xref: /linux/drivers/net/phy/micrel.c (revision 74d4432421a3e2669fbccc08c0f4fc2980bf0e39)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_WIRE_PAIR_MASK			0xF
105 
106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
107 #define LAN8814_INTC				0x18
108 #define LAN8814_INTS				0x1B
109 
110 #define LAN8814_INT_FLF				BIT(15)
111 #define LAN8814_INT_LINK_DOWN			BIT(2)
112 #define LAN8814_INT_LINK_UP			BIT(0)
113 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
114 						 LAN8814_INT_LINK_DOWN)
115 
116 #define LAN8814_INTR_CTRL_REG			0x34
117 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
118 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
119 
120 #define LAN8814_EEE_STATE			0x38
121 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
122 
123 #define LAN8814_PD_CONTROLS			0x9d
124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
125 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
126 
127 /* Represents 1ppm adjustment in 2^32 format with
128  * each nsec contains 4 clock cycles.
129  * The value is calculated as following: (1/1000000)/((2^-32)/4)
130  */
131 #define LAN8814_1PPM_FORMAT			17179
132 
133 /* Represents 1ppm adjustment in 2^32 format with
134  * each nsec contains 8 clock cycles.
135  * The value is calculated as following: (1/1000000)/((2^-32)/8)
136  */
137 #define LAN8841_1PPM_FORMAT			34360
138 
139 #define PTP_RX_VERSION				0x0248
140 #define PTP_TX_VERSION				0x0288
141 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
142 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
143 
144 #define PTP_RX_MOD				0x024F
145 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
146 #define PTP_RX_TIMESTAMP_EN			0x024D
147 #define PTP_TX_TIMESTAMP_EN			0x028D
148 
149 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
150 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
151 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
152 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
153 
154 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
155 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
156 
157 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
158 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
159 #define LTC_HARD_RESET				0x023F
160 #define LTC_HARD_RESET_				BIT(0)
161 
162 #define TSU_HARD_RESET				0x02C1
163 #define TSU_HARD_RESET_				BIT(0)
164 
165 #define PTP_CMD_CTL				0x0200
166 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
167 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
168 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
169 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
170 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
171 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
172 
173 #define PTP_COMMON_INT_ENA			0x0204
174 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
175 
176 #define PTP_CLOCK_SET_SEC_HI			0x0205
177 #define PTP_CLOCK_SET_SEC_MID			0x0206
178 #define PTP_CLOCK_SET_SEC_LO			0x0207
179 #define PTP_CLOCK_SET_NS_HI			0x0208
180 #define PTP_CLOCK_SET_NS_LO			0x0209
181 
182 #define PTP_CLOCK_READ_SEC_HI			0x0229
183 #define PTP_CLOCK_READ_SEC_MID			0x022A
184 #define PTP_CLOCK_READ_SEC_LO			0x022B
185 #define PTP_CLOCK_READ_NS_HI			0x022C
186 #define PTP_CLOCK_READ_NS_LO			0x022D
187 
188 #define PTP_GPIO_SEL				0x0230
189 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
190 #define PTP_GPIO_CAP_MAP_LO			0x0232
191 
192 #define PTP_GPIO_CAP_EN				0x0233
193 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
194 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
195 
196 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
197 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
198 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
199 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
200 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
201 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
202 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
203 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
204 
205 #define PTP_GPIO_CAP_STS			0x023D
206 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
207 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
208 
209 #define PTP_OPERATING_MODE			0x0241
210 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
211 
212 #define PTP_TX_MOD				0x028F
213 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
214 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
215 
216 #define PTP_RX_PARSE_CONFIG			0x0242
217 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
218 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
219 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
220 
221 #define PTP_TX_PARSE_CONFIG			0x0282
222 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
223 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
224 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
225 
226 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
227 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
228 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
229 
230 #define PTP_LTC_STEP_ADJ_HI			0x0212
231 #define PTP_LTC_STEP_ADJ_LO			0x0213
232 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
233 
234 #define LAN8814_INTR_STS_REG			0x0033
235 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
236 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
237 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
238 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
239 
240 #define PTP_CAP_INFO				0x022A
241 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
242 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
243 
244 #define PTP_TX_EGRESS_SEC_HI			0x0296
245 #define PTP_TX_EGRESS_SEC_LO			0x0297
246 #define PTP_TX_EGRESS_NS_HI			0x0294
247 #define PTP_TX_EGRESS_NS_LO			0x0295
248 #define PTP_TX_MSG_HEADER2			0x0299
249 
250 #define PTP_RX_INGRESS_SEC_HI			0x0256
251 #define PTP_RX_INGRESS_SEC_LO			0x0257
252 #define PTP_RX_INGRESS_NS_HI			0x0254
253 #define PTP_RX_INGRESS_NS_LO			0x0255
254 #define PTP_RX_MSG_HEADER2			0x0259
255 
256 #define PTP_TSU_INT_EN				0x0200
257 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
258 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
259 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
260 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
261 
262 #define PTP_TSU_INT_STS				0x0201
263 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
264 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
265 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
266 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
267 
268 #define LAN8814_LED_CTRL_1			0x0
269 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
270 #define LAN8814_LED_CTRL_2			0x1
271 #define LAN8814_LED_CTRL_2_LED1_COM_DIS		BIT(8)
272 
273 /* PHY Control 1 */
274 #define MII_KSZPHY_CTRL_1			0x1e
275 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
276 
277 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
278 #define MII_KSZPHY_CTRL_2			0x1f
279 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
280 /* bitmap of PHY register to set interrupt mode */
281 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
282 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
283 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
284 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
285 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
286 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
287 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
288 
289 /* Write/read to/from extended registers */
290 #define MII_KSZPHY_EXTREG			0x0b
291 #define KSZPHY_EXTREG_WRITE			0x8000
292 
293 #define MII_KSZPHY_EXTREG_WRITE			0x0c
294 #define MII_KSZPHY_EXTREG_READ			0x0d
295 
296 /* Extended registers */
297 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
298 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
299 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
300 
301 #define PS_TO_REG				200
302 #define FIFO_SIZE				8
303 
304 #define LAN8814_PTP_GPIO_NUM			24
305 #define LAN8814_PTP_PEROUT_NUM			2
306 #define LAN8814_PTP_EXTTS_NUM			3
307 
308 #define LAN8814_BUFFER_TIME			2
309 
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
324 
325 #define LAN8814_GPIO_EN1			0x20
326 #define LAN8814_GPIO_EN2			0x21
327 #define LAN8814_GPIO_DIR1			0x22
328 #define LAN8814_GPIO_DIR2			0x23
329 #define LAN8814_GPIO_BUF1			0x24
330 #define LAN8814_GPIO_BUF2			0x25
331 
332 #define LAN8814_GPIO_EN_ADDR(pin) \
333 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
334 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
335 #define LAN8814_GPIO_DIR_ADDR(pin) \
336 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
337 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
338 #define LAN8814_GPIO_BUF_ADDR(pin) \
339 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
340 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
341 
342 #define LAN8814_EVENT_A				0
343 #define LAN8814_EVENT_B				1
344 
345 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
346 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
347 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
349 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
350 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
351 	((event) ? BIT(2) : BIT(0))
352 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
353 	((event) ? BIT(3) : BIT(1))
354 
355 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
356 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
357 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
358 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
359 
360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
361 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
364 
365 /* Delay used to get the second part from the LTC */
366 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
367 
368 #define LAN8842_REV_8832			0x8832
369 
370 struct kszphy_hw_stat {
371 	const char *string;
372 	u8 reg;
373 	u8 bits;
374 };
375 
376 static struct kszphy_hw_stat kszphy_hw_stats[] = {
377 	{ "phy_receive_errors", 21, 16},
378 	{ "phy_idle_errors", 10, 8 },
379 };
380 
381 struct kszphy_type {
382 	u32 led_mode_reg;
383 	u16 interrupt_level_mask;
384 	u16 cable_diag_reg;
385 	unsigned long pair_mask;
386 	u16 disable_dll_tx_bit;
387 	u16 disable_dll_rx_bit;
388 	u16 disable_dll_mask;
389 	bool has_broadcast_disable;
390 	bool has_nand_tree_disable;
391 	bool has_rmii_ref_clk_sel;
392 };
393 
394 /* Shared structure between the PHYs of the same package. */
395 struct lan8814_shared_priv {
396 	struct phy_device *phydev;
397 	struct ptp_clock *ptp_clock;
398 	struct ptp_clock_info ptp_clock_info;
399 	struct ptp_pin_desc *pin_config;
400 
401 	/* Lock for ptp_clock */
402 	struct mutex shared_lock;
403 };
404 
405 struct lan8814_ptp_rx_ts {
406 	struct list_head list;
407 	u32 seconds;
408 	u32 nsec;
409 	u16 seq_id;
410 };
411 
412 struct kszphy_ptp_priv {
413 	struct mii_timestamper mii_ts;
414 	struct phy_device *phydev;
415 
416 	struct sk_buff_head tx_queue;
417 	struct sk_buff_head rx_queue;
418 
419 	struct list_head rx_ts_list;
420 	/* Lock for Rx ts fifo */
421 	spinlock_t rx_ts_lock;
422 
423 	int hwts_tx_type;
424 	enum hwtstamp_rx_filters rx_filter;
425 	int layer;
426 	int version;
427 
428 	struct ptp_clock *ptp_clock;
429 	struct ptp_clock_info ptp_clock_info;
430 	/* Lock for ptp_clock */
431 	struct mutex ptp_lock;
432 	struct ptp_pin_desc *pin_config;
433 
434 	s64 seconds;
435 	/* Lock for accessing seconds */
436 	spinlock_t seconds_lock;
437 };
438 
439 struct kszphy_phy_stats {
440 	u64 rx_err_pkt_cnt;
441 };
442 
443 struct kszphy_priv {
444 	struct kszphy_ptp_priv ptp_priv;
445 	const struct kszphy_type *type;
446 	struct clk *clk;
447 	int led_mode;
448 	u16 vct_ctrl1000;
449 	bool rmii_ref_clk_sel;
450 	bool rmii_ref_clk_sel_val;
451 	bool clk_enable;
452 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
453 	struct kszphy_phy_stats phy_stats;
454 };
455 
456 struct lan8842_phy_stats {
457 	u64 rx_packets;
458 	u64 rx_errors;
459 	u64 tx_packets;
460 	u64 tx_errors;
461 };
462 
463 struct lan8842_priv {
464 	struct lan8842_phy_stats phy_stats;
465 	struct kszphy_ptp_priv ptp_priv;
466 	u16 rev;
467 };
468 
469 struct lanphy_reg_data {
470 	int page;
471 	u16 addr;
472 	u16 val;
473 };
474 
475 static const struct kszphy_type lan8814_type = {
476 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
477 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
478 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
479 };
480 
481 static const struct kszphy_type ksz886x_type = {
482 	.cable_diag_reg		= KSZ8081_LMD,
483 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
484 };
485 
486 static const struct kszphy_type ksz8021_type = {
487 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
488 	.has_broadcast_disable	= true,
489 	.has_nand_tree_disable	= true,
490 	.has_rmii_ref_clk_sel	= true,
491 };
492 
493 static const struct kszphy_type ksz8041_type = {
494 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
495 };
496 
497 static const struct kszphy_type ksz8051_type = {
498 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
499 	.has_nand_tree_disable	= true,
500 };
501 
502 static const struct kszphy_type ksz8081_type = {
503 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
504 	.cable_diag_reg		= KSZ8081_LMD,
505 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
506 	.has_broadcast_disable	= true,
507 	.has_nand_tree_disable	= true,
508 	.has_rmii_ref_clk_sel	= true,
509 };
510 
511 static const struct kszphy_type ks8737_type = {
512 	.interrupt_level_mask	= BIT(14),
513 };
514 
515 static const struct kszphy_type ksz9021_type = {
516 	.interrupt_level_mask	= BIT(14),
517 };
518 
519 static const struct kszphy_type ksz9131_type = {
520 	.interrupt_level_mask	= BIT(14),
521 	.disable_dll_tx_bit	= BIT(12),
522 	.disable_dll_rx_bit	= BIT(12),
523 	.disable_dll_mask	= BIT_MASK(12),
524 };
525 
526 static const struct kszphy_type lan8841_type = {
527 	.disable_dll_tx_bit	= BIT(14),
528 	.disable_dll_rx_bit	= BIT(14),
529 	.disable_dll_mask	= BIT_MASK(14),
530 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
531 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
532 };
533 
534 static int kszphy_extended_write(struct phy_device *phydev,
535 				u32 regnum, u16 val)
536 {
537 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
538 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
539 }
540 
541 static int kszphy_extended_read(struct phy_device *phydev,
542 				u32 regnum)
543 {
544 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
545 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
546 }
547 
548 static int kszphy_ack_interrupt(struct phy_device *phydev)
549 {
550 	/* bit[7..0] int status, which is a read and clear register. */
551 	int rc;
552 
553 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
554 
555 	return (rc < 0) ? rc : 0;
556 }
557 
558 static int kszphy_config_intr(struct phy_device *phydev)
559 {
560 	const struct kszphy_type *type = phydev->drv->driver_data;
561 	int temp, err;
562 	u16 mask;
563 
564 	if (type && type->interrupt_level_mask)
565 		mask = type->interrupt_level_mask;
566 	else
567 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
568 
569 	/* set the interrupt pin active low */
570 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
571 	if (temp < 0)
572 		return temp;
573 	temp &= ~mask;
574 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
575 
576 	/* enable / disable interrupts */
577 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
578 		err = kszphy_ack_interrupt(phydev);
579 		if (err)
580 			return err;
581 
582 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
583 	} else {
584 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
585 		if (err)
586 			return err;
587 
588 		err = kszphy_ack_interrupt(phydev);
589 	}
590 
591 	return err;
592 }
593 
594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
595 {
596 	int irq_status;
597 
598 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
599 	if (irq_status < 0) {
600 		phy_error(phydev);
601 		return IRQ_NONE;
602 	}
603 
604 	if (!(irq_status & KSZPHY_INTCS_STATUS))
605 		return IRQ_NONE;
606 
607 	phy_trigger_machine(phydev);
608 
609 	return IRQ_HANDLED;
610 }
611 
612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
613 {
614 	int ctrl;
615 
616 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
617 	if (ctrl < 0)
618 		return ctrl;
619 
620 	if (val)
621 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
622 	else
623 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
624 
625 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
626 }
627 
628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
629 {
630 	int rc, temp, shift;
631 
632 	switch (reg) {
633 	case MII_KSZPHY_CTRL_1:
634 		shift = 14;
635 		break;
636 	case MII_KSZPHY_CTRL_2:
637 		shift = 4;
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	temp = phy_read(phydev, reg);
644 	if (temp < 0) {
645 		rc = temp;
646 		goto out;
647 	}
648 
649 	temp &= ~(3 << shift);
650 	temp |= val << shift;
651 	rc = phy_write(phydev, reg, temp);
652 out:
653 	if (rc < 0)
654 		phydev_err(phydev, "failed to set led mode\n");
655 
656 	return rc;
657 }
658 
659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
660  * unique (non-broadcast) address on a shared bus.
661  */
662 static int kszphy_broadcast_disable(struct phy_device *phydev)
663 {
664 	int ret;
665 
666 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
667 	if (ret < 0)
668 		goto out;
669 
670 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
671 out:
672 	if (ret)
673 		phydev_err(phydev, "failed to disable broadcast address\n");
674 
675 	return ret;
676 }
677 
678 static int kszphy_nand_tree_disable(struct phy_device *phydev)
679 {
680 	int ret;
681 
682 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
683 	if (ret < 0)
684 		goto out;
685 
686 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
687 		return 0;
688 
689 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
690 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
691 out:
692 	if (ret)
693 		phydev_err(phydev, "failed to disable NAND tree mode\n");
694 
695 	return ret;
696 }
697 
698 /* Some config bits need to be set again on resume, handle them here. */
699 static int kszphy_config_reset(struct phy_device *phydev)
700 {
701 	struct kszphy_priv *priv = phydev->priv;
702 	int ret;
703 
704 	if (priv->rmii_ref_clk_sel) {
705 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
706 		if (ret) {
707 			phydev_err(phydev,
708 				   "failed to set rmii reference clock\n");
709 			return ret;
710 		}
711 	}
712 
713 	if (priv->type && priv->led_mode >= 0)
714 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
715 
716 	return 0;
717 }
718 
719 static int kszphy_config_init(struct phy_device *phydev)
720 {
721 	struct kszphy_priv *priv = phydev->priv;
722 	const struct kszphy_type *type;
723 
724 	if (!priv)
725 		return 0;
726 
727 	type = priv->type;
728 
729 	if (type && type->has_broadcast_disable)
730 		kszphy_broadcast_disable(phydev);
731 
732 	if (type && type->has_nand_tree_disable)
733 		kszphy_nand_tree_disable(phydev);
734 
735 	return kszphy_config_reset(phydev);
736 }
737 
738 static int ksz8041_fiber_mode(struct phy_device *phydev)
739 {
740 	struct device_node *of_node = phydev->mdio.dev.of_node;
741 
742 	return of_property_read_bool(of_node, "micrel,fiber-mode");
743 }
744 
745 static int ksz8041_config_init(struct phy_device *phydev)
746 {
747 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
748 
749 	/* Limit supported and advertised modes in fiber mode */
750 	if (ksz8041_fiber_mode(phydev)) {
751 		phydev->dev_flags |= MICREL_PHY_FXEN;
752 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
753 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
754 
755 		linkmode_and(phydev->supported, phydev->supported, mask);
756 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
757 				 phydev->supported);
758 		linkmode_and(phydev->advertising, phydev->advertising, mask);
759 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
760 				 phydev->advertising);
761 		phydev->autoneg = AUTONEG_DISABLE;
762 	}
763 
764 	return kszphy_config_init(phydev);
765 }
766 
767 static int ksz8041_config_aneg(struct phy_device *phydev)
768 {
769 	/* Skip auto-negotiation in fiber mode */
770 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
771 		phydev->speed = SPEED_100;
772 		return 0;
773 	}
774 
775 	return genphy_config_aneg(phydev);
776 }
777 
778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
779 					    const bool ksz_8051)
780 {
781 	int ret;
782 
783 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
784 		return 0;
785 
786 	ret = phy_read(phydev, MII_BMSR);
787 	if (ret < 0)
788 		return ret;
789 
790 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
791 	 * exact PHY ID. However, they can be told apart by the extended
792 	 * capability registers presence. The KSZ8051 PHY has them while
793 	 * the switch does not.
794 	 */
795 	ret &= BMSR_ERCAP;
796 	if (ksz_8051)
797 		return ret;
798 	else
799 		return !ret;
800 }
801 
802 static int ksz8051_match_phy_device(struct phy_device *phydev,
803 				    const struct phy_driver *phydrv)
804 {
805 	return ksz8051_ksz8795_match_phy_device(phydev, true);
806 }
807 
808 static int ksz8081_config_init(struct phy_device *phydev)
809 {
810 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
811 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
812 	 * pull-down is missing, the factory test mode should be cleared by
813 	 * manually writing a 0.
814 	 */
815 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
816 
817 	return kszphy_config_init(phydev);
818 }
819 
820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
821 {
822 	u16 val;
823 
824 	switch (ctrl) {
825 	case ETH_TP_MDI:
826 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
827 		break;
828 	case ETH_TP_MDI_X:
829 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
830 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
831 		break;
832 	case ETH_TP_MDI_AUTO:
833 		val = 0;
834 		break;
835 	default:
836 		return 0;
837 	}
838 
839 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
840 			  KSZ8081_CTRL2_HP_MDIX |
841 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
842 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
843 			  KSZ8081_CTRL2_HP_MDIX | val);
844 }
845 
846 static int ksz8081_config_aneg(struct phy_device *phydev)
847 {
848 	int ret;
849 
850 	ret = genphy_config_aneg(phydev);
851 	if (ret)
852 		return ret;
853 
854 	/* The MDI-X configuration is automatically changed by the PHY after
855 	 * switching from autoneg off to on. So, take MDI-X configuration under
856 	 * own control and set it after autoneg configuration was done.
857 	 */
858 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
859 }
860 
861 static int ksz8081_mdix_update(struct phy_device *phydev)
862 {
863 	int ret;
864 
865 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
866 	if (ret < 0)
867 		return ret;
868 
869 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
870 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
871 			phydev->mdix_ctrl = ETH_TP_MDI_X;
872 		else
873 			phydev->mdix_ctrl = ETH_TP_MDI;
874 	} else {
875 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
876 	}
877 
878 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
879 	if (ret < 0)
880 		return ret;
881 
882 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
883 		phydev->mdix = ETH_TP_MDI;
884 	else
885 		phydev->mdix = ETH_TP_MDI_X;
886 
887 	return 0;
888 }
889 
890 static int ksz8081_read_status(struct phy_device *phydev)
891 {
892 	int ret;
893 
894 	ret = ksz8081_mdix_update(phydev);
895 	if (ret < 0)
896 		return ret;
897 
898 	return genphy_read_status(phydev);
899 }
900 
901 static int ksz8061_config_init(struct phy_device *phydev)
902 {
903 	int ret;
904 
905 	/* Chip can be powered down by the bootstrap code. */
906 	ret = phy_read(phydev, MII_BMCR);
907 	if (ret < 0)
908 		return ret;
909 	if (ret & BMCR_PDOWN) {
910 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
911 		if (ret < 0)
912 			return ret;
913 		usleep_range(1000, 2000);
914 	}
915 
916 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
917 	if (ret)
918 		return ret;
919 
920 	return kszphy_config_init(phydev);
921 }
922 
923 static int ksz8795_match_phy_device(struct phy_device *phydev,
924 				    const struct phy_driver *phydrv)
925 {
926 	return ksz8051_ksz8795_match_phy_device(phydev, false);
927 }
928 
929 static int ksz9021_load_values_from_of(struct phy_device *phydev,
930 				       const struct device_node *of_node,
931 				       u16 reg,
932 				       const char *field1, const char *field2,
933 				       const char *field3, const char *field4)
934 {
935 	int val1 = -1;
936 	int val2 = -2;
937 	int val3 = -3;
938 	int val4 = -4;
939 	int newval;
940 	int matches = 0;
941 
942 	if (!of_property_read_u32(of_node, field1, &val1))
943 		matches++;
944 
945 	if (!of_property_read_u32(of_node, field2, &val2))
946 		matches++;
947 
948 	if (!of_property_read_u32(of_node, field3, &val3))
949 		matches++;
950 
951 	if (!of_property_read_u32(of_node, field4, &val4))
952 		matches++;
953 
954 	if (!matches)
955 		return 0;
956 
957 	if (matches < 4)
958 		newval = kszphy_extended_read(phydev, reg);
959 	else
960 		newval = 0;
961 
962 	if (val1 != -1)
963 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
964 
965 	if (val2 != -2)
966 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
967 
968 	if (val3 != -3)
969 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
970 
971 	if (val4 != -4)
972 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
973 
974 	return kszphy_extended_write(phydev, reg, newval);
975 }
976 
977 static int ksz9021_config_init(struct phy_device *phydev)
978 {
979 	const struct device_node *of_node;
980 	const struct device *dev_walker;
981 
982 	/* The Micrel driver has a deprecated option to place phy OF
983 	 * properties in the MAC node. Walk up the tree of devices to
984 	 * find a device with an OF node.
985 	 */
986 	dev_walker = &phydev->mdio.dev;
987 	do {
988 		of_node = dev_walker->of_node;
989 		dev_walker = dev_walker->parent;
990 
991 	} while (!of_node && dev_walker);
992 
993 	if (of_node) {
994 		ksz9021_load_values_from_of(phydev, of_node,
995 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
996 				    "txen-skew-ps", "txc-skew-ps",
997 				    "rxdv-skew-ps", "rxc-skew-ps");
998 		ksz9021_load_values_from_of(phydev, of_node,
999 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
1000 				    "rxd0-skew-ps", "rxd1-skew-ps",
1001 				    "rxd2-skew-ps", "rxd3-skew-ps");
1002 		ksz9021_load_values_from_of(phydev, of_node,
1003 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
1004 				    "txd0-skew-ps", "txd1-skew-ps",
1005 				    "txd2-skew-ps", "txd3-skew-ps");
1006 	}
1007 	return 0;
1008 }
1009 
1010 #define KSZ9031_PS_TO_REG		60
1011 
1012 /* Extended registers */
1013 /* MMD Address 0x0 */
1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
1016 
1017 /* MMD Address 0x2 */
1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
1019 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
1020 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
1021 
1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
1023 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
1024 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
1025 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
1026 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
1027 
1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
1029 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
1030 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
1031 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
1032 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1033 
1034 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1035 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1036 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1037 
1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1039  * provide different RGMII options we need to configure delay offset
1040  * for each pad relative to build in delay.
1041  */
1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1043  * 1.80ns
1044  */
1045 #define RX_ID				0x7
1046 #define RX_CLK_ID			0x19
1047 
1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1049  * internal 1.2ns delay.
1050  */
1051 #define RX_ND				0xc
1052 #define RX_CLK_ND			0x0
1053 
1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1055 #define TX_ID				0x0
1056 #define TX_CLK_ID			0x1f
1057 
1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1059  * dealy
1060  */
1061 #define TX_ND				0x7
1062 #define TX_CLK_ND			0xf
1063 
1064 /* MMD Address 0x1C */
1065 #define MII_KSZ9031RN_EDPD		0x23
1066 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1067 
1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1069 				int speed)
1070 {
1071 	u16 ctl = BMCR_LOOPBACK;
1072 	int val;
1073 
1074 	if (!enable)
1075 		return genphy_loopback(phydev, enable, 0);
1076 
1077 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1078 		phydev->speed = speed;
1079 	else if (speed)
1080 		return -EINVAL;
1081 	phydev->duplex = DUPLEX_FULL;
1082 
1083 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1084 
1085 	phy_write(phydev, MII_BMCR, ctl);
1086 
1087 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1088 				     5000, 500000, true);
1089 }
1090 
1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1092 				       const struct device_node *of_node,
1093 				       u16 reg, size_t field_sz,
1094 				       const char *field[], u8 numfields,
1095 				       bool *update)
1096 {
1097 	int val[4] = {-1, -2, -3, -4};
1098 	int matches = 0;
1099 	u16 mask;
1100 	u16 maxval;
1101 	u16 newval;
1102 	int i;
1103 
1104 	for (i = 0; i < numfields; i++)
1105 		if (!of_property_read_u32(of_node, field[i], val + i))
1106 			matches++;
1107 
1108 	if (!matches)
1109 		return 0;
1110 
1111 	*update |= true;
1112 
1113 	if (matches < numfields)
1114 		newval = phy_read_mmd(phydev, 2, reg);
1115 	else
1116 		newval = 0;
1117 
1118 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1119 	for (i = 0; i < numfields; i++)
1120 		if (val[i] != -(i + 1)) {
1121 			mask = 0xffff;
1122 			mask ^= maxval << (field_sz * i);
1123 			newval = (newval & mask) |
1124 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1125 					<< (field_sz * i));
1126 		}
1127 
1128 	return phy_write_mmd(phydev, 2, reg, newval);
1129 }
1130 
1131 /* Center KSZ9031RNX FLP timing at 16ms. */
1132 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1133 {
1134 	int result;
1135 
1136 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1137 			       0x0006);
1138 	if (result)
1139 		return result;
1140 
1141 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1142 			       0x1A80);
1143 	if (result)
1144 		return result;
1145 
1146 	return genphy_restart_aneg(phydev);
1147 }
1148 
1149 /* Enable energy-detect power-down mode */
1150 static int ksz9031_enable_edpd(struct phy_device *phydev)
1151 {
1152 	int reg;
1153 
1154 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1155 	if (reg < 0)
1156 		return reg;
1157 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1158 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1159 }
1160 
1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1162 {
1163 	u16 rx, tx, rx_clk, tx_clk;
1164 	int ret;
1165 
1166 	switch (phydev->interface) {
1167 	case PHY_INTERFACE_MODE_RGMII:
1168 		tx = TX_ND;
1169 		tx_clk = TX_CLK_ND;
1170 		rx = RX_ND;
1171 		rx_clk = RX_CLK_ND;
1172 		break;
1173 	case PHY_INTERFACE_MODE_RGMII_ID:
1174 		tx = TX_ID;
1175 		tx_clk = TX_CLK_ID;
1176 		rx = RX_ID;
1177 		rx_clk = RX_CLK_ID;
1178 		break;
1179 	case PHY_INTERFACE_MODE_RGMII_RXID:
1180 		tx = TX_ND;
1181 		tx_clk = TX_CLK_ND;
1182 		rx = RX_ID;
1183 		rx_clk = RX_CLK_ID;
1184 		break;
1185 	case PHY_INTERFACE_MODE_RGMII_TXID:
1186 		tx = TX_ID;
1187 		tx_clk = TX_CLK_ID;
1188 		rx = RX_ND;
1189 		rx_clk = RX_CLK_ND;
1190 		break;
1191 	default:
1192 		return 0;
1193 	}
1194 
1195 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1196 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1197 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1202 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1203 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1204 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1205 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1210 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1211 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1212 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1213 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1218 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1219 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1220 }
1221 
1222 static int ksz9031_config_init(struct phy_device *phydev)
1223 {
1224 	const struct device_node *of_node;
1225 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1226 	static const char *rx_data_skews[4] = {
1227 		"rxd0-skew-ps", "rxd1-skew-ps",
1228 		"rxd2-skew-ps", "rxd3-skew-ps"
1229 	};
1230 	static const char *tx_data_skews[4] = {
1231 		"txd0-skew-ps", "txd1-skew-ps",
1232 		"txd2-skew-ps", "txd3-skew-ps"
1233 	};
1234 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1235 	const struct device *dev_walker;
1236 	int result;
1237 
1238 	result = ksz9031_enable_edpd(phydev);
1239 	if (result < 0)
1240 		return result;
1241 
1242 	/* The Micrel driver has a deprecated option to place phy OF
1243 	 * properties in the MAC node. Walk up the tree of devices to
1244 	 * find a device with an OF node.
1245 	 */
1246 	dev_walker = &phydev->mdio.dev;
1247 	do {
1248 		of_node = dev_walker->of_node;
1249 		dev_walker = dev_walker->parent;
1250 	} while (!of_node && dev_walker);
1251 
1252 	if (of_node) {
1253 		bool update = false;
1254 
1255 		if (phy_interface_is_rgmii(phydev)) {
1256 			result = ksz9031_config_rgmii_delay(phydev);
1257 			if (result < 0)
1258 				return result;
1259 		}
1260 
1261 		ksz9031_of_load_skew_values(phydev, of_node,
1262 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1263 				clk_skews, 2, &update);
1264 
1265 		ksz9031_of_load_skew_values(phydev, of_node,
1266 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1267 				control_skews, 2, &update);
1268 
1269 		ksz9031_of_load_skew_values(phydev, of_node,
1270 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1271 				rx_data_skews, 4, &update);
1272 
1273 		ksz9031_of_load_skew_values(phydev, of_node,
1274 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1275 				tx_data_skews, 4, &update);
1276 
1277 		if (update && !phy_interface_is_rgmii(phydev))
1278 			phydev_warn(phydev,
1279 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1280 
1281 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1282 		 * When the device links in the 1000BASE-T slave mode only,
1283 		 * the optional 125MHz reference output clock (CLK125_NDO)
1284 		 * has wide duty cycle variation.
1285 		 *
1286 		 * The optional CLK125_NDO clock does not meet the RGMII
1287 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1288 		 * cannot be used directly by the MAC side for clocking
1289 		 * applications that have setup/hold time requirements on
1290 		 * rising and falling clock edges.
1291 		 *
1292 		 * Workaround:
1293 		 * Force the phy to be the master to receive a stable clock
1294 		 * which meets the duty cycle requirement.
1295 		 */
1296 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1297 			result = phy_read(phydev, MII_CTRL1000);
1298 			if (result < 0)
1299 				goto err_force_master;
1300 
1301 			/* enable master mode, config & prefer master */
1302 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1303 			result = phy_write(phydev, MII_CTRL1000, result);
1304 			if (result < 0)
1305 				goto err_force_master;
1306 		}
1307 	}
1308 
1309 	return ksz9031_center_flp_timing(phydev);
1310 
1311 err_force_master:
1312 	phydev_err(phydev, "failed to force the phy to master mode\n");
1313 	return result;
1314 }
1315 
1316 #define KSZ9131_SKEW_5BIT_MAX	2400
1317 #define KSZ9131_SKEW_4BIT_MAX	800
1318 #define KSZ9131_OFFSET		700
1319 #define KSZ9131_STEP		100
1320 
1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1322 				       struct device_node *of_node,
1323 				       u16 reg, size_t field_sz,
1324 				       char *field[], u8 numfields)
1325 {
1326 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1327 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1328 	int skewval, skewmax = 0;
1329 	int matches = 0;
1330 	u16 maxval;
1331 	u16 newval;
1332 	u16 mask;
1333 	int i;
1334 
1335 	/* psec properties in dts should mean x pico seconds */
1336 	if (field_sz == 5)
1337 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1338 	else
1339 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1340 
1341 	for (i = 0; i < numfields; i++)
1342 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1343 			if (skewval < -KSZ9131_OFFSET)
1344 				skewval = -KSZ9131_OFFSET;
1345 			else if (skewval > skewmax)
1346 				skewval = skewmax;
1347 
1348 			val[i] = skewval + KSZ9131_OFFSET;
1349 			matches++;
1350 		}
1351 
1352 	if (!matches)
1353 		return 0;
1354 
1355 	if (matches < numfields)
1356 		newval = phy_read_mmd(phydev, 2, reg);
1357 	else
1358 		newval = 0;
1359 
1360 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1361 	for (i = 0; i < numfields; i++)
1362 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1363 			mask = 0xffff;
1364 			mask ^= maxval << (field_sz * i);
1365 			newval = (newval & mask) |
1366 				(((val[i] / KSZ9131_STEP) & maxval)
1367 					<< (field_sz * i));
1368 		}
1369 
1370 	return phy_write_mmd(phydev, 2, reg, newval);
1371 }
1372 
1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1374 #define KSZ9131RN_RXC_DLL_CTRL		76
1375 #define KSZ9131RN_TXC_DLL_CTRL		77
1376 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1377 
1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1379 {
1380 	const struct kszphy_type *type = phydev->drv->driver_data;
1381 	u16 rxcdll_val, txcdll_val;
1382 	int ret;
1383 
1384 	switch (phydev->interface) {
1385 	case PHY_INTERFACE_MODE_RGMII:
1386 		rxcdll_val = type->disable_dll_rx_bit;
1387 		txcdll_val = type->disable_dll_tx_bit;
1388 		break;
1389 	case PHY_INTERFACE_MODE_RGMII_ID:
1390 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1391 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1392 		break;
1393 	case PHY_INTERFACE_MODE_RGMII_RXID:
1394 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1395 		txcdll_val = type->disable_dll_tx_bit;
1396 		break;
1397 	case PHY_INTERFACE_MODE_RGMII_TXID:
1398 		rxcdll_val = type->disable_dll_rx_bit;
1399 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1400 		break;
1401 	default:
1402 		return 0;
1403 	}
1404 
1405 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1406 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1407 			     rxcdll_val);
1408 	if (ret < 0)
1409 		return ret;
1410 
1411 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1412 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1413 			      txcdll_val);
1414 }
1415 
1416 /* Silicon Errata DS80000693B
1417  *
1418  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1419  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1420  * according to the datasheet (off if there is no link).
1421  */
1422 static int ksz9131_led_errata(struct phy_device *phydev)
1423 {
1424 	int reg;
1425 
1426 	reg = phy_read_mmd(phydev, 2, 0);
1427 	if (reg < 0)
1428 		return reg;
1429 
1430 	if (!(reg & BIT(4)))
1431 		return 0;
1432 
1433 	return phy_set_bits(phydev, 0x1e, BIT(9));
1434 }
1435 
1436 static int ksz9131_config_init(struct phy_device *phydev)
1437 {
1438 	struct device_node *of_node;
1439 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1440 	char *rx_data_skews[4] = {
1441 		"rxd0-skew-psec", "rxd1-skew-psec",
1442 		"rxd2-skew-psec", "rxd3-skew-psec"
1443 	};
1444 	char *tx_data_skews[4] = {
1445 		"txd0-skew-psec", "txd1-skew-psec",
1446 		"txd2-skew-psec", "txd3-skew-psec"
1447 	};
1448 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1449 	const struct device *dev_walker;
1450 	int ret;
1451 
1452 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1453 
1454 	dev_walker = &phydev->mdio.dev;
1455 	do {
1456 		of_node = dev_walker->of_node;
1457 		dev_walker = dev_walker->parent;
1458 	} while (!of_node && dev_walker);
1459 
1460 	if (!of_node)
1461 		return 0;
1462 
1463 	if (phy_interface_is_rgmii(phydev)) {
1464 		ret = ksz9131_config_rgmii_delay(phydev);
1465 		if (ret < 0)
1466 			return ret;
1467 	}
1468 
1469 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1470 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1471 					  clk_skews, 2);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1476 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1477 					  control_skews, 2);
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1482 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1483 					  rx_data_skews, 4);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1488 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1489 					  tx_data_skews, 4);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	ret = ksz9131_led_errata(phydev);
1494 	if (ret < 0)
1495 		return ret;
1496 
1497 	return 0;
1498 }
1499 
1500 #define MII_KSZ9131_AUTO_MDIX		0x1C
1501 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1503 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1506 
1507 static int ksz9131_mdix_update(struct phy_device *phydev)
1508 {
1509 	int ret;
1510 
1511 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1512 		phydev->mdix = phydev->mdix_ctrl;
1513 	} else {
1514 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1515 		if (ret < 0)
1516 			return ret;
1517 
1518 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1519 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1520 				phydev->mdix = ETH_TP_MDI;
1521 			else
1522 				phydev->mdix = ETH_TP_MDI_X;
1523 		} else {
1524 			phydev->mdix = ETH_TP_MDI_INVALID;
1525 		}
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1532 {
1533 	u16 val;
1534 
1535 	switch (ctrl) {
1536 	case ETH_TP_MDI:
1537 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1538 		      MII_KSZ9131_AUTO_MDI_SET;
1539 		break;
1540 	case ETH_TP_MDI_X:
1541 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1542 		break;
1543 	case ETH_TP_MDI_AUTO:
1544 		val = 0;
1545 		break;
1546 	default:
1547 		return 0;
1548 	}
1549 
1550 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1551 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1552 			  MII_KSZ9131_AUTO_MDI_SET, val);
1553 }
1554 
1555 static int ksz9131_read_status(struct phy_device *phydev)
1556 {
1557 	int ret;
1558 
1559 	ret = ksz9131_mdix_update(phydev);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	return genphy_read_status(phydev);
1564 }
1565 
1566 static int ksz9131_config_aneg(struct phy_device *phydev)
1567 {
1568 	int ret;
1569 
1570 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1571 	if (ret)
1572 		return ret;
1573 
1574 	return genphy_config_aneg(phydev);
1575 }
1576 
1577 static int ksz9477_get_features(struct phy_device *phydev)
1578 {
1579 	int ret;
1580 
1581 	ret = genphy_read_abilities(phydev);
1582 	if (ret)
1583 		return ret;
1584 
1585 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1586 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1587 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1588 	 * of caps.
1589 	 * KSZ8563R should have 100BaseTX/Full only.
1590 	 */
1591 	linkmode_and(phydev->supported_eee, phydev->supported,
1592 		     PHY_EEE_CAP1_FEATURES);
1593 
1594 	return 0;
1595 }
1596 
1597 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1600 static int ksz8873mll_read_status(struct phy_device *phydev)
1601 {
1602 	int regval;
1603 
1604 	/* dummy read */
1605 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1606 
1607 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1608 
1609 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1610 		phydev->duplex = DUPLEX_HALF;
1611 	else
1612 		phydev->duplex = DUPLEX_FULL;
1613 
1614 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1615 		phydev->speed = SPEED_10;
1616 	else
1617 		phydev->speed = SPEED_100;
1618 
1619 	phydev->link = 1;
1620 	phydev->pause = phydev->asym_pause = 0;
1621 
1622 	return 0;
1623 }
1624 
1625 static int ksz9031_get_features(struct phy_device *phydev)
1626 {
1627 	int ret;
1628 
1629 	ret = genphy_read_abilities(phydev);
1630 	if (ret < 0)
1631 		return ret;
1632 
1633 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1634 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1635 	 * link-up may fail after a link-up to link-down transition.
1636 	 *
1637 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1638 	 *
1639 	 * Workaround:
1640 	 * Do not enable the Asymmetric Pause capability bit.
1641 	 */
1642 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1643 
1644 	/* We force setting the Pause capability as the core will force the
1645 	 * Asymmetric Pause capability to 1 otherwise.
1646 	 */
1647 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1648 
1649 	return 0;
1650 }
1651 
1652 static int ksz9031_read_status(struct phy_device *phydev)
1653 {
1654 	int err;
1655 	int regval;
1656 
1657 	err = genphy_read_status(phydev);
1658 	if (err)
1659 		return err;
1660 
1661 	/* Make sure the PHY is not broken. Read idle error count,
1662 	 * and reset the PHY if it is maxed out.
1663 	 */
1664 	regval = phy_read(phydev, MII_STAT1000);
1665 	if ((regval & 0xFF) == 0xFF) {
1666 		phy_init_hw(phydev);
1667 		phydev->link = 0;
1668 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1669 			phydev->drv->config_intr(phydev);
1670 		return genphy_config_aneg(phydev);
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1677 {
1678 	struct kszphy_priv *priv = phydev->priv;
1679 	int ret;
1680 
1681 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1682 	 * Prior to running the cable diagnostics, Auto-negotiation should
1683 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1684 	 * via the Basic Control Register.
1685 	 */
1686 	ret = phy_modify(phydev, MII_BMCR,
1687 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1688 			 BMCR_ANENABLE | BMCR_SPEED100,
1689 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1690 	if (ret)
1691 		return ret;
1692 
1693 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1694 	 * The Master-Slave configuration should be set to Slave by writing
1695 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1696 	 * Register.
1697 	 */
1698 	ret = phy_read(phydev, MII_CTRL1000);
1699 	if (ret < 0)
1700 		return ret;
1701 
1702 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1703 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1704 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1705 	ret |= CTL1000_ENABLE_MASTER;
1706 
1707 	return phy_write(phydev, MII_CTRL1000, ret);
1708 }
1709 
1710 static int ksz9x31_cable_test_result_trans(u16 status)
1711 {
1712 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1713 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1714 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1715 	case KSZ9x31_LMD_VCT_ST_OPEN:
1716 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1717 	case KSZ9x31_LMD_VCT_ST_SHORT:
1718 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1719 	case KSZ9x31_LMD_VCT_ST_FAIL:
1720 		fallthrough;
1721 	default:
1722 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1723 	}
1724 }
1725 
1726 static bool ksz9x31_cable_test_failed(u16 status)
1727 {
1728 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1729 
1730 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1731 }
1732 
1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1734 {
1735 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1736 	case KSZ9x31_LMD_VCT_ST_OPEN:
1737 		fallthrough;
1738 	case KSZ9x31_LMD_VCT_ST_SHORT:
1739 		return true;
1740 	}
1741 	return false;
1742 }
1743 
1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1745 {
1746 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1747 
1748 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1749 	 *
1750 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1751 	 */
1752 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131) ||
1753 	    phydev_id_compare(phydev, PHY_ID_KSZ9477))
1754 		dt = clamp(dt - 22, 0, 255);
1755 
1756 	return (dt * 400) / 10;
1757 }
1758 
1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1760 {
1761 	int val, ret;
1762 
1763 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1764 				    !(val & KSZ9x31_LMD_VCT_EN),
1765 				    30000, 100000, true);
1766 
1767 	return ret < 0 ? ret : 0;
1768 }
1769 
1770 static int ksz9x31_cable_test_get_pair(int pair)
1771 {
1772 	static const int ethtool_pair[] = {
1773 		ETHTOOL_A_CABLE_PAIR_A,
1774 		ETHTOOL_A_CABLE_PAIR_B,
1775 		ETHTOOL_A_CABLE_PAIR_C,
1776 		ETHTOOL_A_CABLE_PAIR_D,
1777 	};
1778 
1779 	return ethtool_pair[pair];
1780 }
1781 
1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1783 {
1784 	int ret, val;
1785 
1786 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1787 	 * To test each individual cable pair, set the cable pair in the Cable
1788 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1789 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1790 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1791 	 * will self clear when the test is concluded.
1792 	 */
1793 	ret = phy_write(phydev, KSZ9x31_LMD,
1794 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1795 	if (ret)
1796 		return ret;
1797 
1798 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1799 	if (ret)
1800 		return ret;
1801 
1802 	val = phy_read(phydev, KSZ9x31_LMD);
1803 	if (val < 0)
1804 		return val;
1805 
1806 	if (ksz9x31_cable_test_failed(val))
1807 		return -EAGAIN;
1808 
1809 	ret = ethnl_cable_test_result(phydev,
1810 				      ksz9x31_cable_test_get_pair(pair),
1811 				      ksz9x31_cable_test_result_trans(val));
1812 	if (ret)
1813 		return ret;
1814 
1815 	if (!ksz9x31_cable_test_fault_length_valid(val))
1816 		return 0;
1817 
1818 	return ethnl_cable_test_fault_length(phydev,
1819 					     ksz9x31_cable_test_get_pair(pair),
1820 					     ksz9x31_cable_test_fault_length(phydev, val));
1821 }
1822 
1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1824 					 bool *finished)
1825 {
1826 	struct kszphy_priv *priv = phydev->priv;
1827 	unsigned long pair_mask;
1828 	int retries = 20;
1829 	int pair, ret, rv;
1830 
1831 	*finished = false;
1832 
1833 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1834 			      phydev->supported) ||
1835 	    linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1836 			      phydev->supported))
1837 		pair_mask = 0xf; /* All pairs */
1838 	else
1839 		pair_mask = 0x3; /* Pairs A and B only */
1840 
1841 	/* Try harder if link partner is active */
1842 	while (pair_mask && retries--) {
1843 		for_each_set_bit(pair, &pair_mask, 4) {
1844 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1845 			if (ret == -EAGAIN)
1846 				continue;
1847 			if (ret < 0)
1848 				return ret;
1849 			clear_bit(pair, &pair_mask);
1850 		}
1851 		/* If link partner is in autonegotiation mode it will send 2ms
1852 		 * of FLPs with at least 6ms of silence.
1853 		 * Add 2ms sleep to have better chances to hit this silence.
1854 		 */
1855 		if (pair_mask)
1856 			usleep_range(2000, 3000);
1857 	}
1858 
1859 	/* Report remaining unfinished pair result as unknown. */
1860 	for_each_set_bit(pair, &pair_mask, 4) {
1861 		ret = ethnl_cable_test_result(phydev,
1862 					      ksz9x31_cable_test_get_pair(pair),
1863 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1864 	}
1865 
1866 	*finished = true;
1867 
1868 	/* Restore cached bits from before LinkMD got started. */
1869 	rv = phy_modify(phydev, MII_CTRL1000,
1870 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1871 			priv->vct_ctrl1000);
1872 	if (rv)
1873 		return rv;
1874 
1875 	return ret;
1876 }
1877 
1878 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1879 {
1880 	return 0;
1881 }
1882 
1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1884 {
1885 	u16 val;
1886 
1887 	switch (ctrl) {
1888 	case ETH_TP_MDI:
1889 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1890 		break;
1891 	case ETH_TP_MDI_X:
1892 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1893 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1894 		 * sheet seems to be missing:
1895 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1896 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1897 		 */
1898 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1899 		break;
1900 	case ETH_TP_MDI_AUTO:
1901 		val = 0;
1902 		break;
1903 	default:
1904 		return 0;
1905 	}
1906 
1907 	return phy_modify(phydev, MII_BMCR,
1908 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1909 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1910 			  KSZ886X_BMCR_HP_MDIX | val);
1911 }
1912 
1913 static int ksz886x_config_aneg(struct phy_device *phydev)
1914 {
1915 	int ret;
1916 
1917 	ret = genphy_config_aneg(phydev);
1918 	if (ret)
1919 		return ret;
1920 
1921 	if (phydev->autoneg != AUTONEG_ENABLE) {
1922 		/* When autonegotation is disabled, we need to manually force
1923 		 * the link state. If we don't do this, the PHY will keep
1924 		 * sending Fast Link Pulses (FLPs) which are part of the
1925 		 * autonegotiation process. This is not desired when
1926 		 * autonegotiation is off.
1927 		 */
1928 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1929 				   KSZ886X_CTRL_FORCE_LINK);
1930 		if (ret)
1931 			return ret;
1932 	} else {
1933 		/* If we had previously forced the link state, we need to
1934 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1935 		 * will not perform autonegotiation.
1936 		 */
1937 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1938 				     KSZ886X_CTRL_FORCE_LINK);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 
1943 	/* The MDI-X configuration is automatically changed by the PHY after
1944 	 * switching from autoneg off to on. So, take MDI-X configuration under
1945 	 * own control and set it after autoneg configuration was done.
1946 	 */
1947 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1948 }
1949 
1950 static int ksz886x_mdix_update(struct phy_device *phydev)
1951 {
1952 	int ret;
1953 
1954 	ret = phy_read(phydev, MII_BMCR);
1955 	if (ret < 0)
1956 		return ret;
1957 
1958 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1959 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1960 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1961 		else
1962 			phydev->mdix_ctrl = ETH_TP_MDI;
1963 	} else {
1964 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1965 	}
1966 
1967 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1968 	if (ret < 0)
1969 		return ret;
1970 
1971 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1972 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1973 		phydev->mdix = ETH_TP_MDI_X;
1974 	else
1975 		phydev->mdix = ETH_TP_MDI;
1976 
1977 	return 0;
1978 }
1979 
1980 static int ksz886x_read_status(struct phy_device *phydev)
1981 {
1982 	int ret;
1983 
1984 	ret = ksz886x_mdix_update(phydev);
1985 	if (ret < 0)
1986 		return ret;
1987 
1988 	return genphy_read_status(phydev);
1989 }
1990 
1991 static int ksz9477_mdix_update(struct phy_device *phydev)
1992 {
1993 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO)
1994 		phydev->mdix = phydev->mdix_ctrl;
1995 	else
1996 		phydev->mdix = ETH_TP_MDI_INVALID;
1997 
1998 	return 0;
1999 }
2000 
2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev)
2002 {
2003 	int val;
2004 
2005 	val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
2006 	if (val < 0)
2007 		return val;
2008 
2009 	if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF))
2010 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
2011 	else if (val & MII_KSZ9131_AUTO_MDI_SET)
2012 		phydev->mdix_ctrl = ETH_TP_MDI;
2013 	else
2014 		phydev->mdix_ctrl = ETH_TP_MDI_X;
2015 
2016 	return 0;
2017 }
2018 
2019 static int ksz9477_read_status(struct phy_device *phydev)
2020 {
2021 	int ret;
2022 
2023 	ret = ksz9477_mdix_update(phydev);
2024 	if (ret)
2025 		return ret;
2026 
2027 	return genphy_read_status(phydev);
2028 }
2029 
2030 static int ksz9477_config_aneg(struct phy_device *phydev)
2031 {
2032 	int ret;
2033 
2034 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
2035 	if (ret)
2036 		return ret;
2037 
2038 	return genphy_config_aneg(phydev);
2039 }
2040 
2041 struct ksz9477_errata_write {
2042 	u8 dev_addr;
2043 	u8 reg_addr;
2044 	u16 val;
2045 };
2046 
2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
2048 	 /* Register settings are needed to improve PHY receive performance */
2049 	{0x01, 0x6f, 0xdd0b},
2050 	{0x01, 0x8f, 0x6032},
2051 	{0x01, 0x9d, 0x248c},
2052 	{0x01, 0x75, 0x0060},
2053 	{0x01, 0xd3, 0x7777},
2054 	{0x1c, 0x06, 0x3008},
2055 	{0x1c, 0x08, 0x2000},
2056 
2057 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
2058 	{0x1c, 0x04, 0x00d0},
2059 
2060 	/* Register settings are required to meet data sheet supply current specifications */
2061 	{0x1c, 0x13, 0x6eff},
2062 	{0x1c, 0x14, 0xe6ff},
2063 	{0x1c, 0x15, 0x6eff},
2064 	{0x1c, 0x16, 0xe6ff},
2065 	{0x1c, 0x17, 0x00ff},
2066 	{0x1c, 0x18, 0x43ff},
2067 	{0x1c, 0x19, 0xc3ff},
2068 	{0x1c, 0x1a, 0x6fff},
2069 	{0x1c, 0x1b, 0x07ff},
2070 	{0x1c, 0x1c, 0x0fff},
2071 	{0x1c, 0x1d, 0xe7ff},
2072 	{0x1c, 0x1e, 0xefff},
2073 	{0x1c, 0x20, 0xeeee},
2074 };
2075 
2076 static int ksz9477_phy_errata(struct phy_device *phydev)
2077 {
2078 	int err;
2079 	int i;
2080 
2081 	/* Apply PHY settings to address errata listed in
2082 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
2083 	 * Silicon Errata and Data Sheet Clarification documents.
2084 	 *
2085 	 * Document notes: Before configuring the PHY MMD registers, it is
2086 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
2087 	 * disabled by writing to register 0xN100-0xN101. After writing the
2088 	 * MMD registers, and after all errata workarounds that involve PHY
2089 	 * register settings, write register 0xN100-0xN101 again to enable
2090 	 * and restart auto-negotiation.
2091 	 */
2092 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2093 	if (err)
2094 		return err;
2095 
2096 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2097 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2098 
2099 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2100 		if (err)
2101 			return err;
2102 	}
2103 
2104 	err = genphy_restart_aneg(phydev);
2105 	if (err)
2106 		return err;
2107 
2108 	return err;
2109 }
2110 
2111 static int ksz9477_config_init(struct phy_device *phydev)
2112 {
2113 	int err;
2114 
2115 	/* Only KSZ9897 family of switches needs this fix. */
2116 	if ((phydev->phy_id & 0xf) == 1) {
2117 		err = ksz9477_phy_errata(phydev);
2118 		if (err)
2119 			return err;
2120 	}
2121 
2122 	/* Read initial MDI-X config state. So, we do not need to poll it
2123 	 * later on.
2124 	 */
2125 	err = ksz9477_read_mdix_ctrl(phydev);
2126 	if (err)
2127 		return err;
2128 
2129 	return kszphy_config_init(phydev);
2130 }
2131 
2132 static int kszphy_get_sset_count(struct phy_device *phydev)
2133 {
2134 	return ARRAY_SIZE(kszphy_hw_stats);
2135 }
2136 
2137 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2138 {
2139 	int i;
2140 
2141 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2142 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2143 }
2144 
2145 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2146 {
2147 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2148 	struct kszphy_priv *priv = phydev->priv;
2149 	int val;
2150 	u64 ret;
2151 
2152 	val = phy_read(phydev, stat.reg);
2153 	if (val < 0) {
2154 		ret = U64_MAX;
2155 	} else {
2156 		val = val & ((1 << stat.bits) - 1);
2157 		priv->stats[i] += val;
2158 		ret = priv->stats[i];
2159 	}
2160 
2161 	return ret;
2162 }
2163 
2164 static void kszphy_get_stats(struct phy_device *phydev,
2165 			     struct ethtool_stats *stats, u64 *data)
2166 {
2167 	int i;
2168 
2169 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2170 		data[i] = kszphy_get_stat(phydev, i);
2171 }
2172 
2173 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313,
2174  * etc. The counter is incremented when the PHY receives a frame with one or
2175  * more symbol errors. The counter is cleared when the register is read.
2176  */
2177 #define MII_KSZ9477_PHY_RXER_COUNTER	0x15
2178 
2179 static int kszphy_update_stats(struct phy_device *phydev)
2180 {
2181 	struct kszphy_priv *priv = phydev->priv;
2182 	int ret;
2183 
2184 	ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER);
2185 	if (ret < 0)
2186 		return ret;
2187 
2188 	priv->phy_stats.rx_err_pkt_cnt += ret;
2189 
2190 	return 0;
2191 }
2192 
2193 static void kszphy_get_phy_stats(struct phy_device *phydev,
2194 				 struct ethtool_eth_phy_stats *eth_stats,
2195 				 struct ethtool_phy_stats *stats)
2196 {
2197 	struct kszphy_priv *priv = phydev->priv;
2198 
2199 	stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt;
2200 }
2201 
2202 /* Base register for Signal Quality Indicator (SQI) - Channel A
2203  *
2204  * MMD Address: MDIO_MMD_PMAPMD (0x01)
2205  * Register:    0xAC (Channel A)
2206  * Each channel (pair) has its own register:
2207  *   Channel A: 0xAC
2208  *   Channel B: 0xAD
2209  *   Channel C: 0xAE
2210  *   Channel D: 0xAF
2211  */
2212 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A	0xac
2213 
2214 /* SQI field mask for bits [14:8]
2215  *
2216  * SQI indicates relative quality of the signal.
2217  * A lower value indicates better signal quality.
2218  */
2219 #define KSZ9477_MMD_SQI_MASK			GENMASK(14, 8)
2220 
2221 #define KSZ9477_MAX_CHANNELS			4
2222 #define KSZ9477_SQI_MAX				7
2223 
2224 /* Number of SQI samples to average for a stable result.
2225  *
2226  * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2227  * For noisy environments, a minimum of 30–50 readings is recommended.
2228  */
2229 #define KSZ9477_SQI_SAMPLE_COUNT		40
2230 
2231 /* The hardware SQI register provides a raw value from 0-127, where a lower
2232  * value indicates better signal quality. However, empirical testing has
2233  * shown that only the 0-7 range is relevant for a functional link. A raw
2234  * value of 8 or higher was measured directly before link drop. This aligns
2235  * with the OPEN Alliance recommendation that SQI=0 should represent the
2236  * pre-failure state.
2237  *
2238  * This table provides a non-linear mapping from the useful raw hardware
2239  * values (0-7) to the standard 0-7 SQI scale, where higher is better.
2240  */
2241 static const u8 ksz_sqi_mapping[] = {
2242 	7, /* raw 0 -> SQI 7 */
2243 	7, /* raw 1 -> SQI 7 */
2244 	6, /* raw 2 -> SQI 6 */
2245 	5, /* raw 3 -> SQI 5 */
2246 	4, /* raw 4 -> SQI 4 */
2247 	3, /* raw 5 -> SQI 3 */
2248 	2, /* raw 6 -> SQI 2 */
2249 	1, /* raw 7 -> SQI 1 */
2250 };
2251 
2252 /**
2253  * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI)
2254  * @phydev: the PHY device
2255  *
2256  * This function reads and processes the raw Signal Quality Index from the
2257  * PHY. Based on empirical testing, a raw value of 8 or higher indicates a
2258  * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are
2259  * mapped to the standard 0-7 SQI scale via a lookup table.
2260  *
2261  * Return: SQI value (0–7), or a negative errno on failure.
2262  */
2263 static int kszphy_get_sqi(struct phy_device *phydev)
2264 {
2265 	int sum[KSZ9477_MAX_CHANNELS] = { 0 };
2266 	int worst_sqi = KSZ9477_SQI_MAX;
2267 	int i, val, raw_sqi, ch;
2268 	u8 channels;
2269 
2270 	/* Determine applicable channels based on link speed */
2271 	if (phydev->speed == SPEED_1000)
2272 		channels = 4;
2273 	else if (phydev->speed == SPEED_100)
2274 		channels = 1;
2275 	else
2276 		return -EOPNOTSUPP;
2277 
2278 	/* Sample and accumulate SQI readings for each pair (currently only one).
2279 	 *
2280 	 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2281 	 * - The SQI register is updated every 2 µs.
2282 	 * - Values may fluctuate significantly, even in low-noise environments.
2283 	 * - For reliable estimation, average a minimum of 30–50 samples
2284 	 *   (recommended for noisy environments)
2285 	 * - In noisy environments, individual readings are highly unreliable.
2286 	 *
2287 	 * We use 40 samples per pair with a delay of 3 µs between each
2288 	 * read to ensure new values are captured (2 µs update interval).
2289 	 */
2290 	for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) {
2291 		for (ch = 0; ch < channels; ch++) {
2292 			val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2293 					   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch);
2294 			if (val < 0)
2295 				return val;
2296 
2297 			raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val);
2298 			sum[ch] += raw_sqi;
2299 
2300 			/* We communicate with the PHY via MDIO via SPI or
2301 			 * I2C, which is relatively slow. At least slower than
2302 			 * the update interval of the SQI register.
2303 			 * So, we can skip the delay between reads.
2304 			 */
2305 		}
2306 	}
2307 
2308 	/* Calculate average for each channel and find the worst SQI */
2309 	for (ch = 0; ch < channels; ch++) {
2310 		int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT;
2311 		int mapped_sqi;
2312 
2313 		/* Handle the pre-fail/failed state first. */
2314 		if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping))
2315 			mapped_sqi = 0;
2316 		else
2317 			/* Use the lookup table for the good signal range. */
2318 			mapped_sqi = ksz_sqi_mapping[avg_raw_sqi];
2319 
2320 		if (mapped_sqi < worst_sqi)
2321 			worst_sqi = mapped_sqi;
2322 	}
2323 
2324 	return worst_sqi;
2325 }
2326 
2327 static int kszphy_get_sqi_max(struct phy_device *phydev)
2328 {
2329 	return KSZ9477_SQI_MAX;
2330 }
2331 
2332 static void kszphy_enable_clk(struct phy_device *phydev)
2333 {
2334 	struct kszphy_priv *priv = phydev->priv;
2335 
2336 	if (!priv->clk_enable && priv->clk) {
2337 		clk_prepare_enable(priv->clk);
2338 		priv->clk_enable = true;
2339 	}
2340 }
2341 
2342 static void kszphy_disable_clk(struct phy_device *phydev)
2343 {
2344 	struct kszphy_priv *priv = phydev->priv;
2345 
2346 	if (priv->clk_enable && priv->clk) {
2347 		clk_disable_unprepare(priv->clk);
2348 		priv->clk_enable = false;
2349 	}
2350 }
2351 
2352 static int kszphy_generic_resume(struct phy_device *phydev)
2353 {
2354 	kszphy_enable_clk(phydev);
2355 
2356 	return genphy_resume(phydev);
2357 }
2358 
2359 static int kszphy_generic_suspend(struct phy_device *phydev)
2360 {
2361 	int ret;
2362 
2363 	ret = genphy_suspend(phydev);
2364 	if (ret)
2365 		return ret;
2366 
2367 	kszphy_disable_clk(phydev);
2368 
2369 	return 0;
2370 }
2371 
2372 static int kszphy_suspend(struct phy_device *phydev)
2373 {
2374 	/* Disable PHY Interrupts */
2375 	if (phy_interrupt_is_valid(phydev)) {
2376 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2377 		if (phydev->drv->config_intr)
2378 			phydev->drv->config_intr(phydev);
2379 	}
2380 
2381 	return kszphy_generic_suspend(phydev);
2382 }
2383 
2384 static void kszphy_parse_led_mode(struct phy_device *phydev)
2385 {
2386 	const struct kszphy_type *type = phydev->drv->driver_data;
2387 	const struct device_node *np = phydev->mdio.dev.of_node;
2388 	struct kszphy_priv *priv = phydev->priv;
2389 	int ret;
2390 
2391 	if (type && type->led_mode_reg) {
2392 		ret = of_property_read_u32(np, "micrel,led-mode",
2393 					   &priv->led_mode);
2394 
2395 		if (ret)
2396 			priv->led_mode = -1;
2397 
2398 		if (priv->led_mode > 3) {
2399 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2400 				   priv->led_mode);
2401 			priv->led_mode = -1;
2402 		}
2403 	} else {
2404 		priv->led_mode = -1;
2405 	}
2406 }
2407 
2408 static int kszphy_resume(struct phy_device *phydev)
2409 {
2410 	int ret;
2411 
2412 	ret = kszphy_generic_resume(phydev);
2413 	if (ret)
2414 		return ret;
2415 
2416 	/* After switching from power-down to normal mode, an internal global
2417 	 * reset is automatically generated. Wait a minimum of 1 ms before
2418 	 * read/write access to the PHY registers.
2419 	 */
2420 	usleep_range(1000, 2000);
2421 
2422 	ret = kszphy_config_reset(phydev);
2423 	if (ret)
2424 		return ret;
2425 
2426 	/* Enable PHY Interrupts */
2427 	if (phy_interrupt_is_valid(phydev)) {
2428 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2429 		if (phydev->drv->config_intr)
2430 			phydev->drv->config_intr(phydev);
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 /* Because of errata DS80000700A, receiver error following software
2437  * power down. Suspend and resume callbacks only disable and enable
2438  * external rmii reference clock.
2439  */
2440 static int ksz8041_resume(struct phy_device *phydev)
2441 {
2442 	kszphy_enable_clk(phydev);
2443 
2444 	return 0;
2445 }
2446 
2447 static int ksz8041_suspend(struct phy_device *phydev)
2448 {
2449 	kszphy_disable_clk(phydev);
2450 
2451 	return 0;
2452 }
2453 
2454 static int ksz9477_resume(struct phy_device *phydev)
2455 {
2456 	int ret;
2457 
2458 	/* No need to initialize registers if not powered down. */
2459 	ret = phy_read(phydev, MII_BMCR);
2460 	if (ret < 0)
2461 		return ret;
2462 	if (!(ret & BMCR_PDOWN))
2463 		return 0;
2464 
2465 	genphy_resume(phydev);
2466 
2467 	/* After switching from power-down to normal mode, an internal global
2468 	 * reset is automatically generated. Wait a minimum of 1 ms before
2469 	 * read/write access to the PHY registers.
2470 	 */
2471 	usleep_range(1000, 2000);
2472 
2473 	/* Only KSZ9897 family of switches needs this fix. */
2474 	if ((phydev->phy_id & 0xf) == 1) {
2475 		ret = ksz9477_phy_errata(phydev);
2476 		if (ret)
2477 			return ret;
2478 	}
2479 
2480 	/* Enable PHY Interrupts */
2481 	if (phy_interrupt_is_valid(phydev)) {
2482 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2483 		if (phydev->drv->config_intr)
2484 			phydev->drv->config_intr(phydev);
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 static int ksz8061_resume(struct phy_device *phydev)
2491 {
2492 	int ret;
2493 
2494 	/* This function can be called twice when the Ethernet device is on. */
2495 	ret = phy_read(phydev, MII_BMCR);
2496 	if (ret < 0)
2497 		return ret;
2498 	if (!(ret & BMCR_PDOWN))
2499 		return 0;
2500 
2501 	ret = kszphy_generic_resume(phydev);
2502 	if (ret)
2503 		return ret;
2504 
2505 	usleep_range(1000, 2000);
2506 
2507 	/* Re-program the value after chip is reset. */
2508 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2509 	if (ret)
2510 		return ret;
2511 
2512 	/* Enable PHY Interrupts */
2513 	if (phy_interrupt_is_valid(phydev)) {
2514 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2515 		if (phydev->drv->config_intr)
2516 			phydev->drv->config_intr(phydev);
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static int ksz8061_suspend(struct phy_device *phydev)
2523 {
2524 	return kszphy_suspend(phydev);
2525 }
2526 
2527 static int kszphy_probe(struct phy_device *phydev)
2528 {
2529 	const struct kszphy_type *type = phydev->drv->driver_data;
2530 	const struct device_node *np = phydev->mdio.dev.of_node;
2531 	struct kszphy_priv *priv;
2532 	struct clk *clk;
2533 
2534 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2535 	if (!priv)
2536 		return -ENOMEM;
2537 
2538 	phydev->priv = priv;
2539 
2540 	priv->type = type;
2541 
2542 	kszphy_parse_led_mode(phydev);
2543 
2544 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2545 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2546 	if (!IS_ERR_OR_NULL(clk)) {
2547 		unsigned long rate = clk_get_rate(clk);
2548 		bool rmii_ref_clk_sel_25_mhz;
2549 
2550 		if (type)
2551 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2552 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2553 				"micrel,rmii-reference-clock-select-25-mhz");
2554 
2555 		if (rate > 24500000 && rate < 25500000) {
2556 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2557 		} else if (rate > 49500000 && rate < 50500000) {
2558 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2559 		} else {
2560 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2561 				   rate);
2562 			return -EINVAL;
2563 		}
2564 	} else if (!clk) {
2565 		/* unnamed clock from the generic ethernet-phy binding */
2566 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2567 	}
2568 
2569 	if (IS_ERR(clk))
2570 		return PTR_ERR(clk);
2571 
2572 	clk_disable_unprepare(clk);
2573 	priv->clk = clk;
2574 
2575 	if (ksz8041_fiber_mode(phydev))
2576 		phydev->port = PORT_FIBRE;
2577 
2578 	/* Support legacy board-file configuration */
2579 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2580 		priv->rmii_ref_clk_sel = true;
2581 		priv->rmii_ref_clk_sel_val = true;
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static int lan8814_cable_test_start(struct phy_device *phydev)
2588 {
2589 	/* If autoneg is enabled, we won't be able to test cross pair
2590 	 * short. In this case, the PHY will "detect" a link and
2591 	 * confuse the internal state machine - disable auto neg here.
2592 	 * Set the speed to 1000mbit and full duplex.
2593 	 */
2594 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2595 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2596 }
2597 
2598 static int ksz886x_cable_test_start(struct phy_device *phydev)
2599 {
2600 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2601 		return -EOPNOTSUPP;
2602 
2603 	/* If autoneg is enabled, we won't be able to test cross pair
2604 	 * short. In this case, the PHY will "detect" a link and
2605 	 * confuse the internal state machine - disable auto neg here.
2606 	 * If autoneg is disabled, we should set the speed to 10mbit.
2607 	 */
2608 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2609 }
2610 
2611 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2612 {
2613 	switch (FIELD_GET(mask, status)) {
2614 	case KSZ8081_LMD_STAT_NORMAL:
2615 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2616 	case KSZ8081_LMD_STAT_SHORT:
2617 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2618 	case KSZ8081_LMD_STAT_OPEN:
2619 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2620 	case KSZ8081_LMD_STAT_FAIL:
2621 		fallthrough;
2622 	default:
2623 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2624 	}
2625 }
2626 
2627 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2628 {
2629 	return FIELD_GET(mask, status) ==
2630 		KSZ8081_LMD_STAT_FAIL;
2631 }
2632 
2633 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2634 {
2635 	switch (FIELD_GET(mask, status)) {
2636 	case KSZ8081_LMD_STAT_OPEN:
2637 		fallthrough;
2638 	case KSZ8081_LMD_STAT_SHORT:
2639 		return true;
2640 	}
2641 	return false;
2642 }
2643 
2644 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2645 							   u16 status, u16 data_mask)
2646 {
2647 	int dt;
2648 
2649 	/* According to the data sheet the distance to the fault is
2650 	 * DELTA_TIME * 0.4 meters for ksz phys.
2651 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2652 	 */
2653 	dt = FIELD_GET(data_mask, status);
2654 
2655 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2656 		return ((dt - 22) * 800) / 10;
2657 	else
2658 		return (dt * 400) / 10;
2659 }
2660 
2661 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2662 {
2663 	const struct kszphy_type *type = phydev->drv->driver_data;
2664 	int val, ret;
2665 
2666 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2667 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2668 				    30000, 100000, true);
2669 
2670 	return ret < 0 ? ret : 0;
2671 }
2672 
2673 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2674 {
2675 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2676 					    ETHTOOL_A_CABLE_PAIR_B,
2677 					    ETHTOOL_A_CABLE_PAIR_C,
2678 					    ETHTOOL_A_CABLE_PAIR_D,
2679 					  };
2680 	u32 fault_length;
2681 	int ret;
2682 	int val;
2683 
2684 	val = KSZ8081_LMD_ENABLE_TEST;
2685 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2686 
2687 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2688 	if (ret < 0)
2689 		return ret;
2690 
2691 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2692 	if (ret)
2693 		return ret;
2694 
2695 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2696 	if (val < 0)
2697 		return val;
2698 
2699 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2700 		return -EAGAIN;
2701 
2702 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2703 				      ksz886x_cable_test_result_trans(val,
2704 								      LAN8814_CABLE_DIAG_STAT_MASK
2705 								      ));
2706 	if (ret)
2707 		return ret;
2708 
2709 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2710 		return 0;
2711 
2712 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2713 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2714 
2715 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2716 }
2717 
2718 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2719 {
2720 	static const int ethtool_pair[] = {
2721 		ETHTOOL_A_CABLE_PAIR_A,
2722 		ETHTOOL_A_CABLE_PAIR_B,
2723 	};
2724 	int ret, val, mdix;
2725 	u32 fault_length;
2726 
2727 	/* There is no way to choice the pair, like we do one ksz9031.
2728 	 * We can workaround this limitation by using the MDI-X functionality.
2729 	 */
2730 	if (pair == 0)
2731 		mdix = ETH_TP_MDI;
2732 	else
2733 		mdix = ETH_TP_MDI_X;
2734 
2735 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2736 	case PHY_ID_KSZ8081:
2737 		ret = ksz8081_config_mdix(phydev, mdix);
2738 		break;
2739 	case PHY_ID_KSZ886X:
2740 		ret = ksz886x_config_mdix(phydev, mdix);
2741 		break;
2742 	default:
2743 		ret = -ENODEV;
2744 	}
2745 
2746 	if (ret)
2747 		return ret;
2748 
2749 	/* Now we are ready to fire. This command will send a 100ns pulse
2750 	 * to the pair.
2751 	 */
2752 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2753 	if (ret)
2754 		return ret;
2755 
2756 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2757 	if (ret)
2758 		return ret;
2759 
2760 	val = phy_read(phydev, KSZ8081_LMD);
2761 	if (val < 0)
2762 		return val;
2763 
2764 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2765 		return -EAGAIN;
2766 
2767 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2768 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2769 	if (ret)
2770 		return ret;
2771 
2772 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2773 		return 0;
2774 
2775 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2776 
2777 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2778 }
2779 
2780 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2781 					 bool *finished)
2782 {
2783 	const struct kszphy_type *type = phydev->drv->driver_data;
2784 	unsigned long pair_mask = type->pair_mask;
2785 	int retries = 20;
2786 	int ret = 0;
2787 	int pair;
2788 
2789 	*finished = false;
2790 
2791 	/* Try harder if link partner is active */
2792 	while (pair_mask && retries--) {
2793 		for_each_set_bit(pair, &pair_mask, 4) {
2794 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2795 				ret = lan8814_cable_test_one_pair(phydev, pair);
2796 			else
2797 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2798 			if (ret == -EAGAIN)
2799 				continue;
2800 			if (ret < 0)
2801 				return ret;
2802 			clear_bit(pair, &pair_mask);
2803 		}
2804 		/* If link partner is in autonegotiation mode it will send 2ms
2805 		 * of FLPs with at least 6ms of silence.
2806 		 * Add 2ms sleep to have better chances to hit this silence.
2807 		 */
2808 		if (pair_mask)
2809 			msleep(2);
2810 	}
2811 
2812 	*finished = true;
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  * LAN8814_PAGE_PCS - Selects Extended Page 0.
2819  *
2820  * This page contains timers used for auto-negotiation, debug registers and
2821  * register to configure fast link failure.
2822  */
2823 #define LAN8814_PAGE_PCS 0
2824 
2825 /**
2826  * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1.
2827  *
2828  * This page appears to control the Analog Front-End (AFE) and Physical
2829  * Medium Attachment (PMA) layers. It is used to access registers like
2830  * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY.
2831  */
2832 #define LAN8814_PAGE_AFE_PMA 1
2833 
2834 /**
2835  * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2.
2836  *
2837  * This page seems dedicated to the Physical Coding Sublayer (PCS) and other
2838  * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE
2839  * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics
2840  * and self-test counters in the LAN8842.
2841  */
2842 #define LAN8814_PAGE_PCS_DIGITAL 2
2843 
2844 /**
2845  * LAN8814_PAGE_EEE - Selects Extended Page 3.
2846  *
2847  * This page contains EEE registers
2848  */
2849 #define LAN8814_PAGE_EEE 3
2850 
2851 /**
2852  * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4.
2853  *
2854  * This page contains device-common registers that affect the entire chip.
2855  * It includes controls for chip-level resets, strap status, GPIO,
2856  * QSGMII, the shared 1588 PTP block, and the PVT monitor.
2857  */
2858 #define LAN8814_PAGE_COMMON_REGS 4
2859 
2860 /**
2861  * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5.
2862  *
2863  * This page contains port-specific registers that must be accessed
2864  * on a per-port basis. It includes controls for port LEDs, QSGMII PCS,
2865  * rate adaptation FIFOs, and the per-port 1588 TSU block.
2866  */
2867 #define LAN8814_PAGE_PORT_REGS 5
2868 
2869 /**
2870  * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28.
2871  *
2872  * This page contains analog control registers and power mode registers.
2873  */
2874 #define LAN8814_PAGE_POWER_REGS 28
2875 
2876 /**
2877  * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31.
2878  *
2879  * This page appears to hold fundamental system or global controls. In the
2880  * driver, it is used by the related LAN8804 to access the
2881  * LAN8814_CLOCK_MANAGEMENT register.
2882  */
2883 #define LAN8814_PAGE_SYSTEM_CTRL 31
2884 
2885 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2886 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2887 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2888 
2889 #define LAN8814_QSGMII_SOFT_RESET			0x43
2890 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2891 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2892 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2893 #define LAN8814_ALIGN_SWAP				0x4a
2894 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2895 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2896 
2897 #define LAN8804_ALIGN_SWAP				0x4a
2898 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2899 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2900 #define LAN8814_CLOCK_MANAGEMENT			0xd
2901 #define LAN8814_LINK_QUALITY				0x8e
2902 
2903 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2904 {
2905 	int data;
2906 
2907 	phy_lock_mdio_bus(phydev);
2908 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2909 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2910 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2911 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2912 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2913 	phy_unlock_mdio_bus(phydev);
2914 
2915 	return data;
2916 }
2917 
2918 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2919 				 u16 val)
2920 {
2921 	phy_lock_mdio_bus(phydev);
2922 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2923 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2924 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2925 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2926 
2927 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2928 	if (val != 0)
2929 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2930 			   val);
2931 	phy_unlock_mdio_bus(phydev);
2932 	return val;
2933 }
2934 
2935 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr,
2936 				  u16 mask, u16 set)
2937 {
2938 	int ret;
2939 
2940 	phy_lock_mdio_bus(phydev);
2941 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2942 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2943 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2944 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2945 	ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA,
2946 				   mask, set);
2947 	phy_unlock_mdio_bus(phydev);
2948 
2949 	if (ret < 0)
2950 		phydev_err(phydev, "__phy_modify_changed() failed: %pe\n",
2951 			   ERR_PTR(ret));
2952 
2953 	return ret;
2954 }
2955 
2956 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2957 {
2958 	u16 val = 0;
2959 
2960 	if (enable)
2961 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2962 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2963 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2964 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2965 
2966 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2967 				     PTP_TSU_INT_EN, val);
2968 }
2969 
2970 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2971 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2972 {
2973 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2974 					PTP_RX_INGRESS_SEC_HI);
2975 	*seconds = (*seconds << 16) |
2976 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2977 					PTP_RX_INGRESS_SEC_LO);
2978 
2979 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2980 					     PTP_RX_INGRESS_NS_HI);
2981 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2982 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2983 					     PTP_RX_INGRESS_NS_LO);
2984 
2985 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2986 				       PTP_RX_MSG_HEADER2);
2987 }
2988 
2989 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2990 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2991 {
2992 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2993 					PTP_TX_EGRESS_SEC_HI);
2994 	*seconds = *seconds << 16 |
2995 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2996 					PTP_TX_EGRESS_SEC_LO);
2997 
2998 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2999 					     PTP_TX_EGRESS_NS_HI);
3000 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
3001 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3002 					     PTP_TX_EGRESS_NS_LO);
3003 
3004 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3005 				       PTP_TX_MSG_HEADER2);
3006 }
3007 
3008 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
3009 {
3010 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3011 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
3012 
3013 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3014 				SOF_TIMESTAMPING_RX_HARDWARE |
3015 				SOF_TIMESTAMPING_RAW_HARDWARE;
3016 
3017 	info->phc_index = ptp_clock_index(shared->ptp_clock);
3018 
3019 	info->tx_types =
3020 		(1 << HWTSTAMP_TX_OFF) |
3021 		(1 << HWTSTAMP_TX_ON) |
3022 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
3023 
3024 	info->rx_filters =
3025 		(1 << HWTSTAMP_FILTER_NONE) |
3026 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
3027 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3028 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3029 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3030 
3031 	return 0;
3032 }
3033 
3034 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
3035 {
3036 	int i;
3037 
3038 	for (i = 0; i < FIFO_SIZE; ++i)
3039 		lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3040 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
3041 
3042 	/* Read to clear overflow status bit */
3043 	lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS);
3044 }
3045 
3046 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
3047 			    struct kernel_hwtstamp_config *config,
3048 			    struct netlink_ext_ack *extack)
3049 {
3050 	struct kszphy_ptp_priv *ptp_priv =
3051 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3052 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3053 	int txcfg = 0, rxcfg = 0;
3054 	int pkt_ts_enable;
3055 
3056 	ptp_priv->hwts_tx_type = config->tx_type;
3057 	ptp_priv->rx_filter = config->rx_filter;
3058 
3059 	switch (config->rx_filter) {
3060 	case HWTSTAMP_FILTER_NONE:
3061 		ptp_priv->layer = 0;
3062 		ptp_priv->version = 0;
3063 		break;
3064 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3065 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3066 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3067 		ptp_priv->layer = PTP_CLASS_L4;
3068 		ptp_priv->version = PTP_CLASS_V2;
3069 		break;
3070 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3071 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3072 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3073 		ptp_priv->layer = PTP_CLASS_L2;
3074 		ptp_priv->version = PTP_CLASS_V2;
3075 		break;
3076 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3077 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3078 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3079 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3080 		ptp_priv->version = PTP_CLASS_V2;
3081 		break;
3082 	default:
3083 		return -ERANGE;
3084 	}
3085 
3086 	if (ptp_priv->layer & PTP_CLASS_L2) {
3087 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3088 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3089 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3090 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3091 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3092 	}
3093 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3094 			      PTP_RX_PARSE_CONFIG, rxcfg);
3095 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3096 			      PTP_TX_PARSE_CONFIG, txcfg);
3097 
3098 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3099 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3100 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3101 			      PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3102 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3103 			      PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3104 
3105 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
3106 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3107 				       PTP_TX_MOD,
3108 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3109 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
3110 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
3111 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3112 				       PTP_TX_MOD,
3113 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3114 				       0);
3115 	}
3116 
3117 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
3118 		lan8814_config_ts_intr(ptp_priv->phydev, true);
3119 	else
3120 		lan8814_config_ts_intr(ptp_priv->phydev, false);
3121 
3122 	/* In case of multiple starts and stops, these needs to be cleared */
3123 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3124 		list_del(&rx_ts->list);
3125 		kfree(rx_ts);
3126 	}
3127 	skb_queue_purge(&ptp_priv->rx_queue);
3128 	skb_queue_purge(&ptp_priv->tx_queue);
3129 
3130 	lan8814_flush_fifo(ptp_priv->phydev, false);
3131 	lan8814_flush_fifo(ptp_priv->phydev, true);
3132 
3133 	return 0;
3134 }
3135 
3136 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
3137 			     struct sk_buff *skb, int type)
3138 {
3139 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3140 
3141 	switch (ptp_priv->hwts_tx_type) {
3142 	case HWTSTAMP_TX_ONESTEP_SYNC:
3143 		if (ptp_msg_is_sync(skb, type)) {
3144 			kfree_skb(skb);
3145 			return;
3146 		}
3147 		fallthrough;
3148 	case HWTSTAMP_TX_ON:
3149 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3150 		skb_queue_tail(&ptp_priv->tx_queue, skb);
3151 		break;
3152 	case HWTSTAMP_TX_OFF:
3153 	default:
3154 		kfree_skb(skb);
3155 		break;
3156 	}
3157 }
3158 
3159 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
3160 {
3161 	struct ptp_header *ptp_header;
3162 	u32 type;
3163 
3164 	skb_push(skb, ETH_HLEN);
3165 	type = ptp_classify_raw(skb);
3166 	ptp_header = ptp_parse_header(skb, type);
3167 	skb_pull_inline(skb, ETH_HLEN);
3168 
3169 	if (!ptp_header)
3170 		return false;
3171 
3172 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3173 	return true;
3174 }
3175 
3176 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
3177 				 struct sk_buff *skb)
3178 {
3179 	struct skb_shared_hwtstamps *shhwtstamps;
3180 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3181 	unsigned long flags;
3182 	bool ret = false;
3183 	u16 skb_sig;
3184 
3185 	if (!lan8814_get_sig_rx(skb, &skb_sig))
3186 		return ret;
3187 
3188 	/* Iterate over all RX timestamps and match it with the received skbs */
3189 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3190 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3191 		/* Check if we found the signature we were looking for. */
3192 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3193 			continue;
3194 
3195 		shhwtstamps = skb_hwtstamps(skb);
3196 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3197 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
3198 						  rx_ts->nsec);
3199 		list_del(&rx_ts->list);
3200 		kfree(rx_ts);
3201 
3202 		ret = true;
3203 		break;
3204 	}
3205 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3206 
3207 	if (ret)
3208 		netif_rx(skb);
3209 	return ret;
3210 }
3211 
3212 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
3213 {
3214 	struct kszphy_ptp_priv *ptp_priv =
3215 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3216 
3217 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3218 	    type == PTP_CLASS_NONE)
3219 		return false;
3220 
3221 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3222 		return false;
3223 
3224 	/* If we failed to match then add it to the queue for when the timestamp
3225 	 * will come
3226 	 */
3227 	if (!lan8814_match_rx_skb(ptp_priv, skb))
3228 		skb_queue_tail(&ptp_priv->rx_queue, skb);
3229 
3230 	return true;
3231 }
3232 
3233 static void lan8814_ptp_clock_set(struct phy_device *phydev,
3234 				  time64_t sec, u32 nsec)
3235 {
3236 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3237 			      PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
3238 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3239 			      PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
3240 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3241 			      PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
3242 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3243 			      PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
3244 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3245 			      PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
3246 
3247 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3248 			      PTP_CMD_CTL_PTP_CLOCK_LOAD_);
3249 }
3250 
3251 static void lan8814_ptp_clock_get(struct phy_device *phydev,
3252 				  time64_t *sec, u32 *nsec)
3253 {
3254 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3255 			      PTP_CMD_CTL_PTP_CLOCK_READ_);
3256 
3257 	*sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3258 				    PTP_CLOCK_READ_SEC_HI);
3259 	*sec <<= 16;
3260 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3261 				     PTP_CLOCK_READ_SEC_MID);
3262 	*sec <<= 16;
3263 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3264 				     PTP_CLOCK_READ_SEC_LO);
3265 
3266 	*nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3267 				     PTP_CLOCK_READ_NS_HI);
3268 	*nsec <<= 16;
3269 	*nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3270 				      PTP_CLOCK_READ_NS_LO);
3271 }
3272 
3273 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
3274 				   struct timespec64 *ts)
3275 {
3276 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3277 							  ptp_clock_info);
3278 	struct phy_device *phydev = shared->phydev;
3279 	u32 nano_seconds;
3280 	time64_t seconds;
3281 
3282 	mutex_lock(&shared->shared_lock);
3283 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
3284 	mutex_unlock(&shared->shared_lock);
3285 	ts->tv_sec = seconds;
3286 	ts->tv_nsec = nano_seconds;
3287 
3288 	return 0;
3289 }
3290 
3291 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
3292 				   const struct timespec64 *ts)
3293 {
3294 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3295 							  ptp_clock_info);
3296 	struct phy_device *phydev = shared->phydev;
3297 
3298 	mutex_lock(&shared->shared_lock);
3299 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
3300 	mutex_unlock(&shared->shared_lock);
3301 
3302 	return 0;
3303 }
3304 
3305 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
3306 				   s64 start_sec, u32 start_nsec)
3307 {
3308 	/* Set the start time */
3309 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3310 			      LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
3311 			      lower_16_bits(start_sec));
3312 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3313 			      LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
3314 			      upper_16_bits(start_sec));
3315 
3316 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3317 			      LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
3318 			      lower_16_bits(start_nsec));
3319 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3320 			      LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
3321 			      upper_16_bits(start_nsec) & 0x3fff);
3322 }
3323 
3324 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
3325 {
3326 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
3327 			       sec + LAN8814_BUFFER_TIME, 0);
3328 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
3329 			       sec + LAN8814_BUFFER_TIME, 0);
3330 }
3331 
3332 static void lan8814_ptp_clock_step(struct phy_device *phydev,
3333 				   s64 time_step_ns)
3334 {
3335 	u32 nano_seconds_step;
3336 	u64 abs_time_step_ns;
3337 	time64_t set_seconds;
3338 	u32 nano_seconds;
3339 	u32 remainder;
3340 	s32 seconds;
3341 
3342 	if (time_step_ns >  15000000000LL) {
3343 		/* convert to clock set */
3344 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3345 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
3346 					   &remainder);
3347 		nano_seconds += remainder;
3348 		if (nano_seconds >= 1000000000) {
3349 			set_seconds++;
3350 			nano_seconds -= 1000000000;
3351 		}
3352 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3353 		lan8814_ptp_update_target(phydev, set_seconds);
3354 		return;
3355 	} else if (time_step_ns < -15000000000LL) {
3356 		/* convert to clock set */
3357 		time_step_ns = -time_step_ns;
3358 
3359 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3360 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
3361 					   &remainder);
3362 		nano_seconds_step = remainder;
3363 		if (nano_seconds < nano_seconds_step) {
3364 			set_seconds--;
3365 			nano_seconds += 1000000000;
3366 		}
3367 		nano_seconds -= nano_seconds_step;
3368 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3369 		lan8814_ptp_update_target(phydev, set_seconds);
3370 		return;
3371 	}
3372 
3373 	/* do clock step */
3374 	if (time_step_ns >= 0) {
3375 		abs_time_step_ns = (u64)time_step_ns;
3376 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3377 					   &remainder);
3378 		nano_seconds = remainder;
3379 	} else {
3380 		abs_time_step_ns = (u64)(-time_step_ns);
3381 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3382 			    &remainder));
3383 		nano_seconds = remainder;
3384 		if (nano_seconds > 0) {
3385 			/* subtracting nano seconds is not allowed
3386 			 * convert to subtracting from seconds,
3387 			 * and adding to nanoseconds
3388 			 */
3389 			seconds--;
3390 			nano_seconds = (1000000000 - nano_seconds);
3391 		}
3392 	}
3393 
3394 	if (nano_seconds > 0) {
3395 		/* add 8 ns to cover the likely normal increment */
3396 		nano_seconds += 8;
3397 	}
3398 
3399 	if (nano_seconds >= 1000000000) {
3400 		/* carry into seconds */
3401 		seconds++;
3402 		nano_seconds -= 1000000000;
3403 	}
3404 
3405 	while (seconds) {
3406 		u32 nsec;
3407 
3408 		if (seconds > 0) {
3409 			u32 adjustment_value = (u32)seconds;
3410 			u16 adjustment_value_lo, adjustment_value_hi;
3411 
3412 			if (adjustment_value > 0xF)
3413 				adjustment_value = 0xF;
3414 
3415 			adjustment_value_lo = adjustment_value & 0xffff;
3416 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3417 
3418 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3419 					      PTP_LTC_STEP_ADJ_LO,
3420 					      adjustment_value_lo);
3421 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3422 					      PTP_LTC_STEP_ADJ_HI,
3423 					      PTP_LTC_STEP_ADJ_DIR_ |
3424 					      adjustment_value_hi);
3425 			seconds -= ((s32)adjustment_value);
3426 
3427 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3428 			set_seconds -= adjustment_value;
3429 			lan8814_ptp_update_target(phydev, set_seconds);
3430 		} else {
3431 			u32 adjustment_value = (u32)(-seconds);
3432 			u16 adjustment_value_lo, adjustment_value_hi;
3433 
3434 			if (adjustment_value > 0xF)
3435 				adjustment_value = 0xF;
3436 
3437 			adjustment_value_lo = adjustment_value & 0xffff;
3438 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3439 
3440 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3441 					      PTP_LTC_STEP_ADJ_LO,
3442 					      adjustment_value_lo);
3443 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3444 					      PTP_LTC_STEP_ADJ_HI,
3445 					      adjustment_value_hi);
3446 			seconds += ((s32)adjustment_value);
3447 
3448 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3449 			set_seconds += adjustment_value;
3450 			lan8814_ptp_update_target(phydev, set_seconds);
3451 		}
3452 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3453 				      PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3454 	}
3455 	if (nano_seconds) {
3456 		u16 nano_seconds_lo;
3457 		u16 nano_seconds_hi;
3458 
3459 		nano_seconds_lo = nano_seconds & 0xffff;
3460 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3461 
3462 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3463 				      PTP_LTC_STEP_ADJ_LO,
3464 				      nano_seconds_lo);
3465 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3466 				      PTP_LTC_STEP_ADJ_HI,
3467 				      PTP_LTC_STEP_ADJ_DIR_ |
3468 				      nano_seconds_hi);
3469 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3470 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3471 	}
3472 }
3473 
3474 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3475 {
3476 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3477 							  ptp_clock_info);
3478 	struct phy_device *phydev = shared->phydev;
3479 
3480 	mutex_lock(&shared->shared_lock);
3481 	lan8814_ptp_clock_step(phydev, delta);
3482 	mutex_unlock(&shared->shared_lock);
3483 
3484 	return 0;
3485 }
3486 
3487 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3488 {
3489 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3490 							  ptp_clock_info);
3491 	struct phy_device *phydev = shared->phydev;
3492 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3493 	bool positive = true;
3494 	u32 kszphy_rate_adj;
3495 
3496 	if (scaled_ppm < 0) {
3497 		scaled_ppm = -scaled_ppm;
3498 		positive = false;
3499 	}
3500 
3501 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3502 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3503 
3504 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3505 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3506 
3507 	if (positive)
3508 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3509 
3510 	mutex_lock(&shared->shared_lock);
3511 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI,
3512 			      kszphy_rate_adj_hi);
3513 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO,
3514 			      kszphy_rate_adj_lo);
3515 	mutex_unlock(&shared->shared_lock);
3516 
3517 	return 0;
3518 }
3519 
3520 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3521 				   s64 period_sec, u32 period_nsec)
3522 {
3523 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3524 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3525 			      lower_16_bits(period_sec));
3526 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3527 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3528 			      upper_16_bits(period_sec));
3529 
3530 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3531 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3532 			      lower_16_bits(period_nsec));
3533 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3534 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3535 			      upper_16_bits(period_nsec) & 0x3fff);
3536 }
3537 
3538 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3539 				     int pulse_width)
3540 {
3541 	/* Set the pulse width of the event,
3542 	 * Make sure that the target clock will be incremented each time when
3543 	 * local time reaches or pass it
3544 	 * Set the polarity high
3545 	 */
3546 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3547 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) |
3548 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3549 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) |
3550 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event),
3551 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3552 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event));
3553 }
3554 
3555 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3556 {
3557 	/* Set target to too far in the future, effectively disabling it */
3558 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3559 
3560 	/* And then reload once it recheas the target */
3561 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3562 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event),
3563 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3564 }
3565 
3566 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3567 {
3568 	/* Disable gpio alternate function,
3569 	 * 1: select as gpio,
3570 	 * 0: select alt func
3571 	 */
3572 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3573 			       LAN8814_GPIO_EN_ADDR(pin),
3574 			       LAN8814_GPIO_EN_BIT(pin),
3575 			       LAN8814_GPIO_EN_BIT(pin));
3576 
3577 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3578 			       LAN8814_GPIO_DIR_ADDR(pin),
3579 			       LAN8814_GPIO_DIR_BIT(pin),
3580 			       0);
3581 
3582 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3583 			       LAN8814_GPIO_BUF_ADDR(pin),
3584 			       LAN8814_GPIO_BUF_BIT(pin),
3585 			       0);
3586 }
3587 
3588 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3589 {
3590 	/* Set as gpio output */
3591 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3592 			       LAN8814_GPIO_DIR_ADDR(pin),
3593 			       LAN8814_GPIO_DIR_BIT(pin),
3594 			       LAN8814_GPIO_DIR_BIT(pin));
3595 
3596 	/* Enable gpio 0:for alternate function, 1:gpio */
3597 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3598 			       LAN8814_GPIO_EN_ADDR(pin),
3599 			       LAN8814_GPIO_EN_BIT(pin),
3600 			       0);
3601 
3602 	/* Set buffer type to push pull */
3603 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3604 			       LAN8814_GPIO_BUF_ADDR(pin),
3605 			       LAN8814_GPIO_BUF_BIT(pin),
3606 			       LAN8814_GPIO_BUF_BIT(pin));
3607 }
3608 
3609 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3610 			      struct ptp_clock_request *rq, int on)
3611 {
3612 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3613 							  ptp_clock_info);
3614 	struct phy_device *phydev = shared->phydev;
3615 	struct timespec64 ts_on, ts_period;
3616 	s64 on_nsec, period_nsec;
3617 	int pulse_width;
3618 	int pin, event;
3619 
3620 	mutex_lock(&shared->shared_lock);
3621 	event = rq->perout.index;
3622 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3623 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3624 		mutex_unlock(&shared->shared_lock);
3625 		return -EBUSY;
3626 	}
3627 
3628 	if (!on) {
3629 		lan8814_ptp_perout_off(phydev, pin);
3630 		lan8814_ptp_disable_event(phydev, event);
3631 		mutex_unlock(&shared->shared_lock);
3632 		return 0;
3633 	}
3634 
3635 	ts_on.tv_sec = rq->perout.on.sec;
3636 	ts_on.tv_nsec = rq->perout.on.nsec;
3637 	on_nsec = timespec64_to_ns(&ts_on);
3638 
3639 	ts_period.tv_sec = rq->perout.period.sec;
3640 	ts_period.tv_nsec = rq->perout.period.nsec;
3641 	period_nsec = timespec64_to_ns(&ts_period);
3642 
3643 	if (period_nsec < 200) {
3644 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3645 				    phydev_name(phydev));
3646 		mutex_unlock(&shared->shared_lock);
3647 		return -EOPNOTSUPP;
3648 	}
3649 
3650 	if (on_nsec >= period_nsec) {
3651 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3652 				    phydev_name(phydev));
3653 		mutex_unlock(&shared->shared_lock);
3654 		return -EINVAL;
3655 	}
3656 
3657 	switch (on_nsec) {
3658 	case 200000000:
3659 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3660 		break;
3661 	case 100000000:
3662 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3663 		break;
3664 	case 50000000:
3665 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3666 		break;
3667 	case 10000000:
3668 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3669 		break;
3670 	case 5000000:
3671 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3672 		break;
3673 	case 1000000:
3674 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3675 		break;
3676 	case 500000:
3677 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3678 		break;
3679 	case 100000:
3680 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3681 		break;
3682 	case 50000:
3683 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3684 		break;
3685 	case 10000:
3686 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3687 		break;
3688 	case 5000:
3689 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3690 		break;
3691 	case 1000:
3692 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3693 		break;
3694 	case 500:
3695 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3696 		break;
3697 	case 100:
3698 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3699 		break;
3700 	default:
3701 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3702 				    phydev_name(phydev));
3703 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3704 		break;
3705 	}
3706 
3707 	/* Configure to pulse every period */
3708 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3709 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3710 			       rq->perout.start.nsec);
3711 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3712 			       rq->perout.period.nsec);
3713 	lan8814_ptp_perout_on(phydev, pin);
3714 	mutex_unlock(&shared->shared_lock);
3715 
3716 	return 0;
3717 }
3718 
3719 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3720 {
3721 	/* Set as gpio input */
3722 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3723 			       LAN8814_GPIO_DIR_ADDR(pin),
3724 			       LAN8814_GPIO_DIR_BIT(pin),
3725 			       0);
3726 
3727 	/* Map the pin to ltc pin 0 of the capture map registers */
3728 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3729 			       PTP_GPIO_CAP_MAP_LO, pin, pin);
3730 
3731 	/* Enable capture on the edges of the ltc pin */
3732 	if (flags & PTP_RISING_EDGE)
3733 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3734 				       PTP_GPIO_CAP_EN,
3735 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0),
3736 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0));
3737 	if (flags & PTP_FALLING_EDGE)
3738 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3739 				       PTP_GPIO_CAP_EN,
3740 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0),
3741 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0));
3742 
3743 	/* Enable interrupt top interrupt */
3744 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3745 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3746 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN);
3747 }
3748 
3749 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3750 {
3751 	/* Set as gpio out */
3752 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3753 			       LAN8814_GPIO_DIR_ADDR(pin),
3754 			       LAN8814_GPIO_DIR_BIT(pin),
3755 			       LAN8814_GPIO_DIR_BIT(pin));
3756 
3757 	/* Enable alternate, 0:for alternate function, 1:gpio */
3758 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3759 			       LAN8814_GPIO_EN_ADDR(pin),
3760 			       LAN8814_GPIO_EN_BIT(pin),
3761 			       0);
3762 
3763 	/* Clear the mapping of pin to registers 0 of the capture registers */
3764 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3765 			       PTP_GPIO_CAP_MAP_LO,
3766 			       GENMASK(3, 0),
3767 			       0);
3768 
3769 	/* Disable capture on both of the edges */
3770 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN,
3771 			       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
3772 			       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
3773 			       0);
3774 
3775 	/* Disable interrupt top interrupt */
3776 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3777 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3778 			       0);
3779 }
3780 
3781 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3782 			     struct ptp_clock_request *rq, int on)
3783 {
3784 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3785 							  ptp_clock_info);
3786 	struct phy_device *phydev = shared->phydev;
3787 	int pin;
3788 
3789 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3790 			   rq->extts.index);
3791 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3792 		return -EINVAL;
3793 
3794 	mutex_lock(&shared->shared_lock);
3795 	if (on)
3796 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3797 	else
3798 		lan8814_ptp_extts_off(phydev, pin);
3799 
3800 	mutex_unlock(&shared->shared_lock);
3801 
3802 	return 0;
3803 }
3804 
3805 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3806 				struct ptp_clock_request *rq, int on)
3807 {
3808 	switch (rq->type) {
3809 	case PTP_CLK_REQ_PEROUT:
3810 		return lan8814_ptp_perout(ptpci, rq, on);
3811 	case PTP_CLK_REQ_EXTTS:
3812 		return lan8814_ptp_extts(ptpci, rq, on);
3813 	default:
3814 		return -EINVAL;
3815 	}
3816 }
3817 
3818 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3819 				enum ptp_pin_function func, unsigned int chan)
3820 {
3821 	switch (func) {
3822 	case PTP_PF_NONE:
3823 	case PTP_PF_PEROUT:
3824 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3825 		 * there is only chan 0 (event A) and for pin 1 there is only
3826 		 * chan 1 (event B)
3827 		 */
3828 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3829 			return -1;
3830 		break;
3831 	case PTP_PF_EXTTS:
3832 		if (pin != LAN8814_PTP_EXTTS_NUM)
3833 			return -1;
3834 		break;
3835 	default:
3836 		return -1;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3843 {
3844 	struct ptp_header *ptp_header;
3845 	u32 type;
3846 
3847 	type = ptp_classify_raw(skb);
3848 	ptp_header = ptp_parse_header(skb, type);
3849 
3850 	if (!ptp_header)
3851 		return false;
3852 
3853 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3854 	return true;
3855 }
3856 
3857 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3858 				 u32 seconds, u32 nsec, u16 seq_id)
3859 {
3860 	struct skb_shared_hwtstamps shhwtstamps;
3861 	struct sk_buff *skb, *skb_tmp;
3862 	unsigned long flags;
3863 	bool ret = false;
3864 	u16 skb_sig;
3865 
3866 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3867 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3868 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3869 			continue;
3870 
3871 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3872 			continue;
3873 
3874 		__skb_unlink(skb, &ptp_priv->tx_queue);
3875 		ret = true;
3876 		break;
3877 	}
3878 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3879 
3880 	if (ret) {
3881 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3882 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3883 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3884 	}
3885 }
3886 
3887 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3888 {
3889 	struct phy_device *phydev = ptp_priv->phydev;
3890 	u32 seconds, nsec;
3891 	u16 seq_id;
3892 
3893 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3894 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3895 }
3896 
3897 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3898 {
3899 	struct phy_device *phydev = ptp_priv->phydev;
3900 	u32 reg;
3901 
3902 	do {
3903 		lan8814_dequeue_tx_skb(ptp_priv);
3904 
3905 		/* If other timestamps are available in the FIFO,
3906 		 * process them.
3907 		 */
3908 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3909 					   PTP_CAP_INFO);
3910 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3911 }
3912 
3913 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3914 			      struct lan8814_ptp_rx_ts *rx_ts)
3915 {
3916 	struct skb_shared_hwtstamps *shhwtstamps;
3917 	struct sk_buff *skb, *skb_tmp;
3918 	unsigned long flags;
3919 	bool ret = false;
3920 	u16 skb_sig;
3921 
3922 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3923 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3924 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3925 			continue;
3926 
3927 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3928 			continue;
3929 
3930 		__skb_unlink(skb, &ptp_priv->rx_queue);
3931 
3932 		ret = true;
3933 		break;
3934 	}
3935 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3936 
3937 	if (ret) {
3938 		shhwtstamps = skb_hwtstamps(skb);
3939 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3940 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3941 		netif_rx(skb);
3942 	}
3943 
3944 	return ret;
3945 }
3946 
3947 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3948 				struct lan8814_ptp_rx_ts *rx_ts)
3949 {
3950 	unsigned long flags;
3951 
3952 	/* If we failed to match the skb add it to the queue for when
3953 	 * the frame will come
3954 	 */
3955 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3956 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3957 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3958 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3959 	} else {
3960 		kfree(rx_ts);
3961 	}
3962 }
3963 
3964 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3965 {
3966 	struct phy_device *phydev = ptp_priv->phydev;
3967 	struct lan8814_ptp_rx_ts *rx_ts;
3968 	u32 reg;
3969 
3970 	do {
3971 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3972 		if (!rx_ts)
3973 			return;
3974 
3975 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3976 				      &rx_ts->seq_id);
3977 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3978 
3979 		/* If other timestamps are available in the FIFO,
3980 		 * process them.
3981 		 */
3982 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3983 					   PTP_CAP_INFO);
3984 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3985 }
3986 
3987 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3988 {
3989 	struct kszphy_priv *priv = phydev->priv;
3990 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3991 
3992 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3993 		lan8814_get_tx_ts(ptp_priv);
3994 
3995 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3996 		lan8814_get_rx_ts(ptp_priv);
3997 
3998 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3999 		lan8814_flush_fifo(phydev, true);
4000 		skb_queue_purge(&ptp_priv->tx_queue);
4001 	}
4002 
4003 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
4004 		lan8814_flush_fifo(phydev, false);
4005 		skb_queue_purge(&ptp_priv->rx_queue);
4006 	}
4007 }
4008 
4009 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
4010 {
4011 	struct phy_device *phydev = shared->phydev;
4012 	struct ptp_clock_event ptp_event = {0};
4013 	unsigned long nsec;
4014 	s64 sec;
4015 	u16 tmp;
4016 
4017 	/* This is 0 because whatever was the input pin it was mapped it to
4018 	 * ltc gpio pin 0
4019 	 */
4020 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL,
4021 			       PTP_GPIO_SEL_GPIO_SEL(0),
4022 			       PTP_GPIO_SEL_GPIO_SEL(0));
4023 
4024 	tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4025 				   PTP_GPIO_CAP_STS);
4026 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
4027 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
4028 		return -1;
4029 
4030 	if (tmp & BIT(0)) {
4031 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4032 					   PTP_GPIO_RE_LTC_SEC_HI_CAP);
4033 		sec <<= 16;
4034 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4035 					    PTP_GPIO_RE_LTC_SEC_LO_CAP);
4036 
4037 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4038 					    PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4039 		nsec <<= 16;
4040 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4041 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4042 	} else {
4043 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4044 					   PTP_GPIO_FE_LTC_SEC_HI_CAP);
4045 		sec <<= 16;
4046 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4047 					    PTP_GPIO_FE_LTC_SEC_LO_CAP);
4048 
4049 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4050 					    PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4051 		nsec <<= 16;
4052 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4053 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4054 	}
4055 
4056 	ptp_event.index = 0;
4057 	ptp_event.timestamp = ktime_set(sec, nsec);
4058 	ptp_event.type = PTP_CLOCK_EXTTS;
4059 	ptp_clock_event(shared->ptp_clock, &ptp_event);
4060 
4061 	return 0;
4062 }
4063 
4064 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
4065 {
4066 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4067 	int ret;
4068 
4069 	mutex_lock(&shared->shared_lock);
4070 	ret = lan8814_gpio_process_cap(shared);
4071 	mutex_unlock(&shared->shared_lock);
4072 
4073 	return ret;
4074 }
4075 
4076 static int lan8804_config_init(struct phy_device *phydev)
4077 {
4078 	/* MDI-X setting for swap A,B transmit */
4079 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP,
4080 			       LAN8804_ALIGN_TX_A_B_SWAP_MASK,
4081 			       LAN8804_ALIGN_TX_A_B_SWAP);
4082 
4083 	/* Make sure that the PHY will not stop generating the clock when the
4084 	 * link partner goes down
4085 	 */
4086 	lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL,
4087 			      LAN8814_CLOCK_MANAGEMENT, 0x27e);
4088 	lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY);
4089 
4090 	return 0;
4091 }
4092 
4093 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
4094 {
4095 	int status;
4096 
4097 	status = phy_read(phydev, LAN8814_INTS);
4098 	if (status < 0) {
4099 		phy_error(phydev);
4100 		return IRQ_NONE;
4101 	}
4102 
4103 	if (status > 0)
4104 		phy_trigger_machine(phydev);
4105 
4106 	return IRQ_HANDLED;
4107 }
4108 
4109 #define LAN8804_OUTPUT_CONTROL			25
4110 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
4111 #define LAN8804_CONTROL				31
4112 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
4113 
4114 static int lan8804_config_intr(struct phy_device *phydev)
4115 {
4116 	int err;
4117 
4118 	/* This is an internal PHY of lan966x and is not possible to change the
4119 	 * polarity on the GIC found in lan966x, therefore change the polarity
4120 	 * of the interrupt in the PHY from being active low instead of active
4121 	 * high.
4122 	 */
4123 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
4124 
4125 	/* By default interrupt buffer is open-drain in which case the interrupt
4126 	 * can be active only low. Therefore change the interrupt buffer to be
4127 	 * push-pull to be able to change interrupt polarity
4128 	 */
4129 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
4130 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
4131 
4132 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4133 		err = phy_read(phydev, LAN8814_INTS);
4134 		if (err < 0)
4135 			return err;
4136 
4137 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4138 		if (err)
4139 			return err;
4140 	} else {
4141 		err = phy_write(phydev, LAN8814_INTC, 0);
4142 		if (err)
4143 			return err;
4144 
4145 		err = phy_read(phydev, LAN8814_INTS);
4146 		if (err < 0)
4147 			return err;
4148 	}
4149 
4150 	return 0;
4151 }
4152 
4153 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
4154 {
4155 	int ret = IRQ_NONE;
4156 	int irq_status;
4157 
4158 	irq_status = phy_read(phydev, LAN8814_INTS);
4159 	if (irq_status < 0) {
4160 		phy_error(phydev);
4161 		return IRQ_NONE;
4162 	}
4163 
4164 	if (irq_status & LAN8814_INT_LINK) {
4165 		phy_trigger_machine(phydev);
4166 		ret = IRQ_HANDLED;
4167 	}
4168 
4169 	while (true) {
4170 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4171 						  PTP_TSU_INT_STS);
4172 		if (!irq_status)
4173 			break;
4174 
4175 		lan8814_handle_ptp_interrupt(phydev, irq_status);
4176 		ret = IRQ_HANDLED;
4177 	}
4178 
4179 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
4180 		ret = IRQ_HANDLED;
4181 
4182 	return ret;
4183 }
4184 
4185 static int lan8814_ack_interrupt(struct phy_device *phydev)
4186 {
4187 	/* bit[12..0] int status, which is a read and clear register. */
4188 	int rc;
4189 
4190 	rc = phy_read(phydev, LAN8814_INTS);
4191 
4192 	return (rc < 0) ? rc : 0;
4193 }
4194 
4195 static int lan8814_config_intr(struct phy_device *phydev)
4196 {
4197 	int err;
4198 
4199 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG,
4200 			      LAN8814_INTR_CTRL_REG_POLARITY |
4201 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
4202 
4203 	/* enable / disable interrupts */
4204 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4205 		err = lan8814_ack_interrupt(phydev);
4206 		if (err)
4207 			return err;
4208 
4209 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4210 	} else {
4211 		err = phy_write(phydev, LAN8814_INTC, 0);
4212 		if (err)
4213 			return err;
4214 
4215 		err = lan8814_ack_interrupt(phydev);
4216 	}
4217 
4218 	return err;
4219 }
4220 
4221 static void lan8814_ptp_init(struct phy_device *phydev)
4222 {
4223 	struct kszphy_priv *priv = phydev->priv;
4224 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4225 
4226 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
4227 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4228 		return;
4229 
4230 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4231 			      TSU_HARD_RESET, TSU_HARD_RESET_);
4232 
4233 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD,
4234 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4235 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4236 
4237 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD,
4238 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4239 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4240 
4241 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4242 			      PTP_RX_PARSE_CONFIG, 0);
4243 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4244 			      PTP_TX_PARSE_CONFIG, 0);
4245 
4246 	/* Removing default registers configs related to L2 and IP */
4247 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4248 			      PTP_TX_PARSE_L2_ADDR_EN, 0);
4249 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4250 			      PTP_RX_PARSE_L2_ADDR_EN, 0);
4251 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4252 			      PTP_TX_PARSE_IP_ADDR_EN, 0);
4253 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4254 			      PTP_RX_PARSE_IP_ADDR_EN, 0);
4255 
4256 	/* Disable checking for minorVersionPTP field */
4257 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION,
4258 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4259 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION,
4260 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4261 
4262 	skb_queue_head_init(&ptp_priv->tx_queue);
4263 	skb_queue_head_init(&ptp_priv->rx_queue);
4264 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4265 	spin_lock_init(&ptp_priv->rx_ts_lock);
4266 
4267 	ptp_priv->phydev = phydev;
4268 
4269 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4270 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4271 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
4272 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
4273 
4274 	phydev->mii_ts = &ptp_priv->mii_ts;
4275 
4276 	/* Timestamp selected by default to keep legacy API */
4277 	phydev->default_timestamp = true;
4278 }
4279 
4280 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name,
4281 				    int gpios)
4282 {
4283 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4284 
4285 	shared->phydev = phydev;
4286 
4287 	/* Initialise shared lock for clock*/
4288 	mutex_init(&shared->shared_lock);
4289 
4290 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
4291 						gpios,
4292 						sizeof(*shared->pin_config),
4293 						GFP_KERNEL);
4294 	if (!shared->pin_config)
4295 		return -ENOMEM;
4296 
4297 	for (int i = 0; i < gpios; i++) {
4298 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
4299 
4300 		memset(ptp_pin, 0, sizeof(*ptp_pin));
4301 		snprintf(ptp_pin->name,
4302 			 sizeof(ptp_pin->name), "%s_%02d", pin_name, i);
4303 		ptp_pin->index = i;
4304 		ptp_pin->func =  PTP_PF_NONE;
4305 	}
4306 
4307 	shared->ptp_clock_info.owner = THIS_MODULE;
4308 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
4309 	shared->ptp_clock_info.max_adj = 31249999;
4310 	shared->ptp_clock_info.n_alarm = 0;
4311 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
4312 	shared->ptp_clock_info.n_pins = gpios;
4313 	shared->ptp_clock_info.pps = 0;
4314 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
4315 						       PTP_FALLING_EDGE |
4316 						       PTP_STRICT_FLAGS;
4317 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
4318 	shared->ptp_clock_info.pin_config = shared->pin_config;
4319 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
4320 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
4321 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
4322 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
4323 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
4324 	shared->ptp_clock_info.getcrosststamp = NULL;
4325 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
4326 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
4327 
4328 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
4329 					       &phydev->mdio.dev);
4330 	if (IS_ERR(shared->ptp_clock)) {
4331 		phydev_err(phydev, "ptp_clock_register failed %pe\n",
4332 			   shared->ptp_clock);
4333 		return -EINVAL;
4334 	}
4335 
4336 	/* Check if PHC support is missing at the configuration level */
4337 	if (!shared->ptp_clock)
4338 		return 0;
4339 
4340 	phydev_dbg(phydev, "successfully registered ptp clock\n");
4341 
4342 	/* The EP.4 is shared between all the PHYs in the package and also it
4343 	 * can be accessed by any of the PHYs
4344 	 */
4345 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4346 			      LTC_HARD_RESET, LTC_HARD_RESET_);
4347 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE,
4348 			      PTP_OPERATING_MODE_STANDALONE_);
4349 
4350 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
4351 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
4352 			      PTP_CMD_CTL_PTP_ENABLE_);
4353 
4354 	return 0;
4355 }
4356 
4357 static int lan8814_ptp_probe_once(struct phy_device *phydev)
4358 {
4359 	return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin",
4360 					LAN8814_PTP_GPIO_NUM);
4361 }
4362 
4363 static void lan8814_setup_led(struct phy_device *phydev, int val)
4364 {
4365 	int temp;
4366 
4367 	temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4368 				    LAN8814_LED_CTRL_1);
4369 
4370 	if (val)
4371 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4372 	else
4373 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4374 
4375 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4376 			      LAN8814_LED_CTRL_1, temp);
4377 }
4378 
4379 static int lan8814_config_init(struct phy_device *phydev)
4380 {
4381 	struct kszphy_priv *lan8814 = phydev->priv;
4382 
4383 	/* Reset the PHY */
4384 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4385 			       LAN8814_QSGMII_SOFT_RESET,
4386 			       LAN8814_QSGMII_SOFT_RESET_BIT,
4387 			       LAN8814_QSGMII_SOFT_RESET_BIT);
4388 
4389 	/* Disable ANEG with QSGMII PCS Host side */
4390 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4391 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
4392 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
4393 			       0);
4394 
4395 	/* MDI-X setting for swap A,B transmit */
4396 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP,
4397 			       LAN8814_ALIGN_TX_A_B_SWAP_MASK,
4398 			       LAN8814_ALIGN_TX_A_B_SWAP);
4399 
4400 	if (lan8814->led_mode >= 0)
4401 		lan8814_setup_led(phydev, lan8814->led_mode);
4402 
4403 	return 0;
4404 }
4405 
4406 /* It is expected that there will not be any 'lan8814_take_coma_mode'
4407  * function called in suspend. Because the GPIO line can be shared, so if one of
4408  * the phys goes back in coma mode, then all the other PHYs will go, which is
4409  * wrong.
4410  */
4411 static int lan8814_release_coma_mode(struct phy_device *phydev)
4412 {
4413 	struct gpio_desc *gpiod;
4414 
4415 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4416 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4417 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4418 	if (IS_ERR(gpiod))
4419 		return PTR_ERR(gpiod);
4420 
4421 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4422 	gpiod_set_value_cansleep(gpiod, 0);
4423 
4424 	return 0;
4425 }
4426 
4427 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4428 {
4429 	/* It was noticed that when traffic is passing through the PHY and the
4430 	 * cable is removed then the LED was still one even though there is no
4431 	 * link
4432 	 */
4433 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE,
4434 			       LAN8814_EEE_STATE_MASK2P5P,
4435 			       0);
4436 }
4437 
4438 static void lan8814_update_meas_time(struct phy_device *phydev)
4439 {
4440 	/* By setting the measure time to a value of 0xb this will allow cables
4441 	 * longer than 100m to be used. This configuration can be used
4442 	 * regardless of the mode of operation of the PHY
4443 	 */
4444 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS,
4445 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK,
4446 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL);
4447 }
4448 
4449 static int lan8814_probe(struct phy_device *phydev)
4450 {
4451 	const struct kszphy_type *type = phydev->drv->driver_data;
4452 	struct kszphy_priv *priv;
4453 	u16 addr;
4454 	int err;
4455 
4456 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4457 	if (!priv)
4458 		return -ENOMEM;
4459 
4460 	phydev->priv = priv;
4461 
4462 	priv->type = type;
4463 
4464 	kszphy_parse_led_mode(phydev);
4465 
4466 	/* Strap-in value for PHY address, below register read gives starting
4467 	 * phy address value
4468 	 */
4469 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F;
4470 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4471 			      addr, sizeof(struct lan8814_shared_priv));
4472 
4473 	if (phy_package_init_once(phydev)) {
4474 		err = lan8814_release_coma_mode(phydev);
4475 		if (err)
4476 			return err;
4477 
4478 		err = lan8814_ptp_probe_once(phydev);
4479 		if (err)
4480 			return err;
4481 	}
4482 
4483 	lan8814_ptp_init(phydev);
4484 
4485 	/* Errata workarounds */
4486 	lan8814_clear_2psp_bit(phydev);
4487 	lan8814_update_meas_time(phydev);
4488 
4489 	return 0;
4490 }
4491 
4492 #define LAN8841_MMD_TIMER_REG			0
4493 #define LAN8841_MMD0_REGISTER_17		17
4494 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4495 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4496 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4497 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4498 #define LAN8841_MMD_ANALOG_REG			28
4499 #define LAN8841_ANALOG_CONTROL_1		1
4500 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4501 #define LAN8841_ANALOG_CONTROL_10		13
4502 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4503 #define LAN8841_ANALOG_CONTROL_11		14
4504 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4505 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4506 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4507 #define LAN8841_BTRX_POWER_DOWN			70
4508 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4509 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4510 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4511 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4512 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4513 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4514 #define LAN8841_ADC_CHANNEL_MASK		198
4515 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4516 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4517 #define LAN8841_PTP_RX_VERSION			374
4518 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4519 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4520 #define LAN8841_PTP_TX_VERSION			438
4521 #define LAN8841_PTP_CMD_CTL			256
4522 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4523 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4524 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4525 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4526 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4527 #define LAN8841_PTP_RX_MODE			381
4528 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4529 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4530 
4531 static int lan8841_config_init(struct phy_device *phydev)
4532 {
4533 	int ret;
4534 
4535 	ret = ksz9131_config_init(phydev);
4536 	if (ret)
4537 		return ret;
4538 
4539 	/* Initialize the HW by resetting everything */
4540 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4541 		       LAN8841_PTP_CMD_CTL,
4542 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4543 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4544 
4545 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4546 		       LAN8841_PTP_CMD_CTL,
4547 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4548 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4549 
4550 	/* Don't process any frames */
4551 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4552 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4553 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4554 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4555 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4556 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4557 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4558 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4559 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4560 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4561 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4562 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4563 
4564 	/* Disable checking for minorVersionPTP field */
4565 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4566 		      LAN8841_PTP_RX_VERSION, 0xff00);
4567 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4568 		      LAN8841_PTP_TX_VERSION, 0xff00);
4569 
4570 	/* 100BT Clause 40 improvenent errata */
4571 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4572 		      LAN8841_ANALOG_CONTROL_1,
4573 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4574 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4575 		      LAN8841_ANALOG_CONTROL_10,
4576 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4577 
4578 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4579 	 * Magnetics
4580 	 */
4581 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4582 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4583 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4584 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4585 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4586 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4587 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4588 			      LAN8841_BTRX_POWER_DOWN,
4589 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4590 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4591 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4592 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4593 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4594 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4595 	}
4596 
4597 	/* LDO Adjustment errata */
4598 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4599 		      LAN8841_ANALOG_CONTROL_11,
4600 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4601 
4602 	/* 100BT RGMII latency tuning errata */
4603 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4604 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4605 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4606 		      LAN8841_MMD0_REGISTER_17,
4607 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4608 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4609 
4610 	return 0;
4611 }
4612 
4613 #define LAN8841_OUTPUT_CTRL			25
4614 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4615 #define LAN8841_INT_PTP				BIT(9)
4616 
4617 static int lan8841_config_intr(struct phy_device *phydev)
4618 {
4619 	int err;
4620 
4621 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4622 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4623 
4624 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4625 		err = phy_read(phydev, LAN8814_INTS);
4626 		if (err < 0)
4627 			return err;
4628 
4629 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4630 		 * even if it PTP is not enabled. Because the underneath blocks
4631 		 * will not enable the PTP so we will never get the PTP
4632 		 * interrupt.
4633 		 */
4634 		err = phy_write(phydev, LAN8814_INTC,
4635 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4636 	} else {
4637 		err = phy_write(phydev, LAN8814_INTC, 0);
4638 		if (err)
4639 			return err;
4640 
4641 		err = phy_read(phydev, LAN8814_INTS);
4642 		if (err < 0)
4643 			return err;
4644 
4645 		/* Getting a positive value doesn't mean that is an error, it
4646 		 * just indicates what was the status. Therefore make sure to
4647 		 * clear the value and say that there is no error.
4648 		 */
4649 		err = 0;
4650 	}
4651 
4652 	return err;
4653 }
4654 
4655 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4656 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4657 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4658 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4659 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4660 #define LAN8841_PTP_TX_MSG_HEADER2			455
4661 
4662 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4663 				  u32 *sec, u32 *nsec, u16 *seq)
4664 {
4665 	struct phy_device *phydev = ptp_priv->phydev;
4666 
4667 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4668 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4669 		return false;
4670 
4671 	*nsec = ((*nsec & 0x3fff) << 16);
4672 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4673 
4674 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4675 	*sec = *sec << 16;
4676 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4677 
4678 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4679 
4680 	return true;
4681 }
4682 
4683 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4684 {
4685 	u32 sec, nsec;
4686 	u16 seq;
4687 
4688 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4689 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4690 }
4691 
4692 #define LAN8841_PTP_INT_STS			259
4693 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4694 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4695 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4696 
4697 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4698 {
4699 	struct phy_device *phydev = ptp_priv->phydev;
4700 	int i;
4701 
4702 	for (i = 0; i < FIFO_SIZE; ++i)
4703 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4704 
4705 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4706 }
4707 
4708 #define LAN8841_PTP_GPIO_CAP_STS			506
4709 #define LAN8841_PTP_GPIO_SEL				327
4710 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4711 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4712 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4713 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4714 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4715 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4716 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4717 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4718 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4719 
4720 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4721 {
4722 	struct phy_device *phydev = ptp_priv->phydev;
4723 	struct ptp_clock_event ptp_event = {0};
4724 	int pin, ret, tmp;
4725 	s32 sec, nsec;
4726 
4727 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4728 	if (pin == -1)
4729 		return;
4730 
4731 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4732 	if (tmp < 0)
4733 		return;
4734 
4735 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4736 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4737 	if (ret)
4738 		return;
4739 
4740 	mutex_lock(&ptp_priv->ptp_lock);
4741 	if (tmp & BIT(pin)) {
4742 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4743 		sec <<= 16;
4744 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4745 
4746 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4747 		nsec <<= 16;
4748 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4749 	} else {
4750 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4751 		sec <<= 16;
4752 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4753 
4754 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4755 		nsec <<= 16;
4756 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4757 	}
4758 	mutex_unlock(&ptp_priv->ptp_lock);
4759 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4760 	if (ret)
4761 		return;
4762 
4763 	ptp_event.index = 0;
4764 	ptp_event.timestamp = ktime_set(sec, nsec);
4765 	ptp_event.type = PTP_CLOCK_EXTTS;
4766 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4767 }
4768 
4769 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4770 {
4771 	struct kszphy_priv *priv = phydev->priv;
4772 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4773 	u16 status;
4774 
4775 	do {
4776 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4777 
4778 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4779 			lan8841_ptp_process_tx_ts(ptp_priv);
4780 
4781 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4782 			lan8841_gpio_process_cap(ptp_priv);
4783 
4784 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4785 			lan8841_ptp_flush_fifo(ptp_priv);
4786 			skb_queue_purge(&ptp_priv->tx_queue);
4787 		}
4788 
4789 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4790 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4791 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4792 }
4793 
4794 #define LAN8841_INTS_PTP		BIT(9)
4795 
4796 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4797 {
4798 	irqreturn_t ret = IRQ_NONE;
4799 	int irq_status;
4800 
4801 	irq_status = phy_read(phydev, LAN8814_INTS);
4802 	if (irq_status < 0) {
4803 		phy_error(phydev);
4804 		return IRQ_NONE;
4805 	}
4806 
4807 	if (irq_status & LAN8814_INT_LINK) {
4808 		phy_trigger_machine(phydev);
4809 		ret = IRQ_HANDLED;
4810 	}
4811 
4812 	if (irq_status & LAN8841_INTS_PTP) {
4813 		lan8841_handle_ptp_interrupt(phydev);
4814 		ret = IRQ_HANDLED;
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4821 			   struct kernel_ethtool_ts_info *info)
4822 {
4823 	struct kszphy_ptp_priv *ptp_priv;
4824 
4825 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4826 
4827 	info->phc_index = ptp_priv->ptp_clock ?
4828 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4829 	if (info->phc_index == -1)
4830 		return 0;
4831 
4832 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4833 				SOF_TIMESTAMPING_RX_HARDWARE |
4834 				SOF_TIMESTAMPING_RAW_HARDWARE;
4835 
4836 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4837 			 (1 << HWTSTAMP_TX_ON) |
4838 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4839 
4840 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4841 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4842 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4843 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4844 
4845 	return 0;
4846 }
4847 
4848 #define LAN8841_PTP_INT_EN			260
4849 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4850 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4851 
4852 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4853 					  bool enable)
4854 {
4855 	struct phy_device *phydev = ptp_priv->phydev;
4856 
4857 	if (enable) {
4858 		/* Enable interrupts on the TX side */
4859 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4860 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4861 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4862 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4863 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4864 
4865 		/* Enable the modification of the frame on RX side,
4866 		 * this will add the ns and 2 bits of sec in the reserved field
4867 		 * of the PTP header
4868 		 */
4869 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4870 			       LAN8841_PTP_RX_MODE,
4871 			       LAN8841_PTP_INSERT_TS_EN |
4872 			       LAN8841_PTP_INSERT_TS_32BIT,
4873 			       LAN8841_PTP_INSERT_TS_EN |
4874 			       LAN8841_PTP_INSERT_TS_32BIT);
4875 
4876 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4877 	} else {
4878 		/* Disable interrupts on the TX side */
4879 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4880 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4881 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4882 
4883 		/* Disable modification of the RX frames */
4884 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4885 			       LAN8841_PTP_RX_MODE,
4886 			       LAN8841_PTP_INSERT_TS_EN |
4887 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4888 
4889 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4890 	}
4891 }
4892 
4893 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4894 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4895 #define LAN8841_PTP_TX_MOD			445
4896 
4897 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4898 			    struct kernel_hwtstamp_config *config,
4899 			    struct netlink_ext_ack *extack)
4900 {
4901 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4902 	struct phy_device *phydev = ptp_priv->phydev;
4903 	int txcfg = 0, rxcfg = 0;
4904 	int pkt_ts_enable;
4905 
4906 	ptp_priv->hwts_tx_type = config->tx_type;
4907 	ptp_priv->rx_filter = config->rx_filter;
4908 
4909 	switch (config->rx_filter) {
4910 	case HWTSTAMP_FILTER_NONE:
4911 		ptp_priv->layer = 0;
4912 		ptp_priv->version = 0;
4913 		break;
4914 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4915 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4916 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4917 		ptp_priv->layer = PTP_CLASS_L4;
4918 		ptp_priv->version = PTP_CLASS_V2;
4919 		break;
4920 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4921 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4922 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4923 		ptp_priv->layer = PTP_CLASS_L2;
4924 		ptp_priv->version = PTP_CLASS_V2;
4925 		break;
4926 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4927 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4928 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4929 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4930 		ptp_priv->version = PTP_CLASS_V2;
4931 		break;
4932 	default:
4933 		return -ERANGE;
4934 	}
4935 
4936 	/* Setup parsing of the frames and enable the timestamping for ptp
4937 	 * frames
4938 	 */
4939 	if (ptp_priv->layer & PTP_CLASS_L2) {
4940 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4941 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4942 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4943 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4944 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4945 	}
4946 
4947 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4948 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4949 
4950 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4951 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4952 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4953 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4954 
4955 	/* Enable / disable of the TX timestamp in the SYNC frames */
4956 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4957 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4958 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4959 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4960 
4961 	/* Now enable/disable the timestamping */
4962 	lan8841_ptp_enable_processing(ptp_priv,
4963 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4964 
4965 	skb_queue_purge(&ptp_priv->tx_queue);
4966 
4967 	lan8841_ptp_flush_fifo(ptp_priv);
4968 
4969 	return 0;
4970 }
4971 
4972 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4973 			     struct sk_buff *skb, int type)
4974 {
4975 	struct kszphy_ptp_priv *ptp_priv =
4976 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4977 	struct ptp_header *header = ptp_parse_header(skb, type);
4978 	struct skb_shared_hwtstamps *shhwtstamps;
4979 	struct timespec64 ts;
4980 	unsigned long flags;
4981 	u32 ts_header;
4982 
4983 	if (!header)
4984 		return false;
4985 
4986 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4987 	    type == PTP_CLASS_NONE)
4988 		return false;
4989 
4990 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4991 		return false;
4992 
4993 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4994 	ts.tv_sec = ptp_priv->seconds;
4995 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4996 	ts_header = __be32_to_cpu(header->reserved2);
4997 
4998 	shhwtstamps = skb_hwtstamps(skb);
4999 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
5000 
5001 	/* Check for any wrap arounds for the second part */
5002 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
5003 		ts.tv_sec -= GENMASK(1, 0) + 1;
5004 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
5005 		ts.tv_sec += 1;
5006 
5007 	shhwtstamps->hwtstamp =
5008 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
5009 			  ts_header & GENMASK(29, 0));
5010 	header->reserved2 = 0;
5011 
5012 	netif_rx(skb);
5013 
5014 	return true;
5015 }
5016 
5017 #define LAN8841_EVENT_A		0
5018 #define LAN8841_EVENT_B		1
5019 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
5020 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
5021 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
5022 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
5023 
5024 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
5025 				  s64 sec, u32 nsec)
5026 {
5027 	struct phy_device *phydev = ptp_priv->phydev;
5028 	int ret;
5029 
5030 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
5031 			    upper_16_bits(sec));
5032 	if (ret)
5033 		return ret;
5034 
5035 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
5036 			    lower_16_bits(sec));
5037 	if (ret)
5038 		return ret;
5039 
5040 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
5041 			    upper_16_bits(nsec));
5042 	if (ret)
5043 		return ret;
5044 
5045 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
5046 			    lower_16_bits(nsec));
5047 }
5048 
5049 #define LAN8841_BUFFER_TIME	2
5050 
5051 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
5052 				     const struct timespec64 *ts)
5053 {
5054 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
5055 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
5056 }
5057 
5058 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
5059 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
5060 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
5061 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
5062 
5063 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
5064 				  s64 sec, u32 nsec)
5065 {
5066 	struct phy_device *phydev = ptp_priv->phydev;
5067 	int ret;
5068 
5069 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
5070 			    upper_16_bits(sec));
5071 	if (ret)
5072 		return ret;
5073 
5074 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
5075 			    lower_16_bits(sec));
5076 	if (ret)
5077 		return ret;
5078 
5079 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
5080 			    upper_16_bits(nsec));
5081 	if (ret)
5082 		return ret;
5083 
5084 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
5085 			     lower_16_bits(nsec));
5086 }
5087 
5088 #define LAN8841_PTP_LTC_SET_SEC_HI	262
5089 #define LAN8841_PTP_LTC_SET_SEC_MID	263
5090 #define LAN8841_PTP_LTC_SET_SEC_LO	264
5091 #define LAN8841_PTP_LTC_SET_NS_HI	265
5092 #define LAN8841_PTP_LTC_SET_NS_LO	266
5093 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
5094 
5095 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
5096 				 const struct timespec64 *ts)
5097 {
5098 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5099 							ptp_clock_info);
5100 	struct phy_device *phydev = ptp_priv->phydev;
5101 	unsigned long flags;
5102 	int ret;
5103 
5104 	/* Set the value to be stored */
5105 	mutex_lock(&ptp_priv->ptp_lock);
5106 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
5107 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
5108 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
5109 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
5110 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
5111 
5112 	/* Set the command to load the LTC */
5113 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5114 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
5115 	ret = lan8841_ptp_update_target(ptp_priv, ts);
5116 	mutex_unlock(&ptp_priv->ptp_lock);
5117 
5118 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5119 	ptp_priv->seconds = ts->tv_sec;
5120 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5121 
5122 	return ret;
5123 }
5124 
5125 #define LAN8841_PTP_LTC_RD_SEC_HI	358
5126 #define LAN8841_PTP_LTC_RD_SEC_MID	359
5127 #define LAN8841_PTP_LTC_RD_SEC_LO	360
5128 #define LAN8841_PTP_LTC_RD_NS_HI	361
5129 #define LAN8841_PTP_LTC_RD_NS_LO	362
5130 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
5131 
5132 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
5133 				 struct timespec64 *ts)
5134 {
5135 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5136 							ptp_clock_info);
5137 	struct phy_device *phydev = ptp_priv->phydev;
5138 	time64_t s;
5139 	s64 ns;
5140 
5141 	mutex_lock(&ptp_priv->ptp_lock);
5142 	/* Issue the command to read the LTC */
5143 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5144 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5145 
5146 	/* Read the LTC */
5147 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5148 	s <<= 16;
5149 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5150 	s <<= 16;
5151 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5152 
5153 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
5154 	ns <<= 16;
5155 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
5156 	mutex_unlock(&ptp_priv->ptp_lock);
5157 
5158 	set_normalized_timespec64(ts, s, ns);
5159 	return 0;
5160 }
5161 
5162 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
5163 				   struct timespec64 *ts)
5164 {
5165 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5166 							ptp_clock_info);
5167 	struct phy_device *phydev = ptp_priv->phydev;
5168 	time64_t s;
5169 
5170 	mutex_lock(&ptp_priv->ptp_lock);
5171 	/* Issue the command to read the LTC */
5172 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5173 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5174 
5175 	/* Read the LTC */
5176 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5177 	s <<= 16;
5178 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5179 	s <<= 16;
5180 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5181 	mutex_unlock(&ptp_priv->ptp_lock);
5182 
5183 	set_normalized_timespec64(ts, s, 0);
5184 }
5185 
5186 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
5187 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
5188 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
5189 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
5190 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
5191 
5192 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
5193 {
5194 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5195 							ptp_clock_info);
5196 	struct phy_device *phydev = ptp_priv->phydev;
5197 	struct timespec64 ts;
5198 	bool add = true;
5199 	u32 nsec;
5200 	s32 sec;
5201 	int ret;
5202 
5203 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
5204 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
5205 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
5206 	 * increment so the value can be bigger than 15 sec. Therefore limit the
5207 	 * possible adjustments so we will not have these corner cases
5208 	 */
5209 	if (delta > 10000000000LL || delta < -10000000000LL) {
5210 		/* The timeadjustment is too big, so fall back using set time */
5211 		u64 now;
5212 
5213 		ptp->gettime64(ptp, &ts);
5214 
5215 		now = ktime_to_ns(timespec64_to_ktime(ts));
5216 		ts = ns_to_timespec64(now + delta);
5217 
5218 		ptp->settime64(ptp, &ts);
5219 		return 0;
5220 	}
5221 
5222 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
5223 	if (delta < 0 && nsec != 0) {
5224 		/* It is not allowed to adjust low the nsec part, therefore
5225 		 * subtract more from second part and add to nanosecond such
5226 		 * that would roll over, so the second part will increase
5227 		 */
5228 		sec--;
5229 		nsec = NSEC_PER_SEC - nsec;
5230 	}
5231 
5232 	/* Calculate the adjustments and the direction */
5233 	if (delta < 0)
5234 		add = false;
5235 
5236 	if (nsec > 0)
5237 		/* add 8 ns to cover the likely normal increment */
5238 		nsec += 8;
5239 
5240 	if (nsec >= NSEC_PER_SEC) {
5241 		/* carry into seconds */
5242 		sec++;
5243 		nsec -= NSEC_PER_SEC;
5244 	}
5245 
5246 	mutex_lock(&ptp_priv->ptp_lock);
5247 	if (sec) {
5248 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
5249 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5250 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
5251 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5252 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
5253 	}
5254 
5255 	if (nsec) {
5256 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
5257 			      nsec & 0xffff);
5258 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5259 			      (nsec >> 16) & 0x3fff);
5260 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5261 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
5262 	}
5263 	mutex_unlock(&ptp_priv->ptp_lock);
5264 
5265 	/* Update the target clock */
5266 	ptp->gettime64(ptp, &ts);
5267 	mutex_lock(&ptp_priv->ptp_lock);
5268 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
5269 	mutex_unlock(&ptp_priv->ptp_lock);
5270 
5271 	return ret;
5272 }
5273 
5274 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
5275 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
5276 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
5277 
5278 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
5279 {
5280 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5281 							ptp_clock_info);
5282 	struct phy_device *phydev = ptp_priv->phydev;
5283 	bool faster = true;
5284 	u32 rate;
5285 
5286 	if (!scaled_ppm)
5287 		return 0;
5288 
5289 	if (scaled_ppm < 0) {
5290 		scaled_ppm = -scaled_ppm;
5291 		faster = false;
5292 	}
5293 
5294 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
5295 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
5296 
5297 	mutex_lock(&ptp_priv->ptp_lock);
5298 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
5299 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
5300 			     : upper_16_bits(rate) & 0x3fff);
5301 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
5302 	mutex_unlock(&ptp_priv->ptp_lock);
5303 
5304 	return 0;
5305 }
5306 
5307 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
5308 			      enum ptp_pin_function func, unsigned int chan)
5309 {
5310 	switch (func) {
5311 	case PTP_PF_NONE:
5312 	case PTP_PF_PEROUT:
5313 	case PTP_PF_EXTTS:
5314 		break;
5315 	default:
5316 		return -1;
5317 	}
5318 
5319 	return 0;
5320 }
5321 
5322 #define LAN8841_PTP_GPIO_NUM	10
5323 #define LAN8841_GPIO_EN		128
5324 #define LAN8841_GPIO_DIR	129
5325 #define LAN8841_GPIO_BUF	130
5326 
5327 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5328 {
5329 	struct phy_device *phydev = ptp_priv->phydev;
5330 	int ret;
5331 
5332 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5333 	if (ret)
5334 		return ret;
5335 
5336 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5337 	if (ret)
5338 		return ret;
5339 
5340 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5341 }
5342 
5343 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
5344 {
5345 	struct phy_device *phydev = ptp_priv->phydev;
5346 	int ret;
5347 
5348 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5349 	if (ret)
5350 		return ret;
5351 
5352 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5353 	if (ret)
5354 		return ret;
5355 
5356 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5357 }
5358 
5359 #define LAN8841_GPIO_DATA_SEL1				131
5360 #define LAN8841_GPIO_DATA_SEL2				132
5361 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
5362 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
5363 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
5364 #define LAN8841_PTP_GENERAL_CONFIG			257
5365 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
5366 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
5367 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
5368 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
5369 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
5370 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
5371 
5372 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5373 				    u8 event)
5374 {
5375 	struct phy_device *phydev = ptp_priv->phydev;
5376 	u16 tmp;
5377 	int ret;
5378 
5379 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
5380 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5381 	 * depending on the pin, it requires to read a different register
5382 	 */
5383 	if (pin < 5) {
5384 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
5385 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
5386 	} else {
5387 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
5388 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
5389 	}
5390 	if (ret)
5391 		return ret;
5392 
5393 	/* Disable the event */
5394 	if (event == LAN8841_EVENT_A)
5395 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5396 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
5397 	else
5398 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5399 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
5400 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
5401 }
5402 
5403 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5404 				    u8 event, int pulse_width)
5405 {
5406 	struct phy_device *phydev = ptp_priv->phydev;
5407 	u16 tmp;
5408 	int ret;
5409 
5410 	/* Enable the event */
5411 	if (event == LAN8841_EVENT_A)
5412 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5413 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5414 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5415 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5416 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5417 	else
5418 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5419 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5420 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5421 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5422 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5423 	if (ret)
5424 		return ret;
5425 
5426 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5427 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5428 	 * depending on the pin, it requires to read a different register
5429 	 */
5430 	if (event == LAN8841_EVENT_A)
5431 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5432 	else
5433 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5434 
5435 	if (pin < 5)
5436 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5437 				       tmp << (3 * pin));
5438 	else
5439 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5440 				       tmp << (3 * (pin - 5)));
5441 
5442 	return ret;
5443 }
5444 
5445 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5446 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5447 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5448 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5449 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5450 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5451 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5452 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5453 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5454 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5455 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5456 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5457 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5458 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5459 
5460 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5461 			      struct ptp_clock_request *rq, int on)
5462 {
5463 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5464 							ptp_clock_info);
5465 	struct phy_device *phydev = ptp_priv->phydev;
5466 	struct timespec64 ts_on, ts_period;
5467 	s64 on_nsec, period_nsec;
5468 	int pulse_width;
5469 	int pin;
5470 	int ret;
5471 
5472 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5473 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5474 		return -EINVAL;
5475 
5476 	if (!on) {
5477 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5478 		if (ret)
5479 			return ret;
5480 
5481 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5482 	}
5483 
5484 	ts_on.tv_sec = rq->perout.on.sec;
5485 	ts_on.tv_nsec = rq->perout.on.nsec;
5486 	on_nsec = timespec64_to_ns(&ts_on);
5487 
5488 	ts_period.tv_sec = rq->perout.period.sec;
5489 	ts_period.tv_nsec = rq->perout.period.nsec;
5490 	period_nsec = timespec64_to_ns(&ts_period);
5491 
5492 	if (period_nsec < 200) {
5493 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5494 				    phydev_name(phydev));
5495 		return -EOPNOTSUPP;
5496 	}
5497 
5498 	if (on_nsec >= period_nsec) {
5499 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5500 				    phydev_name(phydev));
5501 		return -EINVAL;
5502 	}
5503 
5504 	switch (on_nsec) {
5505 	case 200000000:
5506 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5507 		break;
5508 	case 100000000:
5509 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5510 		break;
5511 	case 50000000:
5512 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5513 		break;
5514 	case 10000000:
5515 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5516 		break;
5517 	case 5000000:
5518 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5519 		break;
5520 	case 1000000:
5521 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5522 		break;
5523 	case 500000:
5524 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5525 		break;
5526 	case 100000:
5527 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5528 		break;
5529 	case 50000:
5530 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5531 		break;
5532 	case 10000:
5533 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5534 		break;
5535 	case 5000:
5536 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5537 		break;
5538 	case 1000:
5539 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5540 		break;
5541 	case 500:
5542 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5543 		break;
5544 	case 100:
5545 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5546 		break;
5547 	default:
5548 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5549 				    phydev_name(phydev));
5550 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5551 		break;
5552 	}
5553 
5554 	mutex_lock(&ptp_priv->ptp_lock);
5555 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5556 				     rq->perout.start.nsec);
5557 	mutex_unlock(&ptp_priv->ptp_lock);
5558 	if (ret)
5559 		return ret;
5560 
5561 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5562 				     rq->perout.period.nsec);
5563 	if (ret)
5564 		return ret;
5565 
5566 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5567 				       pulse_width);
5568 	if (ret)
5569 		return ret;
5570 
5571 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5572 	if (ret)
5573 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5574 
5575 	return ret;
5576 }
5577 
5578 #define LAN8841_PTP_GPIO_CAP_EN			496
5579 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5580 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5581 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5582 
5583 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5584 				u32 flags)
5585 {
5586 	struct phy_device *phydev = ptp_priv->phydev;
5587 	u16 tmp = 0;
5588 	int ret;
5589 
5590 	/* Set GPIO to be intput */
5591 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5592 	if (ret)
5593 		return ret;
5594 
5595 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5596 	if (ret)
5597 		return ret;
5598 
5599 	/* Enable capture on the edges of the pin */
5600 	if (flags & PTP_RISING_EDGE)
5601 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5602 	if (flags & PTP_FALLING_EDGE)
5603 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5604 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5605 	if (ret)
5606 		return ret;
5607 
5608 	/* Enable interrupt */
5609 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5610 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5611 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5612 }
5613 
5614 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5615 {
5616 	struct phy_device *phydev = ptp_priv->phydev;
5617 	int ret;
5618 
5619 	/* Set GPIO to be output */
5620 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5621 	if (ret)
5622 		return ret;
5623 
5624 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5625 	if (ret)
5626 		return ret;
5627 
5628 	/* Disable capture on both of the edges */
5629 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5630 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5631 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5632 			     0);
5633 	if (ret)
5634 		return ret;
5635 
5636 	/* Disable interrupt */
5637 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5638 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5639 			      0);
5640 }
5641 
5642 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5643 			     struct ptp_clock_request *rq, int on)
5644 {
5645 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5646 							ptp_clock_info);
5647 	int pin;
5648 	int ret;
5649 
5650 	/* Reject requests with unsupported flags */
5651 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5652 				PTP_EXTTS_EDGES |
5653 				PTP_STRICT_FLAGS))
5654 		return -EOPNOTSUPP;
5655 
5656 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5657 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5658 		return -EINVAL;
5659 
5660 	mutex_lock(&ptp_priv->ptp_lock);
5661 	if (on)
5662 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5663 	else
5664 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5665 	mutex_unlock(&ptp_priv->ptp_lock);
5666 
5667 	return ret;
5668 }
5669 
5670 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5671 			      struct ptp_clock_request *rq, int on)
5672 {
5673 	switch (rq->type) {
5674 	case PTP_CLK_REQ_EXTTS:
5675 		return lan8841_ptp_extts(ptp, rq, on);
5676 	case PTP_CLK_REQ_PEROUT:
5677 		return lan8841_ptp_perout(ptp, rq, on);
5678 	default:
5679 		return -EOPNOTSUPP;
5680 	}
5681 
5682 	return 0;
5683 }
5684 
5685 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5686 {
5687 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5688 							ptp_clock_info);
5689 	struct timespec64 ts;
5690 	unsigned long flags;
5691 
5692 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5693 
5694 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5695 	ptp_priv->seconds = ts.tv_sec;
5696 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5697 
5698 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5699 }
5700 
5701 static struct ptp_clock_info lan8841_ptp_clock_info = {
5702 	.owner		= THIS_MODULE,
5703 	.name		= "lan8841 ptp",
5704 	.max_adj	= 31249999,
5705 	.gettime64	= lan8841_ptp_gettime64,
5706 	.settime64	= lan8841_ptp_settime64,
5707 	.adjtime	= lan8841_ptp_adjtime,
5708 	.adjfine	= lan8841_ptp_adjfine,
5709 	.verify         = lan8841_ptp_verify,
5710 	.enable         = lan8841_ptp_enable,
5711 	.do_aux_work	= lan8841_ptp_do_aux_work,
5712 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5713 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5714 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5715 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5716 };
5717 
5718 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5719 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5720 
5721 static int lan8841_probe(struct phy_device *phydev)
5722 {
5723 	struct kszphy_ptp_priv *ptp_priv;
5724 	struct kszphy_priv *priv;
5725 	int err;
5726 
5727 	err = kszphy_probe(phydev);
5728 	if (err)
5729 		return err;
5730 
5731 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5732 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5733 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5734 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5735 
5736 	/* Register the clock */
5737 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5738 		return 0;
5739 
5740 	priv = phydev->priv;
5741 	ptp_priv = &priv->ptp_priv;
5742 
5743 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5744 					    LAN8841_PTP_GPIO_NUM,
5745 					    sizeof(*ptp_priv->pin_config),
5746 					    GFP_KERNEL);
5747 	if (!ptp_priv->pin_config)
5748 		return -ENOMEM;
5749 
5750 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5751 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5752 
5753 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5754 		p->index = i;
5755 		p->func = PTP_PF_NONE;
5756 	}
5757 
5758 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5759 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5760 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5761 						 &phydev->mdio.dev);
5762 	if (IS_ERR(ptp_priv->ptp_clock)) {
5763 		phydev_err(phydev, "ptp_clock_register failed: %pe\n",
5764 			   ptp_priv->ptp_clock);
5765 		return -EINVAL;
5766 	}
5767 
5768 	if (!ptp_priv->ptp_clock)
5769 		return 0;
5770 
5771 	/* Initialize the SW */
5772 	skb_queue_head_init(&ptp_priv->tx_queue);
5773 	ptp_priv->phydev = phydev;
5774 	mutex_init(&ptp_priv->ptp_lock);
5775 	spin_lock_init(&ptp_priv->seconds_lock);
5776 
5777 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5778 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5779 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5780 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5781 
5782 	phydev->mii_ts = &ptp_priv->mii_ts;
5783 
5784 	/* Timestamp selected by default to keep legacy API */
5785 	phydev->default_timestamp = true;
5786 
5787 	return 0;
5788 }
5789 
5790 static int lan8804_resume(struct phy_device *phydev)
5791 {
5792 	return kszphy_resume(phydev);
5793 }
5794 
5795 static int lan8804_suspend(struct phy_device *phydev)
5796 {
5797 	return kszphy_generic_suspend(phydev);
5798 }
5799 
5800 static int lan8841_resume(struct phy_device *phydev)
5801 {
5802 	return kszphy_generic_resume(phydev);
5803 }
5804 
5805 static int lan8841_suspend(struct phy_device *phydev)
5806 {
5807 	struct kszphy_priv *priv = phydev->priv;
5808 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5809 
5810 	if (ptp_priv->ptp_clock)
5811 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5812 
5813 	return kszphy_generic_suspend(phydev);
5814 }
5815 
5816 static int ksz9131_resume(struct phy_device *phydev)
5817 {
5818 	if (phydev->suspended && phy_interface_is_rgmii(phydev))
5819 		ksz9131_config_rgmii_delay(phydev);
5820 
5821 	return kszphy_resume(phydev);
5822 }
5823 
5824 #define LAN8842_PTP_GPIO_NUM 16
5825 
5826 static int lan8842_ptp_probe_once(struct phy_device *phydev)
5827 {
5828 	return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin",
5829 					LAN8842_PTP_GPIO_NUM);
5830 }
5831 
5832 #define LAN8842_STRAP_REG			0 /* 0x0 */
5833 #define LAN8842_STRAP_REG_PHYADDR_MASK		GENMASK(4, 0)
5834 #define LAN8842_SKU_REG				11 /* 0x0b */
5835 #define LAN8842_SELF_TEST			14 /* 0x0e */
5836 #define LAN8842_SELF_TEST_RX_CNT_ENA		BIT(8)
5837 #define LAN8842_SELF_TEST_TX_CNT_ENA		BIT(4)
5838 
5839 static int lan8842_probe(struct phy_device *phydev)
5840 {
5841 	struct lan8842_priv *priv;
5842 	int addr;
5843 	int ret;
5844 
5845 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
5846 	if (!priv)
5847 		return -ENOMEM;
5848 
5849 	phydev->priv = priv;
5850 
5851 	/* Similar to lan8814 this PHY has a pin which needs to be pulled down
5852 	 * to enable to pass any traffic through it. Therefore use the same
5853 	 * function as lan8814
5854 	 */
5855 	ret = lan8814_release_coma_mode(phydev);
5856 	if (ret)
5857 		return ret;
5858 
5859 	/* Enable to count the RX and TX packets */
5860 	ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
5861 				    LAN8842_SELF_TEST,
5862 				    LAN8842_SELF_TEST_RX_CNT_ENA |
5863 				    LAN8842_SELF_TEST_TX_CNT_ENA);
5864 	if (ret < 0)
5865 		return ret;
5866 
5867 	/* Revision lan8832 doesn't have support for PTP, therefore don't add
5868 	 * any PTP clocks
5869 	 */
5870 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5871 				   LAN8842_SKU_REG);
5872 	if (ret < 0)
5873 		return ret;
5874 
5875 	priv->rev = ret;
5876 	if (priv->rev == LAN8842_REV_8832)
5877 		return 0;
5878 
5879 	/* As the lan8814 and lan8842 has the same IP for the PTP block, the
5880 	 * only difference is the number of the GPIOs, then make sure that the
5881 	 * lan8842 initialized also the shared data pointer as this is used in
5882 	 * all the PTP functions for lan8814. The lan8842 doesn't have multiple
5883 	 * PHYs in the same package.
5884 	 */
5885 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5886 				    LAN8842_STRAP_REG);
5887 	if (addr < 0)
5888 		return addr;
5889 	addr &= LAN8842_STRAP_REG_PHYADDR_MASK;
5890 
5891 	ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr,
5892 				    sizeof(struct lan8814_shared_priv));
5893 	if (ret)
5894 		return ret;
5895 
5896 	if (phy_package_init_once(phydev)) {
5897 		ret = lan8842_ptp_probe_once(phydev);
5898 		if (ret)
5899 			return ret;
5900 	}
5901 
5902 	lan8814_ptp_init(phydev);
5903 
5904 	return 0;
5905 }
5906 
5907 #define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI		0x13
5908 #define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX		0x14
5909 #define LAN8814_POWER_MGMT_MODE_5_10BT_MDI		0x15
5910 #define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX		0x16
5911 #define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN		0x17
5912 #define LAN8814_POWER_MGMT_MODE_8_100BT_MDI		0x18
5913 #define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX	0x19
5914 #define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX	0x1a
5915 #define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX		0x1b
5916 #define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX	0x1c
5917 #define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX	0x1d
5918 #define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX	0x1e
5919 
5920 #define LAN8814_POWER_MGMT_DLLPD_D			BIT(0)
5921 #define LAN8814_POWER_MGMT_ADCPD_D			BIT(1)
5922 #define LAN8814_POWER_MGMT_PGAPD_D			BIT(2)
5923 #define LAN8814_POWER_MGMT_TXPD_D			BIT(3)
5924 #define LAN8814_POWER_MGMT_DLLPD_C			BIT(4)
5925 #define LAN8814_POWER_MGMT_ADCPD_C			BIT(5)
5926 #define LAN8814_POWER_MGMT_PGAPD_C			BIT(6)
5927 #define LAN8814_POWER_MGMT_TXPD_C			BIT(7)
5928 #define LAN8814_POWER_MGMT_DLLPD_B			BIT(8)
5929 #define LAN8814_POWER_MGMT_ADCPD_B			BIT(9)
5930 #define LAN8814_POWER_MGMT_PGAPD_B			BIT(10)
5931 #define LAN8814_POWER_MGMT_TXPD_B			BIT(11)
5932 #define LAN8814_POWER_MGMT_DLLPD_A			BIT(12)
5933 #define LAN8814_POWER_MGMT_ADCPD_A			BIT(13)
5934 #define LAN8814_POWER_MGMT_PGAPD_A			BIT(14)
5935 #define LAN8814_POWER_MGMT_TXPD_A			BIT(15)
5936 
5937 #define LAN8814_POWER_MGMT_C_D		(LAN8814_POWER_MGMT_DLLPD_D | \
5938 					 LAN8814_POWER_MGMT_ADCPD_D | \
5939 					 LAN8814_POWER_MGMT_PGAPD_D | \
5940 					 LAN8814_POWER_MGMT_DLLPD_C | \
5941 					 LAN8814_POWER_MGMT_ADCPD_C | \
5942 					 LAN8814_POWER_MGMT_PGAPD_C)
5943 
5944 #define LAN8814_POWER_MGMT_B_C_D	(LAN8814_POWER_MGMT_C_D | \
5945 					 LAN8814_POWER_MGMT_DLLPD_B | \
5946 					 LAN8814_POWER_MGMT_ADCPD_B | \
5947 					 LAN8814_POWER_MGMT_PGAPD_B)
5948 
5949 #define LAN8814_POWER_MGMT_VAL1		(LAN8814_POWER_MGMT_C_D | \
5950 					 LAN8814_POWER_MGMT_ADCPD_B | \
5951 					 LAN8814_POWER_MGMT_PGAPD_B | \
5952 					 LAN8814_POWER_MGMT_ADCPD_A | \
5953 					 LAN8814_POWER_MGMT_PGAPD_A)
5954 
5955 #define LAN8814_POWER_MGMT_VAL2		LAN8814_POWER_MGMT_C_D
5956 
5957 #define LAN8814_POWER_MGMT_VAL3		(LAN8814_POWER_MGMT_C_D | \
5958 					 LAN8814_POWER_MGMT_DLLPD_B | \
5959 					 LAN8814_POWER_MGMT_ADCPD_B | \
5960 					 LAN8814_POWER_MGMT_PGAPD_A)
5961 
5962 #define LAN8814_POWER_MGMT_VAL4		(LAN8814_POWER_MGMT_B_C_D | \
5963 					 LAN8814_POWER_MGMT_ADCPD_A | \
5964 					 LAN8814_POWER_MGMT_PGAPD_A)
5965 
5966 #define LAN8814_POWER_MGMT_VAL5		LAN8814_POWER_MGMT_B_C_D
5967 
5968 #define LAN8814_EEE_WAKE_TX_TIMER			0x0e
5969 #define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL		0x1f
5970 
5971 static const struct lanphy_reg_data short_center_tap_errata[] = {
5972 	{ LAN8814_PAGE_POWER_REGS,
5973 	  LAN8814_POWER_MGMT_MODE_3_ANEG_MDI,
5974 	  LAN8814_POWER_MGMT_VAL1 },
5975 	{ LAN8814_PAGE_POWER_REGS,
5976 	  LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX,
5977 	  LAN8814_POWER_MGMT_VAL1 },
5978 	{ LAN8814_PAGE_POWER_REGS,
5979 	  LAN8814_POWER_MGMT_MODE_5_10BT_MDI,
5980 	  LAN8814_POWER_MGMT_VAL1 },
5981 	{ LAN8814_PAGE_POWER_REGS,
5982 	  LAN8814_POWER_MGMT_MODE_6_10BT_MDIX,
5983 	  LAN8814_POWER_MGMT_VAL1 },
5984 	{ LAN8814_PAGE_POWER_REGS,
5985 	  LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN,
5986 	  LAN8814_POWER_MGMT_VAL2 },
5987 	{ LAN8814_PAGE_POWER_REGS,
5988 	  LAN8814_POWER_MGMT_MODE_8_100BT_MDI,
5989 	  LAN8814_POWER_MGMT_VAL3 },
5990 	{ LAN8814_PAGE_POWER_REGS,
5991 	  LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX,
5992 	  LAN8814_POWER_MGMT_VAL3 },
5993 	{ LAN8814_PAGE_POWER_REGS,
5994 	  LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX,
5995 	  LAN8814_POWER_MGMT_VAL4 },
5996 	{ LAN8814_PAGE_POWER_REGS,
5997 	  LAN8814_POWER_MGMT_MODE_11_100BT_MDIX,
5998 	  LAN8814_POWER_MGMT_VAL5 },
5999 	{ LAN8814_PAGE_POWER_REGS,
6000 	  LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX,
6001 	  LAN8814_POWER_MGMT_VAL5 },
6002 	{ LAN8814_PAGE_POWER_REGS,
6003 	  LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX,
6004 	  LAN8814_POWER_MGMT_VAL4 },
6005 	{ LAN8814_PAGE_POWER_REGS,
6006 	  LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX,
6007 	  LAN8814_POWER_MGMT_VAL4 },
6008 };
6009 
6010 static const struct lanphy_reg_data waketx_timer_errata[] = {
6011 	{ LAN8814_PAGE_EEE,
6012 	  LAN8814_EEE_WAKE_TX_TIMER,
6013 	  LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL },
6014 };
6015 
6016 static int lanphy_write_reg_data(struct phy_device *phydev,
6017 				 const struct lanphy_reg_data *data,
6018 				 size_t num)
6019 {
6020 	int ret = 0;
6021 
6022 	while (num--) {
6023 		ret = lanphy_write_page_reg(phydev, data->page, data->addr,
6024 					    data->val);
6025 		if (ret)
6026 			break;
6027 	}
6028 
6029 	return ret;
6030 }
6031 
6032 static int lan8842_erratas(struct phy_device *phydev)
6033 {
6034 	int ret;
6035 
6036 	ret = lanphy_write_reg_data(phydev, short_center_tap_errata,
6037 				    ARRAY_SIZE(short_center_tap_errata));
6038 	if (ret)
6039 		return ret;
6040 
6041 	return lanphy_write_reg_data(phydev, waketx_timer_errata,
6042 				     ARRAY_SIZE(waketx_timer_errata));
6043 }
6044 
6045 static int lan8842_config_init(struct phy_device *phydev)
6046 {
6047 	int ret;
6048 
6049 	/* Reset the PHY */
6050 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6051 				     LAN8814_QSGMII_SOFT_RESET,
6052 				     LAN8814_QSGMII_SOFT_RESET_BIT,
6053 				     LAN8814_QSGMII_SOFT_RESET_BIT);
6054 	if (ret < 0)
6055 		return ret;
6056 
6057 	/* Apply the erratas for this device */
6058 	ret = lan8842_erratas(phydev);
6059 	if (ret < 0)
6060 		return ret;
6061 
6062 	/* Even if the GPIOs are set to control the LEDs the behaviour of the
6063 	 * LEDs is wrong, they are not blinking when there is traffic.
6064 	 * To fix this it is required to set extended LED mode
6065 	 */
6066 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6067 				     LAN8814_LED_CTRL_1,
6068 				     LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0);
6069 	if (ret < 0)
6070 		return ret;
6071 
6072 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6073 				     LAN8814_LED_CTRL_2,
6074 				     LAN8814_LED_CTRL_2_LED1_COM_DIS,
6075 				     LAN8814_LED_CTRL_2_LED1_COM_DIS);
6076 	if (ret < 0)
6077 		return ret;
6078 
6079 	/* To allow the PHY to control the LEDs the GPIOs of the PHY should have
6080 	 * a function mode and not the GPIO. Apparently by default the value is
6081 	 * GPIO and not function even though the datasheet it says that it is
6082 	 * function. Therefore set this value.
6083 	 */
6084 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6085 				     LAN8814_GPIO_EN2, 0);
6086 }
6087 
6088 #define LAN8842_INTR_CTRL_REG			52 /* 0x34 */
6089 
6090 static int lan8842_config_intr(struct phy_device *phydev)
6091 {
6092 	int err;
6093 
6094 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6095 			      LAN8842_INTR_CTRL_REG,
6096 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
6097 
6098 	/* enable / disable interrupts */
6099 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
6100 		err = lan8814_ack_interrupt(phydev);
6101 		if (err)
6102 			return err;
6103 
6104 		err = phy_write(phydev, LAN8814_INTC,
6105 				LAN8814_INT_LINK | LAN8814_INT_FLF);
6106 	} else {
6107 		err = phy_write(phydev, LAN8814_INTC, 0);
6108 		if (err)
6109 			return err;
6110 
6111 		err = lan8814_ack_interrupt(phydev);
6112 	}
6113 
6114 	return err;
6115 }
6116 
6117 static unsigned int lan8842_inband_caps(struct phy_device *phydev,
6118 					phy_interface_t interface)
6119 {
6120 	/* Inband configuration can be enabled or disabled using the registers
6121 	 * PCS1G_ANEG_CONFIG.
6122 	 */
6123 	return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE;
6124 }
6125 
6126 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes)
6127 {
6128 	bool enable;
6129 
6130 	if (modes == LINK_INBAND_DISABLE)
6131 		enable = false;
6132 	else
6133 		enable = true;
6134 
6135 	/* Disable or enable in-band autoneg with PCS Host side
6136 	 * It has the same address as lan8814
6137 	 */
6138 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6139 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
6140 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
6141 				      enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0);
6142 }
6143 
6144 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
6145 {
6146 	struct kszphy_ptp_priv *ptp_priv;
6147 	struct lan8842_priv *priv;
6148 
6149 	priv = phydev->priv;
6150 	ptp_priv = &priv->ptp_priv;
6151 
6152 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
6153 		lan8814_get_tx_ts(ptp_priv);
6154 
6155 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
6156 		lan8814_get_rx_ts(ptp_priv);
6157 
6158 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
6159 		lan8814_flush_fifo(phydev, true);
6160 		skb_queue_purge(&ptp_priv->tx_queue);
6161 	}
6162 
6163 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
6164 		lan8814_flush_fifo(phydev, false);
6165 		skb_queue_purge(&ptp_priv->rx_queue);
6166 	}
6167 }
6168 
6169 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev)
6170 {
6171 	struct lan8842_priv *priv = phydev->priv;
6172 	int ret = IRQ_NONE;
6173 	int irq_status;
6174 
6175 	irq_status = phy_read(phydev, LAN8814_INTS);
6176 	if (irq_status < 0) {
6177 		phy_error(phydev);
6178 		return IRQ_NONE;
6179 	}
6180 
6181 	if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) {
6182 		phy_trigger_machine(phydev);
6183 		ret = IRQ_HANDLED;
6184 	}
6185 
6186 	/* Phy revision lan8832 doesn't have support for PTP therefore there is
6187 	 * not need to check the PTP and GPIO interrupts
6188 	 */
6189 	if (priv->rev == LAN8842_REV_8832)
6190 		goto out;
6191 
6192 	while (true) {
6193 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6194 						  PTP_TSU_INT_STS);
6195 		if (!irq_status)
6196 			break;
6197 
6198 		lan8842_handle_ptp_interrupt(phydev, irq_status);
6199 		ret = IRQ_HANDLED;
6200 	}
6201 
6202 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
6203 		ret = IRQ_HANDLED;
6204 
6205 out:
6206 	return ret;
6207 }
6208 
6209 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs)
6210 {
6211 	u64 ret = 0;
6212 	int val;
6213 
6214 	for (int j = 0; j < count; ++j) {
6215 		val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
6216 					   regs[j]);
6217 		if (val < 0)
6218 			return U64_MAX;
6219 
6220 		ret <<= 16;
6221 		ret += val;
6222 	}
6223 	return ret;
6224 }
6225 
6226 static int lan8842_update_stats(struct phy_device *phydev)
6227 {
6228 	struct lan8842_priv *priv = phydev->priv;
6229 	int rx_packets_regs[] = {88, 61, 60};
6230 	int rx_errors_regs[] = {63, 62};
6231 	int tx_packets_regs[] = {89, 85, 84};
6232 	int tx_errors_regs[] = {87, 86};
6233 
6234 	priv->phy_stats.rx_packets = lan8842_get_stat(phydev,
6235 						      ARRAY_SIZE(rx_packets_regs),
6236 						      rx_packets_regs);
6237 	priv->phy_stats.rx_errors = lan8842_get_stat(phydev,
6238 						     ARRAY_SIZE(rx_errors_regs),
6239 						     rx_errors_regs);
6240 	priv->phy_stats.tx_packets = lan8842_get_stat(phydev,
6241 						      ARRAY_SIZE(tx_packets_regs),
6242 						      tx_packets_regs);
6243 	priv->phy_stats.tx_errors = lan8842_get_stat(phydev,
6244 						     ARRAY_SIZE(tx_errors_regs),
6245 						     tx_errors_regs);
6246 
6247 	return 0;
6248 }
6249 
6250 #define LAN8842_FLF				15 /* 0x0e */
6251 #define LAN8842_FLF_ENA				BIT(1)
6252 #define LAN8842_FLF_ENA_LINK_DOWN		BIT(0)
6253 
6254 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs)
6255 {
6256 	int ret;
6257 
6258 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF);
6259 	if (ret < 0)
6260 		return ret;
6261 
6262 	if (ret & LAN8842_FLF_ENA)
6263 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON;
6264 	else
6265 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF;
6266 
6267 	return 0;
6268 }
6269 
6270 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs)
6271 {
6272 	u16 flf;
6273 
6274 	switch (*msecs) {
6275 	case ETHTOOL_PHY_FAST_LINK_DOWN_OFF:
6276 		flf = 0;
6277 		break;
6278 	case ETHTOOL_PHY_FAST_LINK_DOWN_ON:
6279 		flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN;
6280 		break;
6281 	default:
6282 		return -EINVAL;
6283 	}
6284 
6285 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS,
6286 				      LAN8842_FLF,
6287 				      LAN8842_FLF_ENA |
6288 				      LAN8842_FLF_ENA_LINK_DOWN, flf);
6289 }
6290 
6291 static int lan8842_get_tunable(struct phy_device *phydev,
6292 			       struct ethtool_tunable *tuna, void *data)
6293 {
6294 	switch (tuna->id) {
6295 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6296 		return lan8842_get_fast_down(phydev, data);
6297 	default:
6298 		return -EOPNOTSUPP;
6299 	}
6300 }
6301 
6302 static int lan8842_set_tunable(struct phy_device *phydev,
6303 			       struct ethtool_tunable *tuna, const void *data)
6304 {
6305 	switch (tuna->id) {
6306 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6307 		return lan8842_set_fast_down(phydev, data);
6308 	default:
6309 		return -EOPNOTSUPP;
6310 	}
6311 }
6312 
6313 static void lan8842_get_phy_stats(struct phy_device *phydev,
6314 				  struct ethtool_eth_phy_stats *eth_stats,
6315 				  struct ethtool_phy_stats *stats)
6316 {
6317 	struct lan8842_priv *priv = phydev->priv;
6318 
6319 	stats->rx_packets = priv->phy_stats.rx_packets;
6320 	stats->rx_errors = priv->phy_stats.rx_errors;
6321 	stats->tx_packets = priv->phy_stats.tx_packets;
6322 	stats->tx_errors = priv->phy_stats.tx_errors;
6323 }
6324 
6325 static struct phy_driver ksphy_driver[] = {
6326 {
6327 	PHY_ID_MATCH_MODEL(PHY_ID_KS8737),
6328 	.name		= "Micrel KS8737",
6329 	/* PHY_BASIC_FEATURES */
6330 	.driver_data	= &ks8737_type,
6331 	.probe		= kszphy_probe,
6332 	.config_init	= kszphy_config_init,
6333 	.config_intr	= kszphy_config_intr,
6334 	.handle_interrupt = kszphy_handle_interrupt,
6335 	.suspend	= kszphy_suspend,
6336 	.resume		= kszphy_resume,
6337 }, {
6338 	.phy_id		= PHY_ID_KSZ8021,
6339 	.phy_id_mask	= 0x00ffffff,
6340 	.name		= "Micrel KSZ8021 or KSZ8031",
6341 	/* PHY_BASIC_FEATURES */
6342 	.driver_data	= &ksz8021_type,
6343 	.probe		= kszphy_probe,
6344 	.config_init	= kszphy_config_init,
6345 	.config_intr	= kszphy_config_intr,
6346 	.handle_interrupt = kszphy_handle_interrupt,
6347 	.get_sset_count = kszphy_get_sset_count,
6348 	.get_strings	= kszphy_get_strings,
6349 	.get_stats	= kszphy_get_stats,
6350 	.suspend	= kszphy_suspend,
6351 	.resume		= kszphy_resume,
6352 }, {
6353 	.phy_id		= PHY_ID_KSZ8031,
6354 	.phy_id_mask	= 0x00ffffff,
6355 	.name		= "Micrel KSZ8031",
6356 	/* PHY_BASIC_FEATURES */
6357 	.driver_data	= &ksz8021_type,
6358 	.probe		= kszphy_probe,
6359 	.config_init	= kszphy_config_init,
6360 	.config_intr	= kszphy_config_intr,
6361 	.handle_interrupt = kszphy_handle_interrupt,
6362 	.get_sset_count = kszphy_get_sset_count,
6363 	.get_strings	= kszphy_get_strings,
6364 	.get_stats	= kszphy_get_stats,
6365 	.suspend	= kszphy_suspend,
6366 	.resume		= kszphy_resume,
6367 }, {
6368 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041),
6369 	.name		= "Micrel KSZ8041",
6370 	/* PHY_BASIC_FEATURES */
6371 	.driver_data	= &ksz8041_type,
6372 	.probe		= kszphy_probe,
6373 	.config_init	= ksz8041_config_init,
6374 	.config_aneg	= ksz8041_config_aneg,
6375 	.config_intr	= kszphy_config_intr,
6376 	.handle_interrupt = kszphy_handle_interrupt,
6377 	.get_sset_count = kszphy_get_sset_count,
6378 	.get_strings	= kszphy_get_strings,
6379 	.get_stats	= kszphy_get_stats,
6380 	.suspend	= ksz8041_suspend,
6381 	.resume		= ksz8041_resume,
6382 }, {
6383 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI),
6384 	.name		= "Micrel KSZ8041RNLI",
6385 	/* PHY_BASIC_FEATURES */
6386 	.driver_data	= &ksz8041_type,
6387 	.probe		= kszphy_probe,
6388 	.config_init	= kszphy_config_init,
6389 	.config_intr	= kszphy_config_intr,
6390 	.handle_interrupt = kszphy_handle_interrupt,
6391 	.get_sset_count = kszphy_get_sset_count,
6392 	.get_strings	= kszphy_get_strings,
6393 	.get_stats	= kszphy_get_stats,
6394 	.suspend	= kszphy_suspend,
6395 	.resume		= kszphy_resume,
6396 }, {
6397 	.name		= "Micrel KSZ8051",
6398 	/* PHY_BASIC_FEATURES */
6399 	.driver_data	= &ksz8051_type,
6400 	.probe		= kszphy_probe,
6401 	.config_init	= kszphy_config_init,
6402 	.config_intr	= kszphy_config_intr,
6403 	.handle_interrupt = kszphy_handle_interrupt,
6404 	.get_sset_count = kszphy_get_sset_count,
6405 	.get_strings	= kszphy_get_strings,
6406 	.get_stats	= kszphy_get_stats,
6407 	.match_phy_device = ksz8051_match_phy_device,
6408 	.suspend	= kszphy_suspend,
6409 	.resume		= kszphy_resume,
6410 }, {
6411 	.phy_id		= PHY_ID_KSZ8001,
6412 	.name		= "Micrel KSZ8001 or KS8721",
6413 	.phy_id_mask	= 0x00fffffc,
6414 	/* PHY_BASIC_FEATURES */
6415 	.driver_data	= &ksz8041_type,
6416 	.probe		= kszphy_probe,
6417 	.config_init	= kszphy_config_init,
6418 	.config_intr	= kszphy_config_intr,
6419 	.handle_interrupt = kszphy_handle_interrupt,
6420 	.get_sset_count = kszphy_get_sset_count,
6421 	.get_strings	= kszphy_get_strings,
6422 	.get_stats	= kszphy_get_stats,
6423 	.suspend	= kszphy_suspend,
6424 	.resume		= kszphy_resume,
6425 }, {
6426 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081),
6427 	.name		= "Micrel KSZ8081 or KSZ8091",
6428 	.flags		= PHY_POLL_CABLE_TEST,
6429 	/* PHY_BASIC_FEATURES */
6430 	.driver_data	= &ksz8081_type,
6431 	.probe		= kszphy_probe,
6432 	.config_init	= ksz8081_config_init,
6433 	.soft_reset	= genphy_soft_reset,
6434 	.config_aneg	= ksz8081_config_aneg,
6435 	.read_status	= ksz8081_read_status,
6436 	.config_intr	= kszphy_config_intr,
6437 	.handle_interrupt = kszphy_handle_interrupt,
6438 	.get_sset_count = kszphy_get_sset_count,
6439 	.get_strings	= kszphy_get_strings,
6440 	.get_stats	= kszphy_get_stats,
6441 	.suspend	= kszphy_suspend,
6442 	.resume		= kszphy_resume,
6443 	.cable_test_start	= ksz886x_cable_test_start,
6444 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6445 }, {
6446 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061),
6447 	.name		= "Micrel KSZ8061",
6448 	/* PHY_BASIC_FEATURES */
6449 	.probe		= kszphy_probe,
6450 	.config_init	= ksz8061_config_init,
6451 	.soft_reset	= genphy_soft_reset,
6452 	.config_intr	= kszphy_config_intr,
6453 	.handle_interrupt = kszphy_handle_interrupt,
6454 	.suspend	= ksz8061_suspend,
6455 	.resume		= ksz8061_resume,
6456 }, {
6457 	.phy_id		= PHY_ID_KSZ9021,
6458 	.phy_id_mask	= 0x000ffffe,
6459 	.name		= "Micrel KSZ9021 Gigabit PHY",
6460 	/* PHY_GBIT_FEATURES */
6461 	.driver_data	= &ksz9021_type,
6462 	.probe		= kszphy_probe,
6463 	.get_features	= ksz9031_get_features,
6464 	.config_init	= ksz9021_config_init,
6465 	.config_intr	= kszphy_config_intr,
6466 	.handle_interrupt = kszphy_handle_interrupt,
6467 	.get_sset_count = kszphy_get_sset_count,
6468 	.get_strings	= kszphy_get_strings,
6469 	.get_stats	= kszphy_get_stats,
6470 	.suspend	= kszphy_suspend,
6471 	.resume		= kszphy_resume,
6472 	.read_mmd	= genphy_read_mmd_unsupported,
6473 	.write_mmd	= genphy_write_mmd_unsupported,
6474 }, {
6475 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031),
6476 	.name		= "Micrel KSZ9031 Gigabit PHY",
6477 	.flags		= PHY_POLL_CABLE_TEST,
6478 	.driver_data	= &ksz9021_type,
6479 	.probe		= kszphy_probe,
6480 	.get_features	= ksz9031_get_features,
6481 	.config_init	= ksz9031_config_init,
6482 	.soft_reset	= genphy_soft_reset,
6483 	.read_status	= ksz9031_read_status,
6484 	.config_intr	= kszphy_config_intr,
6485 	.handle_interrupt = kszphy_handle_interrupt,
6486 	.get_sset_count = kszphy_get_sset_count,
6487 	.get_strings	= kszphy_get_strings,
6488 	.get_stats	= kszphy_get_stats,
6489 	.suspend	= kszphy_suspend,
6490 	.resume		= kszphy_resume,
6491 	.cable_test_start	= ksz9x31_cable_test_start,
6492 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6493 	.set_loopback	= ksz9031_set_loopback,
6494 }, {
6495 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8814),
6496 	.name		= "Microchip INDY Gigabit Quad PHY",
6497 	.flags          = PHY_POLL_CABLE_TEST,
6498 	.config_init	= lan8814_config_init,
6499 	.driver_data	= &lan8814_type,
6500 	.probe		= lan8814_probe,
6501 	.soft_reset	= genphy_soft_reset,
6502 	.read_status	= ksz9031_read_status,
6503 	.get_sset_count	= kszphy_get_sset_count,
6504 	.get_strings	= kszphy_get_strings,
6505 	.get_stats	= kszphy_get_stats,
6506 	.suspend	= genphy_suspend,
6507 	.resume		= kszphy_resume,
6508 	.config_intr	= lan8814_config_intr,
6509 	.handle_interrupt = lan8814_handle_interrupt,
6510 	.cable_test_start	= lan8814_cable_test_start,
6511 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6512 }, {
6513 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8804),
6514 	.name		= "Microchip LAN966X Gigabit PHY",
6515 	.config_init	= lan8804_config_init,
6516 	.driver_data	= &ksz9021_type,
6517 	.probe		= kszphy_probe,
6518 	.soft_reset	= genphy_soft_reset,
6519 	.read_status	= ksz9031_read_status,
6520 	.get_sset_count	= kszphy_get_sset_count,
6521 	.get_strings	= kszphy_get_strings,
6522 	.get_stats	= kszphy_get_stats,
6523 	.suspend	= lan8804_suspend,
6524 	.resume		= lan8804_resume,
6525 	.config_intr	= lan8804_config_intr,
6526 	.handle_interrupt = lan8804_handle_interrupt,
6527 }, {
6528 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8841),
6529 	.name		= "Microchip LAN8841 Gigabit PHY",
6530 	.flags		= PHY_POLL_CABLE_TEST,
6531 	.driver_data	= &lan8841_type,
6532 	.config_init	= lan8841_config_init,
6533 	.probe		= lan8841_probe,
6534 	.soft_reset	= genphy_soft_reset,
6535 	.config_intr	= lan8841_config_intr,
6536 	.handle_interrupt = lan8841_handle_interrupt,
6537 	.get_sset_count = kszphy_get_sset_count,
6538 	.get_strings	= kszphy_get_strings,
6539 	.get_stats	= kszphy_get_stats,
6540 	.suspend	= lan8841_suspend,
6541 	.resume		= lan8841_resume,
6542 	.cable_test_start	= lan8814_cable_test_start,
6543 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6544 }, {
6545 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8842),
6546 	.name		= "Microchip LAN8842 Gigabit PHY",
6547 	.flags		= PHY_POLL_CABLE_TEST,
6548 	.driver_data	= &lan8814_type,
6549 	.probe		= lan8842_probe,
6550 	.config_init	= lan8842_config_init,
6551 	.config_intr	= lan8842_config_intr,
6552 	.inband_caps	= lan8842_inband_caps,
6553 	.config_inband	= lan8842_config_inband,
6554 	.handle_interrupt = lan8842_handle_interrupt,
6555 	.get_phy_stats	= lan8842_get_phy_stats,
6556 	.update_stats	= lan8842_update_stats,
6557 	.get_tunable	= lan8842_get_tunable,
6558 	.set_tunable	= lan8842_set_tunable,
6559 	.cable_test_start	= lan8814_cable_test_start,
6560 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6561 }, {
6562 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131),
6563 	.name		= "Microchip KSZ9131 Gigabit PHY",
6564 	/* PHY_GBIT_FEATURES */
6565 	.flags		= PHY_POLL_CABLE_TEST,
6566 	.driver_data	= &ksz9131_type,
6567 	.probe		= kszphy_probe,
6568 	.soft_reset	= genphy_soft_reset,
6569 	.config_init	= ksz9131_config_init,
6570 	.config_intr	= kszphy_config_intr,
6571 	.config_aneg	= ksz9131_config_aneg,
6572 	.read_status	= ksz9131_read_status,
6573 	.handle_interrupt = kszphy_handle_interrupt,
6574 	.get_sset_count = kszphy_get_sset_count,
6575 	.get_strings	= kszphy_get_strings,
6576 	.get_stats	= kszphy_get_stats,
6577 	.suspend	= kszphy_suspend,
6578 	.resume		= ksz9131_resume,
6579 	.cable_test_start	= ksz9x31_cable_test_start,
6580 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6581 	.get_features	= ksz9477_get_features,
6582 }, {
6583 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL),
6584 	.name		= "Micrel KSZ8873MLL Switch",
6585 	/* PHY_BASIC_FEATURES */
6586 	.config_init	= kszphy_config_init,
6587 	.config_aneg	= ksz8873mll_config_aneg,
6588 	.read_status	= ksz8873mll_read_status,
6589 	.suspend	= genphy_suspend,
6590 	.resume		= genphy_resume,
6591 }, {
6592 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X),
6593 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
6594 	.driver_data	= &ksz886x_type,
6595 	/* PHY_BASIC_FEATURES */
6596 	.flags		= PHY_POLL_CABLE_TEST,
6597 	.config_init	= kszphy_config_init,
6598 	.config_aneg	= ksz886x_config_aneg,
6599 	.read_status	= ksz886x_read_status,
6600 	.suspend	= genphy_suspend,
6601 	.resume		= genphy_resume,
6602 	.cable_test_start	= ksz886x_cable_test_start,
6603 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6604 }, {
6605 	.name		= "Micrel KSZ87XX Switch",
6606 	/* PHY_BASIC_FEATURES */
6607 	.config_init	= kszphy_config_init,
6608 	.match_phy_device = ksz8795_match_phy_device,
6609 	.suspend	= genphy_suspend,
6610 	.resume		= genphy_resume,
6611 }, {
6612 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477),
6613 	.name		= "Microchip KSZ9477",
6614 	.probe		= kszphy_probe,
6615 	/* PHY_GBIT_FEATURES */
6616 	.config_init	= ksz9477_config_init,
6617 	.config_intr	= kszphy_config_intr,
6618 	.config_aneg	= ksz9477_config_aneg,
6619 	.read_status	= ksz9477_read_status,
6620 	.handle_interrupt = kszphy_handle_interrupt,
6621 	.suspend	= genphy_suspend,
6622 	.resume		= ksz9477_resume,
6623 	.get_phy_stats	= kszphy_get_phy_stats,
6624 	.update_stats	= kszphy_update_stats,
6625 	.cable_test_start	= ksz9x31_cable_test_start,
6626 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6627 	.get_sqi	= kszphy_get_sqi,
6628 	.get_sqi_max	= kszphy_get_sqi_max,
6629 } };
6630 
6631 module_phy_driver(ksphy_driver);
6632 
6633 MODULE_DESCRIPTION("Micrel PHY driver");
6634 MODULE_AUTHOR("David J. Choi");
6635 MODULE_LICENSE("GPL");
6636 
6637 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
6638 	{ PHY_ID_KSZ9021, 0x000ffffe },
6639 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) },
6640 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) },
6641 	{ PHY_ID_KSZ8001, 0x00fffffc },
6642 	{ PHY_ID_MATCH_MODEL(PHY_ID_KS8737) },
6643 	{ PHY_ID_KSZ8021, 0x00ffffff },
6644 	{ PHY_ID_KSZ8031, 0x00ffffff },
6645 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) },
6646 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) },
6647 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) },
6648 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) },
6649 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) },
6650 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) },
6651 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) },
6652 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) },
6653 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) },
6654 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) },
6655 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) },
6656 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) },
6657 	{ }
6658 };
6659 
6660 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
6661