xref: /linux/drivers/net/phy/micrel.c (revision 6bab77ced3ffbce3d6c5b5bcce17da7c8a3f8266)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_WIRE_PAIR_MASK			0xF
105 
106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
107 #define LAN8814_INTC				0x18
108 #define LAN8814_INTS				0x1B
109 
110 #define LAN8814_INT_LINK_DOWN			BIT(2)
111 #define LAN8814_INT_LINK_UP			BIT(0)
112 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
113 						 LAN8814_INT_LINK_DOWN)
114 
115 #define LAN8814_INTR_CTRL_REG			0x34
116 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
118 
119 #define LAN8814_EEE_STATE			0x38
120 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
121 
122 #define LAN8814_PD_CONTROLS			0x9d
123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
125 
126 /* Represents 1ppm adjustment in 2^32 format with
127  * each nsec contains 4 clock cycles.
128  * The value is calculated as following: (1/1000000)/((2^-32)/4)
129  */
130 #define LAN8814_1PPM_FORMAT			17179
131 
132 /* Represents 1ppm adjustment in 2^32 format with
133  * each nsec contains 8 clock cycles.
134  * The value is calculated as following: (1/1000000)/((2^-32)/8)
135  */
136 #define LAN8841_1PPM_FORMAT			34360
137 
138 #define PTP_RX_VERSION				0x0248
139 #define PTP_TX_VERSION				0x0288
140 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
141 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
142 
143 #define PTP_RX_MOD				0x024F
144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
145 #define PTP_RX_TIMESTAMP_EN			0x024D
146 #define PTP_TX_TIMESTAMP_EN			0x028D
147 
148 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
149 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
150 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
151 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
152 
153 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
154 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
155 
156 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
157 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
158 #define LTC_HARD_RESET				0x023F
159 #define LTC_HARD_RESET_				BIT(0)
160 
161 #define TSU_HARD_RESET				0x02C1
162 #define TSU_HARD_RESET_				BIT(0)
163 
164 #define PTP_CMD_CTL				0x0200
165 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
166 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
167 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
171 
172 #define PTP_COMMON_INT_ENA			0x0204
173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
174 
175 #define PTP_CLOCK_SET_SEC_HI			0x0205
176 #define PTP_CLOCK_SET_SEC_MID			0x0206
177 #define PTP_CLOCK_SET_SEC_LO			0x0207
178 #define PTP_CLOCK_SET_NS_HI			0x0208
179 #define PTP_CLOCK_SET_NS_LO			0x0209
180 
181 #define PTP_CLOCK_READ_SEC_HI			0x0229
182 #define PTP_CLOCK_READ_SEC_MID			0x022A
183 #define PTP_CLOCK_READ_SEC_LO			0x022B
184 #define PTP_CLOCK_READ_NS_HI			0x022C
185 #define PTP_CLOCK_READ_NS_LO			0x022D
186 
187 #define PTP_GPIO_SEL				0x0230
188 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
189 #define PTP_GPIO_CAP_MAP_LO			0x0232
190 
191 #define PTP_GPIO_CAP_EN				0x0233
192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
194 
195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
197 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
198 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
201 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
202 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
203 
204 #define PTP_GPIO_CAP_STS			0x023D
205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
207 
208 #define PTP_OPERATING_MODE			0x0241
209 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
210 
211 #define PTP_TX_MOD				0x028F
212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
214 
215 #define PTP_RX_PARSE_CONFIG			0x0242
216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
219 
220 #define PTP_TX_PARSE_CONFIG			0x0282
221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
224 
225 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
226 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
227 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
228 
229 #define PTP_LTC_STEP_ADJ_HI			0x0212
230 #define PTP_LTC_STEP_ADJ_LO			0x0213
231 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
232 
233 #define LAN8814_INTR_STS_REG			0x0033
234 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
235 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
236 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
237 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
238 
239 #define PTP_CAP_INFO				0x022A
240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
242 
243 #define PTP_TX_EGRESS_SEC_HI			0x0296
244 #define PTP_TX_EGRESS_SEC_LO			0x0297
245 #define PTP_TX_EGRESS_NS_HI			0x0294
246 #define PTP_TX_EGRESS_NS_LO			0x0295
247 #define PTP_TX_MSG_HEADER2			0x0299
248 
249 #define PTP_RX_INGRESS_SEC_HI			0x0256
250 #define PTP_RX_INGRESS_SEC_LO			0x0257
251 #define PTP_RX_INGRESS_NS_HI			0x0254
252 #define PTP_RX_INGRESS_NS_LO			0x0255
253 #define PTP_RX_MSG_HEADER2			0x0259
254 
255 #define PTP_TSU_INT_EN				0x0200
256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
260 
261 #define PTP_TSU_INT_STS				0x0201
262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
266 
267 #define LAN8814_LED_CTRL_1			0x0
268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
269 
270 /* PHY Control 1 */
271 #define MII_KSZPHY_CTRL_1			0x1e
272 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
273 
274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
275 #define MII_KSZPHY_CTRL_2			0x1f
276 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
277 /* bitmap of PHY register to set interrupt mode */
278 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
281 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
282 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
284 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
285 
286 /* Write/read to/from extended registers */
287 #define MII_KSZPHY_EXTREG			0x0b
288 #define KSZPHY_EXTREG_WRITE			0x8000
289 
290 #define MII_KSZPHY_EXTREG_WRITE			0x0c
291 #define MII_KSZPHY_EXTREG_READ			0x0d
292 
293 /* Extended registers */
294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
295 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
296 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
297 
298 #define PS_TO_REG				200
299 #define FIFO_SIZE				8
300 
301 #define LAN8814_PTP_GPIO_NUM			24
302 #define LAN8814_PTP_PEROUT_NUM			2
303 #define LAN8814_PTP_EXTTS_NUM			3
304 
305 #define LAN8814_BUFFER_TIME			2
306 
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
321 
322 #define LAN8814_GPIO_EN1			0x20
323 #define LAN8814_GPIO_EN2			0x21
324 #define LAN8814_GPIO_DIR1			0x22
325 #define LAN8814_GPIO_DIR2			0x23
326 #define LAN8814_GPIO_BUF1			0x24
327 #define LAN8814_GPIO_BUF2			0x25
328 
329 #define LAN8814_GPIO_EN_ADDR(pin) \
330 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
331 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
332 #define LAN8814_GPIO_DIR_ADDR(pin) \
333 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
334 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
335 #define LAN8814_GPIO_BUF_ADDR(pin) \
336 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
337 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
338 
339 #define LAN8814_EVENT_A				0
340 #define LAN8814_EVENT_B				1
341 
342 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
344 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
346 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
348 	((event) ? BIT(2) : BIT(0))
349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
350 	((event) ? BIT(3) : BIT(1))
351 
352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
356 
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
361 
362 /* Delay used to get the second part from the LTC */
363 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
364 
365 struct kszphy_hw_stat {
366 	const char *string;
367 	u8 reg;
368 	u8 bits;
369 };
370 
371 static struct kszphy_hw_stat kszphy_hw_stats[] = {
372 	{ "phy_receive_errors", 21, 16},
373 	{ "phy_idle_errors", 10, 8 },
374 };
375 
376 struct kszphy_type {
377 	u32 led_mode_reg;
378 	u16 interrupt_level_mask;
379 	u16 cable_diag_reg;
380 	unsigned long pair_mask;
381 	u16 disable_dll_tx_bit;
382 	u16 disable_dll_rx_bit;
383 	u16 disable_dll_mask;
384 	bool has_broadcast_disable;
385 	bool has_nand_tree_disable;
386 	bool has_rmii_ref_clk_sel;
387 };
388 
389 /* Shared structure between the PHYs of the same package. */
390 struct lan8814_shared_priv {
391 	struct phy_device *phydev;
392 	struct ptp_clock *ptp_clock;
393 	struct ptp_clock_info ptp_clock_info;
394 	struct ptp_pin_desc *pin_config;
395 
396 	/* Lock for ptp_clock */
397 	struct mutex shared_lock;
398 };
399 
400 struct lan8814_ptp_rx_ts {
401 	struct list_head list;
402 	u32 seconds;
403 	u32 nsec;
404 	u16 seq_id;
405 };
406 
407 struct kszphy_ptp_priv {
408 	struct mii_timestamper mii_ts;
409 	struct phy_device *phydev;
410 
411 	struct sk_buff_head tx_queue;
412 	struct sk_buff_head rx_queue;
413 
414 	struct list_head rx_ts_list;
415 	/* Lock for Rx ts fifo */
416 	spinlock_t rx_ts_lock;
417 
418 	int hwts_tx_type;
419 	enum hwtstamp_rx_filters rx_filter;
420 	int layer;
421 	int version;
422 
423 	struct ptp_clock *ptp_clock;
424 	struct ptp_clock_info ptp_clock_info;
425 	/* Lock for ptp_clock */
426 	struct mutex ptp_lock;
427 	struct ptp_pin_desc *pin_config;
428 
429 	s64 seconds;
430 	/* Lock for accessing seconds */
431 	spinlock_t seconds_lock;
432 };
433 
434 struct kszphy_priv {
435 	struct kszphy_ptp_priv ptp_priv;
436 	const struct kszphy_type *type;
437 	struct clk *clk;
438 	int led_mode;
439 	u16 vct_ctrl1000;
440 	bool rmii_ref_clk_sel;
441 	bool rmii_ref_clk_sel_val;
442 	bool clk_enable;
443 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
444 };
445 
446 static const struct kszphy_type lan8814_type = {
447 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
448 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
449 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
450 };
451 
452 static const struct kszphy_type ksz886x_type = {
453 	.cable_diag_reg		= KSZ8081_LMD,
454 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
455 };
456 
457 static const struct kszphy_type ksz8021_type = {
458 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
459 	.has_broadcast_disable	= true,
460 	.has_nand_tree_disable	= true,
461 	.has_rmii_ref_clk_sel	= true,
462 };
463 
464 static const struct kszphy_type ksz8041_type = {
465 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
466 };
467 
468 static const struct kszphy_type ksz8051_type = {
469 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
470 	.has_nand_tree_disable	= true,
471 };
472 
473 static const struct kszphy_type ksz8081_type = {
474 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
475 	.has_broadcast_disable	= true,
476 	.has_nand_tree_disable	= true,
477 	.has_rmii_ref_clk_sel	= true,
478 };
479 
480 static const struct kszphy_type ks8737_type = {
481 	.interrupt_level_mask	= BIT(14),
482 };
483 
484 static const struct kszphy_type ksz9021_type = {
485 	.interrupt_level_mask	= BIT(14),
486 };
487 
488 static const struct kszphy_type ksz9131_type = {
489 	.interrupt_level_mask	= BIT(14),
490 	.disable_dll_tx_bit	= BIT(12),
491 	.disable_dll_rx_bit	= BIT(12),
492 	.disable_dll_mask	= BIT_MASK(12),
493 };
494 
495 static const struct kszphy_type lan8841_type = {
496 	.disable_dll_tx_bit	= BIT(14),
497 	.disable_dll_rx_bit	= BIT(14),
498 	.disable_dll_mask	= BIT_MASK(14),
499 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
500 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
501 };
502 
503 static int kszphy_extended_write(struct phy_device *phydev,
504 				u32 regnum, u16 val)
505 {
506 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
507 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
508 }
509 
510 static int kszphy_extended_read(struct phy_device *phydev,
511 				u32 regnum)
512 {
513 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
514 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
515 }
516 
517 static int kszphy_ack_interrupt(struct phy_device *phydev)
518 {
519 	/* bit[7..0] int status, which is a read and clear register. */
520 	int rc;
521 
522 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
523 
524 	return (rc < 0) ? rc : 0;
525 }
526 
527 static int kszphy_config_intr(struct phy_device *phydev)
528 {
529 	const struct kszphy_type *type = phydev->drv->driver_data;
530 	int temp, err;
531 	u16 mask;
532 
533 	if (type && type->interrupt_level_mask)
534 		mask = type->interrupt_level_mask;
535 	else
536 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
537 
538 	/* set the interrupt pin active low */
539 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
540 	if (temp < 0)
541 		return temp;
542 	temp &= ~mask;
543 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
544 
545 	/* enable / disable interrupts */
546 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
547 		err = kszphy_ack_interrupt(phydev);
548 		if (err)
549 			return err;
550 
551 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
552 	} else {
553 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
554 		if (err)
555 			return err;
556 
557 		err = kszphy_ack_interrupt(phydev);
558 	}
559 
560 	return err;
561 }
562 
563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
564 {
565 	int irq_status;
566 
567 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
568 	if (irq_status < 0) {
569 		phy_error(phydev);
570 		return IRQ_NONE;
571 	}
572 
573 	if (!(irq_status & KSZPHY_INTCS_STATUS))
574 		return IRQ_NONE;
575 
576 	phy_trigger_machine(phydev);
577 
578 	return IRQ_HANDLED;
579 }
580 
581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
582 {
583 	int ctrl;
584 
585 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
586 	if (ctrl < 0)
587 		return ctrl;
588 
589 	if (val)
590 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
591 	else
592 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
593 
594 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
595 }
596 
597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
598 {
599 	int rc, temp, shift;
600 
601 	switch (reg) {
602 	case MII_KSZPHY_CTRL_1:
603 		shift = 14;
604 		break;
605 	case MII_KSZPHY_CTRL_2:
606 		shift = 4;
607 		break;
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	temp = phy_read(phydev, reg);
613 	if (temp < 0) {
614 		rc = temp;
615 		goto out;
616 	}
617 
618 	temp &= ~(3 << shift);
619 	temp |= val << shift;
620 	rc = phy_write(phydev, reg, temp);
621 out:
622 	if (rc < 0)
623 		phydev_err(phydev, "failed to set led mode\n");
624 
625 	return rc;
626 }
627 
628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
629  * unique (non-broadcast) address on a shared bus.
630  */
631 static int kszphy_broadcast_disable(struct phy_device *phydev)
632 {
633 	int ret;
634 
635 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
636 	if (ret < 0)
637 		goto out;
638 
639 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
640 out:
641 	if (ret)
642 		phydev_err(phydev, "failed to disable broadcast address\n");
643 
644 	return ret;
645 }
646 
647 static int kszphy_nand_tree_disable(struct phy_device *phydev)
648 {
649 	int ret;
650 
651 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
652 	if (ret < 0)
653 		goto out;
654 
655 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
656 		return 0;
657 
658 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
659 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
660 out:
661 	if (ret)
662 		phydev_err(phydev, "failed to disable NAND tree mode\n");
663 
664 	return ret;
665 }
666 
667 /* Some config bits need to be set again on resume, handle them here. */
668 static int kszphy_config_reset(struct phy_device *phydev)
669 {
670 	struct kszphy_priv *priv = phydev->priv;
671 	int ret;
672 
673 	if (priv->rmii_ref_clk_sel) {
674 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
675 		if (ret) {
676 			phydev_err(phydev,
677 				   "failed to set rmii reference clock\n");
678 			return ret;
679 		}
680 	}
681 
682 	if (priv->type && priv->led_mode >= 0)
683 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
684 
685 	return 0;
686 }
687 
688 static int kszphy_config_init(struct phy_device *phydev)
689 {
690 	struct kszphy_priv *priv = phydev->priv;
691 	const struct kszphy_type *type;
692 
693 	if (!priv)
694 		return 0;
695 
696 	type = priv->type;
697 
698 	if (type && type->has_broadcast_disable)
699 		kszphy_broadcast_disable(phydev);
700 
701 	if (type && type->has_nand_tree_disable)
702 		kszphy_nand_tree_disable(phydev);
703 
704 	return kszphy_config_reset(phydev);
705 }
706 
707 static int ksz8041_fiber_mode(struct phy_device *phydev)
708 {
709 	struct device_node *of_node = phydev->mdio.dev.of_node;
710 
711 	return of_property_read_bool(of_node, "micrel,fiber-mode");
712 }
713 
714 static int ksz8041_config_init(struct phy_device *phydev)
715 {
716 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
717 
718 	/* Limit supported and advertised modes in fiber mode */
719 	if (ksz8041_fiber_mode(phydev)) {
720 		phydev->dev_flags |= MICREL_PHY_FXEN;
721 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
722 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
723 
724 		linkmode_and(phydev->supported, phydev->supported, mask);
725 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
726 				 phydev->supported);
727 		linkmode_and(phydev->advertising, phydev->advertising, mask);
728 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
729 				 phydev->advertising);
730 		phydev->autoneg = AUTONEG_DISABLE;
731 	}
732 
733 	return kszphy_config_init(phydev);
734 }
735 
736 static int ksz8041_config_aneg(struct phy_device *phydev)
737 {
738 	/* Skip auto-negotiation in fiber mode */
739 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
740 		phydev->speed = SPEED_100;
741 		return 0;
742 	}
743 
744 	return genphy_config_aneg(phydev);
745 }
746 
747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
748 					    const bool ksz_8051)
749 {
750 	int ret;
751 
752 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
753 		return 0;
754 
755 	ret = phy_read(phydev, MII_BMSR);
756 	if (ret < 0)
757 		return ret;
758 
759 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
760 	 * exact PHY ID. However, they can be told apart by the extended
761 	 * capability registers presence. The KSZ8051 PHY has them while
762 	 * the switch does not.
763 	 */
764 	ret &= BMSR_ERCAP;
765 	if (ksz_8051)
766 		return ret;
767 	else
768 		return !ret;
769 }
770 
771 static int ksz8051_match_phy_device(struct phy_device *phydev)
772 {
773 	return ksz8051_ksz8795_match_phy_device(phydev, true);
774 }
775 
776 static int ksz8081_config_init(struct phy_device *phydev)
777 {
778 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
779 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
780 	 * pull-down is missing, the factory test mode should be cleared by
781 	 * manually writing a 0.
782 	 */
783 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
784 
785 	return kszphy_config_init(phydev);
786 }
787 
788 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
789 {
790 	u16 val;
791 
792 	switch (ctrl) {
793 	case ETH_TP_MDI:
794 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
795 		break;
796 	case ETH_TP_MDI_X:
797 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
798 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
799 		break;
800 	case ETH_TP_MDI_AUTO:
801 		val = 0;
802 		break;
803 	default:
804 		return 0;
805 	}
806 
807 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
808 			  KSZ8081_CTRL2_HP_MDIX |
809 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
810 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
811 			  KSZ8081_CTRL2_HP_MDIX | val);
812 }
813 
814 static int ksz8081_config_aneg(struct phy_device *phydev)
815 {
816 	int ret;
817 
818 	ret = genphy_config_aneg(phydev);
819 	if (ret)
820 		return ret;
821 
822 	/* The MDI-X configuration is automatically changed by the PHY after
823 	 * switching from autoneg off to on. So, take MDI-X configuration under
824 	 * own control and set it after autoneg configuration was done.
825 	 */
826 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
827 }
828 
829 static int ksz8081_mdix_update(struct phy_device *phydev)
830 {
831 	int ret;
832 
833 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
834 	if (ret < 0)
835 		return ret;
836 
837 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
838 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
839 			phydev->mdix_ctrl = ETH_TP_MDI_X;
840 		else
841 			phydev->mdix_ctrl = ETH_TP_MDI;
842 	} else {
843 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
844 	}
845 
846 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
847 	if (ret < 0)
848 		return ret;
849 
850 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
851 		phydev->mdix = ETH_TP_MDI;
852 	else
853 		phydev->mdix = ETH_TP_MDI_X;
854 
855 	return 0;
856 }
857 
858 static int ksz8081_read_status(struct phy_device *phydev)
859 {
860 	int ret;
861 
862 	ret = ksz8081_mdix_update(phydev);
863 	if (ret < 0)
864 		return ret;
865 
866 	return genphy_read_status(phydev);
867 }
868 
869 static int ksz8061_config_init(struct phy_device *phydev)
870 {
871 	int ret;
872 
873 	/* Chip can be powered down by the bootstrap code. */
874 	ret = phy_read(phydev, MII_BMCR);
875 	if (ret < 0)
876 		return ret;
877 	if (ret & BMCR_PDOWN) {
878 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
879 		if (ret < 0)
880 			return ret;
881 		usleep_range(1000, 2000);
882 	}
883 
884 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
885 	if (ret)
886 		return ret;
887 
888 	return kszphy_config_init(phydev);
889 }
890 
891 static int ksz8795_match_phy_device(struct phy_device *phydev)
892 {
893 	return ksz8051_ksz8795_match_phy_device(phydev, false);
894 }
895 
896 static int ksz9021_load_values_from_of(struct phy_device *phydev,
897 				       const struct device_node *of_node,
898 				       u16 reg,
899 				       const char *field1, const char *field2,
900 				       const char *field3, const char *field4)
901 {
902 	int val1 = -1;
903 	int val2 = -2;
904 	int val3 = -3;
905 	int val4 = -4;
906 	int newval;
907 	int matches = 0;
908 
909 	if (!of_property_read_u32(of_node, field1, &val1))
910 		matches++;
911 
912 	if (!of_property_read_u32(of_node, field2, &val2))
913 		matches++;
914 
915 	if (!of_property_read_u32(of_node, field3, &val3))
916 		matches++;
917 
918 	if (!of_property_read_u32(of_node, field4, &val4))
919 		matches++;
920 
921 	if (!matches)
922 		return 0;
923 
924 	if (matches < 4)
925 		newval = kszphy_extended_read(phydev, reg);
926 	else
927 		newval = 0;
928 
929 	if (val1 != -1)
930 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
931 
932 	if (val2 != -2)
933 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
934 
935 	if (val3 != -3)
936 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
937 
938 	if (val4 != -4)
939 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
940 
941 	return kszphy_extended_write(phydev, reg, newval);
942 }
943 
944 static int ksz9021_config_init(struct phy_device *phydev)
945 {
946 	const struct device_node *of_node;
947 	const struct device *dev_walker;
948 
949 	/* The Micrel driver has a deprecated option to place phy OF
950 	 * properties in the MAC node. Walk up the tree of devices to
951 	 * find a device with an OF node.
952 	 */
953 	dev_walker = &phydev->mdio.dev;
954 	do {
955 		of_node = dev_walker->of_node;
956 		dev_walker = dev_walker->parent;
957 
958 	} while (!of_node && dev_walker);
959 
960 	if (of_node) {
961 		ksz9021_load_values_from_of(phydev, of_node,
962 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
963 				    "txen-skew-ps", "txc-skew-ps",
964 				    "rxdv-skew-ps", "rxc-skew-ps");
965 		ksz9021_load_values_from_of(phydev, of_node,
966 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
967 				    "rxd0-skew-ps", "rxd1-skew-ps",
968 				    "rxd2-skew-ps", "rxd3-skew-ps");
969 		ksz9021_load_values_from_of(phydev, of_node,
970 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
971 				    "txd0-skew-ps", "txd1-skew-ps",
972 				    "txd2-skew-ps", "txd3-skew-ps");
973 	}
974 	return 0;
975 }
976 
977 #define KSZ9031_PS_TO_REG		60
978 
979 /* Extended registers */
980 /* MMD Address 0x0 */
981 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
982 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
983 
984 /* MMD Address 0x2 */
985 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
986 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
987 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
988 
989 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
990 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
991 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
992 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
993 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
994 
995 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
996 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
997 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
998 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
999 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1000 
1001 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1002 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1003 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1004 
1005 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1006  * provide different RGMII options we need to configure delay offset
1007  * for each pad relative to build in delay.
1008  */
1009 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1010  * 1.80ns
1011  */
1012 #define RX_ID				0x7
1013 #define RX_CLK_ID			0x19
1014 
1015 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1016  * internal 1.2ns delay.
1017  */
1018 #define RX_ND				0xc
1019 #define RX_CLK_ND			0x0
1020 
1021 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1022 #define TX_ID				0x0
1023 #define TX_CLK_ID			0x1f
1024 
1025 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1026  * dealy
1027  */
1028 #define TX_ND				0x7
1029 #define TX_CLK_ND			0xf
1030 
1031 /* MMD Address 0x1C */
1032 #define MII_KSZ9031RN_EDPD		0x23
1033 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1034 
1035 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1036 				int speed)
1037 {
1038 	u16 ctl = BMCR_LOOPBACK;
1039 	int val;
1040 
1041 	if (!enable)
1042 		return genphy_loopback(phydev, enable, 0);
1043 
1044 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1045 		phydev->speed = speed;
1046 	else if (speed)
1047 		return -EINVAL;
1048 	phydev->duplex = DUPLEX_FULL;
1049 
1050 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1051 
1052 	phy_write(phydev, MII_BMCR, ctl);
1053 
1054 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1055 				     5000, 500000, true);
1056 }
1057 
1058 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1059 				       const struct device_node *of_node,
1060 				       u16 reg, size_t field_sz,
1061 				       const char *field[], u8 numfields,
1062 				       bool *update)
1063 {
1064 	int val[4] = {-1, -2, -3, -4};
1065 	int matches = 0;
1066 	u16 mask;
1067 	u16 maxval;
1068 	u16 newval;
1069 	int i;
1070 
1071 	for (i = 0; i < numfields; i++)
1072 		if (!of_property_read_u32(of_node, field[i], val + i))
1073 			matches++;
1074 
1075 	if (!matches)
1076 		return 0;
1077 
1078 	*update |= true;
1079 
1080 	if (matches < numfields)
1081 		newval = phy_read_mmd(phydev, 2, reg);
1082 	else
1083 		newval = 0;
1084 
1085 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1086 	for (i = 0; i < numfields; i++)
1087 		if (val[i] != -(i + 1)) {
1088 			mask = 0xffff;
1089 			mask ^= maxval << (field_sz * i);
1090 			newval = (newval & mask) |
1091 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1092 					<< (field_sz * i));
1093 		}
1094 
1095 	return phy_write_mmd(phydev, 2, reg, newval);
1096 }
1097 
1098 /* Center KSZ9031RNX FLP timing at 16ms. */
1099 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1100 {
1101 	int result;
1102 
1103 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1104 			       0x0006);
1105 	if (result)
1106 		return result;
1107 
1108 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1109 			       0x1A80);
1110 	if (result)
1111 		return result;
1112 
1113 	return genphy_restart_aneg(phydev);
1114 }
1115 
1116 /* Enable energy-detect power-down mode */
1117 static int ksz9031_enable_edpd(struct phy_device *phydev)
1118 {
1119 	int reg;
1120 
1121 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1122 	if (reg < 0)
1123 		return reg;
1124 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1125 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1126 }
1127 
1128 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1129 {
1130 	u16 rx, tx, rx_clk, tx_clk;
1131 	int ret;
1132 
1133 	switch (phydev->interface) {
1134 	case PHY_INTERFACE_MODE_RGMII:
1135 		tx = TX_ND;
1136 		tx_clk = TX_CLK_ND;
1137 		rx = RX_ND;
1138 		rx_clk = RX_CLK_ND;
1139 		break;
1140 	case PHY_INTERFACE_MODE_RGMII_ID:
1141 		tx = TX_ID;
1142 		tx_clk = TX_CLK_ID;
1143 		rx = RX_ID;
1144 		rx_clk = RX_CLK_ID;
1145 		break;
1146 	case PHY_INTERFACE_MODE_RGMII_RXID:
1147 		tx = TX_ND;
1148 		tx_clk = TX_CLK_ND;
1149 		rx = RX_ID;
1150 		rx_clk = RX_CLK_ID;
1151 		break;
1152 	case PHY_INTERFACE_MODE_RGMII_TXID:
1153 		tx = TX_ID;
1154 		tx_clk = TX_CLK_ID;
1155 		rx = RX_ND;
1156 		rx_clk = RX_CLK_ND;
1157 		break;
1158 	default:
1159 		return 0;
1160 	}
1161 
1162 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1163 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1164 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1165 	if (ret < 0)
1166 		return ret;
1167 
1168 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1169 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1170 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1171 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1172 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1173 	if (ret < 0)
1174 		return ret;
1175 
1176 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1177 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1178 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1179 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1180 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1181 	if (ret < 0)
1182 		return ret;
1183 
1184 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1185 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1186 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1187 }
1188 
1189 static int ksz9031_config_init(struct phy_device *phydev)
1190 {
1191 	const struct device_node *of_node;
1192 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1193 	static const char *rx_data_skews[4] = {
1194 		"rxd0-skew-ps", "rxd1-skew-ps",
1195 		"rxd2-skew-ps", "rxd3-skew-ps"
1196 	};
1197 	static const char *tx_data_skews[4] = {
1198 		"txd0-skew-ps", "txd1-skew-ps",
1199 		"txd2-skew-ps", "txd3-skew-ps"
1200 	};
1201 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1202 	const struct device *dev_walker;
1203 	int result;
1204 
1205 	result = ksz9031_enable_edpd(phydev);
1206 	if (result < 0)
1207 		return result;
1208 
1209 	/* The Micrel driver has a deprecated option to place phy OF
1210 	 * properties in the MAC node. Walk up the tree of devices to
1211 	 * find a device with an OF node.
1212 	 */
1213 	dev_walker = &phydev->mdio.dev;
1214 	do {
1215 		of_node = dev_walker->of_node;
1216 		dev_walker = dev_walker->parent;
1217 	} while (!of_node && dev_walker);
1218 
1219 	if (of_node) {
1220 		bool update = false;
1221 
1222 		if (phy_interface_is_rgmii(phydev)) {
1223 			result = ksz9031_config_rgmii_delay(phydev);
1224 			if (result < 0)
1225 				return result;
1226 		}
1227 
1228 		ksz9031_of_load_skew_values(phydev, of_node,
1229 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1230 				clk_skews, 2, &update);
1231 
1232 		ksz9031_of_load_skew_values(phydev, of_node,
1233 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1234 				control_skews, 2, &update);
1235 
1236 		ksz9031_of_load_skew_values(phydev, of_node,
1237 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1238 				rx_data_skews, 4, &update);
1239 
1240 		ksz9031_of_load_skew_values(phydev, of_node,
1241 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1242 				tx_data_skews, 4, &update);
1243 
1244 		if (update && !phy_interface_is_rgmii(phydev))
1245 			phydev_warn(phydev,
1246 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1247 
1248 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1249 		 * When the device links in the 1000BASE-T slave mode only,
1250 		 * the optional 125MHz reference output clock (CLK125_NDO)
1251 		 * has wide duty cycle variation.
1252 		 *
1253 		 * The optional CLK125_NDO clock does not meet the RGMII
1254 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1255 		 * cannot be used directly by the MAC side for clocking
1256 		 * applications that have setup/hold time requirements on
1257 		 * rising and falling clock edges.
1258 		 *
1259 		 * Workaround:
1260 		 * Force the phy to be the master to receive a stable clock
1261 		 * which meets the duty cycle requirement.
1262 		 */
1263 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1264 			result = phy_read(phydev, MII_CTRL1000);
1265 			if (result < 0)
1266 				goto err_force_master;
1267 
1268 			/* enable master mode, config & prefer master */
1269 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1270 			result = phy_write(phydev, MII_CTRL1000, result);
1271 			if (result < 0)
1272 				goto err_force_master;
1273 		}
1274 	}
1275 
1276 	return ksz9031_center_flp_timing(phydev);
1277 
1278 err_force_master:
1279 	phydev_err(phydev, "failed to force the phy to master mode\n");
1280 	return result;
1281 }
1282 
1283 #define KSZ9131_SKEW_5BIT_MAX	2400
1284 #define KSZ9131_SKEW_4BIT_MAX	800
1285 #define KSZ9131_OFFSET		700
1286 #define KSZ9131_STEP		100
1287 
1288 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1289 				       struct device_node *of_node,
1290 				       u16 reg, size_t field_sz,
1291 				       char *field[], u8 numfields)
1292 {
1293 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1294 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1295 	int skewval, skewmax = 0;
1296 	int matches = 0;
1297 	u16 maxval;
1298 	u16 newval;
1299 	u16 mask;
1300 	int i;
1301 
1302 	/* psec properties in dts should mean x pico seconds */
1303 	if (field_sz == 5)
1304 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1305 	else
1306 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1307 
1308 	for (i = 0; i < numfields; i++)
1309 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1310 			if (skewval < -KSZ9131_OFFSET)
1311 				skewval = -KSZ9131_OFFSET;
1312 			else if (skewval > skewmax)
1313 				skewval = skewmax;
1314 
1315 			val[i] = skewval + KSZ9131_OFFSET;
1316 			matches++;
1317 		}
1318 
1319 	if (!matches)
1320 		return 0;
1321 
1322 	if (matches < numfields)
1323 		newval = phy_read_mmd(phydev, 2, reg);
1324 	else
1325 		newval = 0;
1326 
1327 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1328 	for (i = 0; i < numfields; i++)
1329 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1330 			mask = 0xffff;
1331 			mask ^= maxval << (field_sz * i);
1332 			newval = (newval & mask) |
1333 				(((val[i] / KSZ9131_STEP) & maxval)
1334 					<< (field_sz * i));
1335 		}
1336 
1337 	return phy_write_mmd(phydev, 2, reg, newval);
1338 }
1339 
1340 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1341 #define KSZ9131RN_RXC_DLL_CTRL		76
1342 #define KSZ9131RN_TXC_DLL_CTRL		77
1343 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1344 
1345 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1346 {
1347 	const struct kszphy_type *type = phydev->drv->driver_data;
1348 	u16 rxcdll_val, txcdll_val;
1349 	int ret;
1350 
1351 	switch (phydev->interface) {
1352 	case PHY_INTERFACE_MODE_RGMII:
1353 		rxcdll_val = type->disable_dll_rx_bit;
1354 		txcdll_val = type->disable_dll_tx_bit;
1355 		break;
1356 	case PHY_INTERFACE_MODE_RGMII_ID:
1357 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1358 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1359 		break;
1360 	case PHY_INTERFACE_MODE_RGMII_RXID:
1361 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1362 		txcdll_val = type->disable_dll_tx_bit;
1363 		break;
1364 	case PHY_INTERFACE_MODE_RGMII_TXID:
1365 		rxcdll_val = type->disable_dll_rx_bit;
1366 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1367 		break;
1368 	default:
1369 		return 0;
1370 	}
1371 
1372 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1373 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1374 			     rxcdll_val);
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1379 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1380 			      txcdll_val);
1381 }
1382 
1383 /* Silicon Errata DS80000693B
1384  *
1385  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1386  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1387  * according to the datasheet (off if there is no link).
1388  */
1389 static int ksz9131_led_errata(struct phy_device *phydev)
1390 {
1391 	int reg;
1392 
1393 	reg = phy_read_mmd(phydev, 2, 0);
1394 	if (reg < 0)
1395 		return reg;
1396 
1397 	if (!(reg & BIT(4)))
1398 		return 0;
1399 
1400 	return phy_set_bits(phydev, 0x1e, BIT(9));
1401 }
1402 
1403 static int ksz9131_config_init(struct phy_device *phydev)
1404 {
1405 	struct device_node *of_node;
1406 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1407 	char *rx_data_skews[4] = {
1408 		"rxd0-skew-psec", "rxd1-skew-psec",
1409 		"rxd2-skew-psec", "rxd3-skew-psec"
1410 	};
1411 	char *tx_data_skews[4] = {
1412 		"txd0-skew-psec", "txd1-skew-psec",
1413 		"txd2-skew-psec", "txd3-skew-psec"
1414 	};
1415 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1416 	const struct device *dev_walker;
1417 	int ret;
1418 
1419 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1420 
1421 	dev_walker = &phydev->mdio.dev;
1422 	do {
1423 		of_node = dev_walker->of_node;
1424 		dev_walker = dev_walker->parent;
1425 	} while (!of_node && dev_walker);
1426 
1427 	if (!of_node)
1428 		return 0;
1429 
1430 	if (phy_interface_is_rgmii(phydev)) {
1431 		ret = ksz9131_config_rgmii_delay(phydev);
1432 		if (ret < 0)
1433 			return ret;
1434 	}
1435 
1436 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1437 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1438 					  clk_skews, 2);
1439 	if (ret < 0)
1440 		return ret;
1441 
1442 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1443 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1444 					  control_skews, 2);
1445 	if (ret < 0)
1446 		return ret;
1447 
1448 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1449 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1450 					  rx_data_skews, 4);
1451 	if (ret < 0)
1452 		return ret;
1453 
1454 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1455 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1456 					  tx_data_skews, 4);
1457 	if (ret < 0)
1458 		return ret;
1459 
1460 	ret = ksz9131_led_errata(phydev);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	return 0;
1465 }
1466 
1467 #define MII_KSZ9131_AUTO_MDIX		0x1C
1468 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1469 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1470 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1471 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1472 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1473 
1474 static int ksz9131_mdix_update(struct phy_device *phydev)
1475 {
1476 	int ret;
1477 
1478 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1479 		phydev->mdix = phydev->mdix_ctrl;
1480 	} else {
1481 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1482 		if (ret < 0)
1483 			return ret;
1484 
1485 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1486 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1487 				phydev->mdix = ETH_TP_MDI;
1488 			else
1489 				phydev->mdix = ETH_TP_MDI_X;
1490 		} else {
1491 			phydev->mdix = ETH_TP_MDI_INVALID;
1492 		}
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1499 {
1500 	u16 val;
1501 
1502 	switch (ctrl) {
1503 	case ETH_TP_MDI:
1504 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1505 		      MII_KSZ9131_AUTO_MDI_SET;
1506 		break;
1507 	case ETH_TP_MDI_X:
1508 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1509 		break;
1510 	case ETH_TP_MDI_AUTO:
1511 		val = 0;
1512 		break;
1513 	default:
1514 		return 0;
1515 	}
1516 
1517 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1518 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1519 			  MII_KSZ9131_AUTO_MDI_SET, val);
1520 }
1521 
1522 static int ksz9131_read_status(struct phy_device *phydev)
1523 {
1524 	int ret;
1525 
1526 	ret = ksz9131_mdix_update(phydev);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	return genphy_read_status(phydev);
1531 }
1532 
1533 static int ksz9131_config_aneg(struct phy_device *phydev)
1534 {
1535 	int ret;
1536 
1537 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1538 	if (ret)
1539 		return ret;
1540 
1541 	return genphy_config_aneg(phydev);
1542 }
1543 
1544 static int ksz9477_get_features(struct phy_device *phydev)
1545 {
1546 	int ret;
1547 
1548 	ret = genphy_read_abilities(phydev);
1549 	if (ret)
1550 		return ret;
1551 
1552 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1553 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1554 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1555 	 * of caps.
1556 	 * KSZ8563R should have 100BaseTX/Full only.
1557 	 */
1558 	linkmode_and(phydev->supported_eee, phydev->supported,
1559 		     PHY_EEE_CAP1_FEATURES);
1560 
1561 	return 0;
1562 }
1563 
1564 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1565 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1566 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1567 static int ksz8873mll_read_status(struct phy_device *phydev)
1568 {
1569 	int regval;
1570 
1571 	/* dummy read */
1572 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1573 
1574 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1575 
1576 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1577 		phydev->duplex = DUPLEX_HALF;
1578 	else
1579 		phydev->duplex = DUPLEX_FULL;
1580 
1581 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1582 		phydev->speed = SPEED_10;
1583 	else
1584 		phydev->speed = SPEED_100;
1585 
1586 	phydev->link = 1;
1587 	phydev->pause = phydev->asym_pause = 0;
1588 
1589 	return 0;
1590 }
1591 
1592 static int ksz9031_get_features(struct phy_device *phydev)
1593 {
1594 	int ret;
1595 
1596 	ret = genphy_read_abilities(phydev);
1597 	if (ret < 0)
1598 		return ret;
1599 
1600 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1601 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1602 	 * link-up may fail after a link-up to link-down transition.
1603 	 *
1604 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1605 	 *
1606 	 * Workaround:
1607 	 * Do not enable the Asymmetric Pause capability bit.
1608 	 */
1609 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1610 
1611 	/* We force setting the Pause capability as the core will force the
1612 	 * Asymmetric Pause capability to 1 otherwise.
1613 	 */
1614 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1615 
1616 	return 0;
1617 }
1618 
1619 static int ksz9031_read_status(struct phy_device *phydev)
1620 {
1621 	int err;
1622 	int regval;
1623 
1624 	err = genphy_read_status(phydev);
1625 	if (err)
1626 		return err;
1627 
1628 	/* Make sure the PHY is not broken. Read idle error count,
1629 	 * and reset the PHY if it is maxed out.
1630 	 */
1631 	regval = phy_read(phydev, MII_STAT1000);
1632 	if ((regval & 0xFF) == 0xFF) {
1633 		phy_init_hw(phydev);
1634 		phydev->link = 0;
1635 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1636 			phydev->drv->config_intr(phydev);
1637 		return genphy_config_aneg(phydev);
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1644 {
1645 	struct kszphy_priv *priv = phydev->priv;
1646 	int ret;
1647 
1648 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1649 	 * Prior to running the cable diagnostics, Auto-negotiation should
1650 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1651 	 * via the Basic Control Register.
1652 	 */
1653 	ret = phy_modify(phydev, MII_BMCR,
1654 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1655 			 BMCR_ANENABLE | BMCR_SPEED100,
1656 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1657 	if (ret)
1658 		return ret;
1659 
1660 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1661 	 * The Master-Slave configuration should be set to Slave by writing
1662 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1663 	 * Register.
1664 	 */
1665 	ret = phy_read(phydev, MII_CTRL1000);
1666 	if (ret < 0)
1667 		return ret;
1668 
1669 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1670 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1671 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1672 	ret |= CTL1000_ENABLE_MASTER;
1673 
1674 	return phy_write(phydev, MII_CTRL1000, ret);
1675 }
1676 
1677 static int ksz9x31_cable_test_result_trans(u16 status)
1678 {
1679 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1680 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1681 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1682 	case KSZ9x31_LMD_VCT_ST_OPEN:
1683 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1684 	case KSZ9x31_LMD_VCT_ST_SHORT:
1685 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1686 	case KSZ9x31_LMD_VCT_ST_FAIL:
1687 		fallthrough;
1688 	default:
1689 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1690 	}
1691 }
1692 
1693 static bool ksz9x31_cable_test_failed(u16 status)
1694 {
1695 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1696 
1697 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1698 }
1699 
1700 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1701 {
1702 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1703 	case KSZ9x31_LMD_VCT_ST_OPEN:
1704 		fallthrough;
1705 	case KSZ9x31_LMD_VCT_ST_SHORT:
1706 		return true;
1707 	}
1708 	return false;
1709 }
1710 
1711 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1712 {
1713 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1714 
1715 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1716 	 *
1717 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1718 	 */
1719 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1720 		dt = clamp(dt - 22, 0, 255);
1721 
1722 	return (dt * 400) / 10;
1723 }
1724 
1725 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1726 {
1727 	int val, ret;
1728 
1729 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1730 				    !(val & KSZ9x31_LMD_VCT_EN),
1731 				    30000, 100000, true);
1732 
1733 	return ret < 0 ? ret : 0;
1734 }
1735 
1736 static int ksz9x31_cable_test_get_pair(int pair)
1737 {
1738 	static const int ethtool_pair[] = {
1739 		ETHTOOL_A_CABLE_PAIR_A,
1740 		ETHTOOL_A_CABLE_PAIR_B,
1741 		ETHTOOL_A_CABLE_PAIR_C,
1742 		ETHTOOL_A_CABLE_PAIR_D,
1743 	};
1744 
1745 	return ethtool_pair[pair];
1746 }
1747 
1748 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1749 {
1750 	int ret, val;
1751 
1752 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1753 	 * To test each individual cable pair, set the cable pair in the Cable
1754 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1755 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1756 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1757 	 * will self clear when the test is concluded.
1758 	 */
1759 	ret = phy_write(phydev, KSZ9x31_LMD,
1760 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1761 	if (ret)
1762 		return ret;
1763 
1764 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1765 	if (ret)
1766 		return ret;
1767 
1768 	val = phy_read(phydev, KSZ9x31_LMD);
1769 	if (val < 0)
1770 		return val;
1771 
1772 	if (ksz9x31_cable_test_failed(val))
1773 		return -EAGAIN;
1774 
1775 	ret = ethnl_cable_test_result(phydev,
1776 				      ksz9x31_cable_test_get_pair(pair),
1777 				      ksz9x31_cable_test_result_trans(val));
1778 	if (ret)
1779 		return ret;
1780 
1781 	if (!ksz9x31_cable_test_fault_length_valid(val))
1782 		return 0;
1783 
1784 	return ethnl_cable_test_fault_length(phydev,
1785 					     ksz9x31_cable_test_get_pair(pair),
1786 					     ksz9x31_cable_test_fault_length(phydev, val));
1787 }
1788 
1789 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1790 					 bool *finished)
1791 {
1792 	struct kszphy_priv *priv = phydev->priv;
1793 	unsigned long pair_mask = 0xf;
1794 	int retries = 20;
1795 	int pair, ret, rv;
1796 
1797 	*finished = false;
1798 
1799 	/* Try harder if link partner is active */
1800 	while (pair_mask && retries--) {
1801 		for_each_set_bit(pair, &pair_mask, 4) {
1802 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1803 			if (ret == -EAGAIN)
1804 				continue;
1805 			if (ret < 0)
1806 				return ret;
1807 			clear_bit(pair, &pair_mask);
1808 		}
1809 		/* If link partner is in autonegotiation mode it will send 2ms
1810 		 * of FLPs with at least 6ms of silence.
1811 		 * Add 2ms sleep to have better chances to hit this silence.
1812 		 */
1813 		if (pair_mask)
1814 			usleep_range(2000, 3000);
1815 	}
1816 
1817 	/* Report remaining unfinished pair result as unknown. */
1818 	for_each_set_bit(pair, &pair_mask, 4) {
1819 		ret = ethnl_cable_test_result(phydev,
1820 					      ksz9x31_cable_test_get_pair(pair),
1821 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1822 	}
1823 
1824 	*finished = true;
1825 
1826 	/* Restore cached bits from before LinkMD got started. */
1827 	rv = phy_modify(phydev, MII_CTRL1000,
1828 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1829 			priv->vct_ctrl1000);
1830 	if (rv)
1831 		return rv;
1832 
1833 	return ret;
1834 }
1835 
1836 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1837 {
1838 	return 0;
1839 }
1840 
1841 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1842 {
1843 	u16 val;
1844 
1845 	switch (ctrl) {
1846 	case ETH_TP_MDI:
1847 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1848 		break;
1849 	case ETH_TP_MDI_X:
1850 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1851 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1852 		 * sheet seems to be missing:
1853 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1854 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1855 		 */
1856 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1857 		break;
1858 	case ETH_TP_MDI_AUTO:
1859 		val = 0;
1860 		break;
1861 	default:
1862 		return 0;
1863 	}
1864 
1865 	return phy_modify(phydev, MII_BMCR,
1866 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1867 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1868 			  KSZ886X_BMCR_HP_MDIX | val);
1869 }
1870 
1871 static int ksz886x_config_aneg(struct phy_device *phydev)
1872 {
1873 	int ret;
1874 
1875 	ret = genphy_config_aneg(phydev);
1876 	if (ret)
1877 		return ret;
1878 
1879 	if (phydev->autoneg != AUTONEG_ENABLE) {
1880 		/* When autonegotation is disabled, we need to manually force
1881 		 * the link state. If we don't do this, the PHY will keep
1882 		 * sending Fast Link Pulses (FLPs) which are part of the
1883 		 * autonegotiation process. This is not desired when
1884 		 * autonegotiation is off.
1885 		 */
1886 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1887 				   KSZ886X_CTRL_FORCE_LINK);
1888 		if (ret)
1889 			return ret;
1890 	} else {
1891 		/* If we had previously forced the link state, we need to
1892 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1893 		 * will not perform autonegotiation.
1894 		 */
1895 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1896 				     KSZ886X_CTRL_FORCE_LINK);
1897 		if (ret)
1898 			return ret;
1899 	}
1900 
1901 	/* The MDI-X configuration is automatically changed by the PHY after
1902 	 * switching from autoneg off to on. So, take MDI-X configuration under
1903 	 * own control and set it after autoneg configuration was done.
1904 	 */
1905 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1906 }
1907 
1908 static int ksz886x_mdix_update(struct phy_device *phydev)
1909 {
1910 	int ret;
1911 
1912 	ret = phy_read(phydev, MII_BMCR);
1913 	if (ret < 0)
1914 		return ret;
1915 
1916 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1917 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1918 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1919 		else
1920 			phydev->mdix_ctrl = ETH_TP_MDI;
1921 	} else {
1922 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1923 	}
1924 
1925 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1926 	if (ret < 0)
1927 		return ret;
1928 
1929 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1930 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1931 		phydev->mdix = ETH_TP_MDI_X;
1932 	else
1933 		phydev->mdix = ETH_TP_MDI;
1934 
1935 	return 0;
1936 }
1937 
1938 static int ksz886x_read_status(struct phy_device *phydev)
1939 {
1940 	int ret;
1941 
1942 	ret = ksz886x_mdix_update(phydev);
1943 	if (ret < 0)
1944 		return ret;
1945 
1946 	return genphy_read_status(phydev);
1947 }
1948 
1949 struct ksz9477_errata_write {
1950 	u8 dev_addr;
1951 	u8 reg_addr;
1952 	u16 val;
1953 };
1954 
1955 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1956 	 /* Register settings are needed to improve PHY receive performance */
1957 	{0x01, 0x6f, 0xdd0b},
1958 	{0x01, 0x8f, 0x6032},
1959 	{0x01, 0x9d, 0x248c},
1960 	{0x01, 0x75, 0x0060},
1961 	{0x01, 0xd3, 0x7777},
1962 	{0x1c, 0x06, 0x3008},
1963 	{0x1c, 0x08, 0x2000},
1964 
1965 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1966 	{0x1c, 0x04, 0x00d0},
1967 
1968 	/* Register settings are required to meet data sheet supply current specifications */
1969 	{0x1c, 0x13, 0x6eff},
1970 	{0x1c, 0x14, 0xe6ff},
1971 	{0x1c, 0x15, 0x6eff},
1972 	{0x1c, 0x16, 0xe6ff},
1973 	{0x1c, 0x17, 0x00ff},
1974 	{0x1c, 0x18, 0x43ff},
1975 	{0x1c, 0x19, 0xc3ff},
1976 	{0x1c, 0x1a, 0x6fff},
1977 	{0x1c, 0x1b, 0x07ff},
1978 	{0x1c, 0x1c, 0x0fff},
1979 	{0x1c, 0x1d, 0xe7ff},
1980 	{0x1c, 0x1e, 0xefff},
1981 	{0x1c, 0x20, 0xeeee},
1982 };
1983 
1984 static int ksz9477_phy_errata(struct phy_device *phydev)
1985 {
1986 	int err;
1987 	int i;
1988 
1989 	/* Apply PHY settings to address errata listed in
1990 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1991 	 * Silicon Errata and Data Sheet Clarification documents.
1992 	 *
1993 	 * Document notes: Before configuring the PHY MMD registers, it is
1994 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1995 	 * disabled by writing to register 0xN100-0xN101. After writing the
1996 	 * MMD registers, and after all errata workarounds that involve PHY
1997 	 * register settings, write register 0xN100-0xN101 again to enable
1998 	 * and restart auto-negotiation.
1999 	 */
2000 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2001 	if (err)
2002 		return err;
2003 
2004 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2005 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2006 
2007 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2008 		if (err)
2009 			return err;
2010 	}
2011 
2012 	err = genphy_restart_aneg(phydev);
2013 	if (err)
2014 		return err;
2015 
2016 	return err;
2017 }
2018 
2019 static int ksz9477_config_init(struct phy_device *phydev)
2020 {
2021 	int err;
2022 
2023 	/* Only KSZ9897 family of switches needs this fix. */
2024 	if ((phydev->phy_id & 0xf) == 1) {
2025 		err = ksz9477_phy_errata(phydev);
2026 		if (err)
2027 			return err;
2028 	}
2029 
2030 	return kszphy_config_init(phydev);
2031 }
2032 
2033 static int kszphy_get_sset_count(struct phy_device *phydev)
2034 {
2035 	return ARRAY_SIZE(kszphy_hw_stats);
2036 }
2037 
2038 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2039 {
2040 	int i;
2041 
2042 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2043 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2044 }
2045 
2046 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2047 {
2048 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2049 	struct kszphy_priv *priv = phydev->priv;
2050 	int val;
2051 	u64 ret;
2052 
2053 	val = phy_read(phydev, stat.reg);
2054 	if (val < 0) {
2055 		ret = U64_MAX;
2056 	} else {
2057 		val = val & ((1 << stat.bits) - 1);
2058 		priv->stats[i] += val;
2059 		ret = priv->stats[i];
2060 	}
2061 
2062 	return ret;
2063 }
2064 
2065 static void kszphy_get_stats(struct phy_device *phydev,
2066 			     struct ethtool_stats *stats, u64 *data)
2067 {
2068 	int i;
2069 
2070 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2071 		data[i] = kszphy_get_stat(phydev, i);
2072 }
2073 
2074 static void kszphy_enable_clk(struct phy_device *phydev)
2075 {
2076 	struct kszphy_priv *priv = phydev->priv;
2077 
2078 	if (!priv->clk_enable && priv->clk) {
2079 		clk_prepare_enable(priv->clk);
2080 		priv->clk_enable = true;
2081 	}
2082 }
2083 
2084 static void kszphy_disable_clk(struct phy_device *phydev)
2085 {
2086 	struct kszphy_priv *priv = phydev->priv;
2087 
2088 	if (priv->clk_enable && priv->clk) {
2089 		clk_disable_unprepare(priv->clk);
2090 		priv->clk_enable = false;
2091 	}
2092 }
2093 
2094 static int kszphy_generic_resume(struct phy_device *phydev)
2095 {
2096 	kszphy_enable_clk(phydev);
2097 
2098 	return genphy_resume(phydev);
2099 }
2100 
2101 static int kszphy_generic_suspend(struct phy_device *phydev)
2102 {
2103 	int ret;
2104 
2105 	ret = genphy_suspend(phydev);
2106 	if (ret)
2107 		return ret;
2108 
2109 	kszphy_disable_clk(phydev);
2110 
2111 	return 0;
2112 }
2113 
2114 static int kszphy_suspend(struct phy_device *phydev)
2115 {
2116 	/* Disable PHY Interrupts */
2117 	if (phy_interrupt_is_valid(phydev)) {
2118 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2119 		if (phydev->drv->config_intr)
2120 			phydev->drv->config_intr(phydev);
2121 	}
2122 
2123 	return kszphy_generic_suspend(phydev);
2124 }
2125 
2126 static void kszphy_parse_led_mode(struct phy_device *phydev)
2127 {
2128 	const struct kszphy_type *type = phydev->drv->driver_data;
2129 	const struct device_node *np = phydev->mdio.dev.of_node;
2130 	struct kszphy_priv *priv = phydev->priv;
2131 	int ret;
2132 
2133 	if (type && type->led_mode_reg) {
2134 		ret = of_property_read_u32(np, "micrel,led-mode",
2135 					   &priv->led_mode);
2136 
2137 		if (ret)
2138 			priv->led_mode = -1;
2139 
2140 		if (priv->led_mode > 3) {
2141 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2142 				   priv->led_mode);
2143 			priv->led_mode = -1;
2144 		}
2145 	} else {
2146 		priv->led_mode = -1;
2147 	}
2148 }
2149 
2150 static int kszphy_resume(struct phy_device *phydev)
2151 {
2152 	int ret;
2153 
2154 	ret = kszphy_generic_resume(phydev);
2155 	if (ret)
2156 		return ret;
2157 
2158 	/* After switching from power-down to normal mode, an internal global
2159 	 * reset is automatically generated. Wait a minimum of 1 ms before
2160 	 * read/write access to the PHY registers.
2161 	 */
2162 	usleep_range(1000, 2000);
2163 
2164 	ret = kszphy_config_reset(phydev);
2165 	if (ret)
2166 		return ret;
2167 
2168 	/* Enable PHY Interrupts */
2169 	if (phy_interrupt_is_valid(phydev)) {
2170 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2171 		if (phydev->drv->config_intr)
2172 			phydev->drv->config_intr(phydev);
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 /* Because of errata DS80000700A, receiver error following software
2179  * power down. Suspend and resume callbacks only disable and enable
2180  * external rmii reference clock.
2181  */
2182 static int ksz8041_resume(struct phy_device *phydev)
2183 {
2184 	kszphy_enable_clk(phydev);
2185 
2186 	return 0;
2187 }
2188 
2189 static int ksz8041_suspend(struct phy_device *phydev)
2190 {
2191 	kszphy_disable_clk(phydev);
2192 
2193 	return 0;
2194 }
2195 
2196 static int ksz9477_resume(struct phy_device *phydev)
2197 {
2198 	int ret;
2199 
2200 	/* No need to initialize registers if not powered down. */
2201 	ret = phy_read(phydev, MII_BMCR);
2202 	if (ret < 0)
2203 		return ret;
2204 	if (!(ret & BMCR_PDOWN))
2205 		return 0;
2206 
2207 	genphy_resume(phydev);
2208 
2209 	/* After switching from power-down to normal mode, an internal global
2210 	 * reset is automatically generated. Wait a minimum of 1 ms before
2211 	 * read/write access to the PHY registers.
2212 	 */
2213 	usleep_range(1000, 2000);
2214 
2215 	/* Only KSZ9897 family of switches needs this fix. */
2216 	if ((phydev->phy_id & 0xf) == 1) {
2217 		ret = ksz9477_phy_errata(phydev);
2218 		if (ret)
2219 			return ret;
2220 	}
2221 
2222 	/* Enable PHY Interrupts */
2223 	if (phy_interrupt_is_valid(phydev)) {
2224 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2225 		if (phydev->drv->config_intr)
2226 			phydev->drv->config_intr(phydev);
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 static int ksz8061_resume(struct phy_device *phydev)
2233 {
2234 	int ret;
2235 
2236 	/* This function can be called twice when the Ethernet device is on. */
2237 	ret = phy_read(phydev, MII_BMCR);
2238 	if (ret < 0)
2239 		return ret;
2240 	if (!(ret & BMCR_PDOWN))
2241 		return 0;
2242 
2243 	ret = kszphy_generic_resume(phydev);
2244 	if (ret)
2245 		return ret;
2246 
2247 	usleep_range(1000, 2000);
2248 
2249 	/* Re-program the value after chip is reset. */
2250 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2251 	if (ret)
2252 		return ret;
2253 
2254 	/* Enable PHY Interrupts */
2255 	if (phy_interrupt_is_valid(phydev)) {
2256 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2257 		if (phydev->drv->config_intr)
2258 			phydev->drv->config_intr(phydev);
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int ksz8061_suspend(struct phy_device *phydev)
2265 {
2266 	return kszphy_suspend(phydev);
2267 }
2268 
2269 static int kszphy_probe(struct phy_device *phydev)
2270 {
2271 	const struct kszphy_type *type = phydev->drv->driver_data;
2272 	const struct device_node *np = phydev->mdio.dev.of_node;
2273 	struct kszphy_priv *priv;
2274 	struct clk *clk;
2275 
2276 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2277 	if (!priv)
2278 		return -ENOMEM;
2279 
2280 	phydev->priv = priv;
2281 
2282 	priv->type = type;
2283 
2284 	kszphy_parse_led_mode(phydev);
2285 
2286 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2287 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2288 	if (!IS_ERR_OR_NULL(clk)) {
2289 		unsigned long rate = clk_get_rate(clk);
2290 		bool rmii_ref_clk_sel_25_mhz;
2291 
2292 		if (type)
2293 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2294 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2295 				"micrel,rmii-reference-clock-select-25-mhz");
2296 
2297 		if (rate > 24500000 && rate < 25500000) {
2298 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2299 		} else if (rate > 49500000 && rate < 50500000) {
2300 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2301 		} else {
2302 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2303 				   rate);
2304 			return -EINVAL;
2305 		}
2306 	} else if (!clk) {
2307 		/* unnamed clock from the generic ethernet-phy binding */
2308 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2309 	}
2310 
2311 	if (IS_ERR(clk))
2312 		return PTR_ERR(clk);
2313 
2314 	clk_disable_unprepare(clk);
2315 	priv->clk = clk;
2316 
2317 	if (ksz8041_fiber_mode(phydev))
2318 		phydev->port = PORT_FIBRE;
2319 
2320 	/* Support legacy board-file configuration */
2321 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2322 		priv->rmii_ref_clk_sel = true;
2323 		priv->rmii_ref_clk_sel_val = true;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static int lan8814_cable_test_start(struct phy_device *phydev)
2330 {
2331 	/* If autoneg is enabled, we won't be able to test cross pair
2332 	 * short. In this case, the PHY will "detect" a link and
2333 	 * confuse the internal state machine - disable auto neg here.
2334 	 * Set the speed to 1000mbit and full duplex.
2335 	 */
2336 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2337 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2338 }
2339 
2340 static int ksz886x_cable_test_start(struct phy_device *phydev)
2341 {
2342 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2343 		return -EOPNOTSUPP;
2344 
2345 	/* If autoneg is enabled, we won't be able to test cross pair
2346 	 * short. In this case, the PHY will "detect" a link and
2347 	 * confuse the internal state machine - disable auto neg here.
2348 	 * If autoneg is disabled, we should set the speed to 10mbit.
2349 	 */
2350 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2351 }
2352 
2353 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2354 {
2355 	switch (FIELD_GET(mask, status)) {
2356 	case KSZ8081_LMD_STAT_NORMAL:
2357 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2358 	case KSZ8081_LMD_STAT_SHORT:
2359 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2360 	case KSZ8081_LMD_STAT_OPEN:
2361 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2362 	case KSZ8081_LMD_STAT_FAIL:
2363 		fallthrough;
2364 	default:
2365 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2366 	}
2367 }
2368 
2369 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2370 {
2371 	return FIELD_GET(mask, status) ==
2372 		KSZ8081_LMD_STAT_FAIL;
2373 }
2374 
2375 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2376 {
2377 	switch (FIELD_GET(mask, status)) {
2378 	case KSZ8081_LMD_STAT_OPEN:
2379 		fallthrough;
2380 	case KSZ8081_LMD_STAT_SHORT:
2381 		return true;
2382 	}
2383 	return false;
2384 }
2385 
2386 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2387 							   u16 status, u16 data_mask)
2388 {
2389 	int dt;
2390 
2391 	/* According to the data sheet the distance to the fault is
2392 	 * DELTA_TIME * 0.4 meters for ksz phys.
2393 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2394 	 */
2395 	dt = FIELD_GET(data_mask, status);
2396 
2397 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2398 		return ((dt - 22) * 800) / 10;
2399 	else
2400 		return (dt * 400) / 10;
2401 }
2402 
2403 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2404 {
2405 	const struct kszphy_type *type = phydev->drv->driver_data;
2406 	int val, ret;
2407 
2408 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2409 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2410 				    30000, 100000, true);
2411 
2412 	return ret < 0 ? ret : 0;
2413 }
2414 
2415 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2416 {
2417 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2418 					    ETHTOOL_A_CABLE_PAIR_B,
2419 					    ETHTOOL_A_CABLE_PAIR_C,
2420 					    ETHTOOL_A_CABLE_PAIR_D,
2421 					  };
2422 	u32 fault_length;
2423 	int ret;
2424 	int val;
2425 
2426 	val = KSZ8081_LMD_ENABLE_TEST;
2427 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2428 
2429 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2430 	if (ret < 0)
2431 		return ret;
2432 
2433 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2434 	if (ret)
2435 		return ret;
2436 
2437 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2438 	if (val < 0)
2439 		return val;
2440 
2441 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2442 		return -EAGAIN;
2443 
2444 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2445 				      ksz886x_cable_test_result_trans(val,
2446 								      LAN8814_CABLE_DIAG_STAT_MASK
2447 								      ));
2448 	if (ret)
2449 		return ret;
2450 
2451 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2452 		return 0;
2453 
2454 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2455 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2456 
2457 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2458 }
2459 
2460 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2461 {
2462 	static const int ethtool_pair[] = {
2463 		ETHTOOL_A_CABLE_PAIR_A,
2464 		ETHTOOL_A_CABLE_PAIR_B,
2465 	};
2466 	int ret, val, mdix;
2467 	u32 fault_length;
2468 
2469 	/* There is no way to choice the pair, like we do one ksz9031.
2470 	 * We can workaround this limitation by using the MDI-X functionality.
2471 	 */
2472 	if (pair == 0)
2473 		mdix = ETH_TP_MDI;
2474 	else
2475 		mdix = ETH_TP_MDI_X;
2476 
2477 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2478 	case PHY_ID_KSZ8081:
2479 		ret = ksz8081_config_mdix(phydev, mdix);
2480 		break;
2481 	case PHY_ID_KSZ886X:
2482 		ret = ksz886x_config_mdix(phydev, mdix);
2483 		break;
2484 	default:
2485 		ret = -ENODEV;
2486 	}
2487 
2488 	if (ret)
2489 		return ret;
2490 
2491 	/* Now we are ready to fire. This command will send a 100ns pulse
2492 	 * to the pair.
2493 	 */
2494 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2495 	if (ret)
2496 		return ret;
2497 
2498 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2499 	if (ret)
2500 		return ret;
2501 
2502 	val = phy_read(phydev, KSZ8081_LMD);
2503 	if (val < 0)
2504 		return val;
2505 
2506 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2507 		return -EAGAIN;
2508 
2509 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2510 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2511 	if (ret)
2512 		return ret;
2513 
2514 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2515 		return 0;
2516 
2517 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2518 
2519 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2520 }
2521 
2522 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2523 					 bool *finished)
2524 {
2525 	const struct kszphy_type *type = phydev->drv->driver_data;
2526 	unsigned long pair_mask = type->pair_mask;
2527 	int retries = 20;
2528 	int ret = 0;
2529 	int pair;
2530 
2531 	*finished = false;
2532 
2533 	/* Try harder if link partner is active */
2534 	while (pair_mask && retries--) {
2535 		for_each_set_bit(pair, &pair_mask, 4) {
2536 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2537 				ret = lan8814_cable_test_one_pair(phydev, pair);
2538 			else
2539 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2540 			if (ret == -EAGAIN)
2541 				continue;
2542 			if (ret < 0)
2543 				return ret;
2544 			clear_bit(pair, &pair_mask);
2545 		}
2546 		/* If link partner is in autonegotiation mode it will send 2ms
2547 		 * of FLPs with at least 6ms of silence.
2548 		 * Add 2ms sleep to have better chances to hit this silence.
2549 		 */
2550 		if (pair_mask)
2551 			msleep(2);
2552 	}
2553 
2554 	*finished = true;
2555 
2556 	return ret;
2557 }
2558 
2559 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2560 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2561 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2562 
2563 #define LAN8814_QSGMII_SOFT_RESET			0x43
2564 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2565 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2566 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2567 #define LAN8814_ALIGN_SWAP				0x4a
2568 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2569 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2570 
2571 #define LAN8804_ALIGN_SWAP				0x4a
2572 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2573 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2574 #define LAN8814_CLOCK_MANAGEMENT			0xd
2575 #define LAN8814_LINK_QUALITY				0x8e
2576 
2577 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2578 {
2579 	int data;
2580 
2581 	phy_lock_mdio_bus(phydev);
2582 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2583 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2584 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2585 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2586 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2587 	phy_unlock_mdio_bus(phydev);
2588 
2589 	return data;
2590 }
2591 
2592 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2593 				 u16 val)
2594 {
2595 	phy_lock_mdio_bus(phydev);
2596 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2597 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2598 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2599 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2600 
2601 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2602 	if (val != 0)
2603 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2604 			   val);
2605 	phy_unlock_mdio_bus(phydev);
2606 	return val;
2607 }
2608 
2609 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2610 {
2611 	u16 val = 0;
2612 
2613 	if (enable)
2614 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2615 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2616 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2617 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2618 
2619 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2620 }
2621 
2622 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2623 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2624 {
2625 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2626 	*seconds = (*seconds << 16) |
2627 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2628 
2629 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2630 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2631 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2632 
2633 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2634 }
2635 
2636 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2637 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2638 {
2639 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2640 	*seconds = *seconds << 16 |
2641 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2642 
2643 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2644 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2645 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2646 
2647 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2648 }
2649 
2650 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2651 {
2652 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2653 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
2654 
2655 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2656 				SOF_TIMESTAMPING_RX_HARDWARE |
2657 				SOF_TIMESTAMPING_RAW_HARDWARE;
2658 
2659 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2660 
2661 	info->tx_types =
2662 		(1 << HWTSTAMP_TX_OFF) |
2663 		(1 << HWTSTAMP_TX_ON) |
2664 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2665 
2666 	info->rx_filters =
2667 		(1 << HWTSTAMP_FILTER_NONE) |
2668 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2669 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2670 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2671 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2672 
2673 	return 0;
2674 }
2675 
2676 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2677 {
2678 	int i;
2679 
2680 	for (i = 0; i < FIFO_SIZE; ++i)
2681 		lanphy_read_page_reg(phydev, 5,
2682 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2683 
2684 	/* Read to clear overflow status bit */
2685 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2686 }
2687 
2688 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2689 			    struct kernel_hwtstamp_config *config,
2690 			    struct netlink_ext_ack *extack)
2691 {
2692 	struct kszphy_ptp_priv *ptp_priv =
2693 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2694 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2695 	int txcfg = 0, rxcfg = 0;
2696 	int pkt_ts_enable;
2697 	int tx_mod;
2698 
2699 	ptp_priv->hwts_tx_type = config->tx_type;
2700 	ptp_priv->rx_filter = config->rx_filter;
2701 
2702 	switch (config->rx_filter) {
2703 	case HWTSTAMP_FILTER_NONE:
2704 		ptp_priv->layer = 0;
2705 		ptp_priv->version = 0;
2706 		break;
2707 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2708 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2709 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2710 		ptp_priv->layer = PTP_CLASS_L4;
2711 		ptp_priv->version = PTP_CLASS_V2;
2712 		break;
2713 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2714 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2715 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2716 		ptp_priv->layer = PTP_CLASS_L2;
2717 		ptp_priv->version = PTP_CLASS_V2;
2718 		break;
2719 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2720 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2721 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2722 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2723 		ptp_priv->version = PTP_CLASS_V2;
2724 		break;
2725 	default:
2726 		return -ERANGE;
2727 	}
2728 
2729 	if (ptp_priv->layer & PTP_CLASS_L2) {
2730 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2731 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2732 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2733 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2734 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2735 	}
2736 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2737 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2738 
2739 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2740 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2741 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2742 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2743 
2744 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2745 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2746 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2747 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2748 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2749 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2750 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2751 	}
2752 
2753 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2754 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2755 	else
2756 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2757 
2758 	/* In case of multiple starts and stops, these needs to be cleared */
2759 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2760 		list_del(&rx_ts->list);
2761 		kfree(rx_ts);
2762 	}
2763 	skb_queue_purge(&ptp_priv->rx_queue);
2764 	skb_queue_purge(&ptp_priv->tx_queue);
2765 
2766 	lan8814_flush_fifo(ptp_priv->phydev, false);
2767 	lan8814_flush_fifo(ptp_priv->phydev, true);
2768 
2769 	return 0;
2770 }
2771 
2772 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2773 			     struct sk_buff *skb, int type)
2774 {
2775 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2776 
2777 	switch (ptp_priv->hwts_tx_type) {
2778 	case HWTSTAMP_TX_ONESTEP_SYNC:
2779 		if (ptp_msg_is_sync(skb, type)) {
2780 			kfree_skb(skb);
2781 			return;
2782 		}
2783 		fallthrough;
2784 	case HWTSTAMP_TX_ON:
2785 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2786 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2787 		break;
2788 	case HWTSTAMP_TX_OFF:
2789 	default:
2790 		kfree_skb(skb);
2791 		break;
2792 	}
2793 }
2794 
2795 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2796 {
2797 	struct ptp_header *ptp_header;
2798 	u32 type;
2799 
2800 	skb_push(skb, ETH_HLEN);
2801 	type = ptp_classify_raw(skb);
2802 	ptp_header = ptp_parse_header(skb, type);
2803 	skb_pull_inline(skb, ETH_HLEN);
2804 
2805 	if (!ptp_header)
2806 		return false;
2807 
2808 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2809 	return true;
2810 }
2811 
2812 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2813 				 struct sk_buff *skb)
2814 {
2815 	struct skb_shared_hwtstamps *shhwtstamps;
2816 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2817 	unsigned long flags;
2818 	bool ret = false;
2819 	u16 skb_sig;
2820 
2821 	if (!lan8814_get_sig_rx(skb, &skb_sig))
2822 		return ret;
2823 
2824 	/* Iterate over all RX timestamps and match it with the received skbs */
2825 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2826 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2827 		/* Check if we found the signature we were looking for. */
2828 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2829 			continue;
2830 
2831 		shhwtstamps = skb_hwtstamps(skb);
2832 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2833 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2834 						  rx_ts->nsec);
2835 		list_del(&rx_ts->list);
2836 		kfree(rx_ts);
2837 
2838 		ret = true;
2839 		break;
2840 	}
2841 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2842 
2843 	if (ret)
2844 		netif_rx(skb);
2845 	return ret;
2846 }
2847 
2848 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2849 {
2850 	struct kszphy_ptp_priv *ptp_priv =
2851 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2852 
2853 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2854 	    type == PTP_CLASS_NONE)
2855 		return false;
2856 
2857 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2858 		return false;
2859 
2860 	/* If we failed to match then add it to the queue for when the timestamp
2861 	 * will come
2862 	 */
2863 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2864 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2865 
2866 	return true;
2867 }
2868 
2869 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2870 				  time64_t sec, u32 nsec)
2871 {
2872 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2873 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2874 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2875 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2876 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2877 
2878 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2879 }
2880 
2881 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2882 				  time64_t *sec, u32 *nsec)
2883 {
2884 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2885 
2886 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2887 	*sec <<= 16;
2888 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2889 	*sec <<= 16;
2890 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2891 
2892 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2893 	*nsec <<= 16;
2894 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2895 }
2896 
2897 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2898 				   struct timespec64 *ts)
2899 {
2900 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2901 							  ptp_clock_info);
2902 	struct phy_device *phydev = shared->phydev;
2903 	u32 nano_seconds;
2904 	time64_t seconds;
2905 
2906 	mutex_lock(&shared->shared_lock);
2907 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2908 	mutex_unlock(&shared->shared_lock);
2909 	ts->tv_sec = seconds;
2910 	ts->tv_nsec = nano_seconds;
2911 
2912 	return 0;
2913 }
2914 
2915 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2916 				   const struct timespec64 *ts)
2917 {
2918 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2919 							  ptp_clock_info);
2920 	struct phy_device *phydev = shared->phydev;
2921 
2922 	mutex_lock(&shared->shared_lock);
2923 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2924 	mutex_unlock(&shared->shared_lock);
2925 
2926 	return 0;
2927 }
2928 
2929 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2930 				   s64 start_sec, u32 start_nsec)
2931 {
2932 	/* Set the start time */
2933 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2934 			      lower_16_bits(start_sec));
2935 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2936 			      upper_16_bits(start_sec));
2937 
2938 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2939 			      lower_16_bits(start_nsec));
2940 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2941 			      upper_16_bits(start_nsec) & 0x3fff);
2942 }
2943 
2944 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2945 {
2946 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2947 			       sec + LAN8814_BUFFER_TIME, 0);
2948 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2949 			       sec + LAN8814_BUFFER_TIME, 0);
2950 }
2951 
2952 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2953 				   s64 time_step_ns)
2954 {
2955 	u32 nano_seconds_step;
2956 	u64 abs_time_step_ns;
2957 	time64_t set_seconds;
2958 	u32 nano_seconds;
2959 	u32 remainder;
2960 	s32 seconds;
2961 
2962 	if (time_step_ns >  15000000000LL) {
2963 		/* convert to clock set */
2964 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2965 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2966 					   &remainder);
2967 		nano_seconds += remainder;
2968 		if (nano_seconds >= 1000000000) {
2969 			set_seconds++;
2970 			nano_seconds -= 1000000000;
2971 		}
2972 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2973 		lan8814_ptp_update_target(phydev, set_seconds);
2974 		return;
2975 	} else if (time_step_ns < -15000000000LL) {
2976 		/* convert to clock set */
2977 		time_step_ns = -time_step_ns;
2978 
2979 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2980 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2981 					   &remainder);
2982 		nano_seconds_step = remainder;
2983 		if (nano_seconds < nano_seconds_step) {
2984 			set_seconds--;
2985 			nano_seconds += 1000000000;
2986 		}
2987 		nano_seconds -= nano_seconds_step;
2988 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2989 		lan8814_ptp_update_target(phydev, set_seconds);
2990 		return;
2991 	}
2992 
2993 	/* do clock step */
2994 	if (time_step_ns >= 0) {
2995 		abs_time_step_ns = (u64)time_step_ns;
2996 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2997 					   &remainder);
2998 		nano_seconds = remainder;
2999 	} else {
3000 		abs_time_step_ns = (u64)(-time_step_ns);
3001 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3002 			    &remainder));
3003 		nano_seconds = remainder;
3004 		if (nano_seconds > 0) {
3005 			/* subtracting nano seconds is not allowed
3006 			 * convert to subtracting from seconds,
3007 			 * and adding to nanoseconds
3008 			 */
3009 			seconds--;
3010 			nano_seconds = (1000000000 - nano_seconds);
3011 		}
3012 	}
3013 
3014 	if (nano_seconds > 0) {
3015 		/* add 8 ns to cover the likely normal increment */
3016 		nano_seconds += 8;
3017 	}
3018 
3019 	if (nano_seconds >= 1000000000) {
3020 		/* carry into seconds */
3021 		seconds++;
3022 		nano_seconds -= 1000000000;
3023 	}
3024 
3025 	while (seconds) {
3026 		u32 nsec;
3027 
3028 		if (seconds > 0) {
3029 			u32 adjustment_value = (u32)seconds;
3030 			u16 adjustment_value_lo, adjustment_value_hi;
3031 
3032 			if (adjustment_value > 0xF)
3033 				adjustment_value = 0xF;
3034 
3035 			adjustment_value_lo = adjustment_value & 0xffff;
3036 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3037 
3038 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3039 					      adjustment_value_lo);
3040 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3041 					      PTP_LTC_STEP_ADJ_DIR_ |
3042 					      adjustment_value_hi);
3043 			seconds -= ((s32)adjustment_value);
3044 
3045 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3046 			set_seconds -= adjustment_value;
3047 			lan8814_ptp_update_target(phydev, set_seconds);
3048 		} else {
3049 			u32 adjustment_value = (u32)(-seconds);
3050 			u16 adjustment_value_lo, adjustment_value_hi;
3051 
3052 			if (adjustment_value > 0xF)
3053 				adjustment_value = 0xF;
3054 
3055 			adjustment_value_lo = adjustment_value & 0xffff;
3056 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3057 
3058 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3059 					      adjustment_value_lo);
3060 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3061 					      adjustment_value_hi);
3062 			seconds += ((s32)adjustment_value);
3063 
3064 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3065 			set_seconds += adjustment_value;
3066 			lan8814_ptp_update_target(phydev, set_seconds);
3067 		}
3068 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3069 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3070 	}
3071 	if (nano_seconds) {
3072 		u16 nano_seconds_lo;
3073 		u16 nano_seconds_hi;
3074 
3075 		nano_seconds_lo = nano_seconds & 0xffff;
3076 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3077 
3078 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3079 				      nano_seconds_lo);
3080 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3081 				      PTP_LTC_STEP_ADJ_DIR_ |
3082 				      nano_seconds_hi);
3083 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3084 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3085 	}
3086 }
3087 
3088 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3089 {
3090 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3091 							  ptp_clock_info);
3092 	struct phy_device *phydev = shared->phydev;
3093 
3094 	mutex_lock(&shared->shared_lock);
3095 	lan8814_ptp_clock_step(phydev, delta);
3096 	mutex_unlock(&shared->shared_lock);
3097 
3098 	return 0;
3099 }
3100 
3101 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3102 {
3103 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3104 							  ptp_clock_info);
3105 	struct phy_device *phydev = shared->phydev;
3106 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3107 	bool positive = true;
3108 	u32 kszphy_rate_adj;
3109 
3110 	if (scaled_ppm < 0) {
3111 		scaled_ppm = -scaled_ppm;
3112 		positive = false;
3113 	}
3114 
3115 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3116 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3117 
3118 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3119 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3120 
3121 	if (positive)
3122 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3123 
3124 	mutex_lock(&shared->shared_lock);
3125 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3126 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3127 	mutex_unlock(&shared->shared_lock);
3128 
3129 	return 0;
3130 }
3131 
3132 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3133 				   s64 period_sec, u32 period_nsec)
3134 {
3135 	lanphy_write_page_reg(phydev, 4,
3136 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3137 			      lower_16_bits(period_sec));
3138 	lanphy_write_page_reg(phydev, 4,
3139 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3140 			      upper_16_bits(period_sec));
3141 
3142 	lanphy_write_page_reg(phydev, 4,
3143 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3144 			      lower_16_bits(period_nsec));
3145 	lanphy_write_page_reg(phydev, 4,
3146 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3147 			      upper_16_bits(period_nsec) & 0x3fff);
3148 }
3149 
3150 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3151 				     int pulse_width)
3152 {
3153 	u16 val;
3154 
3155 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3156 	/* Set the pulse width of the event */
3157 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3158 	/* Make sure that the target clock will be incremented each time when
3159 	 * local time reaches or pass it
3160 	 */
3161 	val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3162 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3163 	/* Set the polarity high */
3164 	val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3165 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3166 }
3167 
3168 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3169 {
3170 	u16 val;
3171 
3172 	/* Set target to too far in the future, effectively disabling it */
3173 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3174 
3175 	/* And then reload once it recheas the target */
3176 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3177 	val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3178 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3179 }
3180 
3181 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3182 {
3183 	u16 val;
3184 
3185 	/* Disable gpio alternate function,
3186 	 * 1: select as gpio,
3187 	 * 0: select alt func
3188 	 */
3189 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3190 	val |= LAN8814_GPIO_EN_BIT(pin);
3191 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3192 
3193 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3194 	val &= ~LAN8814_GPIO_DIR_BIT(pin);
3195 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3196 
3197 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3198 	val &= ~LAN8814_GPIO_BUF_BIT(pin);
3199 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3200 }
3201 
3202 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3203 {
3204 	int val;
3205 
3206 	/* Set as gpio output */
3207 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3208 	val |= LAN8814_GPIO_DIR_BIT(pin);
3209 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3210 
3211 	/* Enable gpio 0:for alternate function, 1:gpio */
3212 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3213 	val &= ~LAN8814_GPIO_EN_BIT(pin);
3214 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3215 
3216 	/* Set buffer type to push pull */
3217 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3218 	val |= LAN8814_GPIO_BUF_BIT(pin);
3219 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3220 }
3221 
3222 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3223 			      struct ptp_clock_request *rq, int on)
3224 {
3225 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3226 							  ptp_clock_info);
3227 	struct phy_device *phydev = shared->phydev;
3228 	struct timespec64 ts_on, ts_period;
3229 	s64 on_nsec, period_nsec;
3230 	int pulse_width;
3231 	int pin, event;
3232 
3233 	mutex_lock(&shared->shared_lock);
3234 	event = rq->perout.index;
3235 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3236 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3237 		mutex_unlock(&shared->shared_lock);
3238 		return -EBUSY;
3239 	}
3240 
3241 	if (!on) {
3242 		lan8814_ptp_perout_off(phydev, pin);
3243 		lan8814_ptp_disable_event(phydev, event);
3244 		mutex_unlock(&shared->shared_lock);
3245 		return 0;
3246 	}
3247 
3248 	ts_on.tv_sec = rq->perout.on.sec;
3249 	ts_on.tv_nsec = rq->perout.on.nsec;
3250 	on_nsec = timespec64_to_ns(&ts_on);
3251 
3252 	ts_period.tv_sec = rq->perout.period.sec;
3253 	ts_period.tv_nsec = rq->perout.period.nsec;
3254 	period_nsec = timespec64_to_ns(&ts_period);
3255 
3256 	if (period_nsec < 200) {
3257 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3258 				    phydev_name(phydev));
3259 		mutex_unlock(&shared->shared_lock);
3260 		return -EOPNOTSUPP;
3261 	}
3262 
3263 	if (on_nsec >= period_nsec) {
3264 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3265 				    phydev_name(phydev));
3266 		mutex_unlock(&shared->shared_lock);
3267 		return -EINVAL;
3268 	}
3269 
3270 	switch (on_nsec) {
3271 	case 200000000:
3272 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3273 		break;
3274 	case 100000000:
3275 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3276 		break;
3277 	case 50000000:
3278 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3279 		break;
3280 	case 10000000:
3281 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3282 		break;
3283 	case 5000000:
3284 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3285 		break;
3286 	case 1000000:
3287 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3288 		break;
3289 	case 500000:
3290 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3291 		break;
3292 	case 100000:
3293 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3294 		break;
3295 	case 50000:
3296 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3297 		break;
3298 	case 10000:
3299 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3300 		break;
3301 	case 5000:
3302 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3303 		break;
3304 	case 1000:
3305 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3306 		break;
3307 	case 500:
3308 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3309 		break;
3310 	case 100:
3311 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3312 		break;
3313 	default:
3314 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3315 				    phydev_name(phydev));
3316 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3317 		break;
3318 	}
3319 
3320 	/* Configure to pulse every period */
3321 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3322 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3323 			       rq->perout.start.nsec);
3324 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3325 			       rq->perout.period.nsec);
3326 	lan8814_ptp_perout_on(phydev, pin);
3327 	mutex_unlock(&shared->shared_lock);
3328 
3329 	return 0;
3330 }
3331 
3332 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3333 {
3334 	u16 tmp;
3335 
3336 	/* Set as gpio input */
3337 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3338 	tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3339 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3340 
3341 	/* Map the pin to ltc pin 0 of the capture map registers */
3342 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3343 	tmp |= pin;
3344 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3345 
3346 	/* Enable capture on the edges of the ltc pin */
3347 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3348 	if (flags & PTP_RISING_EDGE)
3349 		tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3350 	if (flags & PTP_FALLING_EDGE)
3351 		tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3352 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3353 
3354 	/* Enable interrupt top interrupt */
3355 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3356 	tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3357 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3358 }
3359 
3360 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3361 {
3362 	u16 tmp;
3363 
3364 	/* Set as gpio out */
3365 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3366 	tmp |= LAN8814_GPIO_DIR_BIT(pin);
3367 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3368 
3369 	/* Enable alternate, 0:for alternate function, 1:gpio */
3370 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3371 	tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3372 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3373 
3374 	/* Clear the mapping of pin to registers 0 of the capture registers */
3375 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3376 	tmp &= ~GENMASK(3, 0);
3377 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3378 
3379 	/* Disable capture on both of the edges */
3380 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3381 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3382 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3383 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3384 
3385 	/* Disable interrupt top interrupt */
3386 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3387 	tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3388 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3389 }
3390 
3391 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3392 			     struct ptp_clock_request *rq, int on)
3393 {
3394 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3395 							  ptp_clock_info);
3396 	struct phy_device *phydev = shared->phydev;
3397 	int pin;
3398 
3399 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3400 			   rq->extts.index);
3401 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3402 		return -EINVAL;
3403 
3404 	mutex_lock(&shared->shared_lock);
3405 	if (on)
3406 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3407 	else
3408 		lan8814_ptp_extts_off(phydev, pin);
3409 
3410 	mutex_unlock(&shared->shared_lock);
3411 
3412 	return 0;
3413 }
3414 
3415 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3416 				struct ptp_clock_request *rq, int on)
3417 {
3418 	switch (rq->type) {
3419 	case PTP_CLK_REQ_PEROUT:
3420 		return lan8814_ptp_perout(ptpci, rq, on);
3421 	case PTP_CLK_REQ_EXTTS:
3422 		return lan8814_ptp_extts(ptpci, rq, on);
3423 	default:
3424 		return -EINVAL;
3425 	}
3426 }
3427 
3428 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3429 				enum ptp_pin_function func, unsigned int chan)
3430 {
3431 	switch (func) {
3432 	case PTP_PF_NONE:
3433 	case PTP_PF_PEROUT:
3434 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3435 		 * there is only chan 0 (event A) and for pin 1 there is only
3436 		 * chan 1 (event B)
3437 		 */
3438 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3439 			return -1;
3440 		break;
3441 	case PTP_PF_EXTTS:
3442 		if (pin != LAN8814_PTP_EXTTS_NUM)
3443 			return -1;
3444 		break;
3445 	default:
3446 		return -1;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3453 {
3454 	struct ptp_header *ptp_header;
3455 	u32 type;
3456 
3457 	type = ptp_classify_raw(skb);
3458 	ptp_header = ptp_parse_header(skb, type);
3459 
3460 	if (!ptp_header)
3461 		return false;
3462 
3463 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3464 	return true;
3465 }
3466 
3467 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3468 				 u32 seconds, u32 nsec, u16 seq_id)
3469 {
3470 	struct skb_shared_hwtstamps shhwtstamps;
3471 	struct sk_buff *skb, *skb_tmp;
3472 	unsigned long flags;
3473 	bool ret = false;
3474 	u16 skb_sig;
3475 
3476 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3477 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3478 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3479 			continue;
3480 
3481 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3482 			continue;
3483 
3484 		__skb_unlink(skb, &ptp_priv->tx_queue);
3485 		ret = true;
3486 		break;
3487 	}
3488 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3489 
3490 	if (ret) {
3491 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3492 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3493 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3494 	}
3495 }
3496 
3497 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3498 {
3499 	struct phy_device *phydev = ptp_priv->phydev;
3500 	u32 seconds, nsec;
3501 	u16 seq_id;
3502 
3503 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3504 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3505 }
3506 
3507 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3508 {
3509 	struct phy_device *phydev = ptp_priv->phydev;
3510 	u32 reg;
3511 
3512 	do {
3513 		lan8814_dequeue_tx_skb(ptp_priv);
3514 
3515 		/* If other timestamps are available in the FIFO,
3516 		 * process them.
3517 		 */
3518 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3519 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3520 }
3521 
3522 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3523 			      struct lan8814_ptp_rx_ts *rx_ts)
3524 {
3525 	struct skb_shared_hwtstamps *shhwtstamps;
3526 	struct sk_buff *skb, *skb_tmp;
3527 	unsigned long flags;
3528 	bool ret = false;
3529 	u16 skb_sig;
3530 
3531 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3532 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3533 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3534 			continue;
3535 
3536 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3537 			continue;
3538 
3539 		__skb_unlink(skb, &ptp_priv->rx_queue);
3540 
3541 		ret = true;
3542 		break;
3543 	}
3544 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3545 
3546 	if (ret) {
3547 		shhwtstamps = skb_hwtstamps(skb);
3548 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3549 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3550 		netif_rx(skb);
3551 	}
3552 
3553 	return ret;
3554 }
3555 
3556 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3557 				struct lan8814_ptp_rx_ts *rx_ts)
3558 {
3559 	unsigned long flags;
3560 
3561 	/* If we failed to match the skb add it to the queue for when
3562 	 * the frame will come
3563 	 */
3564 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3565 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3566 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3567 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3568 	} else {
3569 		kfree(rx_ts);
3570 	}
3571 }
3572 
3573 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3574 {
3575 	struct phy_device *phydev = ptp_priv->phydev;
3576 	struct lan8814_ptp_rx_ts *rx_ts;
3577 	u32 reg;
3578 
3579 	do {
3580 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3581 		if (!rx_ts)
3582 			return;
3583 
3584 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3585 				      &rx_ts->seq_id);
3586 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3587 
3588 		/* If other timestamps are available in the FIFO,
3589 		 * process them.
3590 		 */
3591 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3592 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3593 }
3594 
3595 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3596 {
3597 	struct kszphy_priv *priv = phydev->priv;
3598 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3599 
3600 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3601 		lan8814_get_tx_ts(ptp_priv);
3602 
3603 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3604 		lan8814_get_rx_ts(ptp_priv);
3605 
3606 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3607 		lan8814_flush_fifo(phydev, true);
3608 		skb_queue_purge(&ptp_priv->tx_queue);
3609 	}
3610 
3611 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3612 		lan8814_flush_fifo(phydev, false);
3613 		skb_queue_purge(&ptp_priv->rx_queue);
3614 	}
3615 }
3616 
3617 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3618 {
3619 	struct phy_device *phydev = shared->phydev;
3620 	struct ptp_clock_event ptp_event = {0};
3621 	unsigned long nsec;
3622 	s64 sec;
3623 	u16 tmp;
3624 
3625 	/* This is 0 because whatever was the input pin it was mapped it to
3626 	 * ltc gpio pin 0
3627 	 */
3628 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3629 	tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3630 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3631 
3632 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3633 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3634 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3635 		return -1;
3636 
3637 	if (tmp & BIT(0)) {
3638 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3639 		sec <<= 16;
3640 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3641 
3642 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3643 		nsec <<= 16;
3644 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3645 	} else {
3646 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3647 		sec <<= 16;
3648 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3649 
3650 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3651 		nsec <<= 16;
3652 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3653 	}
3654 
3655 	ptp_event.index = 0;
3656 	ptp_event.timestamp = ktime_set(sec, nsec);
3657 	ptp_event.type = PTP_CLOCK_EXTTS;
3658 	ptp_clock_event(shared->ptp_clock, &ptp_event);
3659 
3660 	return 0;
3661 }
3662 
3663 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3664 {
3665 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3666 	int ret;
3667 
3668 	mutex_lock(&shared->shared_lock);
3669 	ret = lan8814_gpio_process_cap(shared);
3670 	mutex_unlock(&shared->shared_lock);
3671 
3672 	return ret;
3673 }
3674 
3675 static int lan8804_config_init(struct phy_device *phydev)
3676 {
3677 	int val;
3678 
3679 	/* MDI-X setting for swap A,B transmit */
3680 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3681 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3682 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3683 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3684 
3685 	/* Make sure that the PHY will not stop generating the clock when the
3686 	 * link partner goes down
3687 	 */
3688 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3689 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3690 
3691 	return 0;
3692 }
3693 
3694 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3695 {
3696 	int status;
3697 
3698 	status = phy_read(phydev, LAN8814_INTS);
3699 	if (status < 0) {
3700 		phy_error(phydev);
3701 		return IRQ_NONE;
3702 	}
3703 
3704 	if (status > 0)
3705 		phy_trigger_machine(phydev);
3706 
3707 	return IRQ_HANDLED;
3708 }
3709 
3710 #define LAN8804_OUTPUT_CONTROL			25
3711 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3712 #define LAN8804_CONTROL				31
3713 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3714 
3715 static int lan8804_config_intr(struct phy_device *phydev)
3716 {
3717 	int err;
3718 
3719 	/* This is an internal PHY of lan966x and is not possible to change the
3720 	 * polarity on the GIC found in lan966x, therefore change the polarity
3721 	 * of the interrupt in the PHY from being active low instead of active
3722 	 * high.
3723 	 */
3724 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3725 
3726 	/* By default interrupt buffer is open-drain in which case the interrupt
3727 	 * can be active only low. Therefore change the interrupt buffer to be
3728 	 * push-pull to be able to change interrupt polarity
3729 	 */
3730 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3731 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3732 
3733 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3734 		err = phy_read(phydev, LAN8814_INTS);
3735 		if (err < 0)
3736 			return err;
3737 
3738 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3739 		if (err)
3740 			return err;
3741 	} else {
3742 		err = phy_write(phydev, LAN8814_INTC, 0);
3743 		if (err)
3744 			return err;
3745 
3746 		err = phy_read(phydev, LAN8814_INTS);
3747 		if (err < 0)
3748 			return err;
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3755 {
3756 	int ret = IRQ_NONE;
3757 	int irq_status;
3758 
3759 	irq_status = phy_read(phydev, LAN8814_INTS);
3760 	if (irq_status < 0) {
3761 		phy_error(phydev);
3762 		return IRQ_NONE;
3763 	}
3764 
3765 	if (irq_status & LAN8814_INT_LINK) {
3766 		phy_trigger_machine(phydev);
3767 		ret = IRQ_HANDLED;
3768 	}
3769 
3770 	while (true) {
3771 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3772 		if (!irq_status)
3773 			break;
3774 
3775 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3776 		ret = IRQ_HANDLED;
3777 	}
3778 
3779 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3780 		ret = IRQ_HANDLED;
3781 
3782 	return ret;
3783 }
3784 
3785 static int lan8814_ack_interrupt(struct phy_device *phydev)
3786 {
3787 	/* bit[12..0] int status, which is a read and clear register. */
3788 	int rc;
3789 
3790 	rc = phy_read(phydev, LAN8814_INTS);
3791 
3792 	return (rc < 0) ? rc : 0;
3793 }
3794 
3795 static int lan8814_config_intr(struct phy_device *phydev)
3796 {
3797 	int err;
3798 
3799 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3800 			      LAN8814_INTR_CTRL_REG_POLARITY |
3801 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3802 
3803 	/* enable / disable interrupts */
3804 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3805 		err = lan8814_ack_interrupt(phydev);
3806 		if (err)
3807 			return err;
3808 
3809 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3810 	} else {
3811 		err = phy_write(phydev, LAN8814_INTC, 0);
3812 		if (err)
3813 			return err;
3814 
3815 		err = lan8814_ack_interrupt(phydev);
3816 	}
3817 
3818 	return err;
3819 }
3820 
3821 static void lan8814_ptp_init(struct phy_device *phydev)
3822 {
3823 	struct kszphy_priv *priv = phydev->priv;
3824 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3825 	u32 temp;
3826 
3827 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3828 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3829 		return;
3830 
3831 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3832 
3833 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3834 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3835 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3836 
3837 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3838 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3839 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3840 
3841 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3842 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3843 
3844 	/* Removing default registers configs related to L2 and IP */
3845 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3846 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3847 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3848 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3849 
3850 	/* Disable checking for minorVersionPTP field */
3851 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3852 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3853 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3854 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3855 
3856 	skb_queue_head_init(&ptp_priv->tx_queue);
3857 	skb_queue_head_init(&ptp_priv->rx_queue);
3858 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3859 	spin_lock_init(&ptp_priv->rx_ts_lock);
3860 
3861 	ptp_priv->phydev = phydev;
3862 
3863 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3864 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3865 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3866 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3867 
3868 	phydev->mii_ts = &ptp_priv->mii_ts;
3869 
3870 	/* Timestamp selected by default to keep legacy API */
3871 	phydev->default_timestamp = true;
3872 }
3873 
3874 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3875 {
3876 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3877 
3878 	/* Initialise shared lock for clock*/
3879 	mutex_init(&shared->shared_lock);
3880 
3881 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3882 						LAN8814_PTP_GPIO_NUM,
3883 						sizeof(*shared->pin_config),
3884 						GFP_KERNEL);
3885 	if (!shared->pin_config)
3886 		return -ENOMEM;
3887 
3888 	for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3889 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3890 
3891 		memset(ptp_pin, 0, sizeof(*ptp_pin));
3892 		snprintf(ptp_pin->name,
3893 			 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3894 		ptp_pin->index = i;
3895 		ptp_pin->func =  PTP_PF_NONE;
3896 	}
3897 
3898 	shared->ptp_clock_info.owner = THIS_MODULE;
3899 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3900 	shared->ptp_clock_info.max_adj = 31249999;
3901 	shared->ptp_clock_info.n_alarm = 0;
3902 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3903 	shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3904 	shared->ptp_clock_info.pps = 0;
3905 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
3906 						       PTP_FALLING_EDGE |
3907 						       PTP_STRICT_FLAGS;
3908 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
3909 	shared->ptp_clock_info.pin_config = shared->pin_config;
3910 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3911 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3912 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3913 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3914 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3915 	shared->ptp_clock_info.getcrosststamp = NULL;
3916 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3917 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3918 
3919 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3920 					       &phydev->mdio.dev);
3921 	if (IS_ERR(shared->ptp_clock)) {
3922 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3923 			   PTR_ERR(shared->ptp_clock));
3924 		return -EINVAL;
3925 	}
3926 
3927 	/* Check if PHC support is missing at the configuration level */
3928 	if (!shared->ptp_clock)
3929 		return 0;
3930 
3931 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3932 
3933 	shared->phydev = phydev;
3934 
3935 	/* The EP.4 is shared between all the PHYs in the package and also it
3936 	 * can be accessed by any of the PHYs
3937 	 */
3938 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3939 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3940 			      PTP_OPERATING_MODE_STANDALONE_);
3941 
3942 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3943 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3944 
3945 	return 0;
3946 }
3947 
3948 static void lan8814_setup_led(struct phy_device *phydev, int val)
3949 {
3950 	int temp;
3951 
3952 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3953 
3954 	if (val)
3955 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3956 	else
3957 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3958 
3959 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3960 }
3961 
3962 static int lan8814_config_init(struct phy_device *phydev)
3963 {
3964 	struct kszphy_priv *lan8814 = phydev->priv;
3965 	int val;
3966 
3967 	/* Reset the PHY */
3968 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3969 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3970 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3971 
3972 	/* Disable ANEG with QSGMII PCS Host side */
3973 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3974 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3975 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3976 
3977 	/* MDI-X setting for swap A,B transmit */
3978 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3979 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3980 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3981 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3982 
3983 	if (lan8814->led_mode >= 0)
3984 		lan8814_setup_led(phydev, lan8814->led_mode);
3985 
3986 	return 0;
3987 }
3988 
3989 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3990  * function called in suspend. Because the GPIO line can be shared, so if one of
3991  * the phys goes back in coma mode, then all the other PHYs will go, which is
3992  * wrong.
3993  */
3994 static int lan8814_release_coma_mode(struct phy_device *phydev)
3995 {
3996 	struct gpio_desc *gpiod;
3997 
3998 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3999 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4000 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4001 	if (IS_ERR(gpiod))
4002 		return PTR_ERR(gpiod);
4003 
4004 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4005 	gpiod_set_value_cansleep(gpiod, 0);
4006 
4007 	return 0;
4008 }
4009 
4010 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4011 {
4012 	u16 val;
4013 
4014 	/* It was noticed that when traffic is passing through the PHY and the
4015 	 * cable is removed then the LED was still one even though there is no
4016 	 * link
4017 	 */
4018 	val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
4019 	val &= ~LAN8814_EEE_STATE_MASK2P5P;
4020 	lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
4021 }
4022 
4023 static void lan8814_update_meas_time(struct phy_device *phydev)
4024 {
4025 	u16 val;
4026 
4027 	/* By setting the measure time to a value of 0xb this will allow cables
4028 	 * longer than 100m to be used. This configuration can be used
4029 	 * regardless of the mode of operation of the PHY
4030 	 */
4031 	val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
4032 	val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
4033 	val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
4034 	lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
4035 }
4036 
4037 static int lan8814_probe(struct phy_device *phydev)
4038 {
4039 	const struct kszphy_type *type = phydev->drv->driver_data;
4040 	struct kszphy_priv *priv;
4041 	u16 addr;
4042 	int err;
4043 
4044 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4045 	if (!priv)
4046 		return -ENOMEM;
4047 
4048 	phydev->priv = priv;
4049 
4050 	priv->type = type;
4051 
4052 	kszphy_parse_led_mode(phydev);
4053 
4054 	/* Strap-in value for PHY address, below register read gives starting
4055 	 * phy address value
4056 	 */
4057 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
4058 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4059 			      addr, sizeof(struct lan8814_shared_priv));
4060 
4061 	if (phy_package_init_once(phydev)) {
4062 		err = lan8814_release_coma_mode(phydev);
4063 		if (err)
4064 			return err;
4065 
4066 		err = lan8814_ptp_probe_once(phydev);
4067 		if (err)
4068 			return err;
4069 	}
4070 
4071 	lan8814_ptp_init(phydev);
4072 
4073 	/* Errata workarounds */
4074 	lan8814_clear_2psp_bit(phydev);
4075 	lan8814_update_meas_time(phydev);
4076 
4077 	return 0;
4078 }
4079 
4080 #define LAN8841_MMD_TIMER_REG			0
4081 #define LAN8841_MMD0_REGISTER_17		17
4082 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4083 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4084 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4085 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4086 #define LAN8841_MMD_ANALOG_REG			28
4087 #define LAN8841_ANALOG_CONTROL_1		1
4088 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4089 #define LAN8841_ANALOG_CONTROL_10		13
4090 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4091 #define LAN8841_ANALOG_CONTROL_11		14
4092 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4093 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4094 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4095 #define LAN8841_BTRX_POWER_DOWN			70
4096 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4097 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4098 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4099 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4100 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4101 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4102 #define LAN8841_ADC_CHANNEL_MASK		198
4103 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4104 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4105 #define LAN8841_PTP_RX_VERSION			374
4106 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4107 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4108 #define LAN8841_PTP_TX_VERSION			438
4109 #define LAN8841_PTP_CMD_CTL			256
4110 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4111 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4112 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4113 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4114 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4115 #define LAN8841_PTP_RX_MODE			381
4116 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4117 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4118 
4119 static int lan8841_config_init(struct phy_device *phydev)
4120 {
4121 	int ret;
4122 
4123 	ret = ksz9131_config_init(phydev);
4124 	if (ret)
4125 		return ret;
4126 
4127 	/* Initialize the HW by resetting everything */
4128 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4129 		       LAN8841_PTP_CMD_CTL,
4130 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4131 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4132 
4133 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4134 		       LAN8841_PTP_CMD_CTL,
4135 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4136 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4137 
4138 	/* Don't process any frames */
4139 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4140 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4141 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4142 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4143 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4144 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4145 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4146 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4147 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4148 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4149 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4150 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4151 
4152 	/* Disable checking for minorVersionPTP field */
4153 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4154 		      LAN8841_PTP_RX_VERSION, 0xff00);
4155 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4156 		      LAN8841_PTP_TX_VERSION, 0xff00);
4157 
4158 	/* 100BT Clause 40 improvenent errata */
4159 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4160 		      LAN8841_ANALOG_CONTROL_1,
4161 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4162 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4163 		      LAN8841_ANALOG_CONTROL_10,
4164 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4165 
4166 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4167 	 * Magnetics
4168 	 */
4169 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4170 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4171 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4172 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4173 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4174 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4175 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4176 			      LAN8841_BTRX_POWER_DOWN,
4177 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4178 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4179 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4180 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4181 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4182 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4183 	}
4184 
4185 	/* LDO Adjustment errata */
4186 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4187 		      LAN8841_ANALOG_CONTROL_11,
4188 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4189 
4190 	/* 100BT RGMII latency tuning errata */
4191 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4192 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4193 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4194 		      LAN8841_MMD0_REGISTER_17,
4195 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4196 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4197 
4198 	return 0;
4199 }
4200 
4201 #define LAN8841_OUTPUT_CTRL			25
4202 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4203 #define LAN8841_INT_PTP				BIT(9)
4204 
4205 static int lan8841_config_intr(struct phy_device *phydev)
4206 {
4207 	int err;
4208 
4209 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4210 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4211 
4212 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4213 		err = phy_read(phydev, LAN8814_INTS);
4214 		if (err < 0)
4215 			return err;
4216 
4217 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4218 		 * even if it PTP is not enabled. Because the underneath blocks
4219 		 * will not enable the PTP so we will never get the PTP
4220 		 * interrupt.
4221 		 */
4222 		err = phy_write(phydev, LAN8814_INTC,
4223 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4224 	} else {
4225 		err = phy_write(phydev, LAN8814_INTC, 0);
4226 		if (err)
4227 			return err;
4228 
4229 		err = phy_read(phydev, LAN8814_INTS);
4230 		if (err < 0)
4231 			return err;
4232 
4233 		/* Getting a positive value doesn't mean that is an error, it
4234 		 * just indicates what was the status. Therefore make sure to
4235 		 * clear the value and say that there is no error.
4236 		 */
4237 		err = 0;
4238 	}
4239 
4240 	return err;
4241 }
4242 
4243 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4244 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4245 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4246 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4247 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4248 #define LAN8841_PTP_TX_MSG_HEADER2			455
4249 
4250 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4251 				  u32 *sec, u32 *nsec, u16 *seq)
4252 {
4253 	struct phy_device *phydev = ptp_priv->phydev;
4254 
4255 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4256 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4257 		return false;
4258 
4259 	*nsec = ((*nsec & 0x3fff) << 16);
4260 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4261 
4262 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4263 	*sec = *sec << 16;
4264 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4265 
4266 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4267 
4268 	return true;
4269 }
4270 
4271 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4272 {
4273 	u32 sec, nsec;
4274 	u16 seq;
4275 
4276 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4277 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4278 }
4279 
4280 #define LAN8841_PTP_INT_STS			259
4281 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4282 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4283 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4284 
4285 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4286 {
4287 	struct phy_device *phydev = ptp_priv->phydev;
4288 	int i;
4289 
4290 	for (i = 0; i < FIFO_SIZE; ++i)
4291 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4292 
4293 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4294 }
4295 
4296 #define LAN8841_PTP_GPIO_CAP_STS			506
4297 #define LAN8841_PTP_GPIO_SEL				327
4298 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4299 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4300 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4301 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4302 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4303 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4304 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4305 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4306 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4307 
4308 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4309 {
4310 	struct phy_device *phydev = ptp_priv->phydev;
4311 	struct ptp_clock_event ptp_event = {0};
4312 	int pin, ret, tmp;
4313 	s32 sec, nsec;
4314 
4315 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4316 	if (pin == -1)
4317 		return;
4318 
4319 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4320 	if (tmp < 0)
4321 		return;
4322 
4323 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4324 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4325 	if (ret)
4326 		return;
4327 
4328 	mutex_lock(&ptp_priv->ptp_lock);
4329 	if (tmp & BIT(pin)) {
4330 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4331 		sec <<= 16;
4332 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4333 
4334 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4335 		nsec <<= 16;
4336 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4337 	} else {
4338 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4339 		sec <<= 16;
4340 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4341 
4342 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4343 		nsec <<= 16;
4344 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4345 	}
4346 	mutex_unlock(&ptp_priv->ptp_lock);
4347 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4348 	if (ret)
4349 		return;
4350 
4351 	ptp_event.index = 0;
4352 	ptp_event.timestamp = ktime_set(sec, nsec);
4353 	ptp_event.type = PTP_CLOCK_EXTTS;
4354 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4355 }
4356 
4357 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4358 {
4359 	struct kszphy_priv *priv = phydev->priv;
4360 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4361 	u16 status;
4362 
4363 	do {
4364 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4365 
4366 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4367 			lan8841_ptp_process_tx_ts(ptp_priv);
4368 
4369 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4370 			lan8841_gpio_process_cap(ptp_priv);
4371 
4372 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4373 			lan8841_ptp_flush_fifo(ptp_priv);
4374 			skb_queue_purge(&ptp_priv->tx_queue);
4375 		}
4376 
4377 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4378 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4379 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4380 }
4381 
4382 #define LAN8841_INTS_PTP		BIT(9)
4383 
4384 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4385 {
4386 	irqreturn_t ret = IRQ_NONE;
4387 	int irq_status;
4388 
4389 	irq_status = phy_read(phydev, LAN8814_INTS);
4390 	if (irq_status < 0) {
4391 		phy_error(phydev);
4392 		return IRQ_NONE;
4393 	}
4394 
4395 	if (irq_status & LAN8814_INT_LINK) {
4396 		phy_trigger_machine(phydev);
4397 		ret = IRQ_HANDLED;
4398 	}
4399 
4400 	if (irq_status & LAN8841_INTS_PTP) {
4401 		lan8841_handle_ptp_interrupt(phydev);
4402 		ret = IRQ_HANDLED;
4403 	}
4404 
4405 	return ret;
4406 }
4407 
4408 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4409 			   struct kernel_ethtool_ts_info *info)
4410 {
4411 	struct kszphy_ptp_priv *ptp_priv;
4412 
4413 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4414 
4415 	info->phc_index = ptp_priv->ptp_clock ?
4416 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4417 	if (info->phc_index == -1)
4418 		return 0;
4419 
4420 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4421 				SOF_TIMESTAMPING_RX_HARDWARE |
4422 				SOF_TIMESTAMPING_RAW_HARDWARE;
4423 
4424 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4425 			 (1 << HWTSTAMP_TX_ON) |
4426 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4427 
4428 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4429 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4430 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4431 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4432 
4433 	return 0;
4434 }
4435 
4436 #define LAN8841_PTP_INT_EN			260
4437 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4438 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4439 
4440 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4441 					  bool enable)
4442 {
4443 	struct phy_device *phydev = ptp_priv->phydev;
4444 
4445 	if (enable) {
4446 		/* Enable interrupts on the TX side */
4447 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4448 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4449 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4450 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4451 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4452 
4453 		/* Enable the modification of the frame on RX side,
4454 		 * this will add the ns and 2 bits of sec in the reserved field
4455 		 * of the PTP header
4456 		 */
4457 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4458 			       LAN8841_PTP_RX_MODE,
4459 			       LAN8841_PTP_INSERT_TS_EN |
4460 			       LAN8841_PTP_INSERT_TS_32BIT,
4461 			       LAN8841_PTP_INSERT_TS_EN |
4462 			       LAN8841_PTP_INSERT_TS_32BIT);
4463 
4464 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4465 	} else {
4466 		/* Disable interrupts on the TX side */
4467 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4468 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4469 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4470 
4471 		/* Disable modification of the RX frames */
4472 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4473 			       LAN8841_PTP_RX_MODE,
4474 			       LAN8841_PTP_INSERT_TS_EN |
4475 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4476 
4477 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4478 	}
4479 }
4480 
4481 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4482 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4483 #define LAN8841_PTP_TX_MOD			445
4484 
4485 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4486 			    struct kernel_hwtstamp_config *config,
4487 			    struct netlink_ext_ack *extack)
4488 {
4489 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4490 	struct phy_device *phydev = ptp_priv->phydev;
4491 	int txcfg = 0, rxcfg = 0;
4492 	int pkt_ts_enable;
4493 
4494 	ptp_priv->hwts_tx_type = config->tx_type;
4495 	ptp_priv->rx_filter = config->rx_filter;
4496 
4497 	switch (config->rx_filter) {
4498 	case HWTSTAMP_FILTER_NONE:
4499 		ptp_priv->layer = 0;
4500 		ptp_priv->version = 0;
4501 		break;
4502 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4503 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4504 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4505 		ptp_priv->layer = PTP_CLASS_L4;
4506 		ptp_priv->version = PTP_CLASS_V2;
4507 		break;
4508 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4509 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4510 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4511 		ptp_priv->layer = PTP_CLASS_L2;
4512 		ptp_priv->version = PTP_CLASS_V2;
4513 		break;
4514 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4515 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4516 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4517 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4518 		ptp_priv->version = PTP_CLASS_V2;
4519 		break;
4520 	default:
4521 		return -ERANGE;
4522 	}
4523 
4524 	/* Setup parsing of the frames and enable the timestamping for ptp
4525 	 * frames
4526 	 */
4527 	if (ptp_priv->layer & PTP_CLASS_L2) {
4528 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4529 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4530 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4531 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4532 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4533 	}
4534 
4535 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4536 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4537 
4538 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4539 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4540 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4541 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4542 
4543 	/* Enable / disable of the TX timestamp in the SYNC frames */
4544 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4545 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4546 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4547 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4548 
4549 	/* Now enable/disable the timestamping */
4550 	lan8841_ptp_enable_processing(ptp_priv,
4551 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4552 
4553 	skb_queue_purge(&ptp_priv->tx_queue);
4554 
4555 	lan8841_ptp_flush_fifo(ptp_priv);
4556 
4557 	return 0;
4558 }
4559 
4560 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4561 			     struct sk_buff *skb, int type)
4562 {
4563 	struct kszphy_ptp_priv *ptp_priv =
4564 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4565 	struct ptp_header *header = ptp_parse_header(skb, type);
4566 	struct skb_shared_hwtstamps *shhwtstamps;
4567 	struct timespec64 ts;
4568 	unsigned long flags;
4569 	u32 ts_header;
4570 
4571 	if (!header)
4572 		return false;
4573 
4574 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4575 	    type == PTP_CLASS_NONE)
4576 		return false;
4577 
4578 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4579 		return false;
4580 
4581 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4582 	ts.tv_sec = ptp_priv->seconds;
4583 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4584 	ts_header = __be32_to_cpu(header->reserved2);
4585 
4586 	shhwtstamps = skb_hwtstamps(skb);
4587 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4588 
4589 	/* Check for any wrap arounds for the second part */
4590 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4591 		ts.tv_sec -= GENMASK(1, 0) + 1;
4592 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4593 		ts.tv_sec += 1;
4594 
4595 	shhwtstamps->hwtstamp =
4596 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4597 			  ts_header & GENMASK(29, 0));
4598 	header->reserved2 = 0;
4599 
4600 	netif_rx(skb);
4601 
4602 	return true;
4603 }
4604 
4605 #define LAN8841_EVENT_A		0
4606 #define LAN8841_EVENT_B		1
4607 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
4608 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
4609 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
4610 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
4611 
4612 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4613 				  s64 sec, u32 nsec)
4614 {
4615 	struct phy_device *phydev = ptp_priv->phydev;
4616 	int ret;
4617 
4618 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4619 			    upper_16_bits(sec));
4620 	if (ret)
4621 		return ret;
4622 
4623 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4624 			    lower_16_bits(sec));
4625 	if (ret)
4626 		return ret;
4627 
4628 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4629 			    upper_16_bits(nsec));
4630 	if (ret)
4631 		return ret;
4632 
4633 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4634 			    lower_16_bits(nsec));
4635 }
4636 
4637 #define LAN8841_BUFFER_TIME	2
4638 
4639 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4640 				     const struct timespec64 *ts)
4641 {
4642 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4643 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4644 }
4645 
4646 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
4647 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
4648 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
4649 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
4650 
4651 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4652 				  s64 sec, u32 nsec)
4653 {
4654 	struct phy_device *phydev = ptp_priv->phydev;
4655 	int ret;
4656 
4657 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4658 			    upper_16_bits(sec));
4659 	if (ret)
4660 		return ret;
4661 
4662 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4663 			    lower_16_bits(sec));
4664 	if (ret)
4665 		return ret;
4666 
4667 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4668 			    upper_16_bits(nsec));
4669 	if (ret)
4670 		return ret;
4671 
4672 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4673 			     lower_16_bits(nsec));
4674 }
4675 
4676 #define LAN8841_PTP_LTC_SET_SEC_HI	262
4677 #define LAN8841_PTP_LTC_SET_SEC_MID	263
4678 #define LAN8841_PTP_LTC_SET_SEC_LO	264
4679 #define LAN8841_PTP_LTC_SET_NS_HI	265
4680 #define LAN8841_PTP_LTC_SET_NS_LO	266
4681 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
4682 
4683 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4684 				 const struct timespec64 *ts)
4685 {
4686 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4687 							ptp_clock_info);
4688 	struct phy_device *phydev = ptp_priv->phydev;
4689 	unsigned long flags;
4690 	int ret;
4691 
4692 	/* Set the value to be stored */
4693 	mutex_lock(&ptp_priv->ptp_lock);
4694 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4695 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4696 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4697 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4698 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4699 
4700 	/* Set the command to load the LTC */
4701 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4702 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4703 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4704 	mutex_unlock(&ptp_priv->ptp_lock);
4705 
4706 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4707 	ptp_priv->seconds = ts->tv_sec;
4708 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4709 
4710 	return ret;
4711 }
4712 
4713 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4714 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4715 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4716 #define LAN8841_PTP_LTC_RD_NS_HI	361
4717 #define LAN8841_PTP_LTC_RD_NS_LO	362
4718 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4719 
4720 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4721 				 struct timespec64 *ts)
4722 {
4723 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4724 							ptp_clock_info);
4725 	struct phy_device *phydev = ptp_priv->phydev;
4726 	time64_t s;
4727 	s64 ns;
4728 
4729 	mutex_lock(&ptp_priv->ptp_lock);
4730 	/* Issue the command to read the LTC */
4731 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4732 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4733 
4734 	/* Read the LTC */
4735 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4736 	s <<= 16;
4737 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4738 	s <<= 16;
4739 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4740 
4741 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4742 	ns <<= 16;
4743 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4744 	mutex_unlock(&ptp_priv->ptp_lock);
4745 
4746 	set_normalized_timespec64(ts, s, ns);
4747 	return 0;
4748 }
4749 
4750 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4751 				   struct timespec64 *ts)
4752 {
4753 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4754 							ptp_clock_info);
4755 	struct phy_device *phydev = ptp_priv->phydev;
4756 	time64_t s;
4757 
4758 	mutex_lock(&ptp_priv->ptp_lock);
4759 	/* Issue the command to read the LTC */
4760 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4761 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4762 
4763 	/* Read the LTC */
4764 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4765 	s <<= 16;
4766 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4767 	s <<= 16;
4768 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4769 	mutex_unlock(&ptp_priv->ptp_lock);
4770 
4771 	set_normalized_timespec64(ts, s, 0);
4772 }
4773 
4774 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4775 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4776 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4777 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4778 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4779 
4780 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4781 {
4782 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4783 							ptp_clock_info);
4784 	struct phy_device *phydev = ptp_priv->phydev;
4785 	struct timespec64 ts;
4786 	bool add = true;
4787 	u32 nsec;
4788 	s32 sec;
4789 	int ret;
4790 
4791 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4792 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4793 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4794 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4795 	 * possible adjustments so we will not have these corner cases
4796 	 */
4797 	if (delta > 10000000000LL || delta < -10000000000LL) {
4798 		/* The timeadjustment is too big, so fall back using set time */
4799 		u64 now;
4800 
4801 		ptp->gettime64(ptp, &ts);
4802 
4803 		now = ktime_to_ns(timespec64_to_ktime(ts));
4804 		ts = ns_to_timespec64(now + delta);
4805 
4806 		ptp->settime64(ptp, &ts);
4807 		return 0;
4808 	}
4809 
4810 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4811 	if (delta < 0 && nsec != 0) {
4812 		/* It is not allowed to adjust low the nsec part, therefore
4813 		 * subtract more from second part and add to nanosecond such
4814 		 * that would roll over, so the second part will increase
4815 		 */
4816 		sec--;
4817 		nsec = NSEC_PER_SEC - nsec;
4818 	}
4819 
4820 	/* Calculate the adjustments and the direction */
4821 	if (delta < 0)
4822 		add = false;
4823 
4824 	if (nsec > 0)
4825 		/* add 8 ns to cover the likely normal increment */
4826 		nsec += 8;
4827 
4828 	if (nsec >= NSEC_PER_SEC) {
4829 		/* carry into seconds */
4830 		sec++;
4831 		nsec -= NSEC_PER_SEC;
4832 	}
4833 
4834 	mutex_lock(&ptp_priv->ptp_lock);
4835 	if (sec) {
4836 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4837 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4838 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4839 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4840 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4841 	}
4842 
4843 	if (nsec) {
4844 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4845 			      nsec & 0xffff);
4846 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4847 			      (nsec >> 16) & 0x3fff);
4848 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4849 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4850 	}
4851 	mutex_unlock(&ptp_priv->ptp_lock);
4852 
4853 	/* Update the target clock */
4854 	ptp->gettime64(ptp, &ts);
4855 	mutex_lock(&ptp_priv->ptp_lock);
4856 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4857 	mutex_unlock(&ptp_priv->ptp_lock);
4858 
4859 	return ret;
4860 }
4861 
4862 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4863 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4864 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4865 
4866 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4867 {
4868 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4869 							ptp_clock_info);
4870 	struct phy_device *phydev = ptp_priv->phydev;
4871 	bool faster = true;
4872 	u32 rate;
4873 
4874 	if (!scaled_ppm)
4875 		return 0;
4876 
4877 	if (scaled_ppm < 0) {
4878 		scaled_ppm = -scaled_ppm;
4879 		faster = false;
4880 	}
4881 
4882 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4883 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4884 
4885 	mutex_lock(&ptp_priv->ptp_lock);
4886 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4887 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4888 			     : upper_16_bits(rate) & 0x3fff);
4889 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4890 	mutex_unlock(&ptp_priv->ptp_lock);
4891 
4892 	return 0;
4893 }
4894 
4895 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4896 			      enum ptp_pin_function func, unsigned int chan)
4897 {
4898 	switch (func) {
4899 	case PTP_PF_NONE:
4900 	case PTP_PF_PEROUT:
4901 	case PTP_PF_EXTTS:
4902 		break;
4903 	default:
4904 		return -1;
4905 	}
4906 
4907 	return 0;
4908 }
4909 
4910 #define LAN8841_PTP_GPIO_NUM	10
4911 #define LAN8841_GPIO_EN		128
4912 #define LAN8841_GPIO_DIR	129
4913 #define LAN8841_GPIO_BUF	130
4914 
4915 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4916 {
4917 	struct phy_device *phydev = ptp_priv->phydev;
4918 	int ret;
4919 
4920 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4921 	if (ret)
4922 		return ret;
4923 
4924 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4925 	if (ret)
4926 		return ret;
4927 
4928 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4929 }
4930 
4931 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4932 {
4933 	struct phy_device *phydev = ptp_priv->phydev;
4934 	int ret;
4935 
4936 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4937 	if (ret)
4938 		return ret;
4939 
4940 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4941 	if (ret)
4942 		return ret;
4943 
4944 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4945 }
4946 
4947 #define LAN8841_GPIO_DATA_SEL1				131
4948 #define LAN8841_GPIO_DATA_SEL2				132
4949 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4950 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4951 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4952 #define LAN8841_PTP_GENERAL_CONFIG			257
4953 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4954 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4959 
4960 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4961 				    u8 event)
4962 {
4963 	struct phy_device *phydev = ptp_priv->phydev;
4964 	u16 tmp;
4965 	int ret;
4966 
4967 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4968 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4969 	 * depending on the pin, it requires to read a different register
4970 	 */
4971 	if (pin < 5) {
4972 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4973 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4974 	} else {
4975 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4976 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4977 	}
4978 	if (ret)
4979 		return ret;
4980 
4981 	/* Disable the event */
4982 	if (event == LAN8841_EVENT_A)
4983 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4984 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4985 	else
4986 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4987 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4988 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4989 }
4990 
4991 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4992 				    u8 event, int pulse_width)
4993 {
4994 	struct phy_device *phydev = ptp_priv->phydev;
4995 	u16 tmp;
4996 	int ret;
4997 
4998 	/* Enable the event */
4999 	if (event == LAN8841_EVENT_A)
5000 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5001 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5002 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5003 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5004 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5005 	else
5006 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5007 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5008 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5009 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5010 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5011 	if (ret)
5012 		return ret;
5013 
5014 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5015 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5016 	 * depending on the pin, it requires to read a different register
5017 	 */
5018 	if (event == LAN8841_EVENT_A)
5019 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5020 	else
5021 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5022 
5023 	if (pin < 5)
5024 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5025 				       tmp << (3 * pin));
5026 	else
5027 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5028 				       tmp << (3 * (pin - 5)));
5029 
5030 	return ret;
5031 }
5032 
5033 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5034 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5035 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5036 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5037 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5038 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5039 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5040 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5041 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5042 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5043 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5047 
5048 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5049 			      struct ptp_clock_request *rq, int on)
5050 {
5051 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5052 							ptp_clock_info);
5053 	struct phy_device *phydev = ptp_priv->phydev;
5054 	struct timespec64 ts_on, ts_period;
5055 	s64 on_nsec, period_nsec;
5056 	int pulse_width;
5057 	int pin;
5058 	int ret;
5059 
5060 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5061 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5062 		return -EINVAL;
5063 
5064 	if (!on) {
5065 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5066 		if (ret)
5067 			return ret;
5068 
5069 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5070 	}
5071 
5072 	ts_on.tv_sec = rq->perout.on.sec;
5073 	ts_on.tv_nsec = rq->perout.on.nsec;
5074 	on_nsec = timespec64_to_ns(&ts_on);
5075 
5076 	ts_period.tv_sec = rq->perout.period.sec;
5077 	ts_period.tv_nsec = rq->perout.period.nsec;
5078 	period_nsec = timespec64_to_ns(&ts_period);
5079 
5080 	if (period_nsec < 200) {
5081 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5082 				    phydev_name(phydev));
5083 		return -EOPNOTSUPP;
5084 	}
5085 
5086 	if (on_nsec >= period_nsec) {
5087 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5088 				    phydev_name(phydev));
5089 		return -EINVAL;
5090 	}
5091 
5092 	switch (on_nsec) {
5093 	case 200000000:
5094 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5095 		break;
5096 	case 100000000:
5097 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5098 		break;
5099 	case 50000000:
5100 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5101 		break;
5102 	case 10000000:
5103 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5104 		break;
5105 	case 5000000:
5106 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5107 		break;
5108 	case 1000000:
5109 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5110 		break;
5111 	case 500000:
5112 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5113 		break;
5114 	case 100000:
5115 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5116 		break;
5117 	case 50000:
5118 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5119 		break;
5120 	case 10000:
5121 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5122 		break;
5123 	case 5000:
5124 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5125 		break;
5126 	case 1000:
5127 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5128 		break;
5129 	case 500:
5130 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5131 		break;
5132 	case 100:
5133 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5134 		break;
5135 	default:
5136 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5137 				    phydev_name(phydev));
5138 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5139 		break;
5140 	}
5141 
5142 	mutex_lock(&ptp_priv->ptp_lock);
5143 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5144 				     rq->perout.start.nsec);
5145 	mutex_unlock(&ptp_priv->ptp_lock);
5146 	if (ret)
5147 		return ret;
5148 
5149 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5150 				     rq->perout.period.nsec);
5151 	if (ret)
5152 		return ret;
5153 
5154 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5155 				       pulse_width);
5156 	if (ret)
5157 		return ret;
5158 
5159 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5160 	if (ret)
5161 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5162 
5163 	return ret;
5164 }
5165 
5166 #define LAN8841_PTP_GPIO_CAP_EN			496
5167 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5168 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5169 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5170 
5171 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5172 				u32 flags)
5173 {
5174 	struct phy_device *phydev = ptp_priv->phydev;
5175 	u16 tmp = 0;
5176 	int ret;
5177 
5178 	/* Set GPIO to be intput */
5179 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5180 	if (ret)
5181 		return ret;
5182 
5183 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5184 	if (ret)
5185 		return ret;
5186 
5187 	/* Enable capture on the edges of the pin */
5188 	if (flags & PTP_RISING_EDGE)
5189 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5190 	if (flags & PTP_FALLING_EDGE)
5191 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5192 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5193 	if (ret)
5194 		return ret;
5195 
5196 	/* Enable interrupt */
5197 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5198 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5199 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5200 }
5201 
5202 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5203 {
5204 	struct phy_device *phydev = ptp_priv->phydev;
5205 	int ret;
5206 
5207 	/* Set GPIO to be output */
5208 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5209 	if (ret)
5210 		return ret;
5211 
5212 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5213 	if (ret)
5214 		return ret;
5215 
5216 	/* Disable capture on both of the edges */
5217 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5218 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5219 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5220 			     0);
5221 	if (ret)
5222 		return ret;
5223 
5224 	/* Disable interrupt */
5225 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5226 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5227 			      0);
5228 }
5229 
5230 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5231 			     struct ptp_clock_request *rq, int on)
5232 {
5233 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5234 							ptp_clock_info);
5235 	int pin;
5236 	int ret;
5237 
5238 	/* Reject requests with unsupported flags */
5239 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5240 				PTP_EXTTS_EDGES |
5241 				PTP_STRICT_FLAGS))
5242 		return -EOPNOTSUPP;
5243 
5244 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5245 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5246 		return -EINVAL;
5247 
5248 	mutex_lock(&ptp_priv->ptp_lock);
5249 	if (on)
5250 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5251 	else
5252 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5253 	mutex_unlock(&ptp_priv->ptp_lock);
5254 
5255 	return ret;
5256 }
5257 
5258 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5259 			      struct ptp_clock_request *rq, int on)
5260 {
5261 	switch (rq->type) {
5262 	case PTP_CLK_REQ_EXTTS:
5263 		return lan8841_ptp_extts(ptp, rq, on);
5264 	case PTP_CLK_REQ_PEROUT:
5265 		return lan8841_ptp_perout(ptp, rq, on);
5266 	default:
5267 		return -EOPNOTSUPP;
5268 	}
5269 
5270 	return 0;
5271 }
5272 
5273 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5274 {
5275 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5276 							ptp_clock_info);
5277 	struct timespec64 ts;
5278 	unsigned long flags;
5279 
5280 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5281 
5282 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5283 	ptp_priv->seconds = ts.tv_sec;
5284 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5285 
5286 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5287 }
5288 
5289 static struct ptp_clock_info lan8841_ptp_clock_info = {
5290 	.owner		= THIS_MODULE,
5291 	.name		= "lan8841 ptp",
5292 	.max_adj	= 31249999,
5293 	.gettime64	= lan8841_ptp_gettime64,
5294 	.settime64	= lan8841_ptp_settime64,
5295 	.adjtime	= lan8841_ptp_adjtime,
5296 	.adjfine	= lan8841_ptp_adjfine,
5297 	.verify         = lan8841_ptp_verify,
5298 	.enable         = lan8841_ptp_enable,
5299 	.do_aux_work	= lan8841_ptp_do_aux_work,
5300 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5301 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5302 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5303 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5304 };
5305 
5306 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5307 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5308 
5309 static int lan8841_probe(struct phy_device *phydev)
5310 {
5311 	struct kszphy_ptp_priv *ptp_priv;
5312 	struct kszphy_priv *priv;
5313 	int err;
5314 
5315 	err = kszphy_probe(phydev);
5316 	if (err)
5317 		return err;
5318 
5319 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5320 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5321 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5322 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5323 
5324 	/* Register the clock */
5325 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5326 		return 0;
5327 
5328 	priv = phydev->priv;
5329 	ptp_priv = &priv->ptp_priv;
5330 
5331 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5332 					    LAN8841_PTP_GPIO_NUM,
5333 					    sizeof(*ptp_priv->pin_config),
5334 					    GFP_KERNEL);
5335 	if (!ptp_priv->pin_config)
5336 		return -ENOMEM;
5337 
5338 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5339 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5340 
5341 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5342 		p->index = i;
5343 		p->func = PTP_PF_NONE;
5344 	}
5345 
5346 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5347 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5348 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5349 						 &phydev->mdio.dev);
5350 	if (IS_ERR(ptp_priv->ptp_clock)) {
5351 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5352 			   PTR_ERR(ptp_priv->ptp_clock));
5353 		return -EINVAL;
5354 	}
5355 
5356 	if (!ptp_priv->ptp_clock)
5357 		return 0;
5358 
5359 	/* Initialize the SW */
5360 	skb_queue_head_init(&ptp_priv->tx_queue);
5361 	ptp_priv->phydev = phydev;
5362 	mutex_init(&ptp_priv->ptp_lock);
5363 	spin_lock_init(&ptp_priv->seconds_lock);
5364 
5365 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5366 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5367 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5368 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5369 
5370 	phydev->mii_ts = &ptp_priv->mii_ts;
5371 
5372 	/* Timestamp selected by default to keep legacy API */
5373 	phydev->default_timestamp = true;
5374 
5375 	return 0;
5376 }
5377 
5378 static int lan8804_resume(struct phy_device *phydev)
5379 {
5380 	return kszphy_resume(phydev);
5381 }
5382 
5383 static int lan8804_suspend(struct phy_device *phydev)
5384 {
5385 	return kszphy_generic_suspend(phydev);
5386 }
5387 
5388 static int lan8841_resume(struct phy_device *phydev)
5389 {
5390 	return kszphy_generic_resume(phydev);
5391 }
5392 
5393 static int lan8841_suspend(struct phy_device *phydev)
5394 {
5395 	struct kszphy_priv *priv = phydev->priv;
5396 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5397 
5398 	if (ptp_priv->ptp_clock)
5399 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5400 
5401 	return kszphy_generic_suspend(phydev);
5402 }
5403 
5404 static struct phy_driver ksphy_driver[] = {
5405 {
5406 	.phy_id		= PHY_ID_KS8737,
5407 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5408 	.name		= "Micrel KS8737",
5409 	/* PHY_BASIC_FEATURES */
5410 	.driver_data	= &ks8737_type,
5411 	.probe		= kszphy_probe,
5412 	.config_init	= kszphy_config_init,
5413 	.config_intr	= kszphy_config_intr,
5414 	.handle_interrupt = kszphy_handle_interrupt,
5415 	.suspend	= kszphy_suspend,
5416 	.resume		= kszphy_resume,
5417 }, {
5418 	.phy_id		= PHY_ID_KSZ8021,
5419 	.phy_id_mask	= 0x00ffffff,
5420 	.name		= "Micrel KSZ8021 or KSZ8031",
5421 	/* PHY_BASIC_FEATURES */
5422 	.driver_data	= &ksz8021_type,
5423 	.probe		= kszphy_probe,
5424 	.config_init	= kszphy_config_init,
5425 	.config_intr	= kszphy_config_intr,
5426 	.handle_interrupt = kszphy_handle_interrupt,
5427 	.get_sset_count = kszphy_get_sset_count,
5428 	.get_strings	= kszphy_get_strings,
5429 	.get_stats	= kszphy_get_stats,
5430 	.suspend	= kszphy_suspend,
5431 	.resume		= kszphy_resume,
5432 }, {
5433 	.phy_id		= PHY_ID_KSZ8031,
5434 	.phy_id_mask	= 0x00ffffff,
5435 	.name		= "Micrel KSZ8031",
5436 	/* PHY_BASIC_FEATURES */
5437 	.driver_data	= &ksz8021_type,
5438 	.probe		= kszphy_probe,
5439 	.config_init	= kszphy_config_init,
5440 	.config_intr	= kszphy_config_intr,
5441 	.handle_interrupt = kszphy_handle_interrupt,
5442 	.get_sset_count = kszphy_get_sset_count,
5443 	.get_strings	= kszphy_get_strings,
5444 	.get_stats	= kszphy_get_stats,
5445 	.suspend	= kszphy_suspend,
5446 	.resume		= kszphy_resume,
5447 }, {
5448 	.phy_id		= PHY_ID_KSZ8041,
5449 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5450 	.name		= "Micrel KSZ8041",
5451 	/* PHY_BASIC_FEATURES */
5452 	.driver_data	= &ksz8041_type,
5453 	.probe		= kszphy_probe,
5454 	.config_init	= ksz8041_config_init,
5455 	.config_aneg	= ksz8041_config_aneg,
5456 	.config_intr	= kszphy_config_intr,
5457 	.handle_interrupt = kszphy_handle_interrupt,
5458 	.get_sset_count = kszphy_get_sset_count,
5459 	.get_strings	= kszphy_get_strings,
5460 	.get_stats	= kszphy_get_stats,
5461 	.suspend	= ksz8041_suspend,
5462 	.resume		= ksz8041_resume,
5463 }, {
5464 	.phy_id		= PHY_ID_KSZ8041RNLI,
5465 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5466 	.name		= "Micrel KSZ8041RNLI",
5467 	/* PHY_BASIC_FEATURES */
5468 	.driver_data	= &ksz8041_type,
5469 	.probe		= kszphy_probe,
5470 	.config_init	= kszphy_config_init,
5471 	.config_intr	= kszphy_config_intr,
5472 	.handle_interrupt = kszphy_handle_interrupt,
5473 	.get_sset_count = kszphy_get_sset_count,
5474 	.get_strings	= kszphy_get_strings,
5475 	.get_stats	= kszphy_get_stats,
5476 	.suspend	= kszphy_suspend,
5477 	.resume		= kszphy_resume,
5478 }, {
5479 	.name		= "Micrel KSZ8051",
5480 	/* PHY_BASIC_FEATURES */
5481 	.driver_data	= &ksz8051_type,
5482 	.probe		= kszphy_probe,
5483 	.config_init	= kszphy_config_init,
5484 	.config_intr	= kszphy_config_intr,
5485 	.handle_interrupt = kszphy_handle_interrupt,
5486 	.get_sset_count = kszphy_get_sset_count,
5487 	.get_strings	= kszphy_get_strings,
5488 	.get_stats	= kszphy_get_stats,
5489 	.match_phy_device = ksz8051_match_phy_device,
5490 	.suspend	= kszphy_suspend,
5491 	.resume		= kszphy_resume,
5492 }, {
5493 	.phy_id		= PHY_ID_KSZ8001,
5494 	.name		= "Micrel KSZ8001 or KS8721",
5495 	.phy_id_mask	= 0x00fffffc,
5496 	/* PHY_BASIC_FEATURES */
5497 	.driver_data	= &ksz8041_type,
5498 	.probe		= kszphy_probe,
5499 	.config_init	= kszphy_config_init,
5500 	.config_intr	= kszphy_config_intr,
5501 	.handle_interrupt = kszphy_handle_interrupt,
5502 	.get_sset_count = kszphy_get_sset_count,
5503 	.get_strings	= kszphy_get_strings,
5504 	.get_stats	= kszphy_get_stats,
5505 	.suspend	= kszphy_suspend,
5506 	.resume		= kszphy_resume,
5507 }, {
5508 	.phy_id		= PHY_ID_KSZ8081,
5509 	.name		= "Micrel KSZ8081 or KSZ8091",
5510 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5511 	.flags		= PHY_POLL_CABLE_TEST,
5512 	/* PHY_BASIC_FEATURES */
5513 	.driver_data	= &ksz8081_type,
5514 	.probe		= kszphy_probe,
5515 	.config_init	= ksz8081_config_init,
5516 	.soft_reset	= genphy_soft_reset,
5517 	.config_aneg	= ksz8081_config_aneg,
5518 	.read_status	= ksz8081_read_status,
5519 	.config_intr	= kszphy_config_intr,
5520 	.handle_interrupt = kszphy_handle_interrupt,
5521 	.get_sset_count = kszphy_get_sset_count,
5522 	.get_strings	= kszphy_get_strings,
5523 	.get_stats	= kszphy_get_stats,
5524 	.suspend	= kszphy_suspend,
5525 	.resume		= kszphy_resume,
5526 	.cable_test_start	= ksz886x_cable_test_start,
5527 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5528 }, {
5529 	.phy_id		= PHY_ID_KSZ8061,
5530 	.name		= "Micrel KSZ8061",
5531 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5532 	/* PHY_BASIC_FEATURES */
5533 	.probe		= kszphy_probe,
5534 	.config_init	= ksz8061_config_init,
5535 	.soft_reset	= genphy_soft_reset,
5536 	.config_intr	= kszphy_config_intr,
5537 	.handle_interrupt = kszphy_handle_interrupt,
5538 	.suspend	= ksz8061_suspend,
5539 	.resume		= ksz8061_resume,
5540 }, {
5541 	.phy_id		= PHY_ID_KSZ9021,
5542 	.phy_id_mask	= 0x000ffffe,
5543 	.name		= "Micrel KSZ9021 Gigabit PHY",
5544 	/* PHY_GBIT_FEATURES */
5545 	.driver_data	= &ksz9021_type,
5546 	.probe		= kszphy_probe,
5547 	.get_features	= ksz9031_get_features,
5548 	.config_init	= ksz9021_config_init,
5549 	.config_intr	= kszphy_config_intr,
5550 	.handle_interrupt = kszphy_handle_interrupt,
5551 	.get_sset_count = kszphy_get_sset_count,
5552 	.get_strings	= kszphy_get_strings,
5553 	.get_stats	= kszphy_get_stats,
5554 	.suspend	= kszphy_suspend,
5555 	.resume		= kszphy_resume,
5556 	.read_mmd	= genphy_read_mmd_unsupported,
5557 	.write_mmd	= genphy_write_mmd_unsupported,
5558 }, {
5559 	.phy_id		= PHY_ID_KSZ9031,
5560 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5561 	.name		= "Micrel KSZ9031 Gigabit PHY",
5562 	.flags		= PHY_POLL_CABLE_TEST,
5563 	.driver_data	= &ksz9021_type,
5564 	.probe		= kszphy_probe,
5565 	.get_features	= ksz9031_get_features,
5566 	.config_init	= ksz9031_config_init,
5567 	.soft_reset	= genphy_soft_reset,
5568 	.read_status	= ksz9031_read_status,
5569 	.config_intr	= kszphy_config_intr,
5570 	.handle_interrupt = kszphy_handle_interrupt,
5571 	.get_sset_count = kszphy_get_sset_count,
5572 	.get_strings	= kszphy_get_strings,
5573 	.get_stats	= kszphy_get_stats,
5574 	.suspend	= kszphy_suspend,
5575 	.resume		= kszphy_resume,
5576 	.cable_test_start	= ksz9x31_cable_test_start,
5577 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5578 	.set_loopback	= ksz9031_set_loopback,
5579 }, {
5580 	.phy_id		= PHY_ID_LAN8814,
5581 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5582 	.name		= "Microchip INDY Gigabit Quad PHY",
5583 	.flags          = PHY_POLL_CABLE_TEST,
5584 	.config_init	= lan8814_config_init,
5585 	.driver_data	= &lan8814_type,
5586 	.probe		= lan8814_probe,
5587 	.soft_reset	= genphy_soft_reset,
5588 	.read_status	= ksz9031_read_status,
5589 	.get_sset_count	= kszphy_get_sset_count,
5590 	.get_strings	= kszphy_get_strings,
5591 	.get_stats	= kszphy_get_stats,
5592 	.suspend	= genphy_suspend,
5593 	.resume		= kszphy_resume,
5594 	.config_intr	= lan8814_config_intr,
5595 	.handle_interrupt = lan8814_handle_interrupt,
5596 	.cable_test_start	= lan8814_cable_test_start,
5597 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5598 }, {
5599 	.phy_id		= PHY_ID_LAN8804,
5600 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5601 	.name		= "Microchip LAN966X Gigabit PHY",
5602 	.config_init	= lan8804_config_init,
5603 	.driver_data	= &ksz9021_type,
5604 	.probe		= kszphy_probe,
5605 	.soft_reset	= genphy_soft_reset,
5606 	.read_status	= ksz9031_read_status,
5607 	.get_sset_count	= kszphy_get_sset_count,
5608 	.get_strings	= kszphy_get_strings,
5609 	.get_stats	= kszphy_get_stats,
5610 	.suspend	= lan8804_suspend,
5611 	.resume		= lan8804_resume,
5612 	.config_intr	= lan8804_config_intr,
5613 	.handle_interrupt = lan8804_handle_interrupt,
5614 }, {
5615 	.phy_id		= PHY_ID_LAN8841,
5616 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5617 	.name		= "Microchip LAN8841 Gigabit PHY",
5618 	.flags		= PHY_POLL_CABLE_TEST,
5619 	.driver_data	= &lan8841_type,
5620 	.config_init	= lan8841_config_init,
5621 	.probe		= lan8841_probe,
5622 	.soft_reset	= genphy_soft_reset,
5623 	.config_intr	= lan8841_config_intr,
5624 	.handle_interrupt = lan8841_handle_interrupt,
5625 	.get_sset_count = kszphy_get_sset_count,
5626 	.get_strings	= kszphy_get_strings,
5627 	.get_stats	= kszphy_get_stats,
5628 	.suspend	= lan8841_suspend,
5629 	.resume		= lan8841_resume,
5630 	.cable_test_start	= lan8814_cable_test_start,
5631 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5632 }, {
5633 	.phy_id		= PHY_ID_KSZ9131,
5634 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5635 	.name		= "Microchip KSZ9131 Gigabit PHY",
5636 	/* PHY_GBIT_FEATURES */
5637 	.flags		= PHY_POLL_CABLE_TEST,
5638 	.driver_data	= &ksz9131_type,
5639 	.probe		= kszphy_probe,
5640 	.soft_reset	= genphy_soft_reset,
5641 	.config_init	= ksz9131_config_init,
5642 	.config_intr	= kszphy_config_intr,
5643 	.config_aneg	= ksz9131_config_aneg,
5644 	.read_status	= ksz9131_read_status,
5645 	.handle_interrupt = kszphy_handle_interrupt,
5646 	.get_sset_count = kszphy_get_sset_count,
5647 	.get_strings	= kszphy_get_strings,
5648 	.get_stats	= kszphy_get_stats,
5649 	.suspend	= kszphy_suspend,
5650 	.resume		= kszphy_resume,
5651 	.cable_test_start	= ksz9x31_cable_test_start,
5652 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5653 	.get_features	= ksz9477_get_features,
5654 }, {
5655 	.phy_id		= PHY_ID_KSZ8873MLL,
5656 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5657 	.name		= "Micrel KSZ8873MLL Switch",
5658 	/* PHY_BASIC_FEATURES */
5659 	.config_init	= kszphy_config_init,
5660 	.config_aneg	= ksz8873mll_config_aneg,
5661 	.read_status	= ksz8873mll_read_status,
5662 	.suspend	= genphy_suspend,
5663 	.resume		= genphy_resume,
5664 }, {
5665 	.phy_id		= PHY_ID_KSZ886X,
5666 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5667 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5668 	.driver_data	= &ksz886x_type,
5669 	/* PHY_BASIC_FEATURES */
5670 	.flags		= PHY_POLL_CABLE_TEST,
5671 	.config_init	= kszphy_config_init,
5672 	.config_aneg	= ksz886x_config_aneg,
5673 	.read_status	= ksz886x_read_status,
5674 	.suspend	= genphy_suspend,
5675 	.resume		= genphy_resume,
5676 	.cable_test_start	= ksz886x_cable_test_start,
5677 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5678 }, {
5679 	.name		= "Micrel KSZ87XX Switch",
5680 	/* PHY_BASIC_FEATURES */
5681 	.config_init	= kszphy_config_init,
5682 	.match_phy_device = ksz8795_match_phy_device,
5683 	.suspend	= genphy_suspend,
5684 	.resume		= genphy_resume,
5685 }, {
5686 	.phy_id		= PHY_ID_KSZ9477,
5687 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5688 	.name		= "Microchip KSZ9477",
5689 	/* PHY_GBIT_FEATURES */
5690 	.config_init	= ksz9477_config_init,
5691 	.config_intr	= kszphy_config_intr,
5692 	.handle_interrupt = kszphy_handle_interrupt,
5693 	.suspend	= genphy_suspend,
5694 	.resume		= ksz9477_resume,
5695 } };
5696 
5697 module_phy_driver(ksphy_driver);
5698 
5699 MODULE_DESCRIPTION("Micrel PHY driver");
5700 MODULE_AUTHOR("David J. Choi");
5701 MODULE_LICENSE("GPL");
5702 
5703 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
5704 	{ PHY_ID_KSZ9021, 0x000ffffe },
5705 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5706 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5707 	{ PHY_ID_KSZ8001, 0x00fffffc },
5708 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5709 	{ PHY_ID_KSZ8021, 0x00ffffff },
5710 	{ PHY_ID_KSZ8031, 0x00ffffff },
5711 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5712 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5713 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5714 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5715 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5716 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5717 	{ PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5718 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5719 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5720 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5721 	{ }
5722 };
5723 
5724 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5725