xref: /linux/drivers/net/phy/micrel.c (revision 5f7fb89a115d53b4a10bf7ba2733e78df281e98d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 #define LAN8814_EEE_STATE			0x38
118 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
119 
120 #define LAN8814_PD_CONTROLS			0x9d
121 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
122 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
123 
124 /* Represents 1ppm adjustment in 2^32 format with
125  * each nsec contains 4 clock cycles.
126  * The value is calculated as following: (1/1000000)/((2^-32)/4)
127  */
128 #define LAN8814_1PPM_FORMAT			17179
129 
130 /* Represents 1ppm adjustment in 2^32 format with
131  * each nsec contains 8 clock cycles.
132  * The value is calculated as following: (1/1000000)/((2^-32)/8)
133  */
134 #define LAN8841_1PPM_FORMAT			34360
135 
136 #define PTP_RX_VERSION				0x0248
137 #define PTP_TX_VERSION				0x0288
138 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
139 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
140 
141 #define PTP_RX_MOD				0x024F
142 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
143 #define PTP_RX_TIMESTAMP_EN			0x024D
144 #define PTP_TX_TIMESTAMP_EN			0x028D
145 
146 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
147 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
148 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
149 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
150 
151 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
152 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
153 
154 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
155 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
156 #define LTC_HARD_RESET				0x023F
157 #define LTC_HARD_RESET_				BIT(0)
158 
159 #define TSU_HARD_RESET				0x02C1
160 #define TSU_HARD_RESET_				BIT(0)
161 
162 #define PTP_CMD_CTL				0x0200
163 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
164 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
165 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
166 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
167 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
168 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
169 
170 #define PTP_COMMON_INT_ENA			0x0204
171 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
172 
173 #define PTP_CLOCK_SET_SEC_HI			0x0205
174 #define PTP_CLOCK_SET_SEC_MID			0x0206
175 #define PTP_CLOCK_SET_SEC_LO			0x0207
176 #define PTP_CLOCK_SET_NS_HI			0x0208
177 #define PTP_CLOCK_SET_NS_LO			0x0209
178 
179 #define PTP_CLOCK_READ_SEC_HI			0x0229
180 #define PTP_CLOCK_READ_SEC_MID			0x022A
181 #define PTP_CLOCK_READ_SEC_LO			0x022B
182 #define PTP_CLOCK_READ_NS_HI			0x022C
183 #define PTP_CLOCK_READ_NS_LO			0x022D
184 
185 #define PTP_GPIO_SEL				0x0230
186 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
187 #define PTP_GPIO_CAP_MAP_LO			0x0232
188 
189 #define PTP_GPIO_CAP_EN				0x0233
190 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
191 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
192 
193 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
194 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
195 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
196 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
197 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
198 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
199 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
200 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
201 
202 #define PTP_GPIO_CAP_STS			0x023D
203 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
204 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
205 
206 #define PTP_OPERATING_MODE			0x0241
207 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
208 
209 #define PTP_TX_MOD				0x028F
210 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
211 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
212 
213 #define PTP_RX_PARSE_CONFIG			0x0242
214 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
215 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
216 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
217 
218 #define PTP_TX_PARSE_CONFIG			0x0282
219 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
220 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
221 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
222 
223 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
224 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
225 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
226 
227 #define PTP_LTC_STEP_ADJ_HI			0x0212
228 #define PTP_LTC_STEP_ADJ_LO			0x0213
229 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
230 
231 #define LAN8814_INTR_STS_REG			0x0033
232 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
233 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
234 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
235 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
236 
237 #define PTP_CAP_INFO				0x022A
238 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
239 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
240 
241 #define PTP_TX_EGRESS_SEC_HI			0x0296
242 #define PTP_TX_EGRESS_SEC_LO			0x0297
243 #define PTP_TX_EGRESS_NS_HI			0x0294
244 #define PTP_TX_EGRESS_NS_LO			0x0295
245 #define PTP_TX_MSG_HEADER2			0x0299
246 
247 #define PTP_RX_INGRESS_SEC_HI			0x0256
248 #define PTP_RX_INGRESS_SEC_LO			0x0257
249 #define PTP_RX_INGRESS_NS_HI			0x0254
250 #define PTP_RX_INGRESS_NS_LO			0x0255
251 #define PTP_RX_MSG_HEADER2			0x0259
252 
253 #define PTP_TSU_INT_EN				0x0200
254 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
255 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
256 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
257 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
258 
259 #define PTP_TSU_INT_STS				0x0201
260 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
261 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
262 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
263 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
264 
265 #define LAN8814_LED_CTRL_1			0x0
266 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
267 
268 /* PHY Control 1 */
269 #define MII_KSZPHY_CTRL_1			0x1e
270 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
271 
272 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
273 #define MII_KSZPHY_CTRL_2			0x1f
274 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
275 /* bitmap of PHY register to set interrupt mode */
276 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
277 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
278 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
279 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
280 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
281 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
282 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
283 
284 /* Write/read to/from extended registers */
285 #define MII_KSZPHY_EXTREG			0x0b
286 #define KSZPHY_EXTREG_WRITE			0x8000
287 
288 #define MII_KSZPHY_EXTREG_WRITE			0x0c
289 #define MII_KSZPHY_EXTREG_READ			0x0d
290 
291 /* Extended registers */
292 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
293 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
294 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
295 
296 #define PS_TO_REG				200
297 #define FIFO_SIZE				8
298 
299 #define LAN8814_PTP_GPIO_NUM			24
300 #define LAN8814_PTP_PEROUT_NUM			2
301 #define LAN8814_PTP_EXTTS_NUM			3
302 
303 #define LAN8814_BUFFER_TIME			2
304 
305 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
306 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
319 
320 #define LAN8814_GPIO_EN1			0x20
321 #define LAN8814_GPIO_EN2			0x21
322 #define LAN8814_GPIO_DIR1			0x22
323 #define LAN8814_GPIO_DIR2			0x23
324 #define LAN8814_GPIO_BUF1			0x24
325 #define LAN8814_GPIO_BUF2			0x25
326 
327 #define LAN8814_GPIO_EN_ADDR(pin) \
328 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
329 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
330 #define LAN8814_GPIO_DIR_ADDR(pin) \
331 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
332 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
333 #define LAN8814_GPIO_BUF_ADDR(pin) \
334 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
335 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
336 
337 #define LAN8814_EVENT_A				0
338 #define LAN8814_EVENT_B				1
339 
340 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
341 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
342 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
344 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
345 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
346 	((event) ? BIT(2) : BIT(0))
347 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
348 	((event) ? BIT(3) : BIT(1))
349 
350 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
351 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
352 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
353 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
354 
355 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
356 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
359 
360 /* Delay used to get the second part from the LTC */
361 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
362 
363 struct kszphy_hw_stat {
364 	const char *string;
365 	u8 reg;
366 	u8 bits;
367 };
368 
369 static struct kszphy_hw_stat kszphy_hw_stats[] = {
370 	{ "phy_receive_errors", 21, 16},
371 	{ "phy_idle_errors", 10, 8 },
372 };
373 
374 struct kszphy_type {
375 	u32 led_mode_reg;
376 	u16 interrupt_level_mask;
377 	u16 cable_diag_reg;
378 	unsigned long pair_mask;
379 	u16 disable_dll_tx_bit;
380 	u16 disable_dll_rx_bit;
381 	u16 disable_dll_mask;
382 	bool has_broadcast_disable;
383 	bool has_nand_tree_disable;
384 	bool has_rmii_ref_clk_sel;
385 };
386 
387 /* Shared structure between the PHYs of the same package. */
388 struct lan8814_shared_priv {
389 	struct phy_device *phydev;
390 	struct ptp_clock *ptp_clock;
391 	struct ptp_clock_info ptp_clock_info;
392 	struct ptp_pin_desc *pin_config;
393 
394 	/* Lock for ptp_clock */
395 	struct mutex shared_lock;
396 };
397 
398 struct lan8814_ptp_rx_ts {
399 	struct list_head list;
400 	u32 seconds;
401 	u32 nsec;
402 	u16 seq_id;
403 };
404 
405 struct kszphy_ptp_priv {
406 	struct mii_timestamper mii_ts;
407 	struct phy_device *phydev;
408 
409 	struct sk_buff_head tx_queue;
410 	struct sk_buff_head rx_queue;
411 
412 	struct list_head rx_ts_list;
413 	/* Lock for Rx ts fifo */
414 	spinlock_t rx_ts_lock;
415 
416 	int hwts_tx_type;
417 	enum hwtstamp_rx_filters rx_filter;
418 	int layer;
419 	int version;
420 
421 	struct ptp_clock *ptp_clock;
422 	struct ptp_clock_info ptp_clock_info;
423 	/* Lock for ptp_clock */
424 	struct mutex ptp_lock;
425 	struct ptp_pin_desc *pin_config;
426 
427 	s64 seconds;
428 	/* Lock for accessing seconds */
429 	spinlock_t seconds_lock;
430 };
431 
432 struct kszphy_priv {
433 	struct kszphy_ptp_priv ptp_priv;
434 	const struct kszphy_type *type;
435 	int led_mode;
436 	u16 vct_ctrl1000;
437 	bool rmii_ref_clk_sel;
438 	bool rmii_ref_clk_sel_val;
439 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
440 };
441 
442 static const struct kszphy_type lan8814_type = {
443 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
444 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
445 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
446 };
447 
448 static const struct kszphy_type ksz886x_type = {
449 	.cable_diag_reg		= KSZ8081_LMD,
450 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
451 };
452 
453 static const struct kszphy_type ksz8021_type = {
454 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
455 	.has_broadcast_disable	= true,
456 	.has_nand_tree_disable	= true,
457 	.has_rmii_ref_clk_sel	= true,
458 };
459 
460 static const struct kszphy_type ksz8041_type = {
461 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
462 };
463 
464 static const struct kszphy_type ksz8051_type = {
465 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
466 	.has_nand_tree_disable	= true,
467 };
468 
469 static const struct kszphy_type ksz8081_type = {
470 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
471 	.has_broadcast_disable	= true,
472 	.has_nand_tree_disable	= true,
473 	.has_rmii_ref_clk_sel	= true,
474 };
475 
476 static const struct kszphy_type ks8737_type = {
477 	.interrupt_level_mask	= BIT(14),
478 };
479 
480 static const struct kszphy_type ksz9021_type = {
481 	.interrupt_level_mask	= BIT(14),
482 };
483 
484 static const struct kszphy_type ksz9131_type = {
485 	.interrupt_level_mask	= BIT(14),
486 	.disable_dll_tx_bit	= BIT(12),
487 	.disable_dll_rx_bit	= BIT(12),
488 	.disable_dll_mask	= BIT_MASK(12),
489 };
490 
491 static const struct kszphy_type lan8841_type = {
492 	.disable_dll_tx_bit	= BIT(14),
493 	.disable_dll_rx_bit	= BIT(14),
494 	.disable_dll_mask	= BIT_MASK(14),
495 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
496 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
497 };
498 
499 static int kszphy_extended_write(struct phy_device *phydev,
500 				u32 regnum, u16 val)
501 {
502 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
503 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
504 }
505 
506 static int kszphy_extended_read(struct phy_device *phydev,
507 				u32 regnum)
508 {
509 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
510 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
511 }
512 
513 static int kszphy_ack_interrupt(struct phy_device *phydev)
514 {
515 	/* bit[7..0] int status, which is a read and clear register. */
516 	int rc;
517 
518 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
519 
520 	return (rc < 0) ? rc : 0;
521 }
522 
523 static int kszphy_config_intr(struct phy_device *phydev)
524 {
525 	const struct kszphy_type *type = phydev->drv->driver_data;
526 	int temp, err;
527 	u16 mask;
528 
529 	if (type && type->interrupt_level_mask)
530 		mask = type->interrupt_level_mask;
531 	else
532 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
533 
534 	/* set the interrupt pin active low */
535 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
536 	if (temp < 0)
537 		return temp;
538 	temp &= ~mask;
539 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
540 
541 	/* enable / disable interrupts */
542 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
543 		err = kszphy_ack_interrupt(phydev);
544 		if (err)
545 			return err;
546 
547 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
548 	} else {
549 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
550 		if (err)
551 			return err;
552 
553 		err = kszphy_ack_interrupt(phydev);
554 	}
555 
556 	return err;
557 }
558 
559 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
560 {
561 	int irq_status;
562 
563 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
564 	if (irq_status < 0) {
565 		phy_error(phydev);
566 		return IRQ_NONE;
567 	}
568 
569 	if (!(irq_status & KSZPHY_INTCS_STATUS))
570 		return IRQ_NONE;
571 
572 	phy_trigger_machine(phydev);
573 
574 	return IRQ_HANDLED;
575 }
576 
577 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
578 {
579 	int ctrl;
580 
581 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
582 	if (ctrl < 0)
583 		return ctrl;
584 
585 	if (val)
586 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
587 	else
588 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
589 
590 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
591 }
592 
593 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
594 {
595 	int rc, temp, shift;
596 
597 	switch (reg) {
598 	case MII_KSZPHY_CTRL_1:
599 		shift = 14;
600 		break;
601 	case MII_KSZPHY_CTRL_2:
602 		shift = 4;
603 		break;
604 	default:
605 		return -EINVAL;
606 	}
607 
608 	temp = phy_read(phydev, reg);
609 	if (temp < 0) {
610 		rc = temp;
611 		goto out;
612 	}
613 
614 	temp &= ~(3 << shift);
615 	temp |= val << shift;
616 	rc = phy_write(phydev, reg, temp);
617 out:
618 	if (rc < 0)
619 		phydev_err(phydev, "failed to set led mode\n");
620 
621 	return rc;
622 }
623 
624 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
625  * unique (non-broadcast) address on a shared bus.
626  */
627 static int kszphy_broadcast_disable(struct phy_device *phydev)
628 {
629 	int ret;
630 
631 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
632 	if (ret < 0)
633 		goto out;
634 
635 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
636 out:
637 	if (ret)
638 		phydev_err(phydev, "failed to disable broadcast address\n");
639 
640 	return ret;
641 }
642 
643 static int kszphy_nand_tree_disable(struct phy_device *phydev)
644 {
645 	int ret;
646 
647 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
648 	if (ret < 0)
649 		goto out;
650 
651 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
652 		return 0;
653 
654 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
655 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
656 out:
657 	if (ret)
658 		phydev_err(phydev, "failed to disable NAND tree mode\n");
659 
660 	return ret;
661 }
662 
663 /* Some config bits need to be set again on resume, handle them here. */
664 static int kszphy_config_reset(struct phy_device *phydev)
665 {
666 	struct kszphy_priv *priv = phydev->priv;
667 	int ret;
668 
669 	if (priv->rmii_ref_clk_sel) {
670 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
671 		if (ret) {
672 			phydev_err(phydev,
673 				   "failed to set rmii reference clock\n");
674 			return ret;
675 		}
676 	}
677 
678 	if (priv->type && priv->led_mode >= 0)
679 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
680 
681 	return 0;
682 }
683 
684 static int kszphy_config_init(struct phy_device *phydev)
685 {
686 	struct kszphy_priv *priv = phydev->priv;
687 	const struct kszphy_type *type;
688 
689 	if (!priv)
690 		return 0;
691 
692 	type = priv->type;
693 
694 	if (type && type->has_broadcast_disable)
695 		kszphy_broadcast_disable(phydev);
696 
697 	if (type && type->has_nand_tree_disable)
698 		kszphy_nand_tree_disable(phydev);
699 
700 	return kszphy_config_reset(phydev);
701 }
702 
703 static int ksz8041_fiber_mode(struct phy_device *phydev)
704 {
705 	struct device_node *of_node = phydev->mdio.dev.of_node;
706 
707 	return of_property_read_bool(of_node, "micrel,fiber-mode");
708 }
709 
710 static int ksz8041_config_init(struct phy_device *phydev)
711 {
712 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
713 
714 	/* Limit supported and advertised modes in fiber mode */
715 	if (ksz8041_fiber_mode(phydev)) {
716 		phydev->dev_flags |= MICREL_PHY_FXEN;
717 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
718 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
719 
720 		linkmode_and(phydev->supported, phydev->supported, mask);
721 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
722 				 phydev->supported);
723 		linkmode_and(phydev->advertising, phydev->advertising, mask);
724 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
725 				 phydev->advertising);
726 		phydev->autoneg = AUTONEG_DISABLE;
727 	}
728 
729 	return kszphy_config_init(phydev);
730 }
731 
732 static int ksz8041_config_aneg(struct phy_device *phydev)
733 {
734 	/* Skip auto-negotiation in fiber mode */
735 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
736 		phydev->speed = SPEED_100;
737 		return 0;
738 	}
739 
740 	return genphy_config_aneg(phydev);
741 }
742 
743 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
744 					    const bool ksz_8051)
745 {
746 	int ret;
747 
748 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
749 		return 0;
750 
751 	ret = phy_read(phydev, MII_BMSR);
752 	if (ret < 0)
753 		return ret;
754 
755 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
756 	 * exact PHY ID. However, they can be told apart by the extended
757 	 * capability registers presence. The KSZ8051 PHY has them while
758 	 * the switch does not.
759 	 */
760 	ret &= BMSR_ERCAP;
761 	if (ksz_8051)
762 		return ret;
763 	else
764 		return !ret;
765 }
766 
767 static int ksz8051_match_phy_device(struct phy_device *phydev)
768 {
769 	return ksz8051_ksz8795_match_phy_device(phydev, true);
770 }
771 
772 static int ksz8081_config_init(struct phy_device *phydev)
773 {
774 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
775 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
776 	 * pull-down is missing, the factory test mode should be cleared by
777 	 * manually writing a 0.
778 	 */
779 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
780 
781 	return kszphy_config_init(phydev);
782 }
783 
784 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
785 {
786 	u16 val;
787 
788 	switch (ctrl) {
789 	case ETH_TP_MDI:
790 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
791 		break;
792 	case ETH_TP_MDI_X:
793 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
794 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
795 		break;
796 	case ETH_TP_MDI_AUTO:
797 		val = 0;
798 		break;
799 	default:
800 		return 0;
801 	}
802 
803 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
804 			  KSZ8081_CTRL2_HP_MDIX |
805 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
806 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
807 			  KSZ8081_CTRL2_HP_MDIX | val);
808 }
809 
810 static int ksz8081_config_aneg(struct phy_device *phydev)
811 {
812 	int ret;
813 
814 	ret = genphy_config_aneg(phydev);
815 	if (ret)
816 		return ret;
817 
818 	/* The MDI-X configuration is automatically changed by the PHY after
819 	 * switching from autoneg off to on. So, take MDI-X configuration under
820 	 * own control and set it after autoneg configuration was done.
821 	 */
822 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
823 }
824 
825 static int ksz8081_mdix_update(struct phy_device *phydev)
826 {
827 	int ret;
828 
829 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
830 	if (ret < 0)
831 		return ret;
832 
833 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
834 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
835 			phydev->mdix_ctrl = ETH_TP_MDI_X;
836 		else
837 			phydev->mdix_ctrl = ETH_TP_MDI;
838 	} else {
839 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
840 	}
841 
842 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
843 	if (ret < 0)
844 		return ret;
845 
846 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
847 		phydev->mdix = ETH_TP_MDI;
848 	else
849 		phydev->mdix = ETH_TP_MDI_X;
850 
851 	return 0;
852 }
853 
854 static int ksz8081_read_status(struct phy_device *phydev)
855 {
856 	int ret;
857 
858 	ret = ksz8081_mdix_update(phydev);
859 	if (ret < 0)
860 		return ret;
861 
862 	return genphy_read_status(phydev);
863 }
864 
865 static int ksz8061_config_init(struct phy_device *phydev)
866 {
867 	int ret;
868 
869 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
870 	if (ret)
871 		return ret;
872 
873 	return kszphy_config_init(phydev);
874 }
875 
876 static int ksz8795_match_phy_device(struct phy_device *phydev)
877 {
878 	return ksz8051_ksz8795_match_phy_device(phydev, false);
879 }
880 
881 static int ksz9021_load_values_from_of(struct phy_device *phydev,
882 				       const struct device_node *of_node,
883 				       u16 reg,
884 				       const char *field1, const char *field2,
885 				       const char *field3, const char *field4)
886 {
887 	int val1 = -1;
888 	int val2 = -2;
889 	int val3 = -3;
890 	int val4 = -4;
891 	int newval;
892 	int matches = 0;
893 
894 	if (!of_property_read_u32(of_node, field1, &val1))
895 		matches++;
896 
897 	if (!of_property_read_u32(of_node, field2, &val2))
898 		matches++;
899 
900 	if (!of_property_read_u32(of_node, field3, &val3))
901 		matches++;
902 
903 	if (!of_property_read_u32(of_node, field4, &val4))
904 		matches++;
905 
906 	if (!matches)
907 		return 0;
908 
909 	if (matches < 4)
910 		newval = kszphy_extended_read(phydev, reg);
911 	else
912 		newval = 0;
913 
914 	if (val1 != -1)
915 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
916 
917 	if (val2 != -2)
918 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
919 
920 	if (val3 != -3)
921 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
922 
923 	if (val4 != -4)
924 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
925 
926 	return kszphy_extended_write(phydev, reg, newval);
927 }
928 
929 static int ksz9021_config_init(struct phy_device *phydev)
930 {
931 	const struct device_node *of_node;
932 	const struct device *dev_walker;
933 
934 	/* The Micrel driver has a deprecated option to place phy OF
935 	 * properties in the MAC node. Walk up the tree of devices to
936 	 * find a device with an OF node.
937 	 */
938 	dev_walker = &phydev->mdio.dev;
939 	do {
940 		of_node = dev_walker->of_node;
941 		dev_walker = dev_walker->parent;
942 
943 	} while (!of_node && dev_walker);
944 
945 	if (of_node) {
946 		ksz9021_load_values_from_of(phydev, of_node,
947 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
948 				    "txen-skew-ps", "txc-skew-ps",
949 				    "rxdv-skew-ps", "rxc-skew-ps");
950 		ksz9021_load_values_from_of(phydev, of_node,
951 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
952 				    "rxd0-skew-ps", "rxd1-skew-ps",
953 				    "rxd2-skew-ps", "rxd3-skew-ps");
954 		ksz9021_load_values_from_of(phydev, of_node,
955 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
956 				    "txd0-skew-ps", "txd1-skew-ps",
957 				    "txd2-skew-ps", "txd3-skew-ps");
958 	}
959 	return 0;
960 }
961 
962 #define KSZ9031_PS_TO_REG		60
963 
964 /* Extended registers */
965 /* MMD Address 0x0 */
966 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
967 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
968 
969 /* MMD Address 0x2 */
970 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
971 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
972 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
973 
974 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
975 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
976 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
977 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
978 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
979 
980 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
981 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
982 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
983 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
984 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
985 
986 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
987 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
988 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
989 
990 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
991  * provide different RGMII options we need to configure delay offset
992  * for each pad relative to build in delay.
993  */
994 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
995  * 1.80ns
996  */
997 #define RX_ID				0x7
998 #define RX_CLK_ID			0x19
999 
1000 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1001  * internal 1.2ns delay.
1002  */
1003 #define RX_ND				0xc
1004 #define RX_CLK_ND			0x0
1005 
1006 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1007 #define TX_ID				0x0
1008 #define TX_CLK_ID			0x1f
1009 
1010 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1011  * dealy
1012  */
1013 #define TX_ND				0x7
1014 #define TX_CLK_ND			0xf
1015 
1016 /* MMD Address 0x1C */
1017 #define MII_KSZ9031RN_EDPD		0x23
1018 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1019 
1020 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1021 				       const struct device_node *of_node,
1022 				       u16 reg, size_t field_sz,
1023 				       const char *field[], u8 numfields,
1024 				       bool *update)
1025 {
1026 	int val[4] = {-1, -2, -3, -4};
1027 	int matches = 0;
1028 	u16 mask;
1029 	u16 maxval;
1030 	u16 newval;
1031 	int i;
1032 
1033 	for (i = 0; i < numfields; i++)
1034 		if (!of_property_read_u32(of_node, field[i], val + i))
1035 			matches++;
1036 
1037 	if (!matches)
1038 		return 0;
1039 
1040 	*update |= true;
1041 
1042 	if (matches < numfields)
1043 		newval = phy_read_mmd(phydev, 2, reg);
1044 	else
1045 		newval = 0;
1046 
1047 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1048 	for (i = 0; i < numfields; i++)
1049 		if (val[i] != -(i + 1)) {
1050 			mask = 0xffff;
1051 			mask ^= maxval << (field_sz * i);
1052 			newval = (newval & mask) |
1053 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1054 					<< (field_sz * i));
1055 		}
1056 
1057 	return phy_write_mmd(phydev, 2, reg, newval);
1058 }
1059 
1060 /* Center KSZ9031RNX FLP timing at 16ms. */
1061 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1062 {
1063 	int result;
1064 
1065 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1066 			       0x0006);
1067 	if (result)
1068 		return result;
1069 
1070 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1071 			       0x1A80);
1072 	if (result)
1073 		return result;
1074 
1075 	return genphy_restart_aneg(phydev);
1076 }
1077 
1078 /* Enable energy-detect power-down mode */
1079 static int ksz9031_enable_edpd(struct phy_device *phydev)
1080 {
1081 	int reg;
1082 
1083 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1084 	if (reg < 0)
1085 		return reg;
1086 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1087 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1088 }
1089 
1090 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1091 {
1092 	u16 rx, tx, rx_clk, tx_clk;
1093 	int ret;
1094 
1095 	switch (phydev->interface) {
1096 	case PHY_INTERFACE_MODE_RGMII:
1097 		tx = TX_ND;
1098 		tx_clk = TX_CLK_ND;
1099 		rx = RX_ND;
1100 		rx_clk = RX_CLK_ND;
1101 		break;
1102 	case PHY_INTERFACE_MODE_RGMII_ID:
1103 		tx = TX_ID;
1104 		tx_clk = TX_CLK_ID;
1105 		rx = RX_ID;
1106 		rx_clk = RX_CLK_ID;
1107 		break;
1108 	case PHY_INTERFACE_MODE_RGMII_RXID:
1109 		tx = TX_ND;
1110 		tx_clk = TX_CLK_ND;
1111 		rx = RX_ID;
1112 		rx_clk = RX_CLK_ID;
1113 		break;
1114 	case PHY_INTERFACE_MODE_RGMII_TXID:
1115 		tx = TX_ID;
1116 		tx_clk = TX_CLK_ID;
1117 		rx = RX_ND;
1118 		rx_clk = RX_CLK_ND;
1119 		break;
1120 	default:
1121 		return 0;
1122 	}
1123 
1124 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1125 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1126 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1127 	if (ret < 0)
1128 		return ret;
1129 
1130 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1131 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1132 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1133 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1134 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1135 	if (ret < 0)
1136 		return ret;
1137 
1138 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1139 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1140 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1141 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1142 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1143 	if (ret < 0)
1144 		return ret;
1145 
1146 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1147 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1148 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1149 }
1150 
1151 static int ksz9031_config_init(struct phy_device *phydev)
1152 {
1153 	const struct device_node *of_node;
1154 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1155 	static const char *rx_data_skews[4] = {
1156 		"rxd0-skew-ps", "rxd1-skew-ps",
1157 		"rxd2-skew-ps", "rxd3-skew-ps"
1158 	};
1159 	static const char *tx_data_skews[4] = {
1160 		"txd0-skew-ps", "txd1-skew-ps",
1161 		"txd2-skew-ps", "txd3-skew-ps"
1162 	};
1163 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1164 	const struct device *dev_walker;
1165 	int result;
1166 
1167 	result = ksz9031_enable_edpd(phydev);
1168 	if (result < 0)
1169 		return result;
1170 
1171 	/* The Micrel driver has a deprecated option to place phy OF
1172 	 * properties in the MAC node. Walk up the tree of devices to
1173 	 * find a device with an OF node.
1174 	 */
1175 	dev_walker = &phydev->mdio.dev;
1176 	do {
1177 		of_node = dev_walker->of_node;
1178 		dev_walker = dev_walker->parent;
1179 	} while (!of_node && dev_walker);
1180 
1181 	if (of_node) {
1182 		bool update = false;
1183 
1184 		if (phy_interface_is_rgmii(phydev)) {
1185 			result = ksz9031_config_rgmii_delay(phydev);
1186 			if (result < 0)
1187 				return result;
1188 		}
1189 
1190 		ksz9031_of_load_skew_values(phydev, of_node,
1191 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1192 				clk_skews, 2, &update);
1193 
1194 		ksz9031_of_load_skew_values(phydev, of_node,
1195 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1196 				control_skews, 2, &update);
1197 
1198 		ksz9031_of_load_skew_values(phydev, of_node,
1199 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1200 				rx_data_skews, 4, &update);
1201 
1202 		ksz9031_of_load_skew_values(phydev, of_node,
1203 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1204 				tx_data_skews, 4, &update);
1205 
1206 		if (update && !phy_interface_is_rgmii(phydev))
1207 			phydev_warn(phydev,
1208 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1209 
1210 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1211 		 * When the device links in the 1000BASE-T slave mode only,
1212 		 * the optional 125MHz reference output clock (CLK125_NDO)
1213 		 * has wide duty cycle variation.
1214 		 *
1215 		 * The optional CLK125_NDO clock does not meet the RGMII
1216 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1217 		 * cannot be used directly by the MAC side for clocking
1218 		 * applications that have setup/hold time requirements on
1219 		 * rising and falling clock edges.
1220 		 *
1221 		 * Workaround:
1222 		 * Force the phy to be the master to receive a stable clock
1223 		 * which meets the duty cycle requirement.
1224 		 */
1225 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1226 			result = phy_read(phydev, MII_CTRL1000);
1227 			if (result < 0)
1228 				goto err_force_master;
1229 
1230 			/* enable master mode, config & prefer master */
1231 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1232 			result = phy_write(phydev, MII_CTRL1000, result);
1233 			if (result < 0)
1234 				goto err_force_master;
1235 		}
1236 	}
1237 
1238 	return ksz9031_center_flp_timing(phydev);
1239 
1240 err_force_master:
1241 	phydev_err(phydev, "failed to force the phy to master mode\n");
1242 	return result;
1243 }
1244 
1245 #define KSZ9131_SKEW_5BIT_MAX	2400
1246 #define KSZ9131_SKEW_4BIT_MAX	800
1247 #define KSZ9131_OFFSET		700
1248 #define KSZ9131_STEP		100
1249 
1250 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1251 				       struct device_node *of_node,
1252 				       u16 reg, size_t field_sz,
1253 				       char *field[], u8 numfields)
1254 {
1255 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1256 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1257 	int skewval, skewmax = 0;
1258 	int matches = 0;
1259 	u16 maxval;
1260 	u16 newval;
1261 	u16 mask;
1262 	int i;
1263 
1264 	/* psec properties in dts should mean x pico seconds */
1265 	if (field_sz == 5)
1266 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1267 	else
1268 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1269 
1270 	for (i = 0; i < numfields; i++)
1271 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1272 			if (skewval < -KSZ9131_OFFSET)
1273 				skewval = -KSZ9131_OFFSET;
1274 			else if (skewval > skewmax)
1275 				skewval = skewmax;
1276 
1277 			val[i] = skewval + KSZ9131_OFFSET;
1278 			matches++;
1279 		}
1280 
1281 	if (!matches)
1282 		return 0;
1283 
1284 	if (matches < numfields)
1285 		newval = phy_read_mmd(phydev, 2, reg);
1286 	else
1287 		newval = 0;
1288 
1289 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1290 	for (i = 0; i < numfields; i++)
1291 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1292 			mask = 0xffff;
1293 			mask ^= maxval << (field_sz * i);
1294 			newval = (newval & mask) |
1295 				(((val[i] / KSZ9131_STEP) & maxval)
1296 					<< (field_sz * i));
1297 		}
1298 
1299 	return phy_write_mmd(phydev, 2, reg, newval);
1300 }
1301 
1302 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1303 #define KSZ9131RN_RXC_DLL_CTRL		76
1304 #define KSZ9131RN_TXC_DLL_CTRL		77
1305 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1306 
1307 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1308 {
1309 	const struct kszphy_type *type = phydev->drv->driver_data;
1310 	u16 rxcdll_val, txcdll_val;
1311 	int ret;
1312 
1313 	switch (phydev->interface) {
1314 	case PHY_INTERFACE_MODE_RGMII:
1315 		rxcdll_val = type->disable_dll_rx_bit;
1316 		txcdll_val = type->disable_dll_tx_bit;
1317 		break;
1318 	case PHY_INTERFACE_MODE_RGMII_ID:
1319 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1320 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1321 		break;
1322 	case PHY_INTERFACE_MODE_RGMII_RXID:
1323 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1324 		txcdll_val = type->disable_dll_tx_bit;
1325 		break;
1326 	case PHY_INTERFACE_MODE_RGMII_TXID:
1327 		rxcdll_val = type->disable_dll_rx_bit;
1328 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1329 		break;
1330 	default:
1331 		return 0;
1332 	}
1333 
1334 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1335 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1336 			     rxcdll_val);
1337 	if (ret < 0)
1338 		return ret;
1339 
1340 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1341 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1342 			      txcdll_val);
1343 }
1344 
1345 /* Silicon Errata DS80000693B
1346  *
1347  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1348  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1349  * according to the datasheet (off if there is no link).
1350  */
1351 static int ksz9131_led_errata(struct phy_device *phydev)
1352 {
1353 	int reg;
1354 
1355 	reg = phy_read_mmd(phydev, 2, 0);
1356 	if (reg < 0)
1357 		return reg;
1358 
1359 	if (!(reg & BIT(4)))
1360 		return 0;
1361 
1362 	return phy_set_bits(phydev, 0x1e, BIT(9));
1363 }
1364 
1365 static int ksz9131_config_init(struct phy_device *phydev)
1366 {
1367 	struct device_node *of_node;
1368 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1369 	char *rx_data_skews[4] = {
1370 		"rxd0-skew-psec", "rxd1-skew-psec",
1371 		"rxd2-skew-psec", "rxd3-skew-psec"
1372 	};
1373 	char *tx_data_skews[4] = {
1374 		"txd0-skew-psec", "txd1-skew-psec",
1375 		"txd2-skew-psec", "txd3-skew-psec"
1376 	};
1377 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1378 	const struct device *dev_walker;
1379 	int ret;
1380 
1381 	dev_walker = &phydev->mdio.dev;
1382 	do {
1383 		of_node = dev_walker->of_node;
1384 		dev_walker = dev_walker->parent;
1385 	} while (!of_node && dev_walker);
1386 
1387 	if (!of_node)
1388 		return 0;
1389 
1390 	if (phy_interface_is_rgmii(phydev)) {
1391 		ret = ksz9131_config_rgmii_delay(phydev);
1392 		if (ret < 0)
1393 			return ret;
1394 	}
1395 
1396 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1397 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1398 					  clk_skews, 2);
1399 	if (ret < 0)
1400 		return ret;
1401 
1402 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1403 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1404 					  control_skews, 2);
1405 	if (ret < 0)
1406 		return ret;
1407 
1408 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1409 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1410 					  rx_data_skews, 4);
1411 	if (ret < 0)
1412 		return ret;
1413 
1414 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1415 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1416 					  tx_data_skews, 4);
1417 	if (ret < 0)
1418 		return ret;
1419 
1420 	ret = ksz9131_led_errata(phydev);
1421 	if (ret < 0)
1422 		return ret;
1423 
1424 	return 0;
1425 }
1426 
1427 #define MII_KSZ9131_AUTO_MDIX		0x1C
1428 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1429 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1430 
1431 static int ksz9131_mdix_update(struct phy_device *phydev)
1432 {
1433 	int ret;
1434 
1435 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1436 	if (ret < 0)
1437 		return ret;
1438 
1439 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1440 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1441 			phydev->mdix_ctrl = ETH_TP_MDI;
1442 		else
1443 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1444 	} else {
1445 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1446 	}
1447 
1448 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1449 		phydev->mdix = ETH_TP_MDI;
1450 	else
1451 		phydev->mdix = ETH_TP_MDI_X;
1452 
1453 	return 0;
1454 }
1455 
1456 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1457 {
1458 	u16 val;
1459 
1460 	switch (ctrl) {
1461 	case ETH_TP_MDI:
1462 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1463 		      MII_KSZ9131_AUTO_MDI_SET;
1464 		break;
1465 	case ETH_TP_MDI_X:
1466 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1467 		break;
1468 	case ETH_TP_MDI_AUTO:
1469 		val = 0;
1470 		break;
1471 	default:
1472 		return 0;
1473 	}
1474 
1475 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1476 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1477 			  MII_KSZ9131_AUTO_MDI_SET, val);
1478 }
1479 
1480 static int ksz9131_read_status(struct phy_device *phydev)
1481 {
1482 	int ret;
1483 
1484 	ret = ksz9131_mdix_update(phydev);
1485 	if (ret < 0)
1486 		return ret;
1487 
1488 	return genphy_read_status(phydev);
1489 }
1490 
1491 static int ksz9131_config_aneg(struct phy_device *phydev)
1492 {
1493 	int ret;
1494 
1495 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1496 	if (ret)
1497 		return ret;
1498 
1499 	return genphy_config_aneg(phydev);
1500 }
1501 
1502 static int ksz9477_get_features(struct phy_device *phydev)
1503 {
1504 	int ret;
1505 
1506 	ret = genphy_read_abilities(phydev);
1507 	if (ret)
1508 		return ret;
1509 
1510 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1511 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1512 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1513 	 * of caps.
1514 	 * KSZ8563R should have 100BaseTX/Full only.
1515 	 */
1516 	linkmode_and(phydev->supported_eee, phydev->supported,
1517 		     PHY_EEE_CAP1_FEATURES);
1518 
1519 	return 0;
1520 }
1521 
1522 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1523 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1524 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1525 static int ksz8873mll_read_status(struct phy_device *phydev)
1526 {
1527 	int regval;
1528 
1529 	/* dummy read */
1530 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1531 
1532 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1533 
1534 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1535 		phydev->duplex = DUPLEX_HALF;
1536 	else
1537 		phydev->duplex = DUPLEX_FULL;
1538 
1539 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1540 		phydev->speed = SPEED_10;
1541 	else
1542 		phydev->speed = SPEED_100;
1543 
1544 	phydev->link = 1;
1545 	phydev->pause = phydev->asym_pause = 0;
1546 
1547 	return 0;
1548 }
1549 
1550 static int ksz9031_get_features(struct phy_device *phydev)
1551 {
1552 	int ret;
1553 
1554 	ret = genphy_read_abilities(phydev);
1555 	if (ret < 0)
1556 		return ret;
1557 
1558 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1559 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1560 	 * link-up may fail after a link-up to link-down transition.
1561 	 *
1562 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1563 	 *
1564 	 * Workaround:
1565 	 * Do not enable the Asymmetric Pause capability bit.
1566 	 */
1567 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1568 
1569 	/* We force setting the Pause capability as the core will force the
1570 	 * Asymmetric Pause capability to 1 otherwise.
1571 	 */
1572 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1573 
1574 	return 0;
1575 }
1576 
1577 static int ksz9031_read_status(struct phy_device *phydev)
1578 {
1579 	int err;
1580 	int regval;
1581 
1582 	err = genphy_read_status(phydev);
1583 	if (err)
1584 		return err;
1585 
1586 	/* Make sure the PHY is not broken. Read idle error count,
1587 	 * and reset the PHY if it is maxed out.
1588 	 */
1589 	regval = phy_read(phydev, MII_STAT1000);
1590 	if ((regval & 0xFF) == 0xFF) {
1591 		phy_init_hw(phydev);
1592 		phydev->link = 0;
1593 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1594 			phydev->drv->config_intr(phydev);
1595 		return genphy_config_aneg(phydev);
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1602 {
1603 	struct kszphy_priv *priv = phydev->priv;
1604 	int ret;
1605 
1606 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1607 	 * Prior to running the cable diagnostics, Auto-negotiation should
1608 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1609 	 * via the Basic Control Register.
1610 	 */
1611 	ret = phy_modify(phydev, MII_BMCR,
1612 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1613 			 BMCR_ANENABLE | BMCR_SPEED100,
1614 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1615 	if (ret)
1616 		return ret;
1617 
1618 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1619 	 * The Master-Slave configuration should be set to Slave by writing
1620 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1621 	 * Register.
1622 	 */
1623 	ret = phy_read(phydev, MII_CTRL1000);
1624 	if (ret < 0)
1625 		return ret;
1626 
1627 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1628 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1629 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1630 	ret |= CTL1000_ENABLE_MASTER;
1631 
1632 	return phy_write(phydev, MII_CTRL1000, ret);
1633 }
1634 
1635 static int ksz9x31_cable_test_result_trans(u16 status)
1636 {
1637 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1638 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1639 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1640 	case KSZ9x31_LMD_VCT_ST_OPEN:
1641 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1642 	case KSZ9x31_LMD_VCT_ST_SHORT:
1643 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1644 	case KSZ9x31_LMD_VCT_ST_FAIL:
1645 		fallthrough;
1646 	default:
1647 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1648 	}
1649 }
1650 
1651 static bool ksz9x31_cable_test_failed(u16 status)
1652 {
1653 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1654 
1655 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1656 }
1657 
1658 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1659 {
1660 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1661 	case KSZ9x31_LMD_VCT_ST_OPEN:
1662 		fallthrough;
1663 	case KSZ9x31_LMD_VCT_ST_SHORT:
1664 		return true;
1665 	}
1666 	return false;
1667 }
1668 
1669 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1670 {
1671 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1672 
1673 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1674 	 *
1675 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1676 	 */
1677 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1678 		dt = clamp(dt - 22, 0, 255);
1679 
1680 	return (dt * 400) / 10;
1681 }
1682 
1683 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1684 {
1685 	int val, ret;
1686 
1687 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1688 				    !(val & KSZ9x31_LMD_VCT_EN),
1689 				    30000, 100000, true);
1690 
1691 	return ret < 0 ? ret : 0;
1692 }
1693 
1694 static int ksz9x31_cable_test_get_pair(int pair)
1695 {
1696 	static const int ethtool_pair[] = {
1697 		ETHTOOL_A_CABLE_PAIR_A,
1698 		ETHTOOL_A_CABLE_PAIR_B,
1699 		ETHTOOL_A_CABLE_PAIR_C,
1700 		ETHTOOL_A_CABLE_PAIR_D,
1701 	};
1702 
1703 	return ethtool_pair[pair];
1704 }
1705 
1706 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1707 {
1708 	int ret, val;
1709 
1710 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1711 	 * To test each individual cable pair, set the cable pair in the Cable
1712 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1713 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1714 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1715 	 * will self clear when the test is concluded.
1716 	 */
1717 	ret = phy_write(phydev, KSZ9x31_LMD,
1718 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1719 	if (ret)
1720 		return ret;
1721 
1722 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1723 	if (ret)
1724 		return ret;
1725 
1726 	val = phy_read(phydev, KSZ9x31_LMD);
1727 	if (val < 0)
1728 		return val;
1729 
1730 	if (ksz9x31_cable_test_failed(val))
1731 		return -EAGAIN;
1732 
1733 	ret = ethnl_cable_test_result(phydev,
1734 				      ksz9x31_cable_test_get_pair(pair),
1735 				      ksz9x31_cable_test_result_trans(val));
1736 	if (ret)
1737 		return ret;
1738 
1739 	if (!ksz9x31_cable_test_fault_length_valid(val))
1740 		return 0;
1741 
1742 	return ethnl_cable_test_fault_length(phydev,
1743 					     ksz9x31_cable_test_get_pair(pair),
1744 					     ksz9x31_cable_test_fault_length(phydev, val));
1745 }
1746 
1747 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1748 					 bool *finished)
1749 {
1750 	struct kszphy_priv *priv = phydev->priv;
1751 	unsigned long pair_mask = 0xf;
1752 	int retries = 20;
1753 	int pair, ret, rv;
1754 
1755 	*finished = false;
1756 
1757 	/* Try harder if link partner is active */
1758 	while (pair_mask && retries--) {
1759 		for_each_set_bit(pair, &pair_mask, 4) {
1760 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1761 			if (ret == -EAGAIN)
1762 				continue;
1763 			if (ret < 0)
1764 				return ret;
1765 			clear_bit(pair, &pair_mask);
1766 		}
1767 		/* If link partner is in autonegotiation mode it will send 2ms
1768 		 * of FLPs with at least 6ms of silence.
1769 		 * Add 2ms sleep to have better chances to hit this silence.
1770 		 */
1771 		if (pair_mask)
1772 			usleep_range(2000, 3000);
1773 	}
1774 
1775 	/* Report remaining unfinished pair result as unknown. */
1776 	for_each_set_bit(pair, &pair_mask, 4) {
1777 		ret = ethnl_cable_test_result(phydev,
1778 					      ksz9x31_cable_test_get_pair(pair),
1779 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1780 	}
1781 
1782 	*finished = true;
1783 
1784 	/* Restore cached bits from before LinkMD got started. */
1785 	rv = phy_modify(phydev, MII_CTRL1000,
1786 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1787 			priv->vct_ctrl1000);
1788 	if (rv)
1789 		return rv;
1790 
1791 	return ret;
1792 }
1793 
1794 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1795 {
1796 	return 0;
1797 }
1798 
1799 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1800 {
1801 	u16 val;
1802 
1803 	switch (ctrl) {
1804 	case ETH_TP_MDI:
1805 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1806 		break;
1807 	case ETH_TP_MDI_X:
1808 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1809 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1810 		 * sheet seems to be missing:
1811 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1812 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1813 		 */
1814 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1815 		break;
1816 	case ETH_TP_MDI_AUTO:
1817 		val = 0;
1818 		break;
1819 	default:
1820 		return 0;
1821 	}
1822 
1823 	return phy_modify(phydev, MII_BMCR,
1824 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1825 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1826 			  KSZ886X_BMCR_HP_MDIX | val);
1827 }
1828 
1829 static int ksz886x_config_aneg(struct phy_device *phydev)
1830 {
1831 	int ret;
1832 
1833 	ret = genphy_config_aneg(phydev);
1834 	if (ret)
1835 		return ret;
1836 
1837 	if (phydev->autoneg != AUTONEG_ENABLE) {
1838 		/* When autonegotation is disabled, we need to manually force
1839 		 * the link state. If we don't do this, the PHY will keep
1840 		 * sending Fast Link Pulses (FLPs) which are part of the
1841 		 * autonegotiation process. This is not desired when
1842 		 * autonegotiation is off.
1843 		 */
1844 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1845 				   KSZ886X_CTRL_FORCE_LINK);
1846 		if (ret)
1847 			return ret;
1848 	} else {
1849 		/* If we had previously forced the link state, we need to
1850 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1851 		 * will not perform autonegotiation.
1852 		 */
1853 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1854 				     KSZ886X_CTRL_FORCE_LINK);
1855 		if (ret)
1856 			return ret;
1857 	}
1858 
1859 	/* The MDI-X configuration is automatically changed by the PHY after
1860 	 * switching from autoneg off to on. So, take MDI-X configuration under
1861 	 * own control and set it after autoneg configuration was done.
1862 	 */
1863 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1864 }
1865 
1866 static int ksz886x_mdix_update(struct phy_device *phydev)
1867 {
1868 	int ret;
1869 
1870 	ret = phy_read(phydev, MII_BMCR);
1871 	if (ret < 0)
1872 		return ret;
1873 
1874 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1875 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1876 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1877 		else
1878 			phydev->mdix_ctrl = ETH_TP_MDI;
1879 	} else {
1880 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1881 	}
1882 
1883 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1884 	if (ret < 0)
1885 		return ret;
1886 
1887 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1888 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1889 		phydev->mdix = ETH_TP_MDI_X;
1890 	else
1891 		phydev->mdix = ETH_TP_MDI;
1892 
1893 	return 0;
1894 }
1895 
1896 static int ksz886x_read_status(struct phy_device *phydev)
1897 {
1898 	int ret;
1899 
1900 	ret = ksz886x_mdix_update(phydev);
1901 	if (ret < 0)
1902 		return ret;
1903 
1904 	return genphy_read_status(phydev);
1905 }
1906 
1907 struct ksz9477_errata_write {
1908 	u8 dev_addr;
1909 	u8 reg_addr;
1910 	u16 val;
1911 };
1912 
1913 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1914 	 /* Register settings are needed to improve PHY receive performance */
1915 	{0x01, 0x6f, 0xdd0b},
1916 	{0x01, 0x8f, 0x6032},
1917 	{0x01, 0x9d, 0x248c},
1918 	{0x01, 0x75, 0x0060},
1919 	{0x01, 0xd3, 0x7777},
1920 	{0x1c, 0x06, 0x3008},
1921 	{0x1c, 0x08, 0x2000},
1922 
1923 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1924 	{0x1c, 0x04, 0x00d0},
1925 
1926 	/* Register settings are required to meet data sheet supply current specifications */
1927 	{0x1c, 0x13, 0x6eff},
1928 	{0x1c, 0x14, 0xe6ff},
1929 	{0x1c, 0x15, 0x6eff},
1930 	{0x1c, 0x16, 0xe6ff},
1931 	{0x1c, 0x17, 0x00ff},
1932 	{0x1c, 0x18, 0x43ff},
1933 	{0x1c, 0x19, 0xc3ff},
1934 	{0x1c, 0x1a, 0x6fff},
1935 	{0x1c, 0x1b, 0x07ff},
1936 	{0x1c, 0x1c, 0x0fff},
1937 	{0x1c, 0x1d, 0xe7ff},
1938 	{0x1c, 0x1e, 0xefff},
1939 	{0x1c, 0x20, 0xeeee},
1940 };
1941 
1942 static int ksz9477_config_init(struct phy_device *phydev)
1943 {
1944 	int err;
1945 	int i;
1946 
1947 	/* Apply PHY settings to address errata listed in
1948 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1949 	 * Silicon Errata and Data Sheet Clarification documents.
1950 	 *
1951 	 * Document notes: Before configuring the PHY MMD registers, it is
1952 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1953 	 * disabled by writing to register 0xN100-0xN101. After writing the
1954 	 * MMD registers, and after all errata workarounds that involve PHY
1955 	 * register settings, write register 0xN100-0xN101 again to enable
1956 	 * and restart auto-negotiation.
1957 	 */
1958 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1959 	if (err)
1960 		return err;
1961 
1962 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1963 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1964 
1965 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1966 		if (err)
1967 			return err;
1968 	}
1969 
1970 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1971 	 * in this switch shall be regarded as broken.
1972 	 */
1973 	if (phydev->dev_flags & MICREL_NO_EEE)
1974 		phydev->eee_broken_modes = -1;
1975 
1976 	err = genphy_restart_aneg(phydev);
1977 	if (err)
1978 		return err;
1979 
1980 	return kszphy_config_init(phydev);
1981 }
1982 
1983 static int kszphy_get_sset_count(struct phy_device *phydev)
1984 {
1985 	return ARRAY_SIZE(kszphy_hw_stats);
1986 }
1987 
1988 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1989 {
1990 	int i;
1991 
1992 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1993 		strscpy(data + i * ETH_GSTRING_LEN,
1994 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1995 	}
1996 }
1997 
1998 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1999 {
2000 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2001 	struct kszphy_priv *priv = phydev->priv;
2002 	int val;
2003 	u64 ret;
2004 
2005 	val = phy_read(phydev, stat.reg);
2006 	if (val < 0) {
2007 		ret = U64_MAX;
2008 	} else {
2009 		val = val & ((1 << stat.bits) - 1);
2010 		priv->stats[i] += val;
2011 		ret = priv->stats[i];
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 static void kszphy_get_stats(struct phy_device *phydev,
2018 			     struct ethtool_stats *stats, u64 *data)
2019 {
2020 	int i;
2021 
2022 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2023 		data[i] = kszphy_get_stat(phydev, i);
2024 }
2025 
2026 static int kszphy_suspend(struct phy_device *phydev)
2027 {
2028 	/* Disable PHY Interrupts */
2029 	if (phy_interrupt_is_valid(phydev)) {
2030 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2031 		if (phydev->drv->config_intr)
2032 			phydev->drv->config_intr(phydev);
2033 	}
2034 
2035 	return genphy_suspend(phydev);
2036 }
2037 
2038 static void kszphy_parse_led_mode(struct phy_device *phydev)
2039 {
2040 	const struct kszphy_type *type = phydev->drv->driver_data;
2041 	const struct device_node *np = phydev->mdio.dev.of_node;
2042 	struct kszphy_priv *priv = phydev->priv;
2043 	int ret;
2044 
2045 	if (type && type->led_mode_reg) {
2046 		ret = of_property_read_u32(np, "micrel,led-mode",
2047 					   &priv->led_mode);
2048 
2049 		if (ret)
2050 			priv->led_mode = -1;
2051 
2052 		if (priv->led_mode > 3) {
2053 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2054 				   priv->led_mode);
2055 			priv->led_mode = -1;
2056 		}
2057 	} else {
2058 		priv->led_mode = -1;
2059 	}
2060 }
2061 
2062 static int kszphy_resume(struct phy_device *phydev)
2063 {
2064 	int ret;
2065 
2066 	genphy_resume(phydev);
2067 
2068 	/* After switching from power-down to normal mode, an internal global
2069 	 * reset is automatically generated. Wait a minimum of 1 ms before
2070 	 * read/write access to the PHY registers.
2071 	 */
2072 	usleep_range(1000, 2000);
2073 
2074 	ret = kszphy_config_reset(phydev);
2075 	if (ret)
2076 		return ret;
2077 
2078 	/* Enable PHY Interrupts */
2079 	if (phy_interrupt_is_valid(phydev)) {
2080 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2081 		if (phydev->drv->config_intr)
2082 			phydev->drv->config_intr(phydev);
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static int kszphy_probe(struct phy_device *phydev)
2089 {
2090 	const struct kszphy_type *type = phydev->drv->driver_data;
2091 	const struct device_node *np = phydev->mdio.dev.of_node;
2092 	struct kszphy_priv *priv;
2093 	struct clk *clk;
2094 
2095 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2096 	if (!priv)
2097 		return -ENOMEM;
2098 
2099 	phydev->priv = priv;
2100 
2101 	priv->type = type;
2102 
2103 	kszphy_parse_led_mode(phydev);
2104 
2105 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2106 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2107 	if (!IS_ERR_OR_NULL(clk)) {
2108 		unsigned long rate = clk_get_rate(clk);
2109 		bool rmii_ref_clk_sel_25_mhz;
2110 
2111 		if (type)
2112 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2113 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2114 				"micrel,rmii-reference-clock-select-25-mhz");
2115 
2116 		if (rate > 24500000 && rate < 25500000) {
2117 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2118 		} else if (rate > 49500000 && rate < 50500000) {
2119 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2120 		} else {
2121 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2122 				   rate);
2123 			return -EINVAL;
2124 		}
2125 	} else if (!clk) {
2126 		/* unnamed clock from the generic ethernet-phy binding */
2127 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2128 		if (IS_ERR(clk))
2129 			return PTR_ERR(clk);
2130 	}
2131 
2132 	if (ksz8041_fiber_mode(phydev))
2133 		phydev->port = PORT_FIBRE;
2134 
2135 	/* Support legacy board-file configuration */
2136 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2137 		priv->rmii_ref_clk_sel = true;
2138 		priv->rmii_ref_clk_sel_val = true;
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 static int lan8814_cable_test_start(struct phy_device *phydev)
2145 {
2146 	/* If autoneg is enabled, we won't be able to test cross pair
2147 	 * short. In this case, the PHY will "detect" a link and
2148 	 * confuse the internal state machine - disable auto neg here.
2149 	 * Set the speed to 1000mbit and full duplex.
2150 	 */
2151 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2152 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2153 }
2154 
2155 static int ksz886x_cable_test_start(struct phy_device *phydev)
2156 {
2157 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2158 		return -EOPNOTSUPP;
2159 
2160 	/* If autoneg is enabled, we won't be able to test cross pair
2161 	 * short. In this case, the PHY will "detect" a link and
2162 	 * confuse the internal state machine - disable auto neg here.
2163 	 * If autoneg is disabled, we should set the speed to 10mbit.
2164 	 */
2165 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2166 }
2167 
2168 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2169 {
2170 	switch (FIELD_GET(mask, status)) {
2171 	case KSZ8081_LMD_STAT_NORMAL:
2172 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2173 	case KSZ8081_LMD_STAT_SHORT:
2174 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2175 	case KSZ8081_LMD_STAT_OPEN:
2176 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2177 	case KSZ8081_LMD_STAT_FAIL:
2178 		fallthrough;
2179 	default:
2180 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2181 	}
2182 }
2183 
2184 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2185 {
2186 	return FIELD_GET(mask, status) ==
2187 		KSZ8081_LMD_STAT_FAIL;
2188 }
2189 
2190 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2191 {
2192 	switch (FIELD_GET(mask, status)) {
2193 	case KSZ8081_LMD_STAT_OPEN:
2194 		fallthrough;
2195 	case KSZ8081_LMD_STAT_SHORT:
2196 		return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2202 							   u16 status, u16 data_mask)
2203 {
2204 	int dt;
2205 
2206 	/* According to the data sheet the distance to the fault is
2207 	 * DELTA_TIME * 0.4 meters for ksz phys.
2208 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2209 	 */
2210 	dt = FIELD_GET(data_mask, status);
2211 
2212 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2213 		return ((dt - 22) * 800) / 10;
2214 	else
2215 		return (dt * 400) / 10;
2216 }
2217 
2218 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2219 {
2220 	const struct kszphy_type *type = phydev->drv->driver_data;
2221 	int val, ret;
2222 
2223 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2224 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2225 				    30000, 100000, true);
2226 
2227 	return ret < 0 ? ret : 0;
2228 }
2229 
2230 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2231 {
2232 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2233 					    ETHTOOL_A_CABLE_PAIR_B,
2234 					    ETHTOOL_A_CABLE_PAIR_C,
2235 					    ETHTOOL_A_CABLE_PAIR_D,
2236 					  };
2237 	u32 fault_length;
2238 	int ret;
2239 	int val;
2240 
2241 	val = KSZ8081_LMD_ENABLE_TEST;
2242 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2243 
2244 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2245 	if (ret < 0)
2246 		return ret;
2247 
2248 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2249 	if (ret)
2250 		return ret;
2251 
2252 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2253 	if (val < 0)
2254 		return val;
2255 
2256 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2257 		return -EAGAIN;
2258 
2259 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2260 				      ksz886x_cable_test_result_trans(val,
2261 								      LAN8814_CABLE_DIAG_STAT_MASK
2262 								      ));
2263 	if (ret)
2264 		return ret;
2265 
2266 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2267 		return 0;
2268 
2269 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2270 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2271 
2272 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2273 }
2274 
2275 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2276 {
2277 	static const int ethtool_pair[] = {
2278 		ETHTOOL_A_CABLE_PAIR_A,
2279 		ETHTOOL_A_CABLE_PAIR_B,
2280 	};
2281 	int ret, val, mdix;
2282 	u32 fault_length;
2283 
2284 	/* There is no way to choice the pair, like we do one ksz9031.
2285 	 * We can workaround this limitation by using the MDI-X functionality.
2286 	 */
2287 	if (pair == 0)
2288 		mdix = ETH_TP_MDI;
2289 	else
2290 		mdix = ETH_TP_MDI_X;
2291 
2292 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2293 	case PHY_ID_KSZ8081:
2294 		ret = ksz8081_config_mdix(phydev, mdix);
2295 		break;
2296 	case PHY_ID_KSZ886X:
2297 		ret = ksz886x_config_mdix(phydev, mdix);
2298 		break;
2299 	default:
2300 		ret = -ENODEV;
2301 	}
2302 
2303 	if (ret)
2304 		return ret;
2305 
2306 	/* Now we are ready to fire. This command will send a 100ns pulse
2307 	 * to the pair.
2308 	 */
2309 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2310 	if (ret)
2311 		return ret;
2312 
2313 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2314 	if (ret)
2315 		return ret;
2316 
2317 	val = phy_read(phydev, KSZ8081_LMD);
2318 	if (val < 0)
2319 		return val;
2320 
2321 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2322 		return -EAGAIN;
2323 
2324 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2325 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2326 	if (ret)
2327 		return ret;
2328 
2329 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2330 		return 0;
2331 
2332 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2333 
2334 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2335 }
2336 
2337 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2338 					 bool *finished)
2339 {
2340 	const struct kszphy_type *type = phydev->drv->driver_data;
2341 	unsigned long pair_mask = type->pair_mask;
2342 	int retries = 20;
2343 	int ret = 0;
2344 	int pair;
2345 
2346 	*finished = false;
2347 
2348 	/* Try harder if link partner is active */
2349 	while (pair_mask && retries--) {
2350 		for_each_set_bit(pair, &pair_mask, 4) {
2351 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2352 				ret = lan8814_cable_test_one_pair(phydev, pair);
2353 			else
2354 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2355 			if (ret == -EAGAIN)
2356 				continue;
2357 			if (ret < 0)
2358 				return ret;
2359 			clear_bit(pair, &pair_mask);
2360 		}
2361 		/* If link partner is in autonegotiation mode it will send 2ms
2362 		 * of FLPs with at least 6ms of silence.
2363 		 * Add 2ms sleep to have better chances to hit this silence.
2364 		 */
2365 		if (pair_mask)
2366 			msleep(2);
2367 	}
2368 
2369 	*finished = true;
2370 
2371 	return ret;
2372 }
2373 
2374 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2375 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2376 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2377 
2378 #define LAN8814_QSGMII_SOFT_RESET			0x43
2379 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2380 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2381 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2382 #define LAN8814_ALIGN_SWAP				0x4a
2383 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2384 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2385 
2386 #define LAN8804_ALIGN_SWAP				0x4a
2387 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2388 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2389 #define LAN8814_CLOCK_MANAGEMENT			0xd
2390 #define LAN8814_LINK_QUALITY				0x8e
2391 
2392 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2393 {
2394 	int data;
2395 
2396 	phy_lock_mdio_bus(phydev);
2397 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2398 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2399 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2400 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2401 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2402 	phy_unlock_mdio_bus(phydev);
2403 
2404 	return data;
2405 }
2406 
2407 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2408 				 u16 val)
2409 {
2410 	phy_lock_mdio_bus(phydev);
2411 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2412 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2413 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2414 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2415 
2416 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2417 	if (val != 0)
2418 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2419 			   val);
2420 	phy_unlock_mdio_bus(phydev);
2421 	return val;
2422 }
2423 
2424 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2425 {
2426 	u16 val = 0;
2427 
2428 	if (enable)
2429 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2430 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2431 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2432 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2433 
2434 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2435 }
2436 
2437 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2438 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2439 {
2440 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2441 	*seconds = (*seconds << 16) |
2442 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2443 
2444 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2445 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2446 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2447 
2448 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2449 }
2450 
2451 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2452 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2453 {
2454 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2455 	*seconds = *seconds << 16 |
2456 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2457 
2458 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2459 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2460 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2461 
2462 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2463 }
2464 
2465 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2466 {
2467 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2468 	struct phy_device *phydev = ptp_priv->phydev;
2469 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2470 
2471 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2472 				SOF_TIMESTAMPING_RX_HARDWARE |
2473 				SOF_TIMESTAMPING_RAW_HARDWARE;
2474 
2475 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2476 
2477 	info->tx_types =
2478 		(1 << HWTSTAMP_TX_OFF) |
2479 		(1 << HWTSTAMP_TX_ON) |
2480 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2481 
2482 	info->rx_filters =
2483 		(1 << HWTSTAMP_FILTER_NONE) |
2484 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2485 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2486 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2487 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2488 
2489 	return 0;
2490 }
2491 
2492 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2493 {
2494 	int i;
2495 
2496 	for (i = 0; i < FIFO_SIZE; ++i)
2497 		lanphy_read_page_reg(phydev, 5,
2498 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2499 
2500 	/* Read to clear overflow status bit */
2501 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2502 }
2503 
2504 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2505 			    struct kernel_hwtstamp_config *config,
2506 			    struct netlink_ext_ack *extack)
2507 {
2508 	struct kszphy_ptp_priv *ptp_priv =
2509 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2510 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2511 	int txcfg = 0, rxcfg = 0;
2512 	int pkt_ts_enable;
2513 	int tx_mod;
2514 
2515 	ptp_priv->hwts_tx_type = config->tx_type;
2516 	ptp_priv->rx_filter = config->rx_filter;
2517 
2518 	switch (config->rx_filter) {
2519 	case HWTSTAMP_FILTER_NONE:
2520 		ptp_priv->layer = 0;
2521 		ptp_priv->version = 0;
2522 		break;
2523 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2524 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2525 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2526 		ptp_priv->layer = PTP_CLASS_L4;
2527 		ptp_priv->version = PTP_CLASS_V2;
2528 		break;
2529 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2530 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2531 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2532 		ptp_priv->layer = PTP_CLASS_L2;
2533 		ptp_priv->version = PTP_CLASS_V2;
2534 		break;
2535 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2536 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2537 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2538 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2539 		ptp_priv->version = PTP_CLASS_V2;
2540 		break;
2541 	default:
2542 		return -ERANGE;
2543 	}
2544 
2545 	if (ptp_priv->layer & PTP_CLASS_L2) {
2546 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2547 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2548 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2549 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2550 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2551 	}
2552 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2553 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2554 
2555 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2556 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2557 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2558 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2559 
2560 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2561 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2562 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2563 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2564 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2565 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2566 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2567 	}
2568 
2569 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2570 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2571 	else
2572 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2573 
2574 	/* In case of multiple starts and stops, these needs to be cleared */
2575 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2576 		list_del(&rx_ts->list);
2577 		kfree(rx_ts);
2578 	}
2579 	skb_queue_purge(&ptp_priv->rx_queue);
2580 	skb_queue_purge(&ptp_priv->tx_queue);
2581 
2582 	lan8814_flush_fifo(ptp_priv->phydev, false);
2583 	lan8814_flush_fifo(ptp_priv->phydev, true);
2584 
2585 	return 0;
2586 }
2587 
2588 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2589 			     struct sk_buff *skb, int type)
2590 {
2591 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2592 
2593 	switch (ptp_priv->hwts_tx_type) {
2594 	case HWTSTAMP_TX_ONESTEP_SYNC:
2595 		if (ptp_msg_is_sync(skb, type)) {
2596 			kfree_skb(skb);
2597 			return;
2598 		}
2599 		fallthrough;
2600 	case HWTSTAMP_TX_ON:
2601 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2602 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2603 		break;
2604 	case HWTSTAMP_TX_OFF:
2605 	default:
2606 		kfree_skb(skb);
2607 		break;
2608 	}
2609 }
2610 
2611 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2612 {
2613 	struct ptp_header *ptp_header;
2614 	u32 type;
2615 
2616 	skb_push(skb, ETH_HLEN);
2617 	type = ptp_classify_raw(skb);
2618 	ptp_header = ptp_parse_header(skb, type);
2619 	skb_pull_inline(skb, ETH_HLEN);
2620 
2621 	if (!ptp_header)
2622 		return false;
2623 
2624 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2625 	return true;
2626 }
2627 
2628 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2629 				 struct sk_buff *skb)
2630 {
2631 	struct skb_shared_hwtstamps *shhwtstamps;
2632 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2633 	unsigned long flags;
2634 	bool ret = false;
2635 	u16 skb_sig;
2636 
2637 	if (!lan8814_get_sig_rx(skb, &skb_sig))
2638 		return ret;
2639 
2640 	/* Iterate over all RX timestamps and match it with the received skbs */
2641 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2642 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2643 		/* Check if we found the signature we were looking for. */
2644 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2645 			continue;
2646 
2647 		shhwtstamps = skb_hwtstamps(skb);
2648 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2649 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2650 						  rx_ts->nsec);
2651 		list_del(&rx_ts->list);
2652 		kfree(rx_ts);
2653 
2654 		ret = true;
2655 		break;
2656 	}
2657 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2658 
2659 	if (ret)
2660 		netif_rx(skb);
2661 	return ret;
2662 }
2663 
2664 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2665 {
2666 	struct kszphy_ptp_priv *ptp_priv =
2667 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2668 
2669 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2670 	    type == PTP_CLASS_NONE)
2671 		return false;
2672 
2673 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2674 		return false;
2675 
2676 	/* If we failed to match then add it to the queue for when the timestamp
2677 	 * will come
2678 	 */
2679 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2680 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2681 
2682 	return true;
2683 }
2684 
2685 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2686 				  time64_t sec, u32 nsec)
2687 {
2688 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2689 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2690 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2691 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2692 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2693 
2694 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2695 }
2696 
2697 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2698 				  time64_t *sec, u32 *nsec)
2699 {
2700 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2701 
2702 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2703 	*sec <<= 16;
2704 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2705 	*sec <<= 16;
2706 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2707 
2708 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2709 	*nsec <<= 16;
2710 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2711 }
2712 
2713 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2714 				   struct timespec64 *ts)
2715 {
2716 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2717 							  ptp_clock_info);
2718 	struct phy_device *phydev = shared->phydev;
2719 	u32 nano_seconds;
2720 	time64_t seconds;
2721 
2722 	mutex_lock(&shared->shared_lock);
2723 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2724 	mutex_unlock(&shared->shared_lock);
2725 	ts->tv_sec = seconds;
2726 	ts->tv_nsec = nano_seconds;
2727 
2728 	return 0;
2729 }
2730 
2731 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2732 				   const struct timespec64 *ts)
2733 {
2734 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2735 							  ptp_clock_info);
2736 	struct phy_device *phydev = shared->phydev;
2737 
2738 	mutex_lock(&shared->shared_lock);
2739 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2740 	mutex_unlock(&shared->shared_lock);
2741 
2742 	return 0;
2743 }
2744 
2745 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2746 				   s64 start_sec, u32 start_nsec)
2747 {
2748 	/* Set the start time */
2749 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2750 			      lower_16_bits(start_sec));
2751 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2752 			      upper_16_bits(start_sec));
2753 
2754 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2755 			      lower_16_bits(start_nsec));
2756 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2757 			      upper_16_bits(start_nsec) & 0x3fff);
2758 }
2759 
2760 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2761 {
2762 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2763 			       sec + LAN8814_BUFFER_TIME, 0);
2764 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2765 			       sec + LAN8814_BUFFER_TIME, 0);
2766 }
2767 
2768 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2769 				   s64 time_step_ns)
2770 {
2771 	u32 nano_seconds_step;
2772 	u64 abs_time_step_ns;
2773 	time64_t set_seconds;
2774 	u32 nano_seconds;
2775 	u32 remainder;
2776 	s32 seconds;
2777 
2778 	if (time_step_ns >  15000000000LL) {
2779 		/* convert to clock set */
2780 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2781 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2782 					   &remainder);
2783 		nano_seconds += remainder;
2784 		if (nano_seconds >= 1000000000) {
2785 			set_seconds++;
2786 			nano_seconds -= 1000000000;
2787 		}
2788 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2789 		lan8814_ptp_update_target(phydev, set_seconds);
2790 		return;
2791 	} else if (time_step_ns < -15000000000LL) {
2792 		/* convert to clock set */
2793 		time_step_ns = -time_step_ns;
2794 
2795 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2796 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2797 					   &remainder);
2798 		nano_seconds_step = remainder;
2799 		if (nano_seconds < nano_seconds_step) {
2800 			set_seconds--;
2801 			nano_seconds += 1000000000;
2802 		}
2803 		nano_seconds -= nano_seconds_step;
2804 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2805 		lan8814_ptp_update_target(phydev, set_seconds);
2806 		return;
2807 	}
2808 
2809 	/* do clock step */
2810 	if (time_step_ns >= 0) {
2811 		abs_time_step_ns = (u64)time_step_ns;
2812 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2813 					   &remainder);
2814 		nano_seconds = remainder;
2815 	} else {
2816 		abs_time_step_ns = (u64)(-time_step_ns);
2817 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2818 			    &remainder));
2819 		nano_seconds = remainder;
2820 		if (nano_seconds > 0) {
2821 			/* subtracting nano seconds is not allowed
2822 			 * convert to subtracting from seconds,
2823 			 * and adding to nanoseconds
2824 			 */
2825 			seconds--;
2826 			nano_seconds = (1000000000 - nano_seconds);
2827 		}
2828 	}
2829 
2830 	if (nano_seconds > 0) {
2831 		/* add 8 ns to cover the likely normal increment */
2832 		nano_seconds += 8;
2833 	}
2834 
2835 	if (nano_seconds >= 1000000000) {
2836 		/* carry into seconds */
2837 		seconds++;
2838 		nano_seconds -= 1000000000;
2839 	}
2840 
2841 	while (seconds) {
2842 		u32 nsec;
2843 
2844 		if (seconds > 0) {
2845 			u32 adjustment_value = (u32)seconds;
2846 			u16 adjustment_value_lo, adjustment_value_hi;
2847 
2848 			if (adjustment_value > 0xF)
2849 				adjustment_value = 0xF;
2850 
2851 			adjustment_value_lo = adjustment_value & 0xffff;
2852 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2853 
2854 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2855 					      adjustment_value_lo);
2856 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2857 					      PTP_LTC_STEP_ADJ_DIR_ |
2858 					      adjustment_value_hi);
2859 			seconds -= ((s32)adjustment_value);
2860 
2861 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2862 			set_seconds -= adjustment_value;
2863 			lan8814_ptp_update_target(phydev, set_seconds);
2864 		} else {
2865 			u32 adjustment_value = (u32)(-seconds);
2866 			u16 adjustment_value_lo, adjustment_value_hi;
2867 
2868 			if (adjustment_value > 0xF)
2869 				adjustment_value = 0xF;
2870 
2871 			adjustment_value_lo = adjustment_value & 0xffff;
2872 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2873 
2874 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2875 					      adjustment_value_lo);
2876 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2877 					      adjustment_value_hi);
2878 			seconds += ((s32)adjustment_value);
2879 
2880 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2881 			set_seconds += adjustment_value;
2882 			lan8814_ptp_update_target(phydev, set_seconds);
2883 		}
2884 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2885 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2886 	}
2887 	if (nano_seconds) {
2888 		u16 nano_seconds_lo;
2889 		u16 nano_seconds_hi;
2890 
2891 		nano_seconds_lo = nano_seconds & 0xffff;
2892 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2893 
2894 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2895 				      nano_seconds_lo);
2896 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2897 				      PTP_LTC_STEP_ADJ_DIR_ |
2898 				      nano_seconds_hi);
2899 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2900 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2901 	}
2902 }
2903 
2904 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2905 {
2906 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2907 							  ptp_clock_info);
2908 	struct phy_device *phydev = shared->phydev;
2909 
2910 	mutex_lock(&shared->shared_lock);
2911 	lan8814_ptp_clock_step(phydev, delta);
2912 	mutex_unlock(&shared->shared_lock);
2913 
2914 	return 0;
2915 }
2916 
2917 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2918 {
2919 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2920 							  ptp_clock_info);
2921 	struct phy_device *phydev = shared->phydev;
2922 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2923 	bool positive = true;
2924 	u32 kszphy_rate_adj;
2925 
2926 	if (scaled_ppm < 0) {
2927 		scaled_ppm = -scaled_ppm;
2928 		positive = false;
2929 	}
2930 
2931 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2932 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2933 
2934 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2935 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2936 
2937 	if (positive)
2938 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2939 
2940 	mutex_lock(&shared->shared_lock);
2941 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2942 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2943 	mutex_unlock(&shared->shared_lock);
2944 
2945 	return 0;
2946 }
2947 
2948 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
2949 				   s64 period_sec, u32 period_nsec)
2950 {
2951 	lanphy_write_page_reg(phydev, 4,
2952 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
2953 			      lower_16_bits(period_sec));
2954 	lanphy_write_page_reg(phydev, 4,
2955 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
2956 			      upper_16_bits(period_sec));
2957 
2958 	lanphy_write_page_reg(phydev, 4,
2959 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
2960 			      lower_16_bits(period_nsec));
2961 	lanphy_write_page_reg(phydev, 4,
2962 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
2963 			      upper_16_bits(period_nsec) & 0x3fff);
2964 }
2965 
2966 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
2967 				     int pulse_width)
2968 {
2969 	u16 val;
2970 
2971 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
2972 	/* Set the pulse width of the event */
2973 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
2974 	/* Make sure that the target clock will be incremented each time when
2975 	 * local time reaches or pass it
2976 	 */
2977 	val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
2978 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
2979 	/* Set the polarity high */
2980 	val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
2981 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
2982 }
2983 
2984 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
2985 {
2986 	u16 val;
2987 
2988 	/* Set target to too far in the future, effectively disabling it */
2989 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
2990 
2991 	/* And then reload once it recheas the target */
2992 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
2993 	val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
2994 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
2995 }
2996 
2997 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
2998 {
2999 	u16 val;
3000 
3001 	/* Disable gpio alternate function,
3002 	 * 1: select as gpio,
3003 	 * 0: select alt func
3004 	 */
3005 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3006 	val |= LAN8814_GPIO_EN_BIT(pin);
3007 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3008 
3009 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3010 	val &= ~LAN8814_GPIO_DIR_BIT(pin);
3011 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3012 
3013 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3014 	val &= ~LAN8814_GPIO_BUF_BIT(pin);
3015 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3016 }
3017 
3018 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3019 {
3020 	int val;
3021 
3022 	/* Set as gpio output */
3023 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3024 	val |= LAN8814_GPIO_DIR_BIT(pin);
3025 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3026 
3027 	/* Enable gpio 0:for alternate function, 1:gpio */
3028 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3029 	val &= ~LAN8814_GPIO_EN_BIT(pin);
3030 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3031 
3032 	/* Set buffer type to push pull */
3033 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3034 	val |= LAN8814_GPIO_BUF_BIT(pin);
3035 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3036 }
3037 
3038 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3039 			      struct ptp_clock_request *rq, int on)
3040 {
3041 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3042 							  ptp_clock_info);
3043 	struct phy_device *phydev = shared->phydev;
3044 	struct timespec64 ts_on, ts_period;
3045 	s64 on_nsec, period_nsec;
3046 	int pulse_width;
3047 	int pin, event;
3048 
3049 	/* Reject requests with unsupported flags */
3050 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
3051 		return -EOPNOTSUPP;
3052 
3053 	mutex_lock(&shared->shared_lock);
3054 	event = rq->perout.index;
3055 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3056 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3057 		mutex_unlock(&shared->shared_lock);
3058 		return -EBUSY;
3059 	}
3060 
3061 	if (!on) {
3062 		lan8814_ptp_perout_off(phydev, pin);
3063 		lan8814_ptp_disable_event(phydev, event);
3064 		mutex_unlock(&shared->shared_lock);
3065 		return 0;
3066 	}
3067 
3068 	ts_on.tv_sec = rq->perout.on.sec;
3069 	ts_on.tv_nsec = rq->perout.on.nsec;
3070 	on_nsec = timespec64_to_ns(&ts_on);
3071 
3072 	ts_period.tv_sec = rq->perout.period.sec;
3073 	ts_period.tv_nsec = rq->perout.period.nsec;
3074 	period_nsec = timespec64_to_ns(&ts_period);
3075 
3076 	if (period_nsec < 200) {
3077 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3078 				    phydev_name(phydev));
3079 		mutex_unlock(&shared->shared_lock);
3080 		return -EOPNOTSUPP;
3081 	}
3082 
3083 	if (on_nsec >= period_nsec) {
3084 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3085 				    phydev_name(phydev));
3086 		mutex_unlock(&shared->shared_lock);
3087 		return -EINVAL;
3088 	}
3089 
3090 	switch (on_nsec) {
3091 	case 200000000:
3092 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3093 		break;
3094 	case 100000000:
3095 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3096 		break;
3097 	case 50000000:
3098 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3099 		break;
3100 	case 10000000:
3101 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3102 		break;
3103 	case 5000000:
3104 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3105 		break;
3106 	case 1000000:
3107 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3108 		break;
3109 	case 500000:
3110 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3111 		break;
3112 	case 100000:
3113 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3114 		break;
3115 	case 50000:
3116 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3117 		break;
3118 	case 10000:
3119 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3120 		break;
3121 	case 5000:
3122 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3123 		break;
3124 	case 1000:
3125 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3126 		break;
3127 	case 500:
3128 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3129 		break;
3130 	case 100:
3131 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3132 		break;
3133 	default:
3134 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3135 				    phydev_name(phydev));
3136 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3137 		break;
3138 	}
3139 
3140 	/* Configure to pulse every period */
3141 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3142 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3143 			       rq->perout.start.nsec);
3144 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3145 			       rq->perout.period.nsec);
3146 	lan8814_ptp_perout_on(phydev, pin);
3147 	mutex_unlock(&shared->shared_lock);
3148 
3149 	return 0;
3150 }
3151 
3152 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3153 {
3154 	u16 tmp;
3155 
3156 	/* Set as gpio input */
3157 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3158 	tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3159 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3160 
3161 	/* Map the pin to ltc pin 0 of the capture map registers */
3162 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3163 	tmp |= pin;
3164 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3165 
3166 	/* Enable capture on the edges of the ltc pin */
3167 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3168 	if (flags & PTP_RISING_EDGE)
3169 		tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3170 	if (flags & PTP_FALLING_EDGE)
3171 		tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3172 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3173 
3174 	/* Enable interrupt top interrupt */
3175 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3176 	tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3177 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3178 }
3179 
3180 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3181 {
3182 	u16 tmp;
3183 
3184 	/* Set as gpio out */
3185 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3186 	tmp |= LAN8814_GPIO_DIR_BIT(pin);
3187 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3188 
3189 	/* Enable alternate, 0:for alternate function, 1:gpio */
3190 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3191 	tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3192 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3193 
3194 	/* Clear the mapping of pin to registers 0 of the capture registers */
3195 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3196 	tmp &= ~GENMASK(3, 0);
3197 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3198 
3199 	/* Disable capture on both of the edges */
3200 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3201 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3202 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3203 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3204 
3205 	/* Disable interrupt top interrupt */
3206 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3207 	tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3208 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3209 }
3210 
3211 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3212 			     struct ptp_clock_request *rq, int on)
3213 {
3214 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3215 							  ptp_clock_info);
3216 	struct phy_device *phydev = shared->phydev;
3217 	int pin;
3218 
3219 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
3220 				PTP_EXTTS_EDGES |
3221 				PTP_STRICT_FLAGS))
3222 		return -EOPNOTSUPP;
3223 
3224 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3225 			   rq->extts.index);
3226 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3227 		return -EINVAL;
3228 
3229 	mutex_lock(&shared->shared_lock);
3230 	if (on)
3231 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3232 	else
3233 		lan8814_ptp_extts_off(phydev, pin);
3234 
3235 	mutex_unlock(&shared->shared_lock);
3236 
3237 	return 0;
3238 }
3239 
3240 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3241 				struct ptp_clock_request *rq, int on)
3242 {
3243 	switch (rq->type) {
3244 	case PTP_CLK_REQ_PEROUT:
3245 		return lan8814_ptp_perout(ptpci, rq, on);
3246 	case PTP_CLK_REQ_EXTTS:
3247 		return lan8814_ptp_extts(ptpci, rq, on);
3248 	default:
3249 		return -EINVAL;
3250 	}
3251 }
3252 
3253 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3254 				enum ptp_pin_function func, unsigned int chan)
3255 {
3256 	switch (func) {
3257 	case PTP_PF_NONE:
3258 	case PTP_PF_PEROUT:
3259 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3260 		 * there is only chan 0 (event A) and for pin 1 there is only
3261 		 * chan 1 (event B)
3262 		 */
3263 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3264 			return -1;
3265 		break;
3266 	case PTP_PF_EXTTS:
3267 		if (pin != LAN8814_PTP_EXTTS_NUM)
3268 			return -1;
3269 		break;
3270 	default:
3271 		return -1;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3278 {
3279 	struct ptp_header *ptp_header;
3280 	u32 type;
3281 
3282 	type = ptp_classify_raw(skb);
3283 	ptp_header = ptp_parse_header(skb, type);
3284 
3285 	if (!ptp_header)
3286 		return false;
3287 
3288 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3289 	return true;
3290 }
3291 
3292 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3293 				 u32 seconds, u32 nsec, u16 seq_id)
3294 {
3295 	struct skb_shared_hwtstamps shhwtstamps;
3296 	struct sk_buff *skb, *skb_tmp;
3297 	unsigned long flags;
3298 	bool ret = false;
3299 	u16 skb_sig;
3300 
3301 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3302 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3303 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3304 			continue;
3305 
3306 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3307 			continue;
3308 
3309 		__skb_unlink(skb, &ptp_priv->tx_queue);
3310 		ret = true;
3311 		break;
3312 	}
3313 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3314 
3315 	if (ret) {
3316 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3317 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3318 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3319 	}
3320 }
3321 
3322 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3323 {
3324 	struct phy_device *phydev = ptp_priv->phydev;
3325 	u32 seconds, nsec;
3326 	u16 seq_id;
3327 
3328 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3329 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3330 }
3331 
3332 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3333 {
3334 	struct phy_device *phydev = ptp_priv->phydev;
3335 	u32 reg;
3336 
3337 	do {
3338 		lan8814_dequeue_tx_skb(ptp_priv);
3339 
3340 		/* If other timestamps are available in the FIFO,
3341 		 * process them.
3342 		 */
3343 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3344 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3345 }
3346 
3347 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3348 			      struct lan8814_ptp_rx_ts *rx_ts)
3349 {
3350 	struct skb_shared_hwtstamps *shhwtstamps;
3351 	struct sk_buff *skb, *skb_tmp;
3352 	unsigned long flags;
3353 	bool ret = false;
3354 	u16 skb_sig;
3355 
3356 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3357 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3358 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3359 			continue;
3360 
3361 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3362 			continue;
3363 
3364 		__skb_unlink(skb, &ptp_priv->rx_queue);
3365 
3366 		ret = true;
3367 		break;
3368 	}
3369 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3370 
3371 	if (ret) {
3372 		shhwtstamps = skb_hwtstamps(skb);
3373 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3374 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3375 		netif_rx(skb);
3376 	}
3377 
3378 	return ret;
3379 }
3380 
3381 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3382 				struct lan8814_ptp_rx_ts *rx_ts)
3383 {
3384 	unsigned long flags;
3385 
3386 	/* If we failed to match the skb add it to the queue for when
3387 	 * the frame will come
3388 	 */
3389 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3390 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3391 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3392 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3393 	} else {
3394 		kfree(rx_ts);
3395 	}
3396 }
3397 
3398 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3399 {
3400 	struct phy_device *phydev = ptp_priv->phydev;
3401 	struct lan8814_ptp_rx_ts *rx_ts;
3402 	u32 reg;
3403 
3404 	do {
3405 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3406 		if (!rx_ts)
3407 			return;
3408 
3409 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3410 				      &rx_ts->seq_id);
3411 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3412 
3413 		/* If other timestamps are available in the FIFO,
3414 		 * process them.
3415 		 */
3416 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3417 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3418 }
3419 
3420 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3421 {
3422 	struct kszphy_priv *priv = phydev->priv;
3423 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3424 
3425 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3426 		lan8814_get_tx_ts(ptp_priv);
3427 
3428 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3429 		lan8814_get_rx_ts(ptp_priv);
3430 
3431 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3432 		lan8814_flush_fifo(phydev, true);
3433 		skb_queue_purge(&ptp_priv->tx_queue);
3434 	}
3435 
3436 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3437 		lan8814_flush_fifo(phydev, false);
3438 		skb_queue_purge(&ptp_priv->rx_queue);
3439 	}
3440 }
3441 
3442 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3443 {
3444 	struct phy_device *phydev = shared->phydev;
3445 	struct ptp_clock_event ptp_event = {0};
3446 	unsigned long nsec;
3447 	s64 sec;
3448 	u16 tmp;
3449 
3450 	/* This is 0 because whatever was the input pin it was mapped it to
3451 	 * ltc gpio pin 0
3452 	 */
3453 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3454 	tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3455 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3456 
3457 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3458 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3459 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3460 		return -1;
3461 
3462 	if (tmp & BIT(0)) {
3463 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3464 		sec <<= 16;
3465 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3466 
3467 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3468 		nsec <<= 16;
3469 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3470 	} else {
3471 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3472 		sec <<= 16;
3473 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3474 
3475 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3476 		nsec <<= 16;
3477 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3478 	}
3479 
3480 	ptp_event.index = 0;
3481 	ptp_event.timestamp = ktime_set(sec, nsec);
3482 	ptp_event.type = PTP_CLOCK_EXTTS;
3483 	ptp_clock_event(shared->ptp_clock, &ptp_event);
3484 
3485 	return 0;
3486 }
3487 
3488 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3489 {
3490 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3491 	int ret;
3492 
3493 	mutex_lock(&shared->shared_lock);
3494 	ret = lan8814_gpio_process_cap(shared);
3495 	mutex_unlock(&shared->shared_lock);
3496 
3497 	return ret;
3498 }
3499 
3500 static int lan8804_config_init(struct phy_device *phydev)
3501 {
3502 	int val;
3503 
3504 	/* MDI-X setting for swap A,B transmit */
3505 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3506 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3507 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3508 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3509 
3510 	/* Make sure that the PHY will not stop generating the clock when the
3511 	 * link partner goes down
3512 	 */
3513 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3514 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3515 
3516 	return 0;
3517 }
3518 
3519 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3520 {
3521 	int status;
3522 
3523 	status = phy_read(phydev, LAN8814_INTS);
3524 	if (status < 0) {
3525 		phy_error(phydev);
3526 		return IRQ_NONE;
3527 	}
3528 
3529 	if (status > 0)
3530 		phy_trigger_machine(phydev);
3531 
3532 	return IRQ_HANDLED;
3533 }
3534 
3535 #define LAN8804_OUTPUT_CONTROL			25
3536 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3537 #define LAN8804_CONTROL				31
3538 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3539 
3540 static int lan8804_config_intr(struct phy_device *phydev)
3541 {
3542 	int err;
3543 
3544 	/* This is an internal PHY of lan966x and is not possible to change the
3545 	 * polarity on the GIC found in lan966x, therefore change the polarity
3546 	 * of the interrupt in the PHY from being active low instead of active
3547 	 * high.
3548 	 */
3549 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3550 
3551 	/* By default interrupt buffer is open-drain in which case the interrupt
3552 	 * can be active only low. Therefore change the interrupt buffer to be
3553 	 * push-pull to be able to change interrupt polarity
3554 	 */
3555 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3556 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3557 
3558 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3559 		err = phy_read(phydev, LAN8814_INTS);
3560 		if (err < 0)
3561 			return err;
3562 
3563 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3564 		if (err)
3565 			return err;
3566 	} else {
3567 		err = phy_write(phydev, LAN8814_INTC, 0);
3568 		if (err)
3569 			return err;
3570 
3571 		err = phy_read(phydev, LAN8814_INTS);
3572 		if (err < 0)
3573 			return err;
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3580 {
3581 	int ret = IRQ_NONE;
3582 	int irq_status;
3583 
3584 	irq_status = phy_read(phydev, LAN8814_INTS);
3585 	if (irq_status < 0) {
3586 		phy_error(phydev);
3587 		return IRQ_NONE;
3588 	}
3589 
3590 	if (irq_status & LAN8814_INT_LINK) {
3591 		phy_trigger_machine(phydev);
3592 		ret = IRQ_HANDLED;
3593 	}
3594 
3595 	while (true) {
3596 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3597 		if (!irq_status)
3598 			break;
3599 
3600 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3601 		ret = IRQ_HANDLED;
3602 	}
3603 
3604 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3605 		ret = IRQ_HANDLED;
3606 
3607 	return ret;
3608 }
3609 
3610 static int lan8814_ack_interrupt(struct phy_device *phydev)
3611 {
3612 	/* bit[12..0] int status, which is a read and clear register. */
3613 	int rc;
3614 
3615 	rc = phy_read(phydev, LAN8814_INTS);
3616 
3617 	return (rc < 0) ? rc : 0;
3618 }
3619 
3620 static int lan8814_config_intr(struct phy_device *phydev)
3621 {
3622 	int err;
3623 
3624 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3625 			      LAN8814_INTR_CTRL_REG_POLARITY |
3626 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3627 
3628 	/* enable / disable interrupts */
3629 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3630 		err = lan8814_ack_interrupt(phydev);
3631 		if (err)
3632 			return err;
3633 
3634 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3635 	} else {
3636 		err = phy_write(phydev, LAN8814_INTC, 0);
3637 		if (err)
3638 			return err;
3639 
3640 		err = lan8814_ack_interrupt(phydev);
3641 	}
3642 
3643 	return err;
3644 }
3645 
3646 static void lan8814_ptp_init(struct phy_device *phydev)
3647 {
3648 	struct kszphy_priv *priv = phydev->priv;
3649 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3650 	u32 temp;
3651 
3652 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3653 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3654 		return;
3655 
3656 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3657 
3658 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3659 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3660 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3661 
3662 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3663 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3664 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3665 
3666 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3667 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3668 
3669 	/* Removing default registers configs related to L2 and IP */
3670 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3671 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3672 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3673 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3674 
3675 	/* Disable checking for minorVersionPTP field */
3676 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3677 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3678 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3679 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3680 
3681 	skb_queue_head_init(&ptp_priv->tx_queue);
3682 	skb_queue_head_init(&ptp_priv->rx_queue);
3683 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3684 	spin_lock_init(&ptp_priv->rx_ts_lock);
3685 
3686 	ptp_priv->phydev = phydev;
3687 
3688 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3689 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3690 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3691 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3692 
3693 	phydev->mii_ts = &ptp_priv->mii_ts;
3694 }
3695 
3696 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3697 {
3698 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3699 
3700 	/* Initialise shared lock for clock*/
3701 	mutex_init(&shared->shared_lock);
3702 
3703 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3704 						LAN8814_PTP_GPIO_NUM,
3705 						sizeof(*shared->pin_config),
3706 						GFP_KERNEL);
3707 	if (!shared->pin_config)
3708 		return -ENOMEM;
3709 
3710 	for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3711 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3712 
3713 		memset(ptp_pin, 0, sizeof(*ptp_pin));
3714 		snprintf(ptp_pin->name,
3715 			 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3716 		ptp_pin->index = i;
3717 		ptp_pin->func =  PTP_PF_NONE;
3718 	}
3719 
3720 	shared->ptp_clock_info.owner = THIS_MODULE;
3721 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3722 	shared->ptp_clock_info.max_adj = 31249999;
3723 	shared->ptp_clock_info.n_alarm = 0;
3724 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3725 	shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3726 	shared->ptp_clock_info.pps = 0;
3727 	shared->ptp_clock_info.pin_config = shared->pin_config;
3728 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3729 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3730 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3731 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3732 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3733 	shared->ptp_clock_info.getcrosststamp = NULL;
3734 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3735 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3736 
3737 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3738 					       &phydev->mdio.dev);
3739 	if (IS_ERR(shared->ptp_clock)) {
3740 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3741 			   PTR_ERR(shared->ptp_clock));
3742 		return -EINVAL;
3743 	}
3744 
3745 	/* Check if PHC support is missing at the configuration level */
3746 	if (!shared->ptp_clock)
3747 		return 0;
3748 
3749 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3750 
3751 	shared->phydev = phydev;
3752 
3753 	/* The EP.4 is shared between all the PHYs in the package and also it
3754 	 * can be accessed by any of the PHYs
3755 	 */
3756 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3757 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3758 			      PTP_OPERATING_MODE_STANDALONE_);
3759 
3760 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3761 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3762 
3763 	return 0;
3764 }
3765 
3766 static void lan8814_setup_led(struct phy_device *phydev, int val)
3767 {
3768 	int temp;
3769 
3770 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3771 
3772 	if (val)
3773 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3774 	else
3775 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3776 
3777 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3778 }
3779 
3780 static int lan8814_config_init(struct phy_device *phydev)
3781 {
3782 	struct kszphy_priv *lan8814 = phydev->priv;
3783 	int val;
3784 
3785 	/* Reset the PHY */
3786 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3787 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3788 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3789 
3790 	/* Disable ANEG with QSGMII PCS Host side */
3791 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3792 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3793 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3794 
3795 	/* MDI-X setting for swap A,B transmit */
3796 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3797 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3798 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3799 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3800 
3801 	if (lan8814->led_mode >= 0)
3802 		lan8814_setup_led(phydev, lan8814->led_mode);
3803 
3804 	return 0;
3805 }
3806 
3807 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3808  * function called in suspend. Because the GPIO line can be shared, so if one of
3809  * the phys goes back in coma mode, then all the other PHYs will go, which is
3810  * wrong.
3811  */
3812 static int lan8814_release_coma_mode(struct phy_device *phydev)
3813 {
3814 	struct gpio_desc *gpiod;
3815 
3816 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3817 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3818 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3819 	if (IS_ERR(gpiod))
3820 		return PTR_ERR(gpiod);
3821 
3822 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3823 	gpiod_set_value_cansleep(gpiod, 0);
3824 
3825 	return 0;
3826 }
3827 
3828 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
3829 {
3830 	u16 val;
3831 
3832 	/* It was noticed that when traffic is passing through the PHY and the
3833 	 * cable is removed then the LED was still one even though there is no
3834 	 * link
3835 	 */
3836 	val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
3837 	val &= ~LAN8814_EEE_STATE_MASK2P5P;
3838 	lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
3839 }
3840 
3841 static void lan8814_update_meas_time(struct phy_device *phydev)
3842 {
3843 	u16 val;
3844 
3845 	/* By setting the measure time to a value of 0xb this will allow cables
3846 	 * longer than 100m to be used. This configuration can be used
3847 	 * regardless of the mode of operation of the PHY
3848 	 */
3849 	val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
3850 	val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
3851 	val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
3852 	lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
3853 }
3854 
3855 static int lan8814_probe(struct phy_device *phydev)
3856 {
3857 	const struct kszphy_type *type = phydev->drv->driver_data;
3858 	struct kszphy_priv *priv;
3859 	u16 addr;
3860 	int err;
3861 
3862 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3863 	if (!priv)
3864 		return -ENOMEM;
3865 
3866 	phydev->priv = priv;
3867 
3868 	priv->type = type;
3869 
3870 	kszphy_parse_led_mode(phydev);
3871 
3872 	/* Strap-in value for PHY address, below register read gives starting
3873 	 * phy address value
3874 	 */
3875 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3876 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3877 			      addr, sizeof(struct lan8814_shared_priv));
3878 
3879 	if (phy_package_init_once(phydev)) {
3880 		err = lan8814_release_coma_mode(phydev);
3881 		if (err)
3882 			return err;
3883 
3884 		err = lan8814_ptp_probe_once(phydev);
3885 		if (err)
3886 			return err;
3887 	}
3888 
3889 	lan8814_ptp_init(phydev);
3890 
3891 	/* Errata workarounds */
3892 	lan8814_clear_2psp_bit(phydev);
3893 	lan8814_update_meas_time(phydev);
3894 
3895 	return 0;
3896 }
3897 
3898 #define LAN8841_MMD_TIMER_REG			0
3899 #define LAN8841_MMD0_REGISTER_17		17
3900 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3901 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3902 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3903 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3904 #define LAN8841_MMD_ANALOG_REG			28
3905 #define LAN8841_ANALOG_CONTROL_1		1
3906 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3907 #define LAN8841_ANALOG_CONTROL_10		13
3908 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3909 #define LAN8841_ANALOG_CONTROL_11		14
3910 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3911 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3912 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3913 #define LAN8841_BTRX_POWER_DOWN			70
3914 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3915 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3916 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3917 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3918 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3919 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3920 #define LAN8841_ADC_CHANNEL_MASK		198
3921 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3922 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3923 #define LAN8841_PTP_RX_VERSION			374
3924 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3925 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3926 #define LAN8841_PTP_TX_VERSION			438
3927 #define LAN8841_PTP_CMD_CTL			256
3928 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3929 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3930 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3931 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3932 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3933 #define LAN8841_PTP_RX_MODE			381
3934 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3935 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3936 
3937 static int lan8841_config_init(struct phy_device *phydev)
3938 {
3939 	int ret;
3940 
3941 	ret = ksz9131_config_init(phydev);
3942 	if (ret)
3943 		return ret;
3944 
3945 	/* Initialize the HW by resetting everything */
3946 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3947 		       LAN8841_PTP_CMD_CTL,
3948 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3949 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3950 
3951 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3952 		       LAN8841_PTP_CMD_CTL,
3953 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3954 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3955 
3956 	/* Don't process any frames */
3957 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3958 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3959 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3960 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3961 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3962 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3963 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3964 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3965 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3966 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3967 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3968 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3969 
3970 	/* Disable checking for minorVersionPTP field */
3971 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3972 		      LAN8841_PTP_RX_VERSION, 0xff00);
3973 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3974 		      LAN8841_PTP_TX_VERSION, 0xff00);
3975 
3976 	/* 100BT Clause 40 improvenent errata */
3977 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3978 		      LAN8841_ANALOG_CONTROL_1,
3979 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3980 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3981 		      LAN8841_ANALOG_CONTROL_10,
3982 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3983 
3984 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3985 	 * Magnetics
3986 	 */
3987 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3988 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3989 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3990 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3991 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3992 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3993 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3994 			      LAN8841_BTRX_POWER_DOWN,
3995 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3996 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3997 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3998 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3999 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4000 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4001 	}
4002 
4003 	/* LDO Adjustment errata */
4004 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4005 		      LAN8841_ANALOG_CONTROL_11,
4006 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4007 
4008 	/* 100BT RGMII latency tuning errata */
4009 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4010 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4011 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4012 		      LAN8841_MMD0_REGISTER_17,
4013 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4014 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4015 
4016 	return 0;
4017 }
4018 
4019 #define LAN8841_OUTPUT_CTRL			25
4020 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4021 #define LAN8841_INT_PTP				BIT(9)
4022 
4023 static int lan8841_config_intr(struct phy_device *phydev)
4024 {
4025 	int err;
4026 
4027 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4028 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4029 
4030 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4031 		err = phy_read(phydev, LAN8814_INTS);
4032 		if (err < 0)
4033 			return err;
4034 
4035 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4036 		 * even if it PTP is not enabled. Because the underneath blocks
4037 		 * will not enable the PTP so we will never get the PTP
4038 		 * interrupt.
4039 		 */
4040 		err = phy_write(phydev, LAN8814_INTC,
4041 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4042 	} else {
4043 		err = phy_write(phydev, LAN8814_INTC, 0);
4044 		if (err)
4045 			return err;
4046 
4047 		err = phy_read(phydev, LAN8814_INTS);
4048 		if (err < 0)
4049 			return err;
4050 
4051 		/* Getting a positive value doesn't mean that is an error, it
4052 		 * just indicates what was the status. Therefore make sure to
4053 		 * clear the value and say that there is no error.
4054 		 */
4055 		err = 0;
4056 	}
4057 
4058 	return err;
4059 }
4060 
4061 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4062 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4063 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4064 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4065 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4066 #define LAN8841_PTP_TX_MSG_HEADER2			455
4067 
4068 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4069 				  u32 *sec, u32 *nsec, u16 *seq)
4070 {
4071 	struct phy_device *phydev = ptp_priv->phydev;
4072 
4073 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4074 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4075 		return false;
4076 
4077 	*nsec = ((*nsec & 0x3fff) << 16);
4078 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4079 
4080 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4081 	*sec = *sec << 16;
4082 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4083 
4084 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4085 
4086 	return true;
4087 }
4088 
4089 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4090 {
4091 	u32 sec, nsec;
4092 	u16 seq;
4093 
4094 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4095 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4096 }
4097 
4098 #define LAN8841_PTP_INT_STS			259
4099 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4100 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4101 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4102 
4103 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4104 {
4105 	struct phy_device *phydev = ptp_priv->phydev;
4106 	int i;
4107 
4108 	for (i = 0; i < FIFO_SIZE; ++i)
4109 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4110 
4111 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4112 }
4113 
4114 #define LAN8841_PTP_GPIO_CAP_STS			506
4115 #define LAN8841_PTP_GPIO_SEL				327
4116 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4117 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4118 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4119 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4120 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4121 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4122 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4123 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4124 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4125 
4126 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4127 {
4128 	struct phy_device *phydev = ptp_priv->phydev;
4129 	struct ptp_clock_event ptp_event = {0};
4130 	int pin, ret, tmp;
4131 	s32 sec, nsec;
4132 
4133 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4134 	if (pin == -1)
4135 		return;
4136 
4137 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4138 	if (tmp < 0)
4139 		return;
4140 
4141 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4142 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4143 	if (ret)
4144 		return;
4145 
4146 	mutex_lock(&ptp_priv->ptp_lock);
4147 	if (tmp & BIT(pin)) {
4148 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4149 		sec <<= 16;
4150 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4151 
4152 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4153 		nsec <<= 16;
4154 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4155 	} else {
4156 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4157 		sec <<= 16;
4158 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4159 
4160 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4161 		nsec <<= 16;
4162 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4163 	}
4164 	mutex_unlock(&ptp_priv->ptp_lock);
4165 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4166 	if (ret)
4167 		return;
4168 
4169 	ptp_event.index = 0;
4170 	ptp_event.timestamp = ktime_set(sec, nsec);
4171 	ptp_event.type = PTP_CLOCK_EXTTS;
4172 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4173 }
4174 
4175 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4176 {
4177 	struct kszphy_priv *priv = phydev->priv;
4178 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4179 	u16 status;
4180 
4181 	do {
4182 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4183 
4184 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4185 			lan8841_ptp_process_tx_ts(ptp_priv);
4186 
4187 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4188 			lan8841_gpio_process_cap(ptp_priv);
4189 
4190 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4191 			lan8841_ptp_flush_fifo(ptp_priv);
4192 			skb_queue_purge(&ptp_priv->tx_queue);
4193 		}
4194 
4195 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4196 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4197 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4198 }
4199 
4200 #define LAN8841_INTS_PTP		BIT(9)
4201 
4202 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4203 {
4204 	irqreturn_t ret = IRQ_NONE;
4205 	int irq_status;
4206 
4207 	irq_status = phy_read(phydev, LAN8814_INTS);
4208 	if (irq_status < 0) {
4209 		phy_error(phydev);
4210 		return IRQ_NONE;
4211 	}
4212 
4213 	if (irq_status & LAN8814_INT_LINK) {
4214 		phy_trigger_machine(phydev);
4215 		ret = IRQ_HANDLED;
4216 	}
4217 
4218 	if (irq_status & LAN8841_INTS_PTP) {
4219 		lan8841_handle_ptp_interrupt(phydev);
4220 		ret = IRQ_HANDLED;
4221 	}
4222 
4223 	return ret;
4224 }
4225 
4226 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4227 			   struct ethtool_ts_info *info)
4228 {
4229 	struct kszphy_ptp_priv *ptp_priv;
4230 
4231 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4232 
4233 	info->phc_index = ptp_priv->ptp_clock ?
4234 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4235 	if (info->phc_index == -1)
4236 		return 0;
4237 
4238 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4239 				SOF_TIMESTAMPING_RX_HARDWARE |
4240 				SOF_TIMESTAMPING_RAW_HARDWARE;
4241 
4242 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4243 			 (1 << HWTSTAMP_TX_ON) |
4244 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4245 
4246 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4247 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4248 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4249 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4250 
4251 	return 0;
4252 }
4253 
4254 #define LAN8841_PTP_INT_EN			260
4255 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4256 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4257 
4258 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4259 					  bool enable)
4260 {
4261 	struct phy_device *phydev = ptp_priv->phydev;
4262 
4263 	if (enable) {
4264 		/* Enable interrupts on the TX side */
4265 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4266 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4267 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4268 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4269 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4270 
4271 		/* Enable the modification of the frame on RX side,
4272 		 * this will add the ns and 2 bits of sec in the reserved field
4273 		 * of the PTP header
4274 		 */
4275 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4276 			       LAN8841_PTP_RX_MODE,
4277 			       LAN8841_PTP_INSERT_TS_EN |
4278 			       LAN8841_PTP_INSERT_TS_32BIT,
4279 			       LAN8841_PTP_INSERT_TS_EN |
4280 			       LAN8841_PTP_INSERT_TS_32BIT);
4281 
4282 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4283 	} else {
4284 		/* Disable interrupts on the TX side */
4285 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4286 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4287 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4288 
4289 		/* Disable modification of the RX frames */
4290 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4291 			       LAN8841_PTP_RX_MODE,
4292 			       LAN8841_PTP_INSERT_TS_EN |
4293 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4294 
4295 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4296 	}
4297 }
4298 
4299 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4300 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4301 #define LAN8841_PTP_TX_MOD			445
4302 
4303 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4304 			    struct kernel_hwtstamp_config *config,
4305 			    struct netlink_ext_ack *extack)
4306 {
4307 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4308 	struct phy_device *phydev = ptp_priv->phydev;
4309 	int txcfg = 0, rxcfg = 0;
4310 	int pkt_ts_enable;
4311 
4312 	ptp_priv->hwts_tx_type = config->tx_type;
4313 	ptp_priv->rx_filter = config->rx_filter;
4314 
4315 	switch (config->rx_filter) {
4316 	case HWTSTAMP_FILTER_NONE:
4317 		ptp_priv->layer = 0;
4318 		ptp_priv->version = 0;
4319 		break;
4320 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4321 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4322 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4323 		ptp_priv->layer = PTP_CLASS_L4;
4324 		ptp_priv->version = PTP_CLASS_V2;
4325 		break;
4326 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4327 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4328 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4329 		ptp_priv->layer = PTP_CLASS_L2;
4330 		ptp_priv->version = PTP_CLASS_V2;
4331 		break;
4332 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4333 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4334 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4335 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4336 		ptp_priv->version = PTP_CLASS_V2;
4337 		break;
4338 	default:
4339 		return -ERANGE;
4340 	}
4341 
4342 	/* Setup parsing of the frames and enable the timestamping for ptp
4343 	 * frames
4344 	 */
4345 	if (ptp_priv->layer & PTP_CLASS_L2) {
4346 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4347 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4348 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4349 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4350 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4351 	}
4352 
4353 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4354 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4355 
4356 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4357 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4358 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4359 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4360 
4361 	/* Enable / disable of the TX timestamp in the SYNC frames */
4362 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4363 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4364 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4365 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4366 
4367 	/* Now enable/disable the timestamping */
4368 	lan8841_ptp_enable_processing(ptp_priv,
4369 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4370 
4371 	skb_queue_purge(&ptp_priv->tx_queue);
4372 
4373 	lan8841_ptp_flush_fifo(ptp_priv);
4374 
4375 	return 0;
4376 }
4377 
4378 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4379 			     struct sk_buff *skb, int type)
4380 {
4381 	struct kszphy_ptp_priv *ptp_priv =
4382 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4383 	struct ptp_header *header = ptp_parse_header(skb, type);
4384 	struct skb_shared_hwtstamps *shhwtstamps;
4385 	struct timespec64 ts;
4386 	unsigned long flags;
4387 	u32 ts_header;
4388 
4389 	if (!header)
4390 		return false;
4391 
4392 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4393 	    type == PTP_CLASS_NONE)
4394 		return false;
4395 
4396 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4397 		return false;
4398 
4399 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4400 	ts.tv_sec = ptp_priv->seconds;
4401 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4402 	ts_header = __be32_to_cpu(header->reserved2);
4403 
4404 	shhwtstamps = skb_hwtstamps(skb);
4405 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4406 
4407 	/* Check for any wrap arounds for the second part */
4408 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4409 		ts.tv_sec -= GENMASK(1, 0) + 1;
4410 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4411 		ts.tv_sec += 1;
4412 
4413 	shhwtstamps->hwtstamp =
4414 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4415 			  ts_header & GENMASK(29, 0));
4416 	header->reserved2 = 0;
4417 
4418 	netif_rx(skb);
4419 
4420 	return true;
4421 }
4422 
4423 #define LAN8841_EVENT_A		0
4424 #define LAN8841_EVENT_B		1
4425 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
4426 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
4427 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
4428 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
4429 
4430 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4431 				  s64 sec, u32 nsec)
4432 {
4433 	struct phy_device *phydev = ptp_priv->phydev;
4434 	int ret;
4435 
4436 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4437 			    upper_16_bits(sec));
4438 	if (ret)
4439 		return ret;
4440 
4441 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4442 			    lower_16_bits(sec));
4443 	if (ret)
4444 		return ret;
4445 
4446 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4447 			    upper_16_bits(nsec));
4448 	if (ret)
4449 		return ret;
4450 
4451 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4452 			    lower_16_bits(nsec));
4453 }
4454 
4455 #define LAN8841_BUFFER_TIME	2
4456 
4457 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4458 				     const struct timespec64 *ts)
4459 {
4460 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4461 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4462 }
4463 
4464 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
4465 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
4466 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
4467 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
4468 
4469 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4470 				  s64 sec, u32 nsec)
4471 {
4472 	struct phy_device *phydev = ptp_priv->phydev;
4473 	int ret;
4474 
4475 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4476 			    upper_16_bits(sec));
4477 	if (ret)
4478 		return ret;
4479 
4480 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4481 			    lower_16_bits(sec));
4482 	if (ret)
4483 		return ret;
4484 
4485 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4486 			    upper_16_bits(nsec));
4487 	if (ret)
4488 		return ret;
4489 
4490 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4491 			     lower_16_bits(nsec));
4492 }
4493 
4494 #define LAN8841_PTP_LTC_SET_SEC_HI	262
4495 #define LAN8841_PTP_LTC_SET_SEC_MID	263
4496 #define LAN8841_PTP_LTC_SET_SEC_LO	264
4497 #define LAN8841_PTP_LTC_SET_NS_HI	265
4498 #define LAN8841_PTP_LTC_SET_NS_LO	266
4499 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
4500 
4501 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4502 				 const struct timespec64 *ts)
4503 {
4504 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4505 							ptp_clock_info);
4506 	struct phy_device *phydev = ptp_priv->phydev;
4507 	unsigned long flags;
4508 	int ret;
4509 
4510 	/* Set the value to be stored */
4511 	mutex_lock(&ptp_priv->ptp_lock);
4512 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4513 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4514 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4515 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4516 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4517 
4518 	/* Set the command to load the LTC */
4519 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4520 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4521 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4522 	mutex_unlock(&ptp_priv->ptp_lock);
4523 
4524 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4525 	ptp_priv->seconds = ts->tv_sec;
4526 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4527 
4528 	return ret;
4529 }
4530 
4531 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4532 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4533 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4534 #define LAN8841_PTP_LTC_RD_NS_HI	361
4535 #define LAN8841_PTP_LTC_RD_NS_LO	362
4536 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4537 
4538 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4539 				 struct timespec64 *ts)
4540 {
4541 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4542 							ptp_clock_info);
4543 	struct phy_device *phydev = ptp_priv->phydev;
4544 	time64_t s;
4545 	s64 ns;
4546 
4547 	mutex_lock(&ptp_priv->ptp_lock);
4548 	/* Issue the command to read the LTC */
4549 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4550 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4551 
4552 	/* Read the LTC */
4553 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4554 	s <<= 16;
4555 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4556 	s <<= 16;
4557 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4558 
4559 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4560 	ns <<= 16;
4561 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4562 	mutex_unlock(&ptp_priv->ptp_lock);
4563 
4564 	set_normalized_timespec64(ts, s, ns);
4565 	return 0;
4566 }
4567 
4568 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4569 				   struct timespec64 *ts)
4570 {
4571 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4572 							ptp_clock_info);
4573 	struct phy_device *phydev = ptp_priv->phydev;
4574 	time64_t s;
4575 
4576 	mutex_lock(&ptp_priv->ptp_lock);
4577 	/* Issue the command to read the LTC */
4578 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4579 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4580 
4581 	/* Read the LTC */
4582 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4583 	s <<= 16;
4584 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4585 	s <<= 16;
4586 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4587 	mutex_unlock(&ptp_priv->ptp_lock);
4588 
4589 	set_normalized_timespec64(ts, s, 0);
4590 }
4591 
4592 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4593 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4594 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4595 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4596 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4597 
4598 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4599 {
4600 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4601 							ptp_clock_info);
4602 	struct phy_device *phydev = ptp_priv->phydev;
4603 	struct timespec64 ts;
4604 	bool add = true;
4605 	u32 nsec;
4606 	s32 sec;
4607 	int ret;
4608 
4609 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4610 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4611 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4612 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4613 	 * possible adjustments so we will not have these corner cases
4614 	 */
4615 	if (delta > 10000000000LL || delta < -10000000000LL) {
4616 		/* The timeadjustment is too big, so fall back using set time */
4617 		u64 now;
4618 
4619 		ptp->gettime64(ptp, &ts);
4620 
4621 		now = ktime_to_ns(timespec64_to_ktime(ts));
4622 		ts = ns_to_timespec64(now + delta);
4623 
4624 		ptp->settime64(ptp, &ts);
4625 		return 0;
4626 	}
4627 
4628 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4629 	if (delta < 0 && nsec != 0) {
4630 		/* It is not allowed to adjust low the nsec part, therefore
4631 		 * subtract more from second part and add to nanosecond such
4632 		 * that would roll over, so the second part will increase
4633 		 */
4634 		sec--;
4635 		nsec = NSEC_PER_SEC - nsec;
4636 	}
4637 
4638 	/* Calculate the adjustments and the direction */
4639 	if (delta < 0)
4640 		add = false;
4641 
4642 	if (nsec > 0)
4643 		/* add 8 ns to cover the likely normal increment */
4644 		nsec += 8;
4645 
4646 	if (nsec >= NSEC_PER_SEC) {
4647 		/* carry into seconds */
4648 		sec++;
4649 		nsec -= NSEC_PER_SEC;
4650 	}
4651 
4652 	mutex_lock(&ptp_priv->ptp_lock);
4653 	if (sec) {
4654 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4655 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4656 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4657 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4658 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4659 	}
4660 
4661 	if (nsec) {
4662 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4663 			      nsec & 0xffff);
4664 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4665 			      (nsec >> 16) & 0x3fff);
4666 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4667 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4668 	}
4669 	mutex_unlock(&ptp_priv->ptp_lock);
4670 
4671 	/* Update the target clock */
4672 	ptp->gettime64(ptp, &ts);
4673 	mutex_lock(&ptp_priv->ptp_lock);
4674 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4675 	mutex_unlock(&ptp_priv->ptp_lock);
4676 
4677 	return ret;
4678 }
4679 
4680 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4681 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4682 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4683 
4684 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4685 {
4686 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4687 							ptp_clock_info);
4688 	struct phy_device *phydev = ptp_priv->phydev;
4689 	bool faster = true;
4690 	u32 rate;
4691 
4692 	if (!scaled_ppm)
4693 		return 0;
4694 
4695 	if (scaled_ppm < 0) {
4696 		scaled_ppm = -scaled_ppm;
4697 		faster = false;
4698 	}
4699 
4700 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4701 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4702 
4703 	mutex_lock(&ptp_priv->ptp_lock);
4704 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4705 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4706 			     : upper_16_bits(rate) & 0x3fff);
4707 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4708 	mutex_unlock(&ptp_priv->ptp_lock);
4709 
4710 	return 0;
4711 }
4712 
4713 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4714 			      enum ptp_pin_function func, unsigned int chan)
4715 {
4716 	switch (func) {
4717 	case PTP_PF_NONE:
4718 	case PTP_PF_PEROUT:
4719 	case PTP_PF_EXTTS:
4720 		break;
4721 	default:
4722 		return -1;
4723 	}
4724 
4725 	return 0;
4726 }
4727 
4728 #define LAN8841_PTP_GPIO_NUM	10
4729 #define LAN8841_GPIO_EN		128
4730 #define LAN8841_GPIO_DIR	129
4731 #define LAN8841_GPIO_BUF	130
4732 
4733 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4734 {
4735 	struct phy_device *phydev = ptp_priv->phydev;
4736 	int ret;
4737 
4738 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4739 	if (ret)
4740 		return ret;
4741 
4742 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4743 	if (ret)
4744 		return ret;
4745 
4746 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4747 }
4748 
4749 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4750 {
4751 	struct phy_device *phydev = ptp_priv->phydev;
4752 	int ret;
4753 
4754 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4755 	if (ret)
4756 		return ret;
4757 
4758 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4759 	if (ret)
4760 		return ret;
4761 
4762 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4763 }
4764 
4765 #define LAN8841_GPIO_DATA_SEL1				131
4766 #define LAN8841_GPIO_DATA_SEL2				132
4767 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4768 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4769 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4770 #define LAN8841_PTP_GENERAL_CONFIG			257
4771 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4772 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4773 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4774 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4775 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4776 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4777 
4778 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4779 				    u8 event)
4780 {
4781 	struct phy_device *phydev = ptp_priv->phydev;
4782 	u16 tmp;
4783 	int ret;
4784 
4785 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4786 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4787 	 * depending on the pin, it requires to read a different register
4788 	 */
4789 	if (pin < 5) {
4790 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4791 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4792 	} else {
4793 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4794 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4795 	}
4796 	if (ret)
4797 		return ret;
4798 
4799 	/* Disable the event */
4800 	if (event == LAN8841_EVENT_A)
4801 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4802 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4803 	else
4804 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4805 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4806 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4807 }
4808 
4809 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4810 				    u8 event, int pulse_width)
4811 {
4812 	struct phy_device *phydev = ptp_priv->phydev;
4813 	u16 tmp;
4814 	int ret;
4815 
4816 	/* Enable the event */
4817 	if (event == LAN8841_EVENT_A)
4818 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4819 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4820 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4821 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4822 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4823 	else
4824 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4825 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4826 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4827 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4828 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4829 	if (ret)
4830 		return ret;
4831 
4832 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4833 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4834 	 * depending on the pin, it requires to read a different register
4835 	 */
4836 	if (event == LAN8841_EVENT_A)
4837 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4838 	else
4839 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4840 
4841 	if (pin < 5)
4842 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4843 				       tmp << (3 * pin));
4844 	else
4845 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4846 				       tmp << (3 * (pin - 5)));
4847 
4848 	return ret;
4849 }
4850 
4851 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4852 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4853 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4854 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4855 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4856 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4857 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4858 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4859 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4860 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4861 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4862 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4863 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4864 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4865 
4866 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4867 			      struct ptp_clock_request *rq, int on)
4868 {
4869 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4870 							ptp_clock_info);
4871 	struct phy_device *phydev = ptp_priv->phydev;
4872 	struct timespec64 ts_on, ts_period;
4873 	s64 on_nsec, period_nsec;
4874 	int pulse_width;
4875 	int pin;
4876 	int ret;
4877 
4878 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4879 		return -EOPNOTSUPP;
4880 
4881 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4882 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4883 		return -EINVAL;
4884 
4885 	if (!on) {
4886 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4887 		if (ret)
4888 			return ret;
4889 
4890 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4891 	}
4892 
4893 	ts_on.tv_sec = rq->perout.on.sec;
4894 	ts_on.tv_nsec = rq->perout.on.nsec;
4895 	on_nsec = timespec64_to_ns(&ts_on);
4896 
4897 	ts_period.tv_sec = rq->perout.period.sec;
4898 	ts_period.tv_nsec = rq->perout.period.nsec;
4899 	period_nsec = timespec64_to_ns(&ts_period);
4900 
4901 	if (period_nsec < 200) {
4902 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4903 				    phydev_name(phydev));
4904 		return -EOPNOTSUPP;
4905 	}
4906 
4907 	if (on_nsec >= period_nsec) {
4908 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4909 				    phydev_name(phydev));
4910 		return -EINVAL;
4911 	}
4912 
4913 	switch (on_nsec) {
4914 	case 200000000:
4915 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4916 		break;
4917 	case 100000000:
4918 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4919 		break;
4920 	case 50000000:
4921 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4922 		break;
4923 	case 10000000:
4924 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4925 		break;
4926 	case 5000000:
4927 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4928 		break;
4929 	case 1000000:
4930 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4931 		break;
4932 	case 500000:
4933 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4934 		break;
4935 	case 100000:
4936 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4937 		break;
4938 	case 50000:
4939 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4940 		break;
4941 	case 10000:
4942 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4943 		break;
4944 	case 5000:
4945 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4946 		break;
4947 	case 1000:
4948 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4949 		break;
4950 	case 500:
4951 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4952 		break;
4953 	case 100:
4954 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4955 		break;
4956 	default:
4957 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4958 				    phydev_name(phydev));
4959 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4960 		break;
4961 	}
4962 
4963 	mutex_lock(&ptp_priv->ptp_lock);
4964 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4965 				     rq->perout.start.nsec);
4966 	mutex_unlock(&ptp_priv->ptp_lock);
4967 	if (ret)
4968 		return ret;
4969 
4970 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4971 				     rq->perout.period.nsec);
4972 	if (ret)
4973 		return ret;
4974 
4975 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4976 				       pulse_width);
4977 	if (ret)
4978 		return ret;
4979 
4980 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4981 	if (ret)
4982 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4983 
4984 	return ret;
4985 }
4986 
4987 #define LAN8841_PTP_GPIO_CAP_EN			496
4988 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4989 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4990 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4991 
4992 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4993 				u32 flags)
4994 {
4995 	struct phy_device *phydev = ptp_priv->phydev;
4996 	u16 tmp = 0;
4997 	int ret;
4998 
4999 	/* Set GPIO to be intput */
5000 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5001 	if (ret)
5002 		return ret;
5003 
5004 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5005 	if (ret)
5006 		return ret;
5007 
5008 	/* Enable capture on the edges of the pin */
5009 	if (flags & PTP_RISING_EDGE)
5010 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5011 	if (flags & PTP_FALLING_EDGE)
5012 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5013 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5014 	if (ret)
5015 		return ret;
5016 
5017 	/* Enable interrupt */
5018 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5019 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5020 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5021 }
5022 
5023 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5024 {
5025 	struct phy_device *phydev = ptp_priv->phydev;
5026 	int ret;
5027 
5028 	/* Set GPIO to be output */
5029 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5030 	if (ret)
5031 		return ret;
5032 
5033 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5034 	if (ret)
5035 		return ret;
5036 
5037 	/* Disable capture on both of the edges */
5038 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5039 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5040 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5041 			     0);
5042 	if (ret)
5043 		return ret;
5044 
5045 	/* Disable interrupt */
5046 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5047 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5048 			      0);
5049 }
5050 
5051 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5052 			     struct ptp_clock_request *rq, int on)
5053 {
5054 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5055 							ptp_clock_info);
5056 	int pin;
5057 	int ret;
5058 
5059 	/* Reject requests with unsupported flags */
5060 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5061 				PTP_EXTTS_EDGES |
5062 				PTP_STRICT_FLAGS))
5063 		return -EOPNOTSUPP;
5064 
5065 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5066 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5067 		return -EINVAL;
5068 
5069 	mutex_lock(&ptp_priv->ptp_lock);
5070 	if (on)
5071 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5072 	else
5073 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5074 	mutex_unlock(&ptp_priv->ptp_lock);
5075 
5076 	return ret;
5077 }
5078 
5079 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5080 			      struct ptp_clock_request *rq, int on)
5081 {
5082 	switch (rq->type) {
5083 	case PTP_CLK_REQ_EXTTS:
5084 		return lan8841_ptp_extts(ptp, rq, on);
5085 	case PTP_CLK_REQ_PEROUT:
5086 		return lan8841_ptp_perout(ptp, rq, on);
5087 	default:
5088 		return -EOPNOTSUPP;
5089 	}
5090 
5091 	return 0;
5092 }
5093 
5094 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5095 {
5096 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5097 							ptp_clock_info);
5098 	struct timespec64 ts;
5099 	unsigned long flags;
5100 
5101 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5102 
5103 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5104 	ptp_priv->seconds = ts.tv_sec;
5105 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5106 
5107 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5108 }
5109 
5110 static struct ptp_clock_info lan8841_ptp_clock_info = {
5111 	.owner		= THIS_MODULE,
5112 	.name		= "lan8841 ptp",
5113 	.max_adj	= 31249999,
5114 	.gettime64	= lan8841_ptp_gettime64,
5115 	.settime64	= lan8841_ptp_settime64,
5116 	.adjtime	= lan8841_ptp_adjtime,
5117 	.adjfine	= lan8841_ptp_adjfine,
5118 	.verify         = lan8841_ptp_verify,
5119 	.enable         = lan8841_ptp_enable,
5120 	.do_aux_work	= lan8841_ptp_do_aux_work,
5121 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5122 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5123 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5124 };
5125 
5126 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5127 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5128 
5129 static int lan8841_probe(struct phy_device *phydev)
5130 {
5131 	struct kszphy_ptp_priv *ptp_priv;
5132 	struct kszphy_priv *priv;
5133 	int err;
5134 
5135 	err = kszphy_probe(phydev);
5136 	if (err)
5137 		return err;
5138 
5139 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5140 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5141 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5142 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5143 
5144 	/* Register the clock */
5145 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5146 		return 0;
5147 
5148 	priv = phydev->priv;
5149 	ptp_priv = &priv->ptp_priv;
5150 
5151 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5152 					    LAN8841_PTP_GPIO_NUM,
5153 					    sizeof(*ptp_priv->pin_config),
5154 					    GFP_KERNEL);
5155 	if (!ptp_priv->pin_config)
5156 		return -ENOMEM;
5157 
5158 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5159 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5160 
5161 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5162 		p->index = i;
5163 		p->func = PTP_PF_NONE;
5164 	}
5165 
5166 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5167 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5168 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5169 						 &phydev->mdio.dev);
5170 	if (IS_ERR(ptp_priv->ptp_clock)) {
5171 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5172 			   PTR_ERR(ptp_priv->ptp_clock));
5173 		return -EINVAL;
5174 	}
5175 
5176 	if (!ptp_priv->ptp_clock)
5177 		return 0;
5178 
5179 	/* Initialize the SW */
5180 	skb_queue_head_init(&ptp_priv->tx_queue);
5181 	ptp_priv->phydev = phydev;
5182 	mutex_init(&ptp_priv->ptp_lock);
5183 	spin_lock_init(&ptp_priv->seconds_lock);
5184 
5185 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5186 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5187 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5188 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5189 
5190 	phydev->mii_ts = &ptp_priv->mii_ts;
5191 
5192 	return 0;
5193 }
5194 
5195 static int lan8841_suspend(struct phy_device *phydev)
5196 {
5197 	struct kszphy_priv *priv = phydev->priv;
5198 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5199 
5200 	if (ptp_priv->ptp_clock)
5201 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5202 
5203 	return genphy_suspend(phydev);
5204 }
5205 
5206 static struct phy_driver ksphy_driver[] = {
5207 {
5208 	.phy_id		= PHY_ID_KS8737,
5209 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5210 	.name		= "Micrel KS8737",
5211 	/* PHY_BASIC_FEATURES */
5212 	.driver_data	= &ks8737_type,
5213 	.probe		= kszphy_probe,
5214 	.config_init	= kszphy_config_init,
5215 	.config_intr	= kszphy_config_intr,
5216 	.handle_interrupt = kszphy_handle_interrupt,
5217 	.suspend	= kszphy_suspend,
5218 	.resume		= kszphy_resume,
5219 }, {
5220 	.phy_id		= PHY_ID_KSZ8021,
5221 	.phy_id_mask	= 0x00ffffff,
5222 	.name		= "Micrel KSZ8021 or KSZ8031",
5223 	/* PHY_BASIC_FEATURES */
5224 	.driver_data	= &ksz8021_type,
5225 	.probe		= kszphy_probe,
5226 	.config_init	= kszphy_config_init,
5227 	.config_intr	= kszphy_config_intr,
5228 	.handle_interrupt = kszphy_handle_interrupt,
5229 	.get_sset_count = kszphy_get_sset_count,
5230 	.get_strings	= kszphy_get_strings,
5231 	.get_stats	= kszphy_get_stats,
5232 	.suspend	= kszphy_suspend,
5233 	.resume		= kszphy_resume,
5234 }, {
5235 	.phy_id		= PHY_ID_KSZ8031,
5236 	.phy_id_mask	= 0x00ffffff,
5237 	.name		= "Micrel KSZ8031",
5238 	/* PHY_BASIC_FEATURES */
5239 	.driver_data	= &ksz8021_type,
5240 	.probe		= kszphy_probe,
5241 	.config_init	= kszphy_config_init,
5242 	.config_intr	= kszphy_config_intr,
5243 	.handle_interrupt = kszphy_handle_interrupt,
5244 	.get_sset_count = kszphy_get_sset_count,
5245 	.get_strings	= kszphy_get_strings,
5246 	.get_stats	= kszphy_get_stats,
5247 	.suspend	= kszphy_suspend,
5248 	.resume		= kszphy_resume,
5249 }, {
5250 	.phy_id		= PHY_ID_KSZ8041,
5251 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5252 	.name		= "Micrel KSZ8041",
5253 	/* PHY_BASIC_FEATURES */
5254 	.driver_data	= &ksz8041_type,
5255 	.probe		= kszphy_probe,
5256 	.config_init	= ksz8041_config_init,
5257 	.config_aneg	= ksz8041_config_aneg,
5258 	.config_intr	= kszphy_config_intr,
5259 	.handle_interrupt = kszphy_handle_interrupt,
5260 	.get_sset_count = kszphy_get_sset_count,
5261 	.get_strings	= kszphy_get_strings,
5262 	.get_stats	= kszphy_get_stats,
5263 	/* No suspend/resume callbacks because of errata DS80000700A,
5264 	 * receiver error following software power down.
5265 	 */
5266 }, {
5267 	.phy_id		= PHY_ID_KSZ8041RNLI,
5268 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5269 	.name		= "Micrel KSZ8041RNLI",
5270 	/* PHY_BASIC_FEATURES */
5271 	.driver_data	= &ksz8041_type,
5272 	.probe		= kszphy_probe,
5273 	.config_init	= kszphy_config_init,
5274 	.config_intr	= kszphy_config_intr,
5275 	.handle_interrupt = kszphy_handle_interrupt,
5276 	.get_sset_count = kszphy_get_sset_count,
5277 	.get_strings	= kszphy_get_strings,
5278 	.get_stats	= kszphy_get_stats,
5279 	.suspend	= kszphy_suspend,
5280 	.resume		= kszphy_resume,
5281 }, {
5282 	.name		= "Micrel KSZ8051",
5283 	/* PHY_BASIC_FEATURES */
5284 	.driver_data	= &ksz8051_type,
5285 	.probe		= kszphy_probe,
5286 	.config_init	= kszphy_config_init,
5287 	.config_intr	= kszphy_config_intr,
5288 	.handle_interrupt = kszphy_handle_interrupt,
5289 	.get_sset_count = kszphy_get_sset_count,
5290 	.get_strings	= kszphy_get_strings,
5291 	.get_stats	= kszphy_get_stats,
5292 	.match_phy_device = ksz8051_match_phy_device,
5293 	.suspend	= kszphy_suspend,
5294 	.resume		= kszphy_resume,
5295 }, {
5296 	.phy_id		= PHY_ID_KSZ8001,
5297 	.name		= "Micrel KSZ8001 or KS8721",
5298 	.phy_id_mask	= 0x00fffffc,
5299 	/* PHY_BASIC_FEATURES */
5300 	.driver_data	= &ksz8041_type,
5301 	.probe		= kszphy_probe,
5302 	.config_init	= kszphy_config_init,
5303 	.config_intr	= kszphy_config_intr,
5304 	.handle_interrupt = kszphy_handle_interrupt,
5305 	.get_sset_count = kszphy_get_sset_count,
5306 	.get_strings	= kszphy_get_strings,
5307 	.get_stats	= kszphy_get_stats,
5308 	.suspend	= kszphy_suspend,
5309 	.resume		= kszphy_resume,
5310 }, {
5311 	.phy_id		= PHY_ID_KSZ8081,
5312 	.name		= "Micrel KSZ8081 or KSZ8091",
5313 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5314 	.flags		= PHY_POLL_CABLE_TEST,
5315 	/* PHY_BASIC_FEATURES */
5316 	.driver_data	= &ksz8081_type,
5317 	.probe		= kszphy_probe,
5318 	.config_init	= ksz8081_config_init,
5319 	.soft_reset	= genphy_soft_reset,
5320 	.config_aneg	= ksz8081_config_aneg,
5321 	.read_status	= ksz8081_read_status,
5322 	.config_intr	= kszphy_config_intr,
5323 	.handle_interrupt = kszphy_handle_interrupt,
5324 	.get_sset_count = kszphy_get_sset_count,
5325 	.get_strings	= kszphy_get_strings,
5326 	.get_stats	= kszphy_get_stats,
5327 	.suspend	= kszphy_suspend,
5328 	.resume		= kszphy_resume,
5329 	.cable_test_start	= ksz886x_cable_test_start,
5330 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5331 }, {
5332 	.phy_id		= PHY_ID_KSZ8061,
5333 	.name		= "Micrel KSZ8061",
5334 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5335 	/* PHY_BASIC_FEATURES */
5336 	.probe		= kszphy_probe,
5337 	.config_init	= ksz8061_config_init,
5338 	.soft_reset	= genphy_soft_reset,
5339 	.config_intr	= kszphy_config_intr,
5340 	.handle_interrupt = kszphy_handle_interrupt,
5341 	.suspend	= kszphy_suspend,
5342 	.resume		= kszphy_resume,
5343 }, {
5344 	.phy_id		= PHY_ID_KSZ9021,
5345 	.phy_id_mask	= 0x000ffffe,
5346 	.name		= "Micrel KSZ9021 Gigabit PHY",
5347 	/* PHY_GBIT_FEATURES */
5348 	.driver_data	= &ksz9021_type,
5349 	.probe		= kszphy_probe,
5350 	.get_features	= ksz9031_get_features,
5351 	.config_init	= ksz9021_config_init,
5352 	.config_intr	= kszphy_config_intr,
5353 	.handle_interrupt = kszphy_handle_interrupt,
5354 	.get_sset_count = kszphy_get_sset_count,
5355 	.get_strings	= kszphy_get_strings,
5356 	.get_stats	= kszphy_get_stats,
5357 	.suspend	= kszphy_suspend,
5358 	.resume		= kszphy_resume,
5359 	.read_mmd	= genphy_read_mmd_unsupported,
5360 	.write_mmd	= genphy_write_mmd_unsupported,
5361 }, {
5362 	.phy_id		= PHY_ID_KSZ9031,
5363 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5364 	.name		= "Micrel KSZ9031 Gigabit PHY",
5365 	.flags		= PHY_POLL_CABLE_TEST,
5366 	.driver_data	= &ksz9021_type,
5367 	.probe		= kszphy_probe,
5368 	.get_features	= ksz9031_get_features,
5369 	.config_init	= ksz9031_config_init,
5370 	.soft_reset	= genphy_soft_reset,
5371 	.read_status	= ksz9031_read_status,
5372 	.config_intr	= kszphy_config_intr,
5373 	.handle_interrupt = kszphy_handle_interrupt,
5374 	.get_sset_count = kszphy_get_sset_count,
5375 	.get_strings	= kszphy_get_strings,
5376 	.get_stats	= kszphy_get_stats,
5377 	.suspend	= kszphy_suspend,
5378 	.resume		= kszphy_resume,
5379 	.cable_test_start	= ksz9x31_cable_test_start,
5380 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5381 }, {
5382 	.phy_id		= PHY_ID_LAN8814,
5383 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5384 	.name		= "Microchip INDY Gigabit Quad PHY",
5385 	.flags          = PHY_POLL_CABLE_TEST,
5386 	.config_init	= lan8814_config_init,
5387 	.driver_data	= &lan8814_type,
5388 	.probe		= lan8814_probe,
5389 	.soft_reset	= genphy_soft_reset,
5390 	.read_status	= ksz9031_read_status,
5391 	.get_sset_count	= kszphy_get_sset_count,
5392 	.get_strings	= kszphy_get_strings,
5393 	.get_stats	= kszphy_get_stats,
5394 	.suspend	= genphy_suspend,
5395 	.resume		= kszphy_resume,
5396 	.config_intr	= lan8814_config_intr,
5397 	.handle_interrupt = lan8814_handle_interrupt,
5398 	.cable_test_start	= lan8814_cable_test_start,
5399 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5400 }, {
5401 	.phy_id		= PHY_ID_LAN8804,
5402 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5403 	.name		= "Microchip LAN966X Gigabit PHY",
5404 	.config_init	= lan8804_config_init,
5405 	.driver_data	= &ksz9021_type,
5406 	.probe		= kszphy_probe,
5407 	.soft_reset	= genphy_soft_reset,
5408 	.read_status	= ksz9031_read_status,
5409 	.get_sset_count	= kszphy_get_sset_count,
5410 	.get_strings	= kszphy_get_strings,
5411 	.get_stats	= kszphy_get_stats,
5412 	.suspend	= genphy_suspend,
5413 	.resume		= kszphy_resume,
5414 	.config_intr	= lan8804_config_intr,
5415 	.handle_interrupt = lan8804_handle_interrupt,
5416 }, {
5417 	.phy_id		= PHY_ID_LAN8841,
5418 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5419 	.name		= "Microchip LAN8841 Gigabit PHY",
5420 	.flags		= PHY_POLL_CABLE_TEST,
5421 	.driver_data	= &lan8841_type,
5422 	.config_init	= lan8841_config_init,
5423 	.probe		= lan8841_probe,
5424 	.soft_reset	= genphy_soft_reset,
5425 	.config_intr	= lan8841_config_intr,
5426 	.handle_interrupt = lan8841_handle_interrupt,
5427 	.get_sset_count = kszphy_get_sset_count,
5428 	.get_strings	= kszphy_get_strings,
5429 	.get_stats	= kszphy_get_stats,
5430 	.suspend	= lan8841_suspend,
5431 	.resume		= genphy_resume,
5432 	.cable_test_start	= lan8814_cable_test_start,
5433 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5434 }, {
5435 	.phy_id		= PHY_ID_KSZ9131,
5436 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5437 	.name		= "Microchip KSZ9131 Gigabit PHY",
5438 	/* PHY_GBIT_FEATURES */
5439 	.flags		= PHY_POLL_CABLE_TEST,
5440 	.driver_data	= &ksz9131_type,
5441 	.probe		= kszphy_probe,
5442 	.soft_reset	= genphy_soft_reset,
5443 	.config_init	= ksz9131_config_init,
5444 	.config_intr	= kszphy_config_intr,
5445 	.config_aneg	= ksz9131_config_aneg,
5446 	.read_status	= ksz9131_read_status,
5447 	.handle_interrupt = kszphy_handle_interrupt,
5448 	.get_sset_count = kszphy_get_sset_count,
5449 	.get_strings	= kszphy_get_strings,
5450 	.get_stats	= kszphy_get_stats,
5451 	.suspend	= kszphy_suspend,
5452 	.resume		= kszphy_resume,
5453 	.cable_test_start	= ksz9x31_cable_test_start,
5454 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5455 	.get_features	= ksz9477_get_features,
5456 }, {
5457 	.phy_id		= PHY_ID_KSZ8873MLL,
5458 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5459 	.name		= "Micrel KSZ8873MLL Switch",
5460 	/* PHY_BASIC_FEATURES */
5461 	.config_init	= kszphy_config_init,
5462 	.config_aneg	= ksz8873mll_config_aneg,
5463 	.read_status	= ksz8873mll_read_status,
5464 	.suspend	= genphy_suspend,
5465 	.resume		= genphy_resume,
5466 }, {
5467 	.phy_id		= PHY_ID_KSZ886X,
5468 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5469 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5470 	.driver_data	= &ksz886x_type,
5471 	/* PHY_BASIC_FEATURES */
5472 	.flags		= PHY_POLL_CABLE_TEST,
5473 	.config_init	= kszphy_config_init,
5474 	.config_aneg	= ksz886x_config_aneg,
5475 	.read_status	= ksz886x_read_status,
5476 	.suspend	= genphy_suspend,
5477 	.resume		= genphy_resume,
5478 	.cable_test_start	= ksz886x_cable_test_start,
5479 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5480 }, {
5481 	.name		= "Micrel KSZ87XX Switch",
5482 	/* PHY_BASIC_FEATURES */
5483 	.config_init	= kszphy_config_init,
5484 	.match_phy_device = ksz8795_match_phy_device,
5485 	.suspend	= genphy_suspend,
5486 	.resume		= genphy_resume,
5487 }, {
5488 	.phy_id		= PHY_ID_KSZ9477,
5489 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5490 	.name		= "Microchip KSZ9477",
5491 	/* PHY_GBIT_FEATURES */
5492 	.config_init	= ksz9477_config_init,
5493 	.config_intr	= kszphy_config_intr,
5494 	.handle_interrupt = kszphy_handle_interrupt,
5495 	.suspend	= genphy_suspend,
5496 	.resume		= genphy_resume,
5497 	.get_features	= ksz9477_get_features,
5498 } };
5499 
5500 module_phy_driver(ksphy_driver);
5501 
5502 MODULE_DESCRIPTION("Micrel PHY driver");
5503 MODULE_AUTHOR("David J. Choi");
5504 MODULE_LICENSE("GPL");
5505 
5506 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5507 	{ PHY_ID_KSZ9021, 0x000ffffe },
5508 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5509 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5510 	{ PHY_ID_KSZ8001, 0x00fffffc },
5511 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5512 	{ PHY_ID_KSZ8021, 0x00ffffff },
5513 	{ PHY_ID_KSZ8031, 0x00ffffff },
5514 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5515 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5516 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5517 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5518 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5519 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5520 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5521 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5522 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5523 	{ }
5524 };
5525 
5526 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5527