LAN8814_POWER_MGMT_DLLPD_D | \ 5938 LAN8814_POWER_MGMT_ADCPD_D | \ 5939 LAN8814_POWER_MGMT_PGAPD_D | \ 5940 LAN8814_POWER_MGMT_DLLPD_C | \ 5941 LAN8814_POWER_MGMT_ADCPD_C | \ 5942 LAN8814_POWER_MGMT_PGAPD_C) 5943 5944 #define LAN8814_POWER_MGMT_B_C_D (LAN8814_POWER_MGMT_C_D | \ 5945 LAN8814_POWER_MGMT_DLLPD_B | \ 5946 LAN8814_POWER_MGMT_ADCPD_B | \ 5947 LAN8814_POWER_MGMT_PGAPD_B) 5948 5949 #define LAN8814_POWER_MGMT_VAL1 (LAN8814_POWER_MGMT_C_D | \ 5950 LAN8814_POWER_MGMT_ADCPD_B | \ 5951 LAN8814_POWER_MGMT_PGAPD_B | \ 5952 LAN8814_POWER_MGMT_ADCPD_A | \ 5953 LAN8814_POWER_MGMT_PGAPD_A) 5954 5955 #define LAN8814_POWER_MGMT_VAL2 LAN8814_POWER_MGMT_C_D 5956 5957 #define LAN8814_POWER_MGMT_VAL3 (LAN8814_POWER_MGMT_C_D | \ 5958 LAN8814_POWER_MGMT_DLLPD_B | \ 5959 LAN8814_POWER_MGMT_ADCPD_B | \ 5960 LAN8814_POWER_MGMT_PGAPD_A) 5961 5962 #define LAN8814_POWER_MGMT_VAL4 (LAN8814_POWER_MGMT_B_C_D | \ 5963 LAN8814_POWER_MGMT_ADCPD_A | \ 5964 LAN8814_POWER_MGMT_PGAPD_A) 5965 5966 #define LAN8814_POWER_MGMT_VAL5 LAN8814_POWER_MGMT_B_C_D 5967 5968 #define LAN8814_EEE_WAKE_TX_TIMER 0x0e 5969 #define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL 0x1f 5970 5971 static const struct lanphy_reg_data short_center_tap_errata[] = { 5972 { LAN8814_PAGE_POWER_REGS, 5973 LAN8814_POWER_MGMT_MODE_3_ANEG_MDI, 5974 LAN8814_POWER_MGMT_VAL1 }, 5975 { LAN8814_PAGE_POWER_REGS, 5976 LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX, 5977 LAN8814_POWER_MGMT_VAL1 }, 5978 { LAN8814_PAGE_POWER_REGS, 5979 LAN8814_POWER_MGMT_MODE_5_10BT_MDI, 5980 LAN8814_POWER_MGMT_VAL1 }, 5981 { LAN8814_PAGE_POWER_REGS, 5982 LAN8814_POWER_MGMT_MODE_6_10BT_MDIX, 5983 LAN8814_POWER_MGMT_VAL1 }, 5984 { LAN8814_PAGE_POWER_REGS, 5985 LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN, 5986 LAN8814_POWER_MGMT_VAL2 }, 5987 { LAN8814_PAGE_POWER_REGS, 5988 LAN8814_POWER_MGMT_MODE_8_100BT_MDI, 5989 LAN8814_POWER_MGMT_VAL3 }, 5990 { LAN8814_PAGE_POWER_REGS, 5991 LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX, 5992 LAN8814_POWER_MGMT_VAL3 }, 5993 { LAN8814_PAGE_POWER_REGS, 5994 LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX, 5995 LAN8814_POWER_MGMT_VAL4 }, 5996 { LAN8814_PAGE_POWER_REGS, 5997 LAN8814_POWER_MGMT_MODE_11_100BT_MDIX, 5998 LAN8814_POWER_MGMT_VAL5 }, 5999 { LAN8814_PAGE_POWER_REGS, 6000 LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX, 6001 LAN8814_POWER_MGMT_VAL5 }, 6002 { LAN8814_PAGE_POWER_REGS, 6003 LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX, 6004 LAN8814_POWER_MGMT_VAL4 }, 6005 { LAN8814_PAGE_POWER_REGS, 6006 LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX, 6007 LAN8814_POWER_MGMT_VAL4 }, 6008 }; 6009 6010 static const struct lanphy_reg_data waketx_timer_errata[] = { 6011 { LAN8814_PAGE_EEE, 6012 LAN8814_EEE_WAKE_TX_TIMER, 6013 LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL }, 6014 }; 6015 6016 static int lanphy_write_reg_data(struct phy_device *phydev, 6017 const struct lanphy_reg_data *data, 6018 size_t num) 6019 { 6020 int ret = 0; 6021 6022 while (num--) { 6023 ret = lanphy_write_page_reg(phydev, data->page, data->addr, 6024 data->val); 6025 if (ret) 6026 break; 6027 } 6028 6029 return ret; 6030 } 6031 6032 static int lan8842_erratas(struct phy_device *phydev) 6033 { 6034 int ret; 6035 6036 ret = lanphy_write_reg_data(phydev, short_center_tap_errata, 6037 ARRAY_SIZE(short_center_tap_errata)); 6038 if (ret) 6039 return ret; 6040 6041 return lanphy_write_reg_data(phydev, waketx_timer_errata, 6042 ARRAY_SIZE(waketx_timer_errata)); 6043 } 6044 6045 static int lan8842_config_init(struct phy_device *phydev) 6046 { 6047 int ret; 6048 6049 /* Reset the PHY */ 6050 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6051 LAN8814_QSGMII_SOFT_RESET, 6052 LAN8814_QSGMII_SOFT_RESET_BIT, 6053 LAN8814_QSGMII_SOFT_RESET_BIT); 6054 if (ret < 0) 6055 return ret; 6056 6057 /* Apply the erratas for this device */ 6058 ret = lan8842_erratas(phydev); 6059 if (ret < 0) 6060 return ret; 6061 6062 /* Even if the GPIOs are set to control the LEDs the behaviour of the 6063 * LEDs is wrong, they are not blinking when there is traffic. 6064 * To fix this it is required to set extended LED mode 6065 */ 6066 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6067 LAN8814_LED_CTRL_1, 6068 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 6069 if (ret < 0) 6070 return ret; 6071 6072 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6073 LAN8814_LED_CTRL_2, 6074 LAN8814_LED_CTRL_2_LED1_COM_DIS, 6075 LAN8814_LED_CTRL_2_LED1_COM_DIS); 6076 if (ret < 0) 6077 return ret; 6078 6079 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 6080 * a function mode and not the GPIO. Apparently by default the value is 6081 * GPIO and not function even though the datasheet it says that it is 6082 * function. Therefore set this value. 6083 */ 6084 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6085 LAN8814_GPIO_EN2, 0); 6086 } 6087 6088 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 6089 6090 static int lan8842_config_intr(struct phy_device *phydev) 6091 { 6092 int err; 6093 6094 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6095 LAN8842_INTR_CTRL_REG, 6096 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 6097 6098 /* enable / disable interrupts */ 6099 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 6100 err = lan8814_ack_interrupt(phydev); 6101 if (err) 6102 return err; 6103 6104 err = phy_write(phydev, LAN8814_INTC, 6105 LAN8814_INT_LINK | LAN8814_INT_FLF); 6106 } else { 6107 err = phy_write(phydev, LAN8814_INTC, 0); 6108 if (err) 6109 return err; 6110 6111 err = lan8814_ack_interrupt(phydev); 6112 } 6113 6114 return err; 6115 } 6116 6117 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 6118 phy_interface_t interface) 6119 { 6120 /* Inband configuration can be enabled or disabled using the registers 6121 * PCS1G_ANEG_CONFIG. 6122 */ 6123 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 6124 } 6125 6126 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 6127 { 6128 bool enable; 6129 6130 if (modes == LINK_INBAND_DISABLE) 6131 enable = false; 6132 else 6133 enable = true; 6134 6135 /* Disable or enable in-band autoneg with PCS Host side 6136 * It has the same address as lan8814 6137 */ 6138 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6139 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6140 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6141 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6142 } 6143 6144 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6145 { 6146 struct kszphy_ptp_priv *ptp_priv; 6147 struct lan8842_priv *priv; 6148 6149 priv = phydev->priv; 6150 ptp_priv = &priv->ptp_priv; 6151 6152 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6153 lan8814_get_tx_ts(ptp_priv); 6154 6155 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6156 lan8814_get_rx_ts(ptp_priv); 6157 6158 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6159 lan8814_flush_fifo(phydev, true); 6160 skb_queue_purge(&ptp_priv->tx_queue); 6161 } 6162 6163 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6164 lan8814_flush_fifo(phydev, false); 6165 skb_queue_purge(&ptp_priv->rx_queue); 6166 } 6167 } 6168 6169 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6170 { 6171 struct lan8842_priv *priv = phydev->priv; 6172 int ret = IRQ_NONE; 6173 int irq_status; 6174 6175 irq_status = phy_read(phydev, LAN8814_INTS); 6176 if (irq_status < 0) { 6177 phy_error(phydev); 6178 return IRQ_NONE; 6179 } 6180 6181 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6182 phy_trigger_machine(phydev); 6183 ret = IRQ_HANDLED; 6184 } 6185 6186 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6187 * not need to check the PTP and GPIO interrupts 6188 */ 6189 if (priv->rev == LAN8842_REV_8832) 6190 goto out; 6191 6192 while (true) { 6193 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6194 PTP_TSU_INT_STS); 6195 if (!irq_status) 6196 break; 6197 6198 lan8842_handle_ptp_interrupt(phydev, irq_status); 6199 ret = IRQ_HANDLED; 6200 } 6201 6202 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6203 ret = IRQ_HANDLED; 6204 6205 out: 6206 return ret; 6207 } 6208 6209 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6210 { 6211 u64 ret = 0; 6212 int val; 6213 6214 for (int j = 0; j < count; ++j) { 6215 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6216 regs[j]); 6217 if (val < 0) 6218 return U64_MAX; 6219 6220 ret <<= 16; 6221 ret += val; 6222 } 6223 return ret; 6224 } 6225 6226 static int lan8842_update_stats(struct phy_device *phydev) 6227 { 6228 struct lan8842_priv *priv = phydev->priv; 6229 int rx_packets_regs[] = {88, 61, 60}; 6230 int rx_errors_regs[] = {63, 62}; 6231 int tx_packets_regs[] = {89, 85, 84}; 6232 int tx_errors_regs[] = {87, 86}; 6233 6234 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6235 ARRAY_SIZE(rx_packets_regs), 6236 rx_packets_regs); 6237 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6238 ARRAY_SIZE(rx_errors_regs), 6239 rx_errors_regs); 6240 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6241 ARRAY_SIZE(tx_packets_regs), 6242 tx_packets_regs); 6243 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6244 ARRAY_SIZE(tx_errors_regs), 6245 tx_errors_regs); 6246 6247 return 0; 6248 } 6249 6250 #define LAN8842_FLF 15 /* 0x0e */ 6251 #define LAN8842_FLF_ENA BIT(1) 6252 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6253 6254 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6255 { 6256 int ret; 6257 6258 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6259 if (ret < 0) 6260 return ret; 6261 6262 if (ret & LAN8842_FLF_ENA) 6263 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6264 else 6265 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6266 6267 return 0; 6268 } 6269 6270 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6271 { 6272 u16 flf; 6273 6274 switch (*msecs) { 6275 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6276 flf = 0; 6277 break; 6278 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6279 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6280 break; 6281 default: 6282 return -EINVAL; 6283 } 6284 6285 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6286 LAN8842_FLF, 6287 LAN8842_FLF_ENA | 6288 LAN8842_FLF_ENA_LINK_DOWN, flf); 6289 } 6290 6291 static int lan8842_get_tunable(struct phy_device *phydev, 6292 struct ethtool_tunable *tuna, void *data) 6293 { 6294 switch (tuna->id) { 6295 case ETHTOOL_PHY_FAST_LINK_DOWN: 6296 return lan8842_get_fast_down(phydev, data); 6297 default: 6298 return -EOPNOTSUPP; 6299 } 6300 } 6301 6302 static int lan8842_set_tunable(struct phy_device *phydev, 6303 struct ethtool_tunable *tuna, const void *data) 6304 { 6305 switch (tuna->id) { 6306 case ETHTOOL_PHY_FAST_LINK_DOWN: 6307 return lan8842_set_fast_down(phydev, data); 6308 default: 6309 return -EOPNOTSUPP; 6310 } 6311 } 6312 6313 static void lan8842_get_phy_stats(struct phy_device *phydev, 6314 struct ethtool_eth_phy_stats *eth_stats, 6315 struct ethtool_phy_stats *stats) 6316 { 6317 struct lan8842_priv *priv = phydev->priv; 6318 6319 stats->rx_packets = priv->phy_stats.rx_packets; 6320 stats->rx_errors = priv->phy_stats.rx_errors; 6321 stats->tx_packets = priv->phy_stats.tx_packets; 6322 stats->tx_errors = priv->phy_stats.tx_errors; 6323 } 6324 6325 static struct phy_driver ksphy_driver[] = { 6326 { 6327 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6328 .name = "Micrel KS8737", 6329 /* PHY_BASIC_FEATURES */ 6330 .driver_data = &ks8737_type, 6331 .probe = kszphy_probe, 6332 .config_init = kszphy_config_init, 6333 .config_intr = kszphy_config_intr, 6334 .handle_interrupt = kszphy_handle_interrupt, 6335 .suspend = kszphy_suspend, 6336 .resume = kszphy_resume, 6337 }, { 6338 .phy_id = PHY_ID_KSZ8021, 6339 .phy_id_mask = 0x00ffffff, 6340 .name = "Micrel KSZ8021 or KSZ8031", 6341 /* PHY_BASIC_FEATURES */ 6342 .driver_data = &ksz8021_type, 6343 .probe = kszphy_probe, 6344 .config_init = kszphy_config_init, 6345 .config_intr = kszphy_config_intr, 6346 .handle_interrupt = kszphy_handle_interrupt, 6347 .get_sset_count = kszphy_get_sset_count, 6348 .get_strings = kszphy_get_strings, 6349 .get_stats = kszphy_get_stats, 6350 .suspend = kszphy_suspend, 6351 .resume = kszphy_resume, 6352 }, { 6353 .phy_id = PHY_ID_KSZ8031, 6354 .phy_id_mask = 0x00ffffff, 6355 .name = "Micrel KSZ8031", 6356 /* PHY_BASIC_FEATURES */ 6357 .driver_data = &ksz8021_type, 6358 .probe = kszphy_probe, 6359 .config_init = kszphy_config_init, 6360 .config_intr = kszphy_config_intr, 6361 .handle_interrupt = kszphy_handle_interrupt, 6362 .get_sset_count = kszphy_get_sset_count, 6363 .get_strings = kszphy_get_strings, 6364 .get_stats = kszphy_get_stats, 6365 .suspend = kszphy_suspend, 6366 .resume = kszphy_resume, 6367 }, { 6368 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6369 .name = "Micrel KSZ8041", 6370 /* PHY_BASIC_FEATURES */ 6371 .driver_data = &ksz8041_type, 6372 .probe = kszphy_probe, 6373 .config_init = ksz8041_config_init, 6374 .config_aneg = ksz8041_config_aneg, 6375 .config_intr = kszphy_config_intr, 6376 .handle_interrupt = kszphy_handle_interrupt, 6377 .get_sset_count = kszphy_get_sset_count, 6378 .get_strings = kszphy_get_strings, 6379 .get_stats = kszphy_get_stats, 6380 .suspend = ksz8041_suspend, 6381 .resume = ksz8041_resume, 6382 }, { 6383 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6384 .name = "Micrel KSZ8041RNLI", 6385 /* PHY_BASIC_FEATURES */ 6386 .driver_data = &ksz8041_type, 6387 .probe = kszphy_probe, 6388 .config_init = kszphy_config_init, 6389 .config_intr = kszphy_config_intr, 6390 .handle_interrupt = kszphy_handle_interrupt, 6391 .get_sset_count = kszphy_get_sset_count, 6392 .get_strings = kszphy_get_strings, 6393 .get_stats = kszphy_get_stats, 6394 .suspend = kszphy_suspend, 6395 .resume = kszphy_resume, 6396 }, { 6397 .name = "Micrel KSZ8051", 6398 /* PHY_BASIC_FEATURES */ 6399 .driver_data = &ksz8051_type, 6400 .probe = kszphy_probe, 6401 .config_init = kszphy_config_init, 6402 .config_intr = kszphy_config_intr, 6403 .handle_interrupt = kszphy_handle_interrupt, 6404 .get_sset_count = kszphy_get_sset_count, 6405 .get_strings = kszphy_get_strings, 6406 .get_stats = kszphy_get_stats, 6407 .match_phy_device = ksz8051_match_phy_device, 6408 .suspend = kszphy_suspend, 6409 .resume = kszphy_resume, 6410 }, { 6411 .phy_id = PHY_ID_KSZ8001, 6412 .name = "Micrel KSZ8001 or KS8721", 6413 .phy_id_mask = 0x00fffffc, 6414 /* PHY_BASIC_FEATURES */ 6415 .driver_data = &ksz8041_type, 6416 .probe = kszphy_probe, 6417 .config_init = kszphy_config_init, 6418 .config_intr = kszphy_config_intr, 6419 .handle_interrupt = kszphy_handle_interrupt, 6420 .get_sset_count = kszphy_get_sset_count, 6421 .get_strings = kszphy_get_strings, 6422 .get_stats = kszphy_get_stats, 6423 .suspend = kszphy_suspend, 6424 .resume = kszphy_resume, 6425 }, { 6426 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6427 .name = "Micrel KSZ8081 or KSZ8091", 6428 .flags = PHY_POLL_CABLE_TEST, 6429 /* PHY_BASIC_FEATURES */ 6430 .driver_data = &ksz8081_type, 6431 .probe = kszphy_probe, 6432 .config_init = ksz8081_config_init, 6433 .soft_reset = genphy_soft_reset, 6434 .config_aneg = ksz8081_config_aneg, 6435 .read_status = ksz8081_read_status, 6436 .config_intr = kszphy_config_intr, 6437 .handle_interrupt = kszphy_handle_interrupt, 6438 .get_sset_count = kszphy_get_sset_count, 6439 .get_strings = kszphy_get_strings, 6440 .get_stats = kszphy_get_stats, 6441 .suspend = kszphy_suspend, 6442 .resume = kszphy_resume, 6443 .cable_test_start = ksz886x_cable_test_start, 6444 .cable_test_get_status = ksz886x_cable_test_get_status, 6445 }, { 6446 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6447 .name = "Micrel KSZ8061", 6448 /* PHY_BASIC_FEATURES */ 6449 .probe = kszphy_probe, 6450 .config_init = ksz8061_config_init, 6451 .soft_reset = genphy_soft_reset, 6452 .config_intr = kszphy_config_intr, 6453 .handle_interrupt = kszphy_handle_interrupt, 6454 .suspend = ksz8061_suspend, 6455 .resume = ksz8061_resume, 6456 }, { 6457 .phy_id = PHY_ID_KSZ9021, 6458 .phy_id_mask = 0x000ffffe, 6459 .name = "Micrel KSZ9021 Gigabit PHY", 6460 /* PHY_GBIT_FEATURES */ 6461 .driver_data = &ksz9021_type, 6462 .probe = kszphy_probe, 6463 .get_features = ksz9031_get_features, 6464 .config_init = ksz9021_config_init, 6465 .config_intr = kszphy_config_intr, 6466 .handle_interrupt = kszphy_handle_interrupt, 6467 .get_sset_count = kszphy_get_sset_count, 6468 .get_strings = kszphy_get_strings, 6469 .get_stats = kszphy_get_stats, 6470 .suspend = kszphy_suspend, 6471 .resume = kszphy_resume, 6472 .read_mmd = genphy_read_mmd_unsupported, 6473 .write_mmd = genphy_write_mmd_unsupported, 6474 }, { 6475 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6476 .name = "Micrel KSZ9031 Gigabit PHY", 6477 .flags = PHY_POLL_CABLE_TEST, 6478 .driver_data = &ksz9021_type, 6479 .probe = kszphy_probe, 6480 .get_features = ksz9031_get_features, 6481 .config_init = ksz9031_config_init, 6482 .soft_reset = genphy_soft_reset, 6483 .read_status = ksz9031_read_status, 6484 .config_intr = kszphy_config_intr, 6485 .handle_interrupt = kszphy_handle_interrupt, 6486 .get_sset_count = kszphy_get_sset_count, 6487 .get_strings = kszphy_get_strings, 6488 .get_stats = kszphy_get_stats, 6489 .suspend = kszphy_suspend, 6490 .resume = kszphy_resume, 6491 .cable_test_start = ksz9x31_cable_test_start, 6492 .cable_test_get_status = ksz9x31_cable_test_get_status, 6493 .set_loopback = ksz9031_set_loopback, 6494 }, { 6495 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6496 .name = "Microchip INDY Gigabit Quad PHY", 6497 .flags = PHY_POLL_CABLE_TEST, 6498 .config_init = lan8814_config_init, 6499 .driver_data = &lan8814_type, 6500 .probe = lan8814_probe, 6501 .soft_reset = genphy_soft_reset, 6502 .read_status = ksz9031_read_status, 6503 .get_sset_count = kszphy_get_sset_count, 6504 .get_strings = kszphy_get_strings, 6505 .get_stats = kszphy_get_stats, 6506 .suspend = genphy_suspend, 6507 .resume = kszphy_resume, 6508 .config_intr = lan8814_config_intr, 6509 .handle_interrupt = lan8814_handle_interrupt, 6510 .cable_test_start = lan8814_cable_test_start, 6511 .cable_test_get_status = ksz886x_cable_test_get_status, 6512 }, { 6513 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6514 .name = "Microchip LAN966X Gigabit PHY", 6515 .config_init = lan8804_config_init, 6516 .driver_data = &ksz9021_type, 6517 .probe = kszphy_probe, 6518 .soft_reset = genphy_soft_reset, 6519 .read_status = ksz9031_read_status, 6520 .get_sset_count = kszphy_get_sset_count, 6521 .get_strings = kszphy_get_strings, 6522 .get_stats = kszphy_get_stats, 6523 .suspend = lan8804_suspend, 6524 .resume = lan8804_resume, 6525 .config_intr = lan8804_config_intr, 6526 .handle_interrupt = lan8804_handle_interrupt, 6527 }, { 6528 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6529 .name = "Microchip LAN8841 Gigabit PHY", 6530 .flags = PHY_POLL_CABLE_TEST, 6531 .driver_data = &lan8841_type, 6532 .config_init = lan8841_config_init, 6533 .probe = lan8841_probe, 6534 .soft_reset = genphy_soft_reset, 6535 .config_intr = lan8841_config_intr, 6536 .handle_interrupt = lan8841_handle_interrupt, 6537 .get_sset_count = kszphy_get_sset_count, 6538 .get_strings = kszphy_get_strings, 6539 .get_stats = kszphy_get_stats, 6540 .suspend = lan8841_suspend, 6541 .resume = lan8841_resume, 6542 .cable_test_start = lan8814_cable_test_start, 6543 .cable_test_get_status = ksz886x_cable_test_get_status, 6544 }, { 6545 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6546 .name = "Microchip LAN8842 Gigabit PHY", 6547 .flags = PHY_POLL_CABLE_TEST, 6548 .driver_data = &lan8814_type, 6549 .probe = lan8842_probe, 6550 .config_init = lan8842_config_init, 6551 .config_intr = lan8842_config_intr, 6552 .inband_caps = lan8842_inband_caps, 6553 .config_inband = lan8842_config_inband, 6554 .handle_interrupt = lan8842_handle_interrupt, 6555 .get_phy_stats = lan8842_get_phy_stats, 6556 .update_stats = lan8842_update_stats, 6557 .get_tunable = lan8842_get_tunable, 6558 .set_tunable = lan8842_set_tunable, 6559 .cable_test_start = lan8814_cable_test_start, 6560 .cable_test_get_status = ksz886x_cable_test_get_status, 6561 }, { 6562 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6563 .name = "Microchip KSZ9131 Gigabit PHY", 6564 /* PHY_GBIT_FEATURES */ 6565 .flags = PHY_POLL_CABLE_TEST, 6566 .driver_data = &ksz9131_type, 6567 .probe = kszphy_probe, 6568 .soft_reset = genphy_soft_reset, 6569 .config_init = ksz9131_config_init, 6570 .config_intr = kszphy_config_intr, 6571 .config_aneg = ksz9131_config_aneg, 6572 .read_status = ksz9131_read_status, 6573 .handle_interrupt = kszphy_handle_interrupt, 6574 .get_sset_count = kszphy_get_sset_count, 6575 .get_strings = kszphy_get_strings, 6576 .get_stats = kszphy_get_stats, 6577 .suspend = kszphy_suspend, 6578 .resume = ksz9131_resume, 6579 .cable_test_start = ksz9x31_cable_test_start, 6580 .cable_test_get_status = ksz9x31_cable_test_get_status, 6581 .get_features = ksz9477_get_features, 6582 }, { 6583 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6584 .name = "Micrel KSZ8873MLL Switch", 6585 /* PHY_BASIC_FEATURES */ 6586 .config_init = kszphy_config_init, 6587 .config_aneg = ksz8873mll_config_aneg, 6588 .read_status = ksz8873mll_read_status, 6589 .suspend = genphy_suspend, 6590 .resume = genphy_resume, 6591 }, { 6592 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6593 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6594 .driver_data = &ksz886x_type, 6595 /* PHY_BASIC_FEATURES */ 6596 .flags = PHY_POLL_CABLE_TEST, 6597 .config_init = kszphy_config_init, 6598 .config_aneg = ksz886x_config_aneg, 6599 .read_status = ksz886x_read_status, 6600 .suspend = genphy_suspend, 6601 .resume = genphy_resume, 6602 .cable_test_start = ksz886x_cable_test_start, 6603 .cable_test_get_status = ksz886x_cable_test_get_status, 6604 }, { 6605 .name = "Micrel KSZ87XX Switch", 6606 /* PHY_BASIC_FEATURES */ 6607 .config_init = kszphy_config_init, 6608 .match_phy_device = ksz8795_match_phy_device, 6609 .suspend = genphy_suspend, 6610 .resume = genphy_resume, 6611 }, { 6612 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6613 .name = "Microchip KSZ9477", 6614 .probe = kszphy_probe, 6615 /* PHY_GBIT_FEATURES */ 6616 .config_init = ksz9477_config_init, 6617 .config_intr = kszphy_config_intr, 6618 .config_aneg = ksz9477_config_aneg, 6619 .read_status = ksz9477_read_status, 6620 .handle_interrupt = kszphy_handle_interrupt, 6621 .suspend = genphy_suspend, 6622 .resume = ksz9477_resume, 6623 .get_phy_stats = kszphy_get_phy_stats, 6624 .update_stats = kszphy_update_stats, 6625 .cable_test_start = ksz9x31_cable_test_start, 6626 .cable_test_get_status = ksz9x31_cable_test_get_status, 6627 .get_sqi = kszphy_get_sqi, 6628 .get_sqi_max = kszphy_get_sqi_max, 6629 } }; 6630 6631 module_phy_driver(ksphy_driver); 6632 6633 MODULE_DESCRIPTION("Micrel PHY driver"); 6634 MODULE_AUTHOR("David J. Choi"); 6635 MODULE_LICENSE("GPL"); 6636 6637 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6638 { PHY_ID_KSZ9021, 0x000ffffe }, 6639 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6640 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6641 { PHY_ID_KSZ8001, 0x00fffffc }, 6642 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6643 { PHY_ID_KSZ8021, 0x00ffffff }, 6644 { PHY_ID_KSZ8031, 0x00ffffff }, 6645 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6646 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6647 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6648 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6649 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6650 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6651 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6652 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6653 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6654 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6655 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6656 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6657 { } 6658 }; 6659 6660 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6661