1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 /* Delay used to get the second part from the LTC */ 256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 257 258 struct kszphy_hw_stat { 259 const char *string; 260 u8 reg; 261 u8 bits; 262 }; 263 264 static struct kszphy_hw_stat kszphy_hw_stats[] = { 265 { "phy_receive_errors", 21, 16}, 266 { "phy_idle_errors", 10, 8 }, 267 }; 268 269 struct kszphy_type { 270 u32 led_mode_reg; 271 u16 interrupt_level_mask; 272 u16 cable_diag_reg; 273 unsigned long pair_mask; 274 u16 disable_dll_tx_bit; 275 u16 disable_dll_rx_bit; 276 u16 disable_dll_mask; 277 bool has_broadcast_disable; 278 bool has_nand_tree_disable; 279 bool has_rmii_ref_clk_sel; 280 }; 281 282 /* Shared structure between the PHYs of the same package. */ 283 struct lan8814_shared_priv { 284 struct phy_device *phydev; 285 struct ptp_clock *ptp_clock; 286 struct ptp_clock_info ptp_clock_info; 287 288 /* Reference counter to how many ports in the package are enabling the 289 * timestamping 290 */ 291 u8 ref; 292 293 /* Lock for ptp_clock and ref */ 294 struct mutex shared_lock; 295 }; 296 297 struct lan8814_ptp_rx_ts { 298 struct list_head list; 299 u32 seconds; 300 u32 nsec; 301 u16 seq_id; 302 }; 303 304 struct kszphy_ptp_priv { 305 struct mii_timestamper mii_ts; 306 struct phy_device *phydev; 307 308 struct sk_buff_head tx_queue; 309 struct sk_buff_head rx_queue; 310 311 struct list_head rx_ts_list; 312 /* Lock for Rx ts fifo */ 313 spinlock_t rx_ts_lock; 314 315 int hwts_tx_type; 316 enum hwtstamp_rx_filters rx_filter; 317 int layer; 318 int version; 319 320 struct ptp_clock *ptp_clock; 321 struct ptp_clock_info ptp_clock_info; 322 /* Lock for ptp_clock */ 323 struct mutex ptp_lock; 324 struct ptp_pin_desc *pin_config; 325 326 s64 seconds; 327 /* Lock for accessing seconds */ 328 spinlock_t seconds_lock; 329 }; 330 331 struct kszphy_priv { 332 struct kszphy_ptp_priv ptp_priv; 333 const struct kszphy_type *type; 334 int led_mode; 335 u16 vct_ctrl1000; 336 bool rmii_ref_clk_sel; 337 bool rmii_ref_clk_sel_val; 338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 339 }; 340 341 static const struct kszphy_type lan8814_type = { 342 .led_mode_reg = ~LAN8814_LED_CTRL_1, 343 .cable_diag_reg = LAN8814_CABLE_DIAG, 344 .pair_mask = LAN8814_WIRE_PAIR_MASK, 345 }; 346 347 static const struct kszphy_type ksz886x_type = { 348 .cable_diag_reg = KSZ8081_LMD, 349 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz8021_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ksz8041_type = { 360 .led_mode_reg = MII_KSZPHY_CTRL_1, 361 }; 362 363 static const struct kszphy_type ksz8051_type = { 364 .led_mode_reg = MII_KSZPHY_CTRL_2, 365 .has_nand_tree_disable = true, 366 }; 367 368 static const struct kszphy_type ksz8081_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_broadcast_disable = true, 371 .has_nand_tree_disable = true, 372 .has_rmii_ref_clk_sel = true, 373 }; 374 375 static const struct kszphy_type ks8737_type = { 376 .interrupt_level_mask = BIT(14), 377 }; 378 379 static const struct kszphy_type ksz9021_type = { 380 .interrupt_level_mask = BIT(14), 381 }; 382 383 static const struct kszphy_type ksz9131_type = { 384 .interrupt_level_mask = BIT(14), 385 .disable_dll_tx_bit = BIT(12), 386 .disable_dll_rx_bit = BIT(12), 387 .disable_dll_mask = BIT_MASK(12), 388 }; 389 390 static const struct kszphy_type lan8841_type = { 391 .disable_dll_tx_bit = BIT(14), 392 .disable_dll_rx_bit = BIT(14), 393 .disable_dll_mask = BIT_MASK(14), 394 .cable_diag_reg = LAN8814_CABLE_DIAG, 395 .pair_mask = LAN8814_WIRE_PAIR_MASK, 396 }; 397 398 static int kszphy_extended_write(struct phy_device *phydev, 399 u32 regnum, u16 val) 400 { 401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 403 } 404 405 static int kszphy_extended_read(struct phy_device *phydev, 406 u32 regnum) 407 { 408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 410 } 411 412 static int kszphy_ack_interrupt(struct phy_device *phydev) 413 { 414 /* bit[7..0] int status, which is a read and clear register. */ 415 int rc; 416 417 rc = phy_read(phydev, MII_KSZPHY_INTCS); 418 419 return (rc < 0) ? rc : 0; 420 } 421 422 static int kszphy_config_intr(struct phy_device *phydev) 423 { 424 const struct kszphy_type *type = phydev->drv->driver_data; 425 int temp, err; 426 u16 mask; 427 428 if (type && type->interrupt_level_mask) 429 mask = type->interrupt_level_mask; 430 else 431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 432 433 /* set the interrupt pin active low */ 434 temp = phy_read(phydev, MII_KSZPHY_CTRL); 435 if (temp < 0) 436 return temp; 437 temp &= ~mask; 438 phy_write(phydev, MII_KSZPHY_CTRL, temp); 439 440 /* enable / disable interrupts */ 441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 442 err = kszphy_ack_interrupt(phydev); 443 if (err) 444 return err; 445 446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 447 } else { 448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 449 if (err) 450 return err; 451 452 err = kszphy_ack_interrupt(phydev); 453 } 454 455 return err; 456 } 457 458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 459 { 460 int irq_status; 461 462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 463 if (irq_status < 0) { 464 phy_error(phydev); 465 return IRQ_NONE; 466 } 467 468 if (!(irq_status & KSZPHY_INTCS_STATUS)) 469 return IRQ_NONE; 470 471 phy_trigger_machine(phydev); 472 473 return IRQ_HANDLED; 474 } 475 476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 477 { 478 int ctrl; 479 480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 481 if (ctrl < 0) 482 return ctrl; 483 484 if (val) 485 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 486 else 487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 488 489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 490 } 491 492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 493 { 494 int rc, temp, shift; 495 496 switch (reg) { 497 case MII_KSZPHY_CTRL_1: 498 shift = 14; 499 break; 500 case MII_KSZPHY_CTRL_2: 501 shift = 4; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 temp = phy_read(phydev, reg); 508 if (temp < 0) { 509 rc = temp; 510 goto out; 511 } 512 513 temp &= ~(3 << shift); 514 temp |= val << shift; 515 rc = phy_write(phydev, reg, temp); 516 out: 517 if (rc < 0) 518 phydev_err(phydev, "failed to set led mode\n"); 519 520 return rc; 521 } 522 523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 524 * unique (non-broadcast) address on a shared bus. 525 */ 526 static int kszphy_broadcast_disable(struct phy_device *phydev) 527 { 528 int ret; 529 530 ret = phy_read(phydev, MII_KSZPHY_OMSO); 531 if (ret < 0) 532 goto out; 533 534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 535 out: 536 if (ret) 537 phydev_err(phydev, "failed to disable broadcast address\n"); 538 539 return ret; 540 } 541 542 static int kszphy_nand_tree_disable(struct phy_device *phydev) 543 { 544 int ret; 545 546 ret = phy_read(phydev, MII_KSZPHY_OMSO); 547 if (ret < 0) 548 goto out; 549 550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 551 return 0; 552 553 ret = phy_write(phydev, MII_KSZPHY_OMSO, 554 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 555 out: 556 if (ret) 557 phydev_err(phydev, "failed to disable NAND tree mode\n"); 558 559 return ret; 560 } 561 562 /* Some config bits need to be set again on resume, handle them here. */ 563 static int kszphy_config_reset(struct phy_device *phydev) 564 { 565 struct kszphy_priv *priv = phydev->priv; 566 int ret; 567 568 if (priv->rmii_ref_clk_sel) { 569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 570 if (ret) { 571 phydev_err(phydev, 572 "failed to set rmii reference clock\n"); 573 return ret; 574 } 575 } 576 577 if (priv->type && priv->led_mode >= 0) 578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 579 580 return 0; 581 } 582 583 static int kszphy_config_init(struct phy_device *phydev) 584 { 585 struct kszphy_priv *priv = phydev->priv; 586 const struct kszphy_type *type; 587 588 if (!priv) 589 return 0; 590 591 type = priv->type; 592 593 if (type && type->has_broadcast_disable) 594 kszphy_broadcast_disable(phydev); 595 596 if (type && type->has_nand_tree_disable) 597 kszphy_nand_tree_disable(phydev); 598 599 return kszphy_config_reset(phydev); 600 } 601 602 static int ksz8041_fiber_mode(struct phy_device *phydev) 603 { 604 struct device_node *of_node = phydev->mdio.dev.of_node; 605 606 return of_property_read_bool(of_node, "micrel,fiber-mode"); 607 } 608 609 static int ksz8041_config_init(struct phy_device *phydev) 610 { 611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 612 613 /* Limit supported and advertised modes in fiber mode */ 614 if (ksz8041_fiber_mode(phydev)) { 615 phydev->dev_flags |= MICREL_PHY_FXEN; 616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 618 619 linkmode_and(phydev->supported, phydev->supported, mask); 620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 621 phydev->supported); 622 linkmode_and(phydev->advertising, phydev->advertising, mask); 623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 624 phydev->advertising); 625 phydev->autoneg = AUTONEG_DISABLE; 626 } 627 628 return kszphy_config_init(phydev); 629 } 630 631 static int ksz8041_config_aneg(struct phy_device *phydev) 632 { 633 /* Skip auto-negotiation in fiber mode */ 634 if (phydev->dev_flags & MICREL_PHY_FXEN) { 635 phydev->speed = SPEED_100; 636 return 0; 637 } 638 639 return genphy_config_aneg(phydev); 640 } 641 642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 643 const bool ksz_8051) 644 { 645 int ret; 646 647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 648 return 0; 649 650 ret = phy_read(phydev, MII_BMSR); 651 if (ret < 0) 652 return ret; 653 654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 655 * exact PHY ID. However, they can be told apart by the extended 656 * capability registers presence. The KSZ8051 PHY has them while 657 * the switch does not. 658 */ 659 ret &= BMSR_ERCAP; 660 if (ksz_8051) 661 return ret; 662 else 663 return !ret; 664 } 665 666 static int ksz8051_match_phy_device(struct phy_device *phydev) 667 { 668 return ksz8051_ksz8795_match_phy_device(phydev, true); 669 } 670 671 static int ksz8081_config_init(struct phy_device *phydev) 672 { 673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 675 * pull-down is missing, the factory test mode should be cleared by 676 * manually writing a 0. 677 */ 678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 679 680 return kszphy_config_init(phydev); 681 } 682 683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 684 { 685 u16 val; 686 687 switch (ctrl) { 688 case ETH_TP_MDI: 689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 690 break; 691 case ETH_TP_MDI_X: 692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 693 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 694 break; 695 case ETH_TP_MDI_AUTO: 696 val = 0; 697 break; 698 default: 699 return 0; 700 } 701 702 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 703 KSZ8081_CTRL2_HP_MDIX | 704 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 706 KSZ8081_CTRL2_HP_MDIX | val); 707 } 708 709 static int ksz8081_config_aneg(struct phy_device *phydev) 710 { 711 int ret; 712 713 ret = genphy_config_aneg(phydev); 714 if (ret) 715 return ret; 716 717 /* The MDI-X configuration is automatically changed by the PHY after 718 * switching from autoneg off to on. So, take MDI-X configuration under 719 * own control and set it after autoneg configuration was done. 720 */ 721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 722 } 723 724 static int ksz8081_mdix_update(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 734 phydev->mdix_ctrl = ETH_TP_MDI_X; 735 else 736 phydev->mdix_ctrl = ETH_TP_MDI; 737 } else { 738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 739 } 740 741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 742 if (ret < 0) 743 return ret; 744 745 if (ret & KSZ8081_CTRL1_MDIX_STAT) 746 phydev->mdix = ETH_TP_MDI; 747 else 748 phydev->mdix = ETH_TP_MDI_X; 749 750 return 0; 751 } 752 753 static int ksz8081_read_status(struct phy_device *phydev) 754 { 755 int ret; 756 757 ret = ksz8081_mdix_update(phydev); 758 if (ret < 0) 759 return ret; 760 761 return genphy_read_status(phydev); 762 } 763 764 static int ksz8061_config_init(struct phy_device *phydev) 765 { 766 int ret; 767 768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 769 if (ret) 770 return ret; 771 772 return kszphy_config_init(phydev); 773 } 774 775 static int ksz8795_match_phy_device(struct phy_device *phydev) 776 { 777 return ksz8051_ksz8795_match_phy_device(phydev, false); 778 } 779 780 static int ksz9021_load_values_from_of(struct phy_device *phydev, 781 const struct device_node *of_node, 782 u16 reg, 783 const char *field1, const char *field2, 784 const char *field3, const char *field4) 785 { 786 int val1 = -1; 787 int val2 = -2; 788 int val3 = -3; 789 int val4 = -4; 790 int newval; 791 int matches = 0; 792 793 if (!of_property_read_u32(of_node, field1, &val1)) 794 matches++; 795 796 if (!of_property_read_u32(of_node, field2, &val2)) 797 matches++; 798 799 if (!of_property_read_u32(of_node, field3, &val3)) 800 matches++; 801 802 if (!of_property_read_u32(of_node, field4, &val4)) 803 matches++; 804 805 if (!matches) 806 return 0; 807 808 if (matches < 4) 809 newval = kszphy_extended_read(phydev, reg); 810 else 811 newval = 0; 812 813 if (val1 != -1) 814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 815 816 if (val2 != -2) 817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 818 819 if (val3 != -3) 820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 821 822 if (val4 != -4) 823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 824 825 return kszphy_extended_write(phydev, reg, newval); 826 } 827 828 static int ksz9021_config_init(struct phy_device *phydev) 829 { 830 const struct device_node *of_node; 831 const struct device *dev_walker; 832 833 /* The Micrel driver has a deprecated option to place phy OF 834 * properties in the MAC node. Walk up the tree of devices to 835 * find a device with an OF node. 836 */ 837 dev_walker = &phydev->mdio.dev; 838 do { 839 of_node = dev_walker->of_node; 840 dev_walker = dev_walker->parent; 841 842 } while (!of_node && dev_walker); 843 844 if (of_node) { 845 ksz9021_load_values_from_of(phydev, of_node, 846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 847 "txen-skew-ps", "txc-skew-ps", 848 "rxdv-skew-ps", "rxc-skew-ps"); 849 ksz9021_load_values_from_of(phydev, of_node, 850 MII_KSZPHY_RX_DATA_PAD_SKEW, 851 "rxd0-skew-ps", "rxd1-skew-ps", 852 "rxd2-skew-ps", "rxd3-skew-ps"); 853 ksz9021_load_values_from_of(phydev, of_node, 854 MII_KSZPHY_TX_DATA_PAD_SKEW, 855 "txd0-skew-ps", "txd1-skew-ps", 856 "txd2-skew-ps", "txd3-skew-ps"); 857 } 858 return 0; 859 } 860 861 #define KSZ9031_PS_TO_REG 60 862 863 /* Extended registers */ 864 /* MMD Address 0x0 */ 865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 867 868 /* MMD Address 0x2 */ 869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 872 873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 878 879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 884 885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 888 889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 890 * provide different RGMII options we need to configure delay offset 891 * for each pad relative to build in delay. 892 */ 893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 894 * 1.80ns 895 */ 896 #define RX_ID 0x7 897 #define RX_CLK_ID 0x19 898 899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 900 * internal 1.2ns delay. 901 */ 902 #define RX_ND 0xc 903 #define RX_CLK_ND 0x0 904 905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 906 #define TX_ID 0x0 907 #define TX_CLK_ID 0x1f 908 909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 910 * dealy 911 */ 912 #define TX_ND 0x7 913 #define TX_CLK_ND 0xf 914 915 /* MMD Address 0x1C */ 916 #define MII_KSZ9031RN_EDPD 0x23 917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 918 919 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 920 const struct device_node *of_node, 921 u16 reg, size_t field_sz, 922 const char *field[], u8 numfields, 923 bool *update) 924 { 925 int val[4] = {-1, -2, -3, -4}; 926 int matches = 0; 927 u16 mask; 928 u16 maxval; 929 u16 newval; 930 int i; 931 932 for (i = 0; i < numfields; i++) 933 if (!of_property_read_u32(of_node, field[i], val + i)) 934 matches++; 935 936 if (!matches) 937 return 0; 938 939 *update |= true; 940 941 if (matches < numfields) 942 newval = phy_read_mmd(phydev, 2, reg); 943 else 944 newval = 0; 945 946 maxval = (field_sz == 4) ? 0xf : 0x1f; 947 for (i = 0; i < numfields; i++) 948 if (val[i] != -(i + 1)) { 949 mask = 0xffff; 950 mask ^= maxval << (field_sz * i); 951 newval = (newval & mask) | 952 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 953 << (field_sz * i)); 954 } 955 956 return phy_write_mmd(phydev, 2, reg, newval); 957 } 958 959 /* Center KSZ9031RNX FLP timing at 16ms. */ 960 static int ksz9031_center_flp_timing(struct phy_device *phydev) 961 { 962 int result; 963 964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 965 0x0006); 966 if (result) 967 return result; 968 969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 970 0x1A80); 971 if (result) 972 return result; 973 974 return genphy_restart_aneg(phydev); 975 } 976 977 /* Enable energy-detect power-down mode */ 978 static int ksz9031_enable_edpd(struct phy_device *phydev) 979 { 980 int reg; 981 982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 983 if (reg < 0) 984 return reg; 985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 986 reg | MII_KSZ9031RN_EDPD_ENABLE); 987 } 988 989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 990 { 991 u16 rx, tx, rx_clk, tx_clk; 992 int ret; 993 994 switch (phydev->interface) { 995 case PHY_INTERFACE_MODE_RGMII: 996 tx = TX_ND; 997 tx_clk = TX_CLK_ND; 998 rx = RX_ND; 999 rx_clk = RX_CLK_ND; 1000 break; 1001 case PHY_INTERFACE_MODE_RGMII_ID: 1002 tx = TX_ID; 1003 tx_clk = TX_CLK_ID; 1004 rx = RX_ID; 1005 rx_clk = RX_CLK_ID; 1006 break; 1007 case PHY_INTERFACE_MODE_RGMII_RXID: 1008 tx = TX_ND; 1009 tx_clk = TX_CLK_ND; 1010 rx = RX_ID; 1011 rx_clk = RX_CLK_ID; 1012 break; 1013 case PHY_INTERFACE_MODE_RGMII_TXID: 1014 tx = TX_ID; 1015 tx_clk = TX_CLK_ID; 1016 rx = RX_ND; 1017 rx_clk = RX_CLK_ND; 1018 break; 1019 default: 1020 return 0; 1021 } 1022 1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1026 if (ret < 0) 1027 return ret; 1028 1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1034 if (ret < 0) 1035 return ret; 1036 1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1048 } 1049 1050 static int ksz9031_config_init(struct phy_device *phydev) 1051 { 1052 const struct device_node *of_node; 1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1054 static const char *rx_data_skews[4] = { 1055 "rxd0-skew-ps", "rxd1-skew-ps", 1056 "rxd2-skew-ps", "rxd3-skew-ps" 1057 }; 1058 static const char *tx_data_skews[4] = { 1059 "txd0-skew-ps", "txd1-skew-ps", 1060 "txd2-skew-ps", "txd3-skew-ps" 1061 }; 1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1063 const struct device *dev_walker; 1064 int result; 1065 1066 result = ksz9031_enable_edpd(phydev); 1067 if (result < 0) 1068 return result; 1069 1070 /* The Micrel driver has a deprecated option to place phy OF 1071 * properties in the MAC node. Walk up the tree of devices to 1072 * find a device with an OF node. 1073 */ 1074 dev_walker = &phydev->mdio.dev; 1075 do { 1076 of_node = dev_walker->of_node; 1077 dev_walker = dev_walker->parent; 1078 } while (!of_node && dev_walker); 1079 1080 if (of_node) { 1081 bool update = false; 1082 1083 if (phy_interface_is_rgmii(phydev)) { 1084 result = ksz9031_config_rgmii_delay(phydev); 1085 if (result < 0) 1086 return result; 1087 } 1088 1089 ksz9031_of_load_skew_values(phydev, of_node, 1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1091 clk_skews, 2, &update); 1092 1093 ksz9031_of_load_skew_values(phydev, of_node, 1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1095 control_skews, 2, &update); 1096 1097 ksz9031_of_load_skew_values(phydev, of_node, 1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1099 rx_data_skews, 4, &update); 1100 1101 ksz9031_of_load_skew_values(phydev, of_node, 1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1103 tx_data_skews, 4, &update); 1104 1105 if (update && !phy_interface_is_rgmii(phydev)) 1106 phydev_warn(phydev, 1107 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1108 1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1110 * When the device links in the 1000BASE-T slave mode only, 1111 * the optional 125MHz reference output clock (CLK125_NDO) 1112 * has wide duty cycle variation. 1113 * 1114 * The optional CLK125_NDO clock does not meet the RGMII 1115 * 45/55 percent (min/max) duty cycle requirement and therefore 1116 * cannot be used directly by the MAC side for clocking 1117 * applications that have setup/hold time requirements on 1118 * rising and falling clock edges. 1119 * 1120 * Workaround: 1121 * Force the phy to be the master to receive a stable clock 1122 * which meets the duty cycle requirement. 1123 */ 1124 if (of_property_read_bool(of_node, "micrel,force-master")) { 1125 result = phy_read(phydev, MII_CTRL1000); 1126 if (result < 0) 1127 goto err_force_master; 1128 1129 /* enable master mode, config & prefer master */ 1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1131 result = phy_write(phydev, MII_CTRL1000, result); 1132 if (result < 0) 1133 goto err_force_master; 1134 } 1135 } 1136 1137 return ksz9031_center_flp_timing(phydev); 1138 1139 err_force_master: 1140 phydev_err(phydev, "failed to force the phy to master mode\n"); 1141 return result; 1142 } 1143 1144 #define KSZ9131_SKEW_5BIT_MAX 2400 1145 #define KSZ9131_SKEW_4BIT_MAX 800 1146 #define KSZ9131_OFFSET 700 1147 #define KSZ9131_STEP 100 1148 1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1150 struct device_node *of_node, 1151 u16 reg, size_t field_sz, 1152 char *field[], u8 numfields) 1153 { 1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1156 int skewval, skewmax = 0; 1157 int matches = 0; 1158 u16 maxval; 1159 u16 newval; 1160 u16 mask; 1161 int i; 1162 1163 /* psec properties in dts should mean x pico seconds */ 1164 if (field_sz == 5) 1165 skewmax = KSZ9131_SKEW_5BIT_MAX; 1166 else 1167 skewmax = KSZ9131_SKEW_4BIT_MAX; 1168 1169 for (i = 0; i < numfields; i++) 1170 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1171 if (skewval < -KSZ9131_OFFSET) 1172 skewval = -KSZ9131_OFFSET; 1173 else if (skewval > skewmax) 1174 skewval = skewmax; 1175 1176 val[i] = skewval + KSZ9131_OFFSET; 1177 matches++; 1178 } 1179 1180 if (!matches) 1181 return 0; 1182 1183 if (matches < numfields) 1184 newval = phy_read_mmd(phydev, 2, reg); 1185 else 1186 newval = 0; 1187 1188 maxval = (field_sz == 4) ? 0xf : 0x1f; 1189 for (i = 0; i < numfields; i++) 1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1191 mask = 0xffff; 1192 mask ^= maxval << (field_sz * i); 1193 newval = (newval & mask) | 1194 (((val[i] / KSZ9131_STEP) & maxval) 1195 << (field_sz * i)); 1196 } 1197 1198 return phy_write_mmd(phydev, 2, reg, newval); 1199 } 1200 1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1202 #define KSZ9131RN_RXC_DLL_CTRL 76 1203 #define KSZ9131RN_TXC_DLL_CTRL 77 1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1205 1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1207 { 1208 const struct kszphy_type *type = phydev->drv->driver_data; 1209 u16 rxcdll_val, txcdll_val; 1210 int ret; 1211 1212 switch (phydev->interface) { 1213 case PHY_INTERFACE_MODE_RGMII: 1214 rxcdll_val = type->disable_dll_rx_bit; 1215 txcdll_val = type->disable_dll_tx_bit; 1216 break; 1217 case PHY_INTERFACE_MODE_RGMII_ID: 1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1220 break; 1221 case PHY_INTERFACE_MODE_RGMII_RXID: 1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1223 txcdll_val = type->disable_dll_tx_bit; 1224 break; 1225 case PHY_INTERFACE_MODE_RGMII_TXID: 1226 rxcdll_val = type->disable_dll_rx_bit; 1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1228 break; 1229 default: 1230 return 0; 1231 } 1232 1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1235 rxcdll_val); 1236 if (ret < 0) 1237 return ret; 1238 1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1241 txcdll_val); 1242 } 1243 1244 /* Silicon Errata DS80000693B 1245 * 1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1248 * according to the datasheet (off if there is no link). 1249 */ 1250 static int ksz9131_led_errata(struct phy_device *phydev) 1251 { 1252 int reg; 1253 1254 reg = phy_read_mmd(phydev, 2, 0); 1255 if (reg < 0) 1256 return reg; 1257 1258 if (!(reg & BIT(4))) 1259 return 0; 1260 1261 return phy_set_bits(phydev, 0x1e, BIT(9)); 1262 } 1263 1264 static int ksz9131_config_init(struct phy_device *phydev) 1265 { 1266 struct device_node *of_node; 1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1268 char *rx_data_skews[4] = { 1269 "rxd0-skew-psec", "rxd1-skew-psec", 1270 "rxd2-skew-psec", "rxd3-skew-psec" 1271 }; 1272 char *tx_data_skews[4] = { 1273 "txd0-skew-psec", "txd1-skew-psec", 1274 "txd2-skew-psec", "txd3-skew-psec" 1275 }; 1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1277 const struct device *dev_walker; 1278 int ret; 1279 1280 dev_walker = &phydev->mdio.dev; 1281 do { 1282 of_node = dev_walker->of_node; 1283 dev_walker = dev_walker->parent; 1284 } while (!of_node && dev_walker); 1285 1286 if (!of_node) 1287 return 0; 1288 1289 if (phy_interface_is_rgmii(phydev)) { 1290 ret = ksz9131_config_rgmii_delay(phydev); 1291 if (ret < 0) 1292 return ret; 1293 } 1294 1295 ret = ksz9131_of_load_skew_values(phydev, of_node, 1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1297 clk_skews, 2); 1298 if (ret < 0) 1299 return ret; 1300 1301 ret = ksz9131_of_load_skew_values(phydev, of_node, 1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1303 control_skews, 2); 1304 if (ret < 0) 1305 return ret; 1306 1307 ret = ksz9131_of_load_skew_values(phydev, of_node, 1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1309 rx_data_skews, 4); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1315 tx_data_skews, 4); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_led_errata(phydev); 1320 if (ret < 0) 1321 return ret; 1322 1323 return 0; 1324 } 1325 1326 #define MII_KSZ9131_AUTO_MDIX 0x1C 1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1329 1330 static int ksz9131_mdix_update(struct phy_device *phydev) 1331 { 1332 int ret; 1333 1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1335 if (ret < 0) 1336 return ret; 1337 1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1339 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1340 phydev->mdix_ctrl = ETH_TP_MDI; 1341 else 1342 phydev->mdix_ctrl = ETH_TP_MDI_X; 1343 } else { 1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1345 } 1346 1347 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1348 phydev->mdix = ETH_TP_MDI; 1349 else 1350 phydev->mdix = ETH_TP_MDI_X; 1351 1352 return 0; 1353 } 1354 1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1356 { 1357 u16 val; 1358 1359 switch (ctrl) { 1360 case ETH_TP_MDI: 1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1362 MII_KSZ9131_AUTO_MDI_SET; 1363 break; 1364 case ETH_TP_MDI_X: 1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1366 break; 1367 case ETH_TP_MDI_AUTO: 1368 val = 0; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1376 MII_KSZ9131_AUTO_MDI_SET, val); 1377 } 1378 1379 static int ksz9131_read_status(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = ksz9131_mdix_update(phydev); 1384 if (ret < 0) 1385 return ret; 1386 1387 return genphy_read_status(phydev); 1388 } 1389 1390 static int ksz9131_config_aneg(struct phy_device *phydev) 1391 { 1392 int ret; 1393 1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1395 if (ret) 1396 return ret; 1397 1398 return genphy_config_aneg(phydev); 1399 } 1400 1401 static int ksz9477_get_features(struct phy_device *phydev) 1402 { 1403 int ret; 1404 1405 ret = genphy_read_abilities(phydev); 1406 if (ret) 1407 return ret; 1408 1409 /* The "EEE control and capability 1" (Register 3.20) seems to be 1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1411 * on the 7.60 will affect 3.20. So, we need to construct our own list 1412 * of caps. 1413 * KSZ8563R should have 100BaseTX/Full only. 1414 */ 1415 linkmode_and(phydev->supported_eee, phydev->supported, 1416 PHY_EEE_CAP1_FEATURES); 1417 1418 return 0; 1419 } 1420 1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1424 static int ksz8873mll_read_status(struct phy_device *phydev) 1425 { 1426 int regval; 1427 1428 /* dummy read */ 1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1430 1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1432 1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1434 phydev->duplex = DUPLEX_HALF; 1435 else 1436 phydev->duplex = DUPLEX_FULL; 1437 1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1439 phydev->speed = SPEED_10; 1440 else 1441 phydev->speed = SPEED_100; 1442 1443 phydev->link = 1; 1444 phydev->pause = phydev->asym_pause = 0; 1445 1446 return 0; 1447 } 1448 1449 static int ksz9031_get_features(struct phy_device *phydev) 1450 { 1451 int ret; 1452 1453 ret = genphy_read_abilities(phydev); 1454 if (ret < 0) 1455 return ret; 1456 1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1458 * Whenever the device's Asymmetric Pause capability is set to 1, 1459 * link-up may fail after a link-up to link-down transition. 1460 * 1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1462 * 1463 * Workaround: 1464 * Do not enable the Asymmetric Pause capability bit. 1465 */ 1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1467 1468 /* We force setting the Pause capability as the core will force the 1469 * Asymmetric Pause capability to 1 otherwise. 1470 */ 1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1472 1473 return 0; 1474 } 1475 1476 static int ksz9031_read_status(struct phy_device *phydev) 1477 { 1478 int err; 1479 int regval; 1480 1481 err = genphy_read_status(phydev); 1482 if (err) 1483 return err; 1484 1485 /* Make sure the PHY is not broken. Read idle error count, 1486 * and reset the PHY if it is maxed out. 1487 */ 1488 regval = phy_read(phydev, MII_STAT1000); 1489 if ((regval & 0xFF) == 0xFF) { 1490 phy_init_hw(phydev); 1491 phydev->link = 0; 1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1493 phydev->drv->config_intr(phydev); 1494 return genphy_config_aneg(phydev); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1501 { 1502 struct kszphy_priv *priv = phydev->priv; 1503 int ret; 1504 1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1506 * Prior to running the cable diagnostics, Auto-negotiation should 1507 * be disabled, full duplex set and the link speed set to 1000Mbps 1508 * via the Basic Control Register. 1509 */ 1510 ret = phy_modify(phydev, MII_BMCR, 1511 BMCR_SPEED1000 | BMCR_FULLDPLX | 1512 BMCR_ANENABLE | BMCR_SPEED100, 1513 BMCR_SPEED1000 | BMCR_FULLDPLX); 1514 if (ret) 1515 return ret; 1516 1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1518 * The Master-Slave configuration should be set to Slave by writing 1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1520 * Register. 1521 */ 1522 ret = phy_read(phydev, MII_CTRL1000); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1529 ret |= CTL1000_ENABLE_MASTER; 1530 1531 return phy_write(phydev, MII_CTRL1000, ret); 1532 } 1533 1534 static int ksz9x31_cable_test_result_trans(u16 status) 1535 { 1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1537 case KSZ9x31_LMD_VCT_ST_NORMAL: 1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1539 case KSZ9x31_LMD_VCT_ST_OPEN: 1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1541 case KSZ9x31_LMD_VCT_ST_SHORT: 1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1543 case KSZ9x31_LMD_VCT_ST_FAIL: 1544 fallthrough; 1545 default: 1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1547 } 1548 } 1549 1550 static bool ksz9x31_cable_test_failed(u16 status) 1551 { 1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1553 1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1555 } 1556 1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1558 { 1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1560 case KSZ9x31_LMD_VCT_ST_OPEN: 1561 fallthrough; 1562 case KSZ9x31_LMD_VCT_ST_SHORT: 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1569 { 1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1571 1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1573 * 1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1575 */ 1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1577 dt = clamp(dt - 22, 0, 255); 1578 1579 return (dt * 400) / 10; 1580 } 1581 1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1583 { 1584 int val, ret; 1585 1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1587 !(val & KSZ9x31_LMD_VCT_EN), 1588 30000, 100000, true); 1589 1590 return ret < 0 ? ret : 0; 1591 } 1592 1593 static int ksz9x31_cable_test_get_pair(int pair) 1594 { 1595 static const int ethtool_pair[] = { 1596 ETHTOOL_A_CABLE_PAIR_A, 1597 ETHTOOL_A_CABLE_PAIR_B, 1598 ETHTOOL_A_CABLE_PAIR_C, 1599 ETHTOOL_A_CABLE_PAIR_D, 1600 }; 1601 1602 return ethtool_pair[pair]; 1603 } 1604 1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1606 { 1607 int ret, val; 1608 1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1610 * To test each individual cable pair, set the cable pair in the Cable 1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1612 * Diagnostic Register, along with setting the Cable Diagnostics Test 1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1614 * will self clear when the test is concluded. 1615 */ 1616 ret = phy_write(phydev, KSZ9x31_LMD, 1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1618 if (ret) 1619 return ret; 1620 1621 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1622 if (ret) 1623 return ret; 1624 1625 val = phy_read(phydev, KSZ9x31_LMD); 1626 if (val < 0) 1627 return val; 1628 1629 if (ksz9x31_cable_test_failed(val)) 1630 return -EAGAIN; 1631 1632 ret = ethnl_cable_test_result(phydev, 1633 ksz9x31_cable_test_get_pair(pair), 1634 ksz9x31_cable_test_result_trans(val)); 1635 if (ret) 1636 return ret; 1637 1638 if (!ksz9x31_cable_test_fault_length_valid(val)) 1639 return 0; 1640 1641 return ethnl_cable_test_fault_length(phydev, 1642 ksz9x31_cable_test_get_pair(pair), 1643 ksz9x31_cable_test_fault_length(phydev, val)); 1644 } 1645 1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1647 bool *finished) 1648 { 1649 struct kszphy_priv *priv = phydev->priv; 1650 unsigned long pair_mask = 0xf; 1651 int retries = 20; 1652 int pair, ret, rv; 1653 1654 *finished = false; 1655 1656 /* Try harder if link partner is active */ 1657 while (pair_mask && retries--) { 1658 for_each_set_bit(pair, &pair_mask, 4) { 1659 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1660 if (ret == -EAGAIN) 1661 continue; 1662 if (ret < 0) 1663 return ret; 1664 clear_bit(pair, &pair_mask); 1665 } 1666 /* If link partner is in autonegotiation mode it will send 2ms 1667 * of FLPs with at least 6ms of silence. 1668 * Add 2ms sleep to have better chances to hit this silence. 1669 */ 1670 if (pair_mask) 1671 usleep_range(2000, 3000); 1672 } 1673 1674 /* Report remaining unfinished pair result as unknown. */ 1675 for_each_set_bit(pair, &pair_mask, 4) { 1676 ret = ethnl_cable_test_result(phydev, 1677 ksz9x31_cable_test_get_pair(pair), 1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1679 } 1680 1681 *finished = true; 1682 1683 /* Restore cached bits from before LinkMD got started. */ 1684 rv = phy_modify(phydev, MII_CTRL1000, 1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1686 priv->vct_ctrl1000); 1687 if (rv) 1688 return rv; 1689 1690 return ret; 1691 } 1692 1693 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1694 { 1695 return 0; 1696 } 1697 1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1699 { 1700 u16 val; 1701 1702 switch (ctrl) { 1703 case ETH_TP_MDI: 1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1705 break; 1706 case ETH_TP_MDI_X: 1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1709 * sheet seems to be missing: 1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1711 * 0 = Normal operation (transmit on TX+/TX- pins) 1712 */ 1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1714 break; 1715 case ETH_TP_MDI_AUTO: 1716 val = 0; 1717 break; 1718 default: 1719 return 0; 1720 } 1721 1722 return phy_modify(phydev, MII_BMCR, 1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1725 KSZ886X_BMCR_HP_MDIX | val); 1726 } 1727 1728 static int ksz886x_config_aneg(struct phy_device *phydev) 1729 { 1730 int ret; 1731 1732 ret = genphy_config_aneg(phydev); 1733 if (ret) 1734 return ret; 1735 1736 if (phydev->autoneg != AUTONEG_ENABLE) { 1737 /* When autonegotation is disabled, we need to manually force 1738 * the link state. If we don't do this, the PHY will keep 1739 * sending Fast Link Pulses (FLPs) which are part of the 1740 * autonegotiation process. This is not desired when 1741 * autonegotiation is off. 1742 */ 1743 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1744 KSZ886X_CTRL_FORCE_LINK); 1745 if (ret) 1746 return ret; 1747 } else { 1748 /* If we had previously forced the link state, we need to 1749 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1750 * will not perform autonegotiation. 1751 */ 1752 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1753 KSZ886X_CTRL_FORCE_LINK); 1754 if (ret) 1755 return ret; 1756 } 1757 1758 /* The MDI-X configuration is automatically changed by the PHY after 1759 * switching from autoneg off to on. So, take MDI-X configuration under 1760 * own control and set it after autoneg configuration was done. 1761 */ 1762 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1763 } 1764 1765 static int ksz886x_mdix_update(struct phy_device *phydev) 1766 { 1767 int ret; 1768 1769 ret = phy_read(phydev, MII_BMCR); 1770 if (ret < 0) 1771 return ret; 1772 1773 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1774 if (ret & KSZ886X_BMCR_FORCE_MDI) 1775 phydev->mdix_ctrl = ETH_TP_MDI_X; 1776 else 1777 phydev->mdix_ctrl = ETH_TP_MDI; 1778 } else { 1779 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1780 } 1781 1782 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1783 if (ret < 0) 1784 return ret; 1785 1786 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1787 if (ret & KSZ886X_CTRL_MDIX_STAT) 1788 phydev->mdix = ETH_TP_MDI_X; 1789 else 1790 phydev->mdix = ETH_TP_MDI; 1791 1792 return 0; 1793 } 1794 1795 static int ksz886x_read_status(struct phy_device *phydev) 1796 { 1797 int ret; 1798 1799 ret = ksz886x_mdix_update(phydev); 1800 if (ret < 0) 1801 return ret; 1802 1803 return genphy_read_status(phydev); 1804 } 1805 1806 struct ksz9477_errata_write { 1807 u8 dev_addr; 1808 u8 reg_addr; 1809 u16 val; 1810 }; 1811 1812 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1813 /* Register settings are needed to improve PHY receive performance */ 1814 {0x01, 0x6f, 0xdd0b}, 1815 {0x01, 0x8f, 0x6032}, 1816 {0x01, 0x9d, 0x248c}, 1817 {0x01, 0x75, 0x0060}, 1818 {0x01, 0xd3, 0x7777}, 1819 {0x1c, 0x06, 0x3008}, 1820 {0x1c, 0x08, 0x2000}, 1821 1822 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1823 {0x1c, 0x04, 0x00d0}, 1824 1825 /* Register settings are required to meet data sheet supply current specifications */ 1826 {0x1c, 0x13, 0x6eff}, 1827 {0x1c, 0x14, 0xe6ff}, 1828 {0x1c, 0x15, 0x6eff}, 1829 {0x1c, 0x16, 0xe6ff}, 1830 {0x1c, 0x17, 0x00ff}, 1831 {0x1c, 0x18, 0x43ff}, 1832 {0x1c, 0x19, 0xc3ff}, 1833 {0x1c, 0x1a, 0x6fff}, 1834 {0x1c, 0x1b, 0x07ff}, 1835 {0x1c, 0x1c, 0x0fff}, 1836 {0x1c, 0x1d, 0xe7ff}, 1837 {0x1c, 0x1e, 0xefff}, 1838 {0x1c, 0x20, 0xeeee}, 1839 }; 1840 1841 static int ksz9477_config_init(struct phy_device *phydev) 1842 { 1843 int err; 1844 int i; 1845 1846 /* Apply PHY settings to address errata listed in 1847 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1848 * Silicon Errata and Data Sheet Clarification documents. 1849 * 1850 * Document notes: Before configuring the PHY MMD registers, it is 1851 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1852 * disabled by writing to register 0xN100-0xN101. After writing the 1853 * MMD registers, and after all errata workarounds that involve PHY 1854 * register settings, write register 0xN100-0xN101 again to enable 1855 * and restart auto-negotiation. 1856 */ 1857 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1858 if (err) 1859 return err; 1860 1861 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1862 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1863 1864 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1865 if (err) 1866 return err; 1867 } 1868 1869 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 1870 * in this switch shall be regarded as broken. 1871 */ 1872 if (phydev->dev_flags & MICREL_NO_EEE) 1873 phydev->eee_broken_modes = -1; 1874 1875 err = genphy_restart_aneg(phydev); 1876 if (err) 1877 return err; 1878 1879 return kszphy_config_init(phydev); 1880 } 1881 1882 static int kszphy_get_sset_count(struct phy_device *phydev) 1883 { 1884 return ARRAY_SIZE(kszphy_hw_stats); 1885 } 1886 1887 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1888 { 1889 int i; 1890 1891 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1892 strscpy(data + i * ETH_GSTRING_LEN, 1893 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1894 } 1895 } 1896 1897 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1898 { 1899 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1900 struct kszphy_priv *priv = phydev->priv; 1901 int val; 1902 u64 ret; 1903 1904 val = phy_read(phydev, stat.reg); 1905 if (val < 0) { 1906 ret = U64_MAX; 1907 } else { 1908 val = val & ((1 << stat.bits) - 1); 1909 priv->stats[i] += val; 1910 ret = priv->stats[i]; 1911 } 1912 1913 return ret; 1914 } 1915 1916 static void kszphy_get_stats(struct phy_device *phydev, 1917 struct ethtool_stats *stats, u64 *data) 1918 { 1919 int i; 1920 1921 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1922 data[i] = kszphy_get_stat(phydev, i); 1923 } 1924 1925 static int kszphy_suspend(struct phy_device *phydev) 1926 { 1927 /* Disable PHY Interrupts */ 1928 if (phy_interrupt_is_valid(phydev)) { 1929 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1930 if (phydev->drv->config_intr) 1931 phydev->drv->config_intr(phydev); 1932 } 1933 1934 return genphy_suspend(phydev); 1935 } 1936 1937 static void kszphy_parse_led_mode(struct phy_device *phydev) 1938 { 1939 const struct kszphy_type *type = phydev->drv->driver_data; 1940 const struct device_node *np = phydev->mdio.dev.of_node; 1941 struct kszphy_priv *priv = phydev->priv; 1942 int ret; 1943 1944 if (type && type->led_mode_reg) { 1945 ret = of_property_read_u32(np, "micrel,led-mode", 1946 &priv->led_mode); 1947 1948 if (ret) 1949 priv->led_mode = -1; 1950 1951 if (priv->led_mode > 3) { 1952 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1953 priv->led_mode); 1954 priv->led_mode = -1; 1955 } 1956 } else { 1957 priv->led_mode = -1; 1958 } 1959 } 1960 1961 static int kszphy_resume(struct phy_device *phydev) 1962 { 1963 int ret; 1964 1965 genphy_resume(phydev); 1966 1967 /* After switching from power-down to normal mode, an internal global 1968 * reset is automatically generated. Wait a minimum of 1 ms before 1969 * read/write access to the PHY registers. 1970 */ 1971 usleep_range(1000, 2000); 1972 1973 ret = kszphy_config_reset(phydev); 1974 if (ret) 1975 return ret; 1976 1977 /* Enable PHY Interrupts */ 1978 if (phy_interrupt_is_valid(phydev)) { 1979 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1980 if (phydev->drv->config_intr) 1981 phydev->drv->config_intr(phydev); 1982 } 1983 1984 return 0; 1985 } 1986 1987 static int kszphy_probe(struct phy_device *phydev) 1988 { 1989 const struct kszphy_type *type = phydev->drv->driver_data; 1990 const struct device_node *np = phydev->mdio.dev.of_node; 1991 struct kszphy_priv *priv; 1992 struct clk *clk; 1993 1994 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1995 if (!priv) 1996 return -ENOMEM; 1997 1998 phydev->priv = priv; 1999 2000 priv->type = type; 2001 2002 kszphy_parse_led_mode(phydev); 2003 2004 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 2005 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2006 if (!IS_ERR_OR_NULL(clk)) { 2007 unsigned long rate = clk_get_rate(clk); 2008 bool rmii_ref_clk_sel_25_mhz; 2009 2010 if (type) 2011 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2012 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2013 "micrel,rmii-reference-clock-select-25-mhz"); 2014 2015 if (rate > 24500000 && rate < 25500000) { 2016 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2017 } else if (rate > 49500000 && rate < 50500000) { 2018 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2019 } else { 2020 phydev_err(phydev, "Clock rate out of range: %ld\n", 2021 rate); 2022 return -EINVAL; 2023 } 2024 } 2025 2026 if (ksz8041_fiber_mode(phydev)) 2027 phydev->port = PORT_FIBRE; 2028 2029 /* Support legacy board-file configuration */ 2030 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2031 priv->rmii_ref_clk_sel = true; 2032 priv->rmii_ref_clk_sel_val = true; 2033 } 2034 2035 return 0; 2036 } 2037 2038 static int lan8814_cable_test_start(struct phy_device *phydev) 2039 { 2040 /* If autoneg is enabled, we won't be able to test cross pair 2041 * short. In this case, the PHY will "detect" a link and 2042 * confuse the internal state machine - disable auto neg here. 2043 * Set the speed to 1000mbit and full duplex. 2044 */ 2045 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2046 BMCR_SPEED1000 | BMCR_FULLDPLX); 2047 } 2048 2049 static int ksz886x_cable_test_start(struct phy_device *phydev) 2050 { 2051 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2052 return -EOPNOTSUPP; 2053 2054 /* If autoneg is enabled, we won't be able to test cross pair 2055 * short. In this case, the PHY will "detect" a link and 2056 * confuse the internal state machine - disable auto neg here. 2057 * If autoneg is disabled, we should set the speed to 10mbit. 2058 */ 2059 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2060 } 2061 2062 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2063 { 2064 switch (FIELD_GET(mask, status)) { 2065 case KSZ8081_LMD_STAT_NORMAL: 2066 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2067 case KSZ8081_LMD_STAT_SHORT: 2068 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2069 case KSZ8081_LMD_STAT_OPEN: 2070 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2071 case KSZ8081_LMD_STAT_FAIL: 2072 fallthrough; 2073 default: 2074 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2075 } 2076 } 2077 2078 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2079 { 2080 return FIELD_GET(mask, status) == 2081 KSZ8081_LMD_STAT_FAIL; 2082 } 2083 2084 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2085 { 2086 switch (FIELD_GET(mask, status)) { 2087 case KSZ8081_LMD_STAT_OPEN: 2088 fallthrough; 2089 case KSZ8081_LMD_STAT_SHORT: 2090 return true; 2091 } 2092 return false; 2093 } 2094 2095 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2096 u16 status, u16 data_mask) 2097 { 2098 int dt; 2099 2100 /* According to the data sheet the distance to the fault is 2101 * DELTA_TIME * 0.4 meters for ksz phys. 2102 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2103 */ 2104 dt = FIELD_GET(data_mask, status); 2105 2106 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2107 return ((dt - 22) * 800) / 10; 2108 else 2109 return (dt * 400) / 10; 2110 } 2111 2112 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2113 { 2114 const struct kszphy_type *type = phydev->drv->driver_data; 2115 int val, ret; 2116 2117 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2118 !(val & KSZ8081_LMD_ENABLE_TEST), 2119 30000, 100000, true); 2120 2121 return ret < 0 ? ret : 0; 2122 } 2123 2124 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2125 { 2126 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2127 ETHTOOL_A_CABLE_PAIR_B, 2128 ETHTOOL_A_CABLE_PAIR_C, 2129 ETHTOOL_A_CABLE_PAIR_D, 2130 }; 2131 u32 fault_length; 2132 int ret; 2133 int val; 2134 2135 val = KSZ8081_LMD_ENABLE_TEST; 2136 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2137 2138 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2139 if (ret < 0) 2140 return ret; 2141 2142 ret = ksz886x_cable_test_wait_for_completion(phydev); 2143 if (ret) 2144 return ret; 2145 2146 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2147 if (val < 0) 2148 return val; 2149 2150 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2151 return -EAGAIN; 2152 2153 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2154 ksz886x_cable_test_result_trans(val, 2155 LAN8814_CABLE_DIAG_STAT_MASK 2156 )); 2157 if (ret) 2158 return ret; 2159 2160 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2161 return 0; 2162 2163 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2164 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2165 2166 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2167 } 2168 2169 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2170 { 2171 static const int ethtool_pair[] = { 2172 ETHTOOL_A_CABLE_PAIR_A, 2173 ETHTOOL_A_CABLE_PAIR_B, 2174 }; 2175 int ret, val, mdix; 2176 u32 fault_length; 2177 2178 /* There is no way to choice the pair, like we do one ksz9031. 2179 * We can workaround this limitation by using the MDI-X functionality. 2180 */ 2181 if (pair == 0) 2182 mdix = ETH_TP_MDI; 2183 else 2184 mdix = ETH_TP_MDI_X; 2185 2186 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2187 case PHY_ID_KSZ8081: 2188 ret = ksz8081_config_mdix(phydev, mdix); 2189 break; 2190 case PHY_ID_KSZ886X: 2191 ret = ksz886x_config_mdix(phydev, mdix); 2192 break; 2193 default: 2194 ret = -ENODEV; 2195 } 2196 2197 if (ret) 2198 return ret; 2199 2200 /* Now we are ready to fire. This command will send a 100ns pulse 2201 * to the pair. 2202 */ 2203 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2204 if (ret) 2205 return ret; 2206 2207 ret = ksz886x_cable_test_wait_for_completion(phydev); 2208 if (ret) 2209 return ret; 2210 2211 val = phy_read(phydev, KSZ8081_LMD); 2212 if (val < 0) 2213 return val; 2214 2215 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2216 return -EAGAIN; 2217 2218 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2219 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2220 if (ret) 2221 return ret; 2222 2223 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2224 return 0; 2225 2226 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2227 2228 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2229 } 2230 2231 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2232 bool *finished) 2233 { 2234 const struct kszphy_type *type = phydev->drv->driver_data; 2235 unsigned long pair_mask = type->pair_mask; 2236 int retries = 20; 2237 int ret = 0; 2238 int pair; 2239 2240 *finished = false; 2241 2242 /* Try harder if link partner is active */ 2243 while (pair_mask && retries--) { 2244 for_each_set_bit(pair, &pair_mask, 4) { 2245 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2246 ret = lan8814_cable_test_one_pair(phydev, pair); 2247 else 2248 ret = ksz886x_cable_test_one_pair(phydev, pair); 2249 if (ret == -EAGAIN) 2250 continue; 2251 if (ret < 0) 2252 return ret; 2253 clear_bit(pair, &pair_mask); 2254 } 2255 /* If link partner is in autonegotiation mode it will send 2ms 2256 * of FLPs with at least 6ms of silence. 2257 * Add 2ms sleep to have better chances to hit this silence. 2258 */ 2259 if (pair_mask) 2260 msleep(2); 2261 } 2262 2263 *finished = true; 2264 2265 return ret; 2266 } 2267 2268 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2269 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2270 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2271 2272 #define LAN8814_QSGMII_SOFT_RESET 0x43 2273 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2274 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2275 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2276 #define LAN8814_ALIGN_SWAP 0x4a 2277 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2278 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2279 2280 #define LAN8804_ALIGN_SWAP 0x4a 2281 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2282 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2283 #define LAN8814_CLOCK_MANAGEMENT 0xd 2284 #define LAN8814_LINK_QUALITY 0x8e 2285 2286 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2287 { 2288 int data; 2289 2290 phy_lock_mdio_bus(phydev); 2291 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2292 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2293 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2294 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2295 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2296 phy_unlock_mdio_bus(phydev); 2297 2298 return data; 2299 } 2300 2301 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2302 u16 val) 2303 { 2304 phy_lock_mdio_bus(phydev); 2305 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2306 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2307 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2308 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2309 2310 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2311 if (val != 0) 2312 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2313 val); 2314 phy_unlock_mdio_bus(phydev); 2315 return val; 2316 } 2317 2318 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2319 { 2320 u16 val = 0; 2321 2322 if (enable) 2323 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2324 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2325 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2326 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2327 2328 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2329 } 2330 2331 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2332 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2333 { 2334 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2335 *seconds = (*seconds << 16) | 2336 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2337 2338 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2339 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2340 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2341 2342 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2343 } 2344 2345 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2346 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2347 { 2348 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2349 *seconds = *seconds << 16 | 2350 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2351 2352 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2353 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2354 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2355 2356 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2357 } 2358 2359 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2360 { 2361 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2362 struct phy_device *phydev = ptp_priv->phydev; 2363 struct lan8814_shared_priv *shared = phydev->shared->priv; 2364 2365 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2366 SOF_TIMESTAMPING_RX_HARDWARE | 2367 SOF_TIMESTAMPING_RAW_HARDWARE; 2368 2369 info->phc_index = ptp_clock_index(shared->ptp_clock); 2370 2371 info->tx_types = 2372 (1 << HWTSTAMP_TX_OFF) | 2373 (1 << HWTSTAMP_TX_ON) | 2374 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2375 2376 info->rx_filters = 2377 (1 << HWTSTAMP_FILTER_NONE) | 2378 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2379 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2380 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2381 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2382 2383 return 0; 2384 } 2385 2386 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2387 { 2388 int i; 2389 2390 for (i = 0; i < FIFO_SIZE; ++i) 2391 lanphy_read_page_reg(phydev, 5, 2392 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2393 2394 /* Read to clear overflow status bit */ 2395 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2396 } 2397 2398 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2399 struct kernel_hwtstamp_config *config, 2400 struct netlink_ext_ack *extack) 2401 { 2402 struct kszphy_ptp_priv *ptp_priv = 2403 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2404 struct phy_device *phydev = ptp_priv->phydev; 2405 struct lan8814_shared_priv *shared = phydev->shared->priv; 2406 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2407 int txcfg = 0, rxcfg = 0; 2408 int pkt_ts_enable; 2409 2410 ptp_priv->hwts_tx_type = config->tx_type; 2411 ptp_priv->rx_filter = config->rx_filter; 2412 2413 switch (config->rx_filter) { 2414 case HWTSTAMP_FILTER_NONE: 2415 ptp_priv->layer = 0; 2416 ptp_priv->version = 0; 2417 break; 2418 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2419 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2420 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2421 ptp_priv->layer = PTP_CLASS_L4; 2422 ptp_priv->version = PTP_CLASS_V2; 2423 break; 2424 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2425 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2426 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2427 ptp_priv->layer = PTP_CLASS_L2; 2428 ptp_priv->version = PTP_CLASS_V2; 2429 break; 2430 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2431 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2432 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2433 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2434 ptp_priv->version = PTP_CLASS_V2; 2435 break; 2436 default: 2437 return -ERANGE; 2438 } 2439 2440 if (ptp_priv->layer & PTP_CLASS_L2) { 2441 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2442 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2443 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2444 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2445 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2446 } 2447 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2448 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2449 2450 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2451 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2452 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2453 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2454 2455 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2456 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2457 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2458 2459 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2460 lan8814_config_ts_intr(ptp_priv->phydev, true); 2461 else 2462 lan8814_config_ts_intr(ptp_priv->phydev, false); 2463 2464 mutex_lock(&shared->shared_lock); 2465 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2466 shared->ref++; 2467 else 2468 shared->ref--; 2469 2470 if (shared->ref) 2471 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2472 PTP_CMD_CTL_PTP_ENABLE_); 2473 else 2474 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2475 PTP_CMD_CTL_PTP_DISABLE_); 2476 mutex_unlock(&shared->shared_lock); 2477 2478 /* In case of multiple starts and stops, these needs to be cleared */ 2479 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2480 list_del(&rx_ts->list); 2481 kfree(rx_ts); 2482 } 2483 skb_queue_purge(&ptp_priv->rx_queue); 2484 skb_queue_purge(&ptp_priv->tx_queue); 2485 2486 lan8814_flush_fifo(ptp_priv->phydev, false); 2487 lan8814_flush_fifo(ptp_priv->phydev, true); 2488 2489 return 0; 2490 } 2491 2492 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2493 struct sk_buff *skb, int type) 2494 { 2495 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2496 2497 switch (ptp_priv->hwts_tx_type) { 2498 case HWTSTAMP_TX_ONESTEP_SYNC: 2499 if (ptp_msg_is_sync(skb, type)) { 2500 kfree_skb(skb); 2501 return; 2502 } 2503 fallthrough; 2504 case HWTSTAMP_TX_ON: 2505 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2506 skb_queue_tail(&ptp_priv->tx_queue, skb); 2507 break; 2508 case HWTSTAMP_TX_OFF: 2509 default: 2510 kfree_skb(skb); 2511 break; 2512 } 2513 } 2514 2515 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2516 { 2517 struct ptp_header *ptp_header; 2518 u32 type; 2519 2520 skb_push(skb, ETH_HLEN); 2521 type = ptp_classify_raw(skb); 2522 ptp_header = ptp_parse_header(skb, type); 2523 skb_pull_inline(skb, ETH_HLEN); 2524 2525 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2526 } 2527 2528 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2529 struct sk_buff *skb) 2530 { 2531 struct skb_shared_hwtstamps *shhwtstamps; 2532 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2533 unsigned long flags; 2534 bool ret = false; 2535 u16 skb_sig; 2536 2537 lan8814_get_sig_rx(skb, &skb_sig); 2538 2539 /* Iterate over all RX timestamps and match it with the received skbs */ 2540 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2541 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2542 /* Check if we found the signature we were looking for. */ 2543 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2544 continue; 2545 2546 shhwtstamps = skb_hwtstamps(skb); 2547 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2548 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2549 rx_ts->nsec); 2550 list_del(&rx_ts->list); 2551 kfree(rx_ts); 2552 2553 ret = true; 2554 break; 2555 } 2556 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2557 2558 if (ret) 2559 netif_rx(skb); 2560 return ret; 2561 } 2562 2563 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2564 { 2565 struct kszphy_ptp_priv *ptp_priv = 2566 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2567 2568 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2569 type == PTP_CLASS_NONE) 2570 return false; 2571 2572 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2573 return false; 2574 2575 /* If we failed to match then add it to the queue for when the timestamp 2576 * will come 2577 */ 2578 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2579 skb_queue_tail(&ptp_priv->rx_queue, skb); 2580 2581 return true; 2582 } 2583 2584 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2585 u32 seconds, u32 nano_seconds) 2586 { 2587 u32 sec_low, sec_high, nsec_low, nsec_high; 2588 2589 sec_low = seconds & 0xffff; 2590 sec_high = (seconds >> 16) & 0xffff; 2591 nsec_low = nano_seconds & 0xffff; 2592 nsec_high = (nano_seconds >> 16) & 0x3fff; 2593 2594 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2595 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2596 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2597 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2598 2599 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2600 } 2601 2602 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2603 u32 *seconds, u32 *nano_seconds) 2604 { 2605 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2606 2607 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2608 *seconds = (*seconds << 16) | 2609 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2610 2611 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2612 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2613 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2614 } 2615 2616 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2617 struct timespec64 *ts) 2618 { 2619 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2620 ptp_clock_info); 2621 struct phy_device *phydev = shared->phydev; 2622 u32 nano_seconds; 2623 u32 seconds; 2624 2625 mutex_lock(&shared->shared_lock); 2626 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2627 mutex_unlock(&shared->shared_lock); 2628 ts->tv_sec = seconds; 2629 ts->tv_nsec = nano_seconds; 2630 2631 return 0; 2632 } 2633 2634 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2635 const struct timespec64 *ts) 2636 { 2637 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2638 ptp_clock_info); 2639 struct phy_device *phydev = shared->phydev; 2640 2641 mutex_lock(&shared->shared_lock); 2642 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2643 mutex_unlock(&shared->shared_lock); 2644 2645 return 0; 2646 } 2647 2648 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2649 s64 time_step_ns) 2650 { 2651 u32 nano_seconds_step; 2652 u64 abs_time_step_ns; 2653 u32 unsigned_seconds; 2654 u32 nano_seconds; 2655 u32 remainder; 2656 s32 seconds; 2657 2658 if (time_step_ns > 15000000000LL) { 2659 /* convert to clock set */ 2660 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2661 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2662 &remainder); 2663 nano_seconds += remainder; 2664 if (nano_seconds >= 1000000000) { 2665 unsigned_seconds++; 2666 nano_seconds -= 1000000000; 2667 } 2668 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2669 return; 2670 } else if (time_step_ns < -15000000000LL) { 2671 /* convert to clock set */ 2672 time_step_ns = -time_step_ns; 2673 2674 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2675 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2676 &remainder); 2677 nano_seconds_step = remainder; 2678 if (nano_seconds < nano_seconds_step) { 2679 unsigned_seconds--; 2680 nano_seconds += 1000000000; 2681 } 2682 nano_seconds -= nano_seconds_step; 2683 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2684 nano_seconds); 2685 return; 2686 } 2687 2688 /* do clock step */ 2689 if (time_step_ns >= 0) { 2690 abs_time_step_ns = (u64)time_step_ns; 2691 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2692 &remainder); 2693 nano_seconds = remainder; 2694 } else { 2695 abs_time_step_ns = (u64)(-time_step_ns); 2696 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2697 &remainder)); 2698 nano_seconds = remainder; 2699 if (nano_seconds > 0) { 2700 /* subtracting nano seconds is not allowed 2701 * convert to subtracting from seconds, 2702 * and adding to nanoseconds 2703 */ 2704 seconds--; 2705 nano_seconds = (1000000000 - nano_seconds); 2706 } 2707 } 2708 2709 if (nano_seconds > 0) { 2710 /* add 8 ns to cover the likely normal increment */ 2711 nano_seconds += 8; 2712 } 2713 2714 if (nano_seconds >= 1000000000) { 2715 /* carry into seconds */ 2716 seconds++; 2717 nano_seconds -= 1000000000; 2718 } 2719 2720 while (seconds) { 2721 if (seconds > 0) { 2722 u32 adjustment_value = (u32)seconds; 2723 u16 adjustment_value_lo, adjustment_value_hi; 2724 2725 if (adjustment_value > 0xF) 2726 adjustment_value = 0xF; 2727 2728 adjustment_value_lo = adjustment_value & 0xffff; 2729 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2730 2731 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2732 adjustment_value_lo); 2733 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2734 PTP_LTC_STEP_ADJ_DIR_ | 2735 adjustment_value_hi); 2736 seconds -= ((s32)adjustment_value); 2737 } else { 2738 u32 adjustment_value = (u32)(-seconds); 2739 u16 adjustment_value_lo, adjustment_value_hi; 2740 2741 if (adjustment_value > 0xF) 2742 adjustment_value = 0xF; 2743 2744 adjustment_value_lo = adjustment_value & 0xffff; 2745 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2746 2747 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2748 adjustment_value_lo); 2749 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2750 adjustment_value_hi); 2751 seconds += ((s32)adjustment_value); 2752 } 2753 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2754 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2755 } 2756 if (nano_seconds) { 2757 u16 nano_seconds_lo; 2758 u16 nano_seconds_hi; 2759 2760 nano_seconds_lo = nano_seconds & 0xffff; 2761 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2762 2763 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2764 nano_seconds_lo); 2765 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2766 PTP_LTC_STEP_ADJ_DIR_ | 2767 nano_seconds_hi); 2768 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2769 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2770 } 2771 } 2772 2773 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2774 { 2775 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2776 ptp_clock_info); 2777 struct phy_device *phydev = shared->phydev; 2778 2779 mutex_lock(&shared->shared_lock); 2780 lan8814_ptp_clock_step(phydev, delta); 2781 mutex_unlock(&shared->shared_lock); 2782 2783 return 0; 2784 } 2785 2786 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2787 { 2788 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2789 ptp_clock_info); 2790 struct phy_device *phydev = shared->phydev; 2791 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2792 bool positive = true; 2793 u32 kszphy_rate_adj; 2794 2795 if (scaled_ppm < 0) { 2796 scaled_ppm = -scaled_ppm; 2797 positive = false; 2798 } 2799 2800 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2801 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2802 2803 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2804 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2805 2806 if (positive) 2807 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2808 2809 mutex_lock(&shared->shared_lock); 2810 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2811 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2812 mutex_unlock(&shared->shared_lock); 2813 2814 return 0; 2815 } 2816 2817 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2818 { 2819 struct ptp_header *ptp_header; 2820 u32 type; 2821 2822 type = ptp_classify_raw(skb); 2823 ptp_header = ptp_parse_header(skb, type); 2824 2825 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2826 } 2827 2828 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2829 u32 seconds, u32 nsec, u16 seq_id) 2830 { 2831 struct skb_shared_hwtstamps shhwtstamps; 2832 struct sk_buff *skb, *skb_tmp; 2833 unsigned long flags; 2834 bool ret = false; 2835 u16 skb_sig; 2836 2837 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2838 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2839 lan8814_get_sig_tx(skb, &skb_sig); 2840 2841 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2842 continue; 2843 2844 __skb_unlink(skb, &ptp_priv->tx_queue); 2845 ret = true; 2846 break; 2847 } 2848 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2849 2850 if (ret) { 2851 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2852 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2853 skb_complete_tx_timestamp(skb, &shhwtstamps); 2854 } 2855 } 2856 2857 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2858 { 2859 struct phy_device *phydev = ptp_priv->phydev; 2860 u32 seconds, nsec; 2861 u16 seq_id; 2862 2863 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2864 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2865 } 2866 2867 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2868 { 2869 struct phy_device *phydev = ptp_priv->phydev; 2870 u32 reg; 2871 2872 do { 2873 lan8814_dequeue_tx_skb(ptp_priv); 2874 2875 /* If other timestamps are available in the FIFO, 2876 * process them. 2877 */ 2878 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2879 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2880 } 2881 2882 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2883 struct lan8814_ptp_rx_ts *rx_ts) 2884 { 2885 struct skb_shared_hwtstamps *shhwtstamps; 2886 struct sk_buff *skb, *skb_tmp; 2887 unsigned long flags; 2888 bool ret = false; 2889 u16 skb_sig; 2890 2891 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2892 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2893 lan8814_get_sig_rx(skb, &skb_sig); 2894 2895 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2896 continue; 2897 2898 __skb_unlink(skb, &ptp_priv->rx_queue); 2899 2900 ret = true; 2901 break; 2902 } 2903 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2904 2905 if (ret) { 2906 shhwtstamps = skb_hwtstamps(skb); 2907 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2908 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2909 netif_rx(skb); 2910 } 2911 2912 return ret; 2913 } 2914 2915 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2916 struct lan8814_ptp_rx_ts *rx_ts) 2917 { 2918 unsigned long flags; 2919 2920 /* If we failed to match the skb add it to the queue for when 2921 * the frame will come 2922 */ 2923 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2924 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2925 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2926 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2927 } else { 2928 kfree(rx_ts); 2929 } 2930 } 2931 2932 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2933 { 2934 struct phy_device *phydev = ptp_priv->phydev; 2935 struct lan8814_ptp_rx_ts *rx_ts; 2936 u32 reg; 2937 2938 do { 2939 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2940 if (!rx_ts) 2941 return; 2942 2943 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2944 &rx_ts->seq_id); 2945 lan8814_match_rx_ts(ptp_priv, rx_ts); 2946 2947 /* If other timestamps are available in the FIFO, 2948 * process them. 2949 */ 2950 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2951 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2952 } 2953 2954 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2955 { 2956 struct kszphy_priv *priv = phydev->priv; 2957 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2958 2959 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2960 lan8814_get_tx_ts(ptp_priv); 2961 2962 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2963 lan8814_get_rx_ts(ptp_priv); 2964 2965 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2966 lan8814_flush_fifo(phydev, true); 2967 skb_queue_purge(&ptp_priv->tx_queue); 2968 } 2969 2970 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2971 lan8814_flush_fifo(phydev, false); 2972 skb_queue_purge(&ptp_priv->rx_queue); 2973 } 2974 } 2975 2976 static int lan8804_config_init(struct phy_device *phydev) 2977 { 2978 int val; 2979 2980 /* MDI-X setting for swap A,B transmit */ 2981 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2982 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2983 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2984 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2985 2986 /* Make sure that the PHY will not stop generating the clock when the 2987 * link partner goes down 2988 */ 2989 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2990 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2991 2992 return 0; 2993 } 2994 2995 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2996 { 2997 int status; 2998 2999 status = phy_read(phydev, LAN8814_INTS); 3000 if (status < 0) { 3001 phy_error(phydev); 3002 return IRQ_NONE; 3003 } 3004 3005 if (status > 0) 3006 phy_trigger_machine(phydev); 3007 3008 return IRQ_HANDLED; 3009 } 3010 3011 #define LAN8804_OUTPUT_CONTROL 25 3012 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3013 #define LAN8804_CONTROL 31 3014 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3015 3016 static int lan8804_config_intr(struct phy_device *phydev) 3017 { 3018 int err; 3019 3020 /* This is an internal PHY of lan966x and is not possible to change the 3021 * polarity on the GIC found in lan966x, therefore change the polarity 3022 * of the interrupt in the PHY from being active low instead of active 3023 * high. 3024 */ 3025 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3026 3027 /* By default interrupt buffer is open-drain in which case the interrupt 3028 * can be active only low. Therefore change the interrupt buffer to be 3029 * push-pull to be able to change interrupt polarity 3030 */ 3031 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3032 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3033 3034 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3035 err = phy_read(phydev, LAN8814_INTS); 3036 if (err < 0) 3037 return err; 3038 3039 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3040 if (err) 3041 return err; 3042 } else { 3043 err = phy_write(phydev, LAN8814_INTC, 0); 3044 if (err) 3045 return err; 3046 3047 err = phy_read(phydev, LAN8814_INTS); 3048 if (err < 0) 3049 return err; 3050 } 3051 3052 return 0; 3053 } 3054 3055 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3056 { 3057 int ret = IRQ_NONE; 3058 int irq_status; 3059 3060 irq_status = phy_read(phydev, LAN8814_INTS); 3061 if (irq_status < 0) { 3062 phy_error(phydev); 3063 return IRQ_NONE; 3064 } 3065 3066 if (irq_status & LAN8814_INT_LINK) { 3067 phy_trigger_machine(phydev); 3068 ret = IRQ_HANDLED; 3069 } 3070 3071 while (true) { 3072 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3073 if (!irq_status) 3074 break; 3075 3076 lan8814_handle_ptp_interrupt(phydev, irq_status); 3077 ret = IRQ_HANDLED; 3078 } 3079 3080 return ret; 3081 } 3082 3083 static int lan8814_ack_interrupt(struct phy_device *phydev) 3084 { 3085 /* bit[12..0] int status, which is a read and clear register. */ 3086 int rc; 3087 3088 rc = phy_read(phydev, LAN8814_INTS); 3089 3090 return (rc < 0) ? rc : 0; 3091 } 3092 3093 static int lan8814_config_intr(struct phy_device *phydev) 3094 { 3095 int err; 3096 3097 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3098 LAN8814_INTR_CTRL_REG_POLARITY | 3099 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3100 3101 /* enable / disable interrupts */ 3102 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3103 err = lan8814_ack_interrupt(phydev); 3104 if (err) 3105 return err; 3106 3107 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3108 } else { 3109 err = phy_write(phydev, LAN8814_INTC, 0); 3110 if (err) 3111 return err; 3112 3113 err = lan8814_ack_interrupt(phydev); 3114 } 3115 3116 return err; 3117 } 3118 3119 static void lan8814_ptp_init(struct phy_device *phydev) 3120 { 3121 struct kszphy_priv *priv = phydev->priv; 3122 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3123 u32 temp; 3124 3125 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3126 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3127 return; 3128 3129 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3130 3131 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3132 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3133 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3134 3135 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3136 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3137 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3138 3139 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3140 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3141 3142 /* Removing default registers configs related to L2 and IP */ 3143 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3144 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3145 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3146 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3147 3148 skb_queue_head_init(&ptp_priv->tx_queue); 3149 skb_queue_head_init(&ptp_priv->rx_queue); 3150 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3151 spin_lock_init(&ptp_priv->rx_ts_lock); 3152 3153 ptp_priv->phydev = phydev; 3154 3155 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3156 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3157 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3158 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3159 3160 phydev->mii_ts = &ptp_priv->mii_ts; 3161 } 3162 3163 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3164 { 3165 struct lan8814_shared_priv *shared = phydev->shared->priv; 3166 3167 /* Initialise shared lock for clock*/ 3168 mutex_init(&shared->shared_lock); 3169 3170 shared->ptp_clock_info.owner = THIS_MODULE; 3171 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3172 shared->ptp_clock_info.max_adj = 31249999; 3173 shared->ptp_clock_info.n_alarm = 0; 3174 shared->ptp_clock_info.n_ext_ts = 0; 3175 shared->ptp_clock_info.n_pins = 0; 3176 shared->ptp_clock_info.pps = 0; 3177 shared->ptp_clock_info.pin_config = NULL; 3178 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3179 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3180 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3181 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3182 shared->ptp_clock_info.getcrosststamp = NULL; 3183 3184 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3185 &phydev->mdio.dev); 3186 if (IS_ERR(shared->ptp_clock)) { 3187 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3188 PTR_ERR(shared->ptp_clock)); 3189 return -EINVAL; 3190 } 3191 3192 /* Check if PHC support is missing at the configuration level */ 3193 if (!shared->ptp_clock) 3194 return 0; 3195 3196 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3197 3198 shared->phydev = phydev; 3199 3200 /* The EP.4 is shared between all the PHYs in the package and also it 3201 * can be accessed by any of the PHYs 3202 */ 3203 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3204 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3205 PTP_OPERATING_MODE_STANDALONE_); 3206 3207 return 0; 3208 } 3209 3210 static void lan8814_setup_led(struct phy_device *phydev, int val) 3211 { 3212 int temp; 3213 3214 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3215 3216 if (val) 3217 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3218 else 3219 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3220 3221 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3222 } 3223 3224 static int lan8814_config_init(struct phy_device *phydev) 3225 { 3226 struct kszphy_priv *lan8814 = phydev->priv; 3227 int val; 3228 3229 /* Reset the PHY */ 3230 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3231 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3232 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3233 3234 /* Disable ANEG with QSGMII PCS Host side */ 3235 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3236 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3237 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3238 3239 /* MDI-X setting for swap A,B transmit */ 3240 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3241 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3242 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3243 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3244 3245 if (lan8814->led_mode >= 0) 3246 lan8814_setup_led(phydev, lan8814->led_mode); 3247 3248 return 0; 3249 } 3250 3251 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3252 * function called in suspend. Because the GPIO line can be shared, so if one of 3253 * the phys goes back in coma mode, then all the other PHYs will go, which is 3254 * wrong. 3255 */ 3256 static int lan8814_release_coma_mode(struct phy_device *phydev) 3257 { 3258 struct gpio_desc *gpiod; 3259 3260 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3261 GPIOD_OUT_HIGH_OPEN_DRAIN | 3262 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3263 if (IS_ERR(gpiod)) 3264 return PTR_ERR(gpiod); 3265 3266 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3267 gpiod_set_value_cansleep(gpiod, 0); 3268 3269 return 0; 3270 } 3271 3272 static int lan8814_probe(struct phy_device *phydev) 3273 { 3274 const struct kszphy_type *type = phydev->drv->driver_data; 3275 struct kszphy_priv *priv; 3276 u16 addr; 3277 int err; 3278 3279 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3280 if (!priv) 3281 return -ENOMEM; 3282 3283 phydev->priv = priv; 3284 3285 priv->type = type; 3286 3287 kszphy_parse_led_mode(phydev); 3288 3289 /* Strap-in value for PHY address, below register read gives starting 3290 * phy address value 3291 */ 3292 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3293 devm_phy_package_join(&phydev->mdio.dev, phydev, 3294 addr, sizeof(struct lan8814_shared_priv)); 3295 3296 if (phy_package_init_once(phydev)) { 3297 err = lan8814_release_coma_mode(phydev); 3298 if (err) 3299 return err; 3300 3301 err = lan8814_ptp_probe_once(phydev); 3302 if (err) 3303 return err; 3304 } 3305 3306 lan8814_ptp_init(phydev); 3307 3308 return 0; 3309 } 3310 3311 #define LAN8841_MMD_TIMER_REG 0 3312 #define LAN8841_MMD0_REGISTER_17 17 3313 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3314 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3315 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3316 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3317 #define LAN8841_MMD_ANALOG_REG 28 3318 #define LAN8841_ANALOG_CONTROL_1 1 3319 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3320 #define LAN8841_ANALOG_CONTROL_10 13 3321 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3322 #define LAN8841_ANALOG_CONTROL_11 14 3323 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3324 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3325 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3326 #define LAN8841_BTRX_POWER_DOWN 70 3327 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3328 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3329 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3330 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3331 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3332 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3333 #define LAN8841_ADC_CHANNEL_MASK 198 3334 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3335 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3336 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3337 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3338 #define LAN8841_PTP_CMD_CTL 256 3339 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3340 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3341 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3342 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3343 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3344 #define LAN8841_PTP_RX_MODE 381 3345 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3346 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3347 3348 static int lan8841_config_init(struct phy_device *phydev) 3349 { 3350 int ret; 3351 3352 ret = ksz9131_config_init(phydev); 3353 if (ret) 3354 return ret; 3355 3356 /* Initialize the HW by resetting everything */ 3357 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3358 LAN8841_PTP_CMD_CTL, 3359 LAN8841_PTP_CMD_CTL_PTP_RESET, 3360 LAN8841_PTP_CMD_CTL_PTP_RESET); 3361 3362 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3363 LAN8841_PTP_CMD_CTL, 3364 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3365 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3366 3367 /* Don't process any frames */ 3368 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3369 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3370 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3371 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3372 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3373 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3374 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3375 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3376 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3377 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3378 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3379 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3380 3381 /* 100BT Clause 40 improvenent errata */ 3382 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3383 LAN8841_ANALOG_CONTROL_1, 3384 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3385 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3386 LAN8841_ANALOG_CONTROL_10, 3387 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3388 3389 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3390 * Magnetics 3391 */ 3392 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3393 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3394 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3395 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3396 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3397 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3398 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3399 LAN8841_BTRX_POWER_DOWN, 3400 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3401 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3402 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3403 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3404 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3405 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3406 } 3407 3408 /* LDO Adjustment errata */ 3409 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3410 LAN8841_ANALOG_CONTROL_11, 3411 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3412 3413 /* 100BT RGMII latency tuning errata */ 3414 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3415 LAN8841_ADC_CHANNEL_MASK, 0x0); 3416 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3417 LAN8841_MMD0_REGISTER_17, 3418 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3419 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3420 3421 return 0; 3422 } 3423 3424 #define LAN8841_OUTPUT_CTRL 25 3425 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3426 #define LAN8841_INT_PTP BIT(9) 3427 3428 static int lan8841_config_intr(struct phy_device *phydev) 3429 { 3430 int err; 3431 3432 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3433 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3434 3435 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3436 err = phy_read(phydev, LAN8814_INTS); 3437 if (err) 3438 return err; 3439 3440 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3441 * even if it PTP is not enabled. Because the underneath blocks 3442 * will not enable the PTP so we will never get the PTP 3443 * interrupt. 3444 */ 3445 err = phy_write(phydev, LAN8814_INTC, 3446 LAN8814_INT_LINK | LAN8841_INT_PTP); 3447 } else { 3448 err = phy_write(phydev, LAN8814_INTC, 0); 3449 if (err) 3450 return err; 3451 3452 err = phy_read(phydev, LAN8814_INTS); 3453 } 3454 3455 return err; 3456 } 3457 3458 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3459 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3460 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3461 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3462 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3463 #define LAN8841_PTP_TX_MSG_HEADER2 455 3464 3465 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3466 u32 *sec, u32 *nsec, u16 *seq) 3467 { 3468 struct phy_device *phydev = ptp_priv->phydev; 3469 3470 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3471 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3472 return false; 3473 3474 *nsec = ((*nsec & 0x3fff) << 16); 3475 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3476 3477 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3478 *sec = *sec << 16; 3479 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3480 3481 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3482 3483 return true; 3484 } 3485 3486 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3487 { 3488 u32 sec, nsec; 3489 u16 seq; 3490 3491 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3492 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3493 } 3494 3495 #define LAN8841_PTP_INT_STS 259 3496 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3497 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3498 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3499 3500 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3501 { 3502 struct phy_device *phydev = ptp_priv->phydev; 3503 int i; 3504 3505 for (i = 0; i < FIFO_SIZE; ++i) 3506 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3507 3508 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3509 } 3510 3511 #define LAN8841_PTP_GPIO_CAP_STS 506 3512 #define LAN8841_PTP_GPIO_SEL 327 3513 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3514 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3515 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3516 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3517 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3518 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3519 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3520 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3521 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3522 3523 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3524 { 3525 struct phy_device *phydev = ptp_priv->phydev; 3526 struct ptp_clock_event ptp_event = {0}; 3527 int pin, ret, tmp; 3528 s32 sec, nsec; 3529 3530 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3531 if (pin == -1) 3532 return; 3533 3534 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3535 if (tmp < 0) 3536 return; 3537 3538 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3539 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3540 if (ret) 3541 return; 3542 3543 mutex_lock(&ptp_priv->ptp_lock); 3544 if (tmp & BIT(pin)) { 3545 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3546 sec <<= 16; 3547 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3548 3549 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3550 nsec <<= 16; 3551 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3552 } else { 3553 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3554 sec <<= 16; 3555 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3556 3557 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3558 nsec <<= 16; 3559 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3560 } 3561 mutex_unlock(&ptp_priv->ptp_lock); 3562 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3563 if (ret) 3564 return; 3565 3566 ptp_event.index = 0; 3567 ptp_event.timestamp = ktime_set(sec, nsec); 3568 ptp_event.type = PTP_CLOCK_EXTTS; 3569 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3570 } 3571 3572 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3573 { 3574 struct kszphy_priv *priv = phydev->priv; 3575 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3576 u16 status; 3577 3578 do { 3579 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3580 3581 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3582 lan8841_ptp_process_tx_ts(ptp_priv); 3583 3584 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3585 lan8841_gpio_process_cap(ptp_priv); 3586 3587 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3588 lan8841_ptp_flush_fifo(ptp_priv); 3589 skb_queue_purge(&ptp_priv->tx_queue); 3590 } 3591 3592 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3593 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3594 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3595 } 3596 3597 #define LAN8841_INTS_PTP BIT(9) 3598 3599 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3600 { 3601 irqreturn_t ret = IRQ_NONE; 3602 int irq_status; 3603 3604 irq_status = phy_read(phydev, LAN8814_INTS); 3605 if (irq_status < 0) { 3606 phy_error(phydev); 3607 return IRQ_NONE; 3608 } 3609 3610 if (irq_status & LAN8814_INT_LINK) { 3611 phy_trigger_machine(phydev); 3612 ret = IRQ_HANDLED; 3613 } 3614 3615 if (irq_status & LAN8841_INTS_PTP) { 3616 lan8841_handle_ptp_interrupt(phydev); 3617 ret = IRQ_HANDLED; 3618 } 3619 3620 return ret; 3621 } 3622 3623 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3624 struct ethtool_ts_info *info) 3625 { 3626 struct kszphy_ptp_priv *ptp_priv; 3627 3628 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3629 3630 info->phc_index = ptp_priv->ptp_clock ? 3631 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3632 if (info->phc_index == -1) 3633 return 0; 3634 3635 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3636 SOF_TIMESTAMPING_RX_HARDWARE | 3637 SOF_TIMESTAMPING_RAW_HARDWARE; 3638 3639 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3640 (1 << HWTSTAMP_TX_ON) | 3641 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3642 3643 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3644 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3645 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3646 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3647 3648 return 0; 3649 } 3650 3651 #define LAN8841_PTP_INT_EN 260 3652 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3653 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3654 3655 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3656 bool enable) 3657 { 3658 struct phy_device *phydev = ptp_priv->phydev; 3659 3660 if (enable) { 3661 /* Enable interrupts on the TX side */ 3662 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3663 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3664 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3665 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3666 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3667 3668 /* Enable the modification of the frame on RX side, 3669 * this will add the ns and 2 bits of sec in the reserved field 3670 * of the PTP header 3671 */ 3672 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3673 LAN8841_PTP_RX_MODE, 3674 LAN8841_PTP_INSERT_TS_EN | 3675 LAN8841_PTP_INSERT_TS_32BIT, 3676 LAN8841_PTP_INSERT_TS_EN | 3677 LAN8841_PTP_INSERT_TS_32BIT); 3678 3679 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3680 } else { 3681 /* Disable interrupts on the TX side */ 3682 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3683 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3684 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3685 3686 /* Disable modification of the RX frames */ 3687 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3688 LAN8841_PTP_RX_MODE, 3689 LAN8841_PTP_INSERT_TS_EN | 3690 LAN8841_PTP_INSERT_TS_32BIT, 0); 3691 3692 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3693 } 3694 } 3695 3696 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3697 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3698 #define LAN8841_PTP_TX_MOD 445 3699 3700 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 3701 struct kernel_hwtstamp_config *config, 3702 struct netlink_ext_ack *extack) 3703 { 3704 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3705 struct phy_device *phydev = ptp_priv->phydev; 3706 int txcfg = 0, rxcfg = 0; 3707 int pkt_ts_enable; 3708 3709 ptp_priv->hwts_tx_type = config->tx_type; 3710 ptp_priv->rx_filter = config->rx_filter; 3711 3712 switch (config->rx_filter) { 3713 case HWTSTAMP_FILTER_NONE: 3714 ptp_priv->layer = 0; 3715 ptp_priv->version = 0; 3716 break; 3717 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3718 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3719 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3720 ptp_priv->layer = PTP_CLASS_L4; 3721 ptp_priv->version = PTP_CLASS_V2; 3722 break; 3723 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3724 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3725 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3726 ptp_priv->layer = PTP_CLASS_L2; 3727 ptp_priv->version = PTP_CLASS_V2; 3728 break; 3729 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3730 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3731 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3732 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3733 ptp_priv->version = PTP_CLASS_V2; 3734 break; 3735 default: 3736 return -ERANGE; 3737 } 3738 3739 /* Setup parsing of the frames and enable the timestamping for ptp 3740 * frames 3741 */ 3742 if (ptp_priv->layer & PTP_CLASS_L2) { 3743 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3744 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3745 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3746 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3747 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3748 } 3749 3750 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3751 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3752 3753 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3754 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3755 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3756 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3757 3758 /* Enable / disable of the TX timestamp in the SYNC frames */ 3759 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3760 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3761 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3762 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3763 3764 /* Now enable/disable the timestamping */ 3765 lan8841_ptp_enable_processing(ptp_priv, 3766 config->rx_filter != HWTSTAMP_FILTER_NONE); 3767 3768 skb_queue_purge(&ptp_priv->tx_queue); 3769 3770 lan8841_ptp_flush_fifo(ptp_priv); 3771 3772 return 0; 3773 } 3774 3775 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3776 struct sk_buff *skb, int type) 3777 { 3778 struct kszphy_ptp_priv *ptp_priv = 3779 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3780 struct ptp_header *header = ptp_parse_header(skb, type); 3781 struct skb_shared_hwtstamps *shhwtstamps; 3782 struct timespec64 ts; 3783 unsigned long flags; 3784 u32 ts_header; 3785 3786 if (!header) 3787 return false; 3788 3789 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3790 type == PTP_CLASS_NONE) 3791 return false; 3792 3793 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3794 return false; 3795 3796 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3797 ts.tv_sec = ptp_priv->seconds; 3798 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3799 ts_header = __be32_to_cpu(header->reserved2); 3800 3801 shhwtstamps = skb_hwtstamps(skb); 3802 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3803 3804 /* Check for any wrap arounds for the second part */ 3805 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3806 ts.tv_sec -= GENMASK(1, 0) + 1; 3807 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3808 ts.tv_sec += 1; 3809 3810 shhwtstamps->hwtstamp = 3811 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3812 ts_header & GENMASK(29, 0)); 3813 header->reserved2 = 0; 3814 3815 netif_rx(skb); 3816 3817 return true; 3818 } 3819 3820 #define LAN8841_EVENT_A 0 3821 #define LAN8841_EVENT_B 1 3822 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3823 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3824 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3825 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3826 3827 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3828 s64 sec, u32 nsec) 3829 { 3830 struct phy_device *phydev = ptp_priv->phydev; 3831 int ret; 3832 3833 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3834 upper_16_bits(sec)); 3835 if (ret) 3836 return ret; 3837 3838 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3839 lower_16_bits(sec)); 3840 if (ret) 3841 return ret; 3842 3843 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3844 upper_16_bits(nsec)); 3845 if (ret) 3846 return ret; 3847 3848 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3849 lower_16_bits(nsec)); 3850 } 3851 3852 #define LAN8841_BUFFER_TIME 2 3853 3854 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3855 const struct timespec64 *ts) 3856 { 3857 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3858 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3859 } 3860 3861 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3862 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3863 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3864 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3865 3866 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3867 s64 sec, u32 nsec) 3868 { 3869 struct phy_device *phydev = ptp_priv->phydev; 3870 int ret; 3871 3872 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3873 upper_16_bits(sec)); 3874 if (ret) 3875 return ret; 3876 3877 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3878 lower_16_bits(sec)); 3879 if (ret) 3880 return ret; 3881 3882 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 3883 upper_16_bits(nsec)); 3884 if (ret) 3885 return ret; 3886 3887 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 3888 lower_16_bits(nsec)); 3889 } 3890 3891 #define LAN8841_PTP_LTC_SET_SEC_HI 262 3892 #define LAN8841_PTP_LTC_SET_SEC_MID 263 3893 #define LAN8841_PTP_LTC_SET_SEC_LO 264 3894 #define LAN8841_PTP_LTC_SET_NS_HI 265 3895 #define LAN8841_PTP_LTC_SET_NS_LO 266 3896 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 3897 3898 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 3899 const struct timespec64 *ts) 3900 { 3901 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3902 ptp_clock_info); 3903 struct phy_device *phydev = ptp_priv->phydev; 3904 unsigned long flags; 3905 int ret; 3906 3907 /* Set the value to be stored */ 3908 mutex_lock(&ptp_priv->ptp_lock); 3909 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 3910 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 3911 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 3912 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 3913 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 3914 3915 /* Set the command to load the LTC */ 3916 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3917 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 3918 ret = lan8841_ptp_update_target(ptp_priv, ts); 3919 mutex_unlock(&ptp_priv->ptp_lock); 3920 3921 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3922 ptp_priv->seconds = ts->tv_sec; 3923 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3924 3925 return ret; 3926 } 3927 3928 #define LAN8841_PTP_LTC_RD_SEC_HI 358 3929 #define LAN8841_PTP_LTC_RD_SEC_MID 359 3930 #define LAN8841_PTP_LTC_RD_SEC_LO 360 3931 #define LAN8841_PTP_LTC_RD_NS_HI 361 3932 #define LAN8841_PTP_LTC_RD_NS_LO 362 3933 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 3934 3935 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 3936 struct timespec64 *ts) 3937 { 3938 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3939 ptp_clock_info); 3940 struct phy_device *phydev = ptp_priv->phydev; 3941 time64_t s; 3942 s64 ns; 3943 3944 mutex_lock(&ptp_priv->ptp_lock); 3945 /* Issue the command to read the LTC */ 3946 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3947 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3948 3949 /* Read the LTC */ 3950 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3951 s <<= 16; 3952 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3953 s <<= 16; 3954 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3955 3956 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 3957 ns <<= 16; 3958 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 3959 mutex_unlock(&ptp_priv->ptp_lock); 3960 3961 set_normalized_timespec64(ts, s, ns); 3962 return 0; 3963 } 3964 3965 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 3966 struct timespec64 *ts) 3967 { 3968 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3969 ptp_clock_info); 3970 struct phy_device *phydev = ptp_priv->phydev; 3971 time64_t s; 3972 3973 mutex_lock(&ptp_priv->ptp_lock); 3974 /* Issue the command to read the LTC */ 3975 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3976 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3977 3978 /* Read the LTC */ 3979 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3980 s <<= 16; 3981 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3982 s <<= 16; 3983 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3984 mutex_unlock(&ptp_priv->ptp_lock); 3985 3986 set_normalized_timespec64(ts, s, 0); 3987 } 3988 3989 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 3990 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 3991 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 3992 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 3993 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 3994 3995 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 3996 { 3997 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3998 ptp_clock_info); 3999 struct phy_device *phydev = ptp_priv->phydev; 4000 struct timespec64 ts; 4001 bool add = true; 4002 u32 nsec; 4003 s32 sec; 4004 int ret; 4005 4006 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4007 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4008 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4009 * increment so the value can be bigger than 15 sec. Therefore limit the 4010 * possible adjustments so we will not have these corner cases 4011 */ 4012 if (delta > 10000000000LL || delta < -10000000000LL) { 4013 /* The timeadjustment is too big, so fall back using set time */ 4014 u64 now; 4015 4016 ptp->gettime64(ptp, &ts); 4017 4018 now = ktime_to_ns(timespec64_to_ktime(ts)); 4019 ts = ns_to_timespec64(now + delta); 4020 4021 ptp->settime64(ptp, &ts); 4022 return 0; 4023 } 4024 4025 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4026 if (delta < 0 && nsec != 0) { 4027 /* It is not allowed to adjust low the nsec part, therefore 4028 * subtract more from second part and add to nanosecond such 4029 * that would roll over, so the second part will increase 4030 */ 4031 sec--; 4032 nsec = NSEC_PER_SEC - nsec; 4033 } 4034 4035 /* Calculate the adjustments and the direction */ 4036 if (delta < 0) 4037 add = false; 4038 4039 if (nsec > 0) 4040 /* add 8 ns to cover the likely normal increment */ 4041 nsec += 8; 4042 4043 if (nsec >= NSEC_PER_SEC) { 4044 /* carry into seconds */ 4045 sec++; 4046 nsec -= NSEC_PER_SEC; 4047 } 4048 4049 mutex_lock(&ptp_priv->ptp_lock); 4050 if (sec) { 4051 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4052 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4053 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4054 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4055 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4056 } 4057 4058 if (nsec) { 4059 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4060 nsec & 0xffff); 4061 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4062 (nsec >> 16) & 0x3fff); 4063 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4064 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4065 } 4066 mutex_unlock(&ptp_priv->ptp_lock); 4067 4068 /* Update the target clock */ 4069 ptp->gettime64(ptp, &ts); 4070 mutex_lock(&ptp_priv->ptp_lock); 4071 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4072 mutex_unlock(&ptp_priv->ptp_lock); 4073 4074 return ret; 4075 } 4076 4077 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4078 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4079 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4080 4081 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4082 { 4083 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4084 ptp_clock_info); 4085 struct phy_device *phydev = ptp_priv->phydev; 4086 bool faster = true; 4087 u32 rate; 4088 4089 if (!scaled_ppm) 4090 return 0; 4091 4092 if (scaled_ppm < 0) { 4093 scaled_ppm = -scaled_ppm; 4094 faster = false; 4095 } 4096 4097 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4098 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4099 4100 mutex_lock(&ptp_priv->ptp_lock); 4101 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4102 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4103 : upper_16_bits(rate) & 0x3fff); 4104 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4105 mutex_unlock(&ptp_priv->ptp_lock); 4106 4107 return 0; 4108 } 4109 4110 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4111 enum ptp_pin_function func, unsigned int chan) 4112 { 4113 switch (func) { 4114 case PTP_PF_NONE: 4115 case PTP_PF_PEROUT: 4116 case PTP_PF_EXTTS: 4117 break; 4118 default: 4119 return -1; 4120 } 4121 4122 return 0; 4123 } 4124 4125 #define LAN8841_PTP_GPIO_NUM 10 4126 #define LAN8841_GPIO_EN 128 4127 #define LAN8841_GPIO_DIR 129 4128 #define LAN8841_GPIO_BUF 130 4129 4130 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4131 { 4132 struct phy_device *phydev = ptp_priv->phydev; 4133 int ret; 4134 4135 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4136 if (ret) 4137 return ret; 4138 4139 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4140 if (ret) 4141 return ret; 4142 4143 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4144 } 4145 4146 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4147 { 4148 struct phy_device *phydev = ptp_priv->phydev; 4149 int ret; 4150 4151 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4152 if (ret) 4153 return ret; 4154 4155 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4156 if (ret) 4157 return ret; 4158 4159 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4160 } 4161 4162 #define LAN8841_GPIO_DATA_SEL1 131 4163 #define LAN8841_GPIO_DATA_SEL2 132 4164 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4165 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4166 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4167 #define LAN8841_PTP_GENERAL_CONFIG 257 4168 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4169 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4170 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4171 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4172 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4173 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4174 4175 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4176 u8 event) 4177 { 4178 struct phy_device *phydev = ptp_priv->phydev; 4179 u16 tmp; 4180 int ret; 4181 4182 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4183 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4184 * depending on the pin, it requires to read a different register 4185 */ 4186 if (pin < 5) { 4187 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4188 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4189 } else { 4190 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4191 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4192 } 4193 if (ret) 4194 return ret; 4195 4196 /* Disable the event */ 4197 if (event == LAN8841_EVENT_A) 4198 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4199 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4200 else 4201 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4202 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4203 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4204 } 4205 4206 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4207 u8 event, int pulse_width) 4208 { 4209 struct phy_device *phydev = ptp_priv->phydev; 4210 u16 tmp; 4211 int ret; 4212 4213 /* Enable the event */ 4214 if (event == LAN8841_EVENT_A) 4215 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4216 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4217 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4218 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4219 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4220 else 4221 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4222 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4223 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4224 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4225 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4226 if (ret) 4227 return ret; 4228 4229 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4230 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4231 * depending on the pin, it requires to read a different register 4232 */ 4233 if (event == LAN8841_EVENT_A) 4234 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4235 else 4236 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4237 4238 if (pin < 5) 4239 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4240 tmp << (3 * pin)); 4241 else 4242 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4243 tmp << (3 * (pin - 5))); 4244 4245 return ret; 4246 } 4247 4248 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4249 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4250 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4251 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4252 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4253 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4254 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4255 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4256 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4257 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4258 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4259 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4260 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4261 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4262 4263 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4264 struct ptp_clock_request *rq, int on) 4265 { 4266 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4267 ptp_clock_info); 4268 struct phy_device *phydev = ptp_priv->phydev; 4269 struct timespec64 ts_on, ts_period; 4270 s64 on_nsec, period_nsec; 4271 int pulse_width; 4272 int pin; 4273 int ret; 4274 4275 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4276 return -EOPNOTSUPP; 4277 4278 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4279 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4280 return -EINVAL; 4281 4282 if (!on) { 4283 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4284 if (ret) 4285 return ret; 4286 4287 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4288 } 4289 4290 ts_on.tv_sec = rq->perout.on.sec; 4291 ts_on.tv_nsec = rq->perout.on.nsec; 4292 on_nsec = timespec64_to_ns(&ts_on); 4293 4294 ts_period.tv_sec = rq->perout.period.sec; 4295 ts_period.tv_nsec = rq->perout.period.nsec; 4296 period_nsec = timespec64_to_ns(&ts_period); 4297 4298 if (period_nsec < 200) { 4299 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4300 phydev_name(phydev)); 4301 return -EOPNOTSUPP; 4302 } 4303 4304 if (on_nsec >= period_nsec) { 4305 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4306 phydev_name(phydev)); 4307 return -EINVAL; 4308 } 4309 4310 switch (on_nsec) { 4311 case 200000000: 4312 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4313 break; 4314 case 100000000: 4315 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4316 break; 4317 case 50000000: 4318 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4319 break; 4320 case 10000000: 4321 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4322 break; 4323 case 5000000: 4324 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4325 break; 4326 case 1000000: 4327 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4328 break; 4329 case 500000: 4330 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4331 break; 4332 case 100000: 4333 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4334 break; 4335 case 50000: 4336 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4337 break; 4338 case 10000: 4339 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4340 break; 4341 case 5000: 4342 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4343 break; 4344 case 1000: 4345 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4346 break; 4347 case 500: 4348 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4349 break; 4350 case 100: 4351 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4352 break; 4353 default: 4354 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4355 phydev_name(phydev)); 4356 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4357 break; 4358 } 4359 4360 mutex_lock(&ptp_priv->ptp_lock); 4361 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4362 rq->perout.start.nsec); 4363 mutex_unlock(&ptp_priv->ptp_lock); 4364 if (ret) 4365 return ret; 4366 4367 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4368 rq->perout.period.nsec); 4369 if (ret) 4370 return ret; 4371 4372 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4373 pulse_width); 4374 if (ret) 4375 return ret; 4376 4377 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4378 if (ret) 4379 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4380 4381 return ret; 4382 } 4383 4384 #define LAN8841_PTP_GPIO_CAP_EN 496 4385 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4386 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4387 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4388 4389 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4390 u32 flags) 4391 { 4392 struct phy_device *phydev = ptp_priv->phydev; 4393 u16 tmp = 0; 4394 int ret; 4395 4396 /* Set GPIO to be intput */ 4397 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4398 if (ret) 4399 return ret; 4400 4401 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4402 if (ret) 4403 return ret; 4404 4405 /* Enable capture on the edges of the pin */ 4406 if (flags & PTP_RISING_EDGE) 4407 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4408 if (flags & PTP_FALLING_EDGE) 4409 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4410 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4411 if (ret) 4412 return ret; 4413 4414 /* Enable interrupt */ 4415 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4416 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4417 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4418 } 4419 4420 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4421 { 4422 struct phy_device *phydev = ptp_priv->phydev; 4423 int ret; 4424 4425 /* Set GPIO to be output */ 4426 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4427 if (ret) 4428 return ret; 4429 4430 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4431 if (ret) 4432 return ret; 4433 4434 /* Disable capture on both of the edges */ 4435 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4436 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4437 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4438 0); 4439 if (ret) 4440 return ret; 4441 4442 /* Disable interrupt */ 4443 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4444 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4445 0); 4446 } 4447 4448 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4449 struct ptp_clock_request *rq, int on) 4450 { 4451 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4452 ptp_clock_info); 4453 int pin; 4454 int ret; 4455 4456 /* Reject requests with unsupported flags */ 4457 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4458 PTP_EXTTS_EDGES | 4459 PTP_STRICT_FLAGS)) 4460 return -EOPNOTSUPP; 4461 4462 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4463 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4464 return -EINVAL; 4465 4466 mutex_lock(&ptp_priv->ptp_lock); 4467 if (on) 4468 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4469 else 4470 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4471 mutex_unlock(&ptp_priv->ptp_lock); 4472 4473 return ret; 4474 } 4475 4476 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4477 struct ptp_clock_request *rq, int on) 4478 { 4479 switch (rq->type) { 4480 case PTP_CLK_REQ_EXTTS: 4481 return lan8841_ptp_extts(ptp, rq, on); 4482 case PTP_CLK_REQ_PEROUT: 4483 return lan8841_ptp_perout(ptp, rq, on); 4484 default: 4485 return -EOPNOTSUPP; 4486 } 4487 4488 return 0; 4489 } 4490 4491 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4492 { 4493 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4494 ptp_clock_info); 4495 struct timespec64 ts; 4496 unsigned long flags; 4497 4498 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4499 4500 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4501 ptp_priv->seconds = ts.tv_sec; 4502 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4503 4504 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4505 } 4506 4507 static struct ptp_clock_info lan8841_ptp_clock_info = { 4508 .owner = THIS_MODULE, 4509 .name = "lan8841 ptp", 4510 .max_adj = 31249999, 4511 .gettime64 = lan8841_ptp_gettime64, 4512 .settime64 = lan8841_ptp_settime64, 4513 .adjtime = lan8841_ptp_adjtime, 4514 .adjfine = lan8841_ptp_adjfine, 4515 .verify = lan8841_ptp_verify, 4516 .enable = lan8841_ptp_enable, 4517 .do_aux_work = lan8841_ptp_do_aux_work, 4518 .n_per_out = LAN8841_PTP_GPIO_NUM, 4519 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4520 .n_pins = LAN8841_PTP_GPIO_NUM, 4521 }; 4522 4523 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4524 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4525 4526 static int lan8841_probe(struct phy_device *phydev) 4527 { 4528 struct kszphy_ptp_priv *ptp_priv; 4529 struct kszphy_priv *priv; 4530 int err; 4531 4532 err = kszphy_probe(phydev); 4533 if (err) 4534 return err; 4535 4536 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4537 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4538 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4539 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4540 4541 /* Register the clock */ 4542 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4543 return 0; 4544 4545 priv = phydev->priv; 4546 ptp_priv = &priv->ptp_priv; 4547 4548 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4549 LAN8841_PTP_GPIO_NUM, 4550 sizeof(*ptp_priv->pin_config), 4551 GFP_KERNEL); 4552 if (!ptp_priv->pin_config) 4553 return -ENOMEM; 4554 4555 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4556 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4557 4558 snprintf(p->name, sizeof(p->name), "pin%d", i); 4559 p->index = i; 4560 p->func = PTP_PF_NONE; 4561 } 4562 4563 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4564 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4565 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4566 &phydev->mdio.dev); 4567 if (IS_ERR(ptp_priv->ptp_clock)) { 4568 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4569 PTR_ERR(ptp_priv->ptp_clock)); 4570 return -EINVAL; 4571 } 4572 4573 if (!ptp_priv->ptp_clock) 4574 return 0; 4575 4576 /* Initialize the SW */ 4577 skb_queue_head_init(&ptp_priv->tx_queue); 4578 ptp_priv->phydev = phydev; 4579 mutex_init(&ptp_priv->ptp_lock); 4580 spin_lock_init(&ptp_priv->seconds_lock); 4581 4582 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4583 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4584 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4585 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4586 4587 phydev->mii_ts = &ptp_priv->mii_ts; 4588 4589 return 0; 4590 } 4591 4592 static int lan8841_suspend(struct phy_device *phydev) 4593 { 4594 struct kszphy_priv *priv = phydev->priv; 4595 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4596 4597 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4598 4599 return genphy_suspend(phydev); 4600 } 4601 4602 static struct phy_driver ksphy_driver[] = { 4603 { 4604 .phy_id = PHY_ID_KS8737, 4605 .phy_id_mask = MICREL_PHY_ID_MASK, 4606 .name = "Micrel KS8737", 4607 /* PHY_BASIC_FEATURES */ 4608 .driver_data = &ks8737_type, 4609 .probe = kszphy_probe, 4610 .config_init = kszphy_config_init, 4611 .config_intr = kszphy_config_intr, 4612 .handle_interrupt = kszphy_handle_interrupt, 4613 .suspend = kszphy_suspend, 4614 .resume = kszphy_resume, 4615 }, { 4616 .phy_id = PHY_ID_KSZ8021, 4617 .phy_id_mask = 0x00ffffff, 4618 .name = "Micrel KSZ8021 or KSZ8031", 4619 /* PHY_BASIC_FEATURES */ 4620 .driver_data = &ksz8021_type, 4621 .probe = kszphy_probe, 4622 .config_init = kszphy_config_init, 4623 .config_intr = kszphy_config_intr, 4624 .handle_interrupt = kszphy_handle_interrupt, 4625 .get_sset_count = kszphy_get_sset_count, 4626 .get_strings = kszphy_get_strings, 4627 .get_stats = kszphy_get_stats, 4628 .suspend = kszphy_suspend, 4629 .resume = kszphy_resume, 4630 }, { 4631 .phy_id = PHY_ID_KSZ8031, 4632 .phy_id_mask = 0x00ffffff, 4633 .name = "Micrel KSZ8031", 4634 /* PHY_BASIC_FEATURES */ 4635 .driver_data = &ksz8021_type, 4636 .probe = kszphy_probe, 4637 .config_init = kszphy_config_init, 4638 .config_intr = kszphy_config_intr, 4639 .handle_interrupt = kszphy_handle_interrupt, 4640 .get_sset_count = kszphy_get_sset_count, 4641 .get_strings = kszphy_get_strings, 4642 .get_stats = kszphy_get_stats, 4643 .suspend = kszphy_suspend, 4644 .resume = kszphy_resume, 4645 }, { 4646 .phy_id = PHY_ID_KSZ8041, 4647 .phy_id_mask = MICREL_PHY_ID_MASK, 4648 .name = "Micrel KSZ8041", 4649 /* PHY_BASIC_FEATURES */ 4650 .driver_data = &ksz8041_type, 4651 .probe = kszphy_probe, 4652 .config_init = ksz8041_config_init, 4653 .config_aneg = ksz8041_config_aneg, 4654 .config_intr = kszphy_config_intr, 4655 .handle_interrupt = kszphy_handle_interrupt, 4656 .get_sset_count = kszphy_get_sset_count, 4657 .get_strings = kszphy_get_strings, 4658 .get_stats = kszphy_get_stats, 4659 /* No suspend/resume callbacks because of errata DS80000700A, 4660 * receiver error following software power down. 4661 */ 4662 }, { 4663 .phy_id = PHY_ID_KSZ8041RNLI, 4664 .phy_id_mask = MICREL_PHY_ID_MASK, 4665 .name = "Micrel KSZ8041RNLI", 4666 /* PHY_BASIC_FEATURES */ 4667 .driver_data = &ksz8041_type, 4668 .probe = kszphy_probe, 4669 .config_init = kszphy_config_init, 4670 .config_intr = kszphy_config_intr, 4671 .handle_interrupt = kszphy_handle_interrupt, 4672 .get_sset_count = kszphy_get_sset_count, 4673 .get_strings = kszphy_get_strings, 4674 .get_stats = kszphy_get_stats, 4675 .suspend = kszphy_suspend, 4676 .resume = kszphy_resume, 4677 }, { 4678 .name = "Micrel KSZ8051", 4679 /* PHY_BASIC_FEATURES */ 4680 .driver_data = &ksz8051_type, 4681 .probe = kszphy_probe, 4682 .config_init = kszphy_config_init, 4683 .config_intr = kszphy_config_intr, 4684 .handle_interrupt = kszphy_handle_interrupt, 4685 .get_sset_count = kszphy_get_sset_count, 4686 .get_strings = kszphy_get_strings, 4687 .get_stats = kszphy_get_stats, 4688 .match_phy_device = ksz8051_match_phy_device, 4689 .suspend = kszphy_suspend, 4690 .resume = kszphy_resume, 4691 }, { 4692 .phy_id = PHY_ID_KSZ8001, 4693 .name = "Micrel KSZ8001 or KS8721", 4694 .phy_id_mask = 0x00fffffc, 4695 /* PHY_BASIC_FEATURES */ 4696 .driver_data = &ksz8041_type, 4697 .probe = kszphy_probe, 4698 .config_init = kszphy_config_init, 4699 .config_intr = kszphy_config_intr, 4700 .handle_interrupt = kszphy_handle_interrupt, 4701 .get_sset_count = kszphy_get_sset_count, 4702 .get_strings = kszphy_get_strings, 4703 .get_stats = kszphy_get_stats, 4704 .suspend = kszphy_suspend, 4705 .resume = kszphy_resume, 4706 }, { 4707 .phy_id = PHY_ID_KSZ8081, 4708 .name = "Micrel KSZ8081 or KSZ8091", 4709 .phy_id_mask = MICREL_PHY_ID_MASK, 4710 .flags = PHY_POLL_CABLE_TEST, 4711 /* PHY_BASIC_FEATURES */ 4712 .driver_data = &ksz8081_type, 4713 .probe = kszphy_probe, 4714 .config_init = ksz8081_config_init, 4715 .soft_reset = genphy_soft_reset, 4716 .config_aneg = ksz8081_config_aneg, 4717 .read_status = ksz8081_read_status, 4718 .config_intr = kszphy_config_intr, 4719 .handle_interrupt = kszphy_handle_interrupt, 4720 .get_sset_count = kszphy_get_sset_count, 4721 .get_strings = kszphy_get_strings, 4722 .get_stats = kszphy_get_stats, 4723 .suspend = kszphy_suspend, 4724 .resume = kszphy_resume, 4725 .cable_test_start = ksz886x_cable_test_start, 4726 .cable_test_get_status = ksz886x_cable_test_get_status, 4727 }, { 4728 .phy_id = PHY_ID_KSZ8061, 4729 .name = "Micrel KSZ8061", 4730 .phy_id_mask = MICREL_PHY_ID_MASK, 4731 /* PHY_BASIC_FEATURES */ 4732 .probe = kszphy_probe, 4733 .config_init = ksz8061_config_init, 4734 .config_intr = kszphy_config_intr, 4735 .handle_interrupt = kszphy_handle_interrupt, 4736 .suspend = kszphy_suspend, 4737 .resume = kszphy_resume, 4738 }, { 4739 .phy_id = PHY_ID_KSZ9021, 4740 .phy_id_mask = 0x000ffffe, 4741 .name = "Micrel KSZ9021 Gigabit PHY", 4742 /* PHY_GBIT_FEATURES */ 4743 .driver_data = &ksz9021_type, 4744 .probe = kszphy_probe, 4745 .get_features = ksz9031_get_features, 4746 .config_init = ksz9021_config_init, 4747 .config_intr = kszphy_config_intr, 4748 .handle_interrupt = kszphy_handle_interrupt, 4749 .get_sset_count = kszphy_get_sset_count, 4750 .get_strings = kszphy_get_strings, 4751 .get_stats = kszphy_get_stats, 4752 .suspend = kszphy_suspend, 4753 .resume = kszphy_resume, 4754 .read_mmd = genphy_read_mmd_unsupported, 4755 .write_mmd = genphy_write_mmd_unsupported, 4756 }, { 4757 .phy_id = PHY_ID_KSZ9031, 4758 .phy_id_mask = MICREL_PHY_ID_MASK, 4759 .name = "Micrel KSZ9031 Gigabit PHY", 4760 .flags = PHY_POLL_CABLE_TEST, 4761 .driver_data = &ksz9021_type, 4762 .probe = kszphy_probe, 4763 .get_features = ksz9031_get_features, 4764 .config_init = ksz9031_config_init, 4765 .soft_reset = genphy_soft_reset, 4766 .read_status = ksz9031_read_status, 4767 .config_intr = kszphy_config_intr, 4768 .handle_interrupt = kszphy_handle_interrupt, 4769 .get_sset_count = kszphy_get_sset_count, 4770 .get_strings = kszphy_get_strings, 4771 .get_stats = kszphy_get_stats, 4772 .suspend = kszphy_suspend, 4773 .resume = kszphy_resume, 4774 .cable_test_start = ksz9x31_cable_test_start, 4775 .cable_test_get_status = ksz9x31_cable_test_get_status, 4776 }, { 4777 .phy_id = PHY_ID_LAN8814, 4778 .phy_id_mask = MICREL_PHY_ID_MASK, 4779 .name = "Microchip INDY Gigabit Quad PHY", 4780 .flags = PHY_POLL_CABLE_TEST, 4781 .config_init = lan8814_config_init, 4782 .driver_data = &lan8814_type, 4783 .probe = lan8814_probe, 4784 .soft_reset = genphy_soft_reset, 4785 .read_status = ksz9031_read_status, 4786 .get_sset_count = kszphy_get_sset_count, 4787 .get_strings = kszphy_get_strings, 4788 .get_stats = kszphy_get_stats, 4789 .suspend = genphy_suspend, 4790 .resume = kszphy_resume, 4791 .config_intr = lan8814_config_intr, 4792 .handle_interrupt = lan8814_handle_interrupt, 4793 .cable_test_start = lan8814_cable_test_start, 4794 .cable_test_get_status = ksz886x_cable_test_get_status, 4795 }, { 4796 .phy_id = PHY_ID_LAN8804, 4797 .phy_id_mask = MICREL_PHY_ID_MASK, 4798 .name = "Microchip LAN966X Gigabit PHY", 4799 .config_init = lan8804_config_init, 4800 .driver_data = &ksz9021_type, 4801 .probe = kszphy_probe, 4802 .soft_reset = genphy_soft_reset, 4803 .read_status = ksz9031_read_status, 4804 .get_sset_count = kszphy_get_sset_count, 4805 .get_strings = kszphy_get_strings, 4806 .get_stats = kszphy_get_stats, 4807 .suspend = genphy_suspend, 4808 .resume = kszphy_resume, 4809 .config_intr = lan8804_config_intr, 4810 .handle_interrupt = lan8804_handle_interrupt, 4811 }, { 4812 .phy_id = PHY_ID_LAN8841, 4813 .phy_id_mask = MICREL_PHY_ID_MASK, 4814 .name = "Microchip LAN8841 Gigabit PHY", 4815 .flags = PHY_POLL_CABLE_TEST, 4816 .driver_data = &lan8841_type, 4817 .config_init = lan8841_config_init, 4818 .probe = lan8841_probe, 4819 .soft_reset = genphy_soft_reset, 4820 .config_intr = lan8841_config_intr, 4821 .handle_interrupt = lan8841_handle_interrupt, 4822 .get_sset_count = kszphy_get_sset_count, 4823 .get_strings = kszphy_get_strings, 4824 .get_stats = kszphy_get_stats, 4825 .suspend = lan8841_suspend, 4826 .resume = genphy_resume, 4827 .cable_test_start = lan8814_cable_test_start, 4828 .cable_test_get_status = ksz886x_cable_test_get_status, 4829 }, { 4830 .phy_id = PHY_ID_KSZ9131, 4831 .phy_id_mask = MICREL_PHY_ID_MASK, 4832 .name = "Microchip KSZ9131 Gigabit PHY", 4833 /* PHY_GBIT_FEATURES */ 4834 .flags = PHY_POLL_CABLE_TEST, 4835 .driver_data = &ksz9131_type, 4836 .probe = kszphy_probe, 4837 .config_init = ksz9131_config_init, 4838 .config_intr = kszphy_config_intr, 4839 .config_aneg = ksz9131_config_aneg, 4840 .read_status = ksz9131_read_status, 4841 .handle_interrupt = kszphy_handle_interrupt, 4842 .get_sset_count = kszphy_get_sset_count, 4843 .get_strings = kszphy_get_strings, 4844 .get_stats = kszphy_get_stats, 4845 .suspend = kszphy_suspend, 4846 .resume = kszphy_resume, 4847 .cable_test_start = ksz9x31_cable_test_start, 4848 .cable_test_get_status = ksz9x31_cable_test_get_status, 4849 .get_features = ksz9477_get_features, 4850 }, { 4851 .phy_id = PHY_ID_KSZ8873MLL, 4852 .phy_id_mask = MICREL_PHY_ID_MASK, 4853 .name = "Micrel KSZ8873MLL Switch", 4854 /* PHY_BASIC_FEATURES */ 4855 .config_init = kszphy_config_init, 4856 .config_aneg = ksz8873mll_config_aneg, 4857 .read_status = ksz8873mll_read_status, 4858 .suspend = genphy_suspend, 4859 .resume = genphy_resume, 4860 }, { 4861 .phy_id = PHY_ID_KSZ886X, 4862 .phy_id_mask = MICREL_PHY_ID_MASK, 4863 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4864 .driver_data = &ksz886x_type, 4865 /* PHY_BASIC_FEATURES */ 4866 .flags = PHY_POLL_CABLE_TEST, 4867 .config_init = kszphy_config_init, 4868 .config_aneg = ksz886x_config_aneg, 4869 .read_status = ksz886x_read_status, 4870 .suspend = genphy_suspend, 4871 .resume = genphy_resume, 4872 .cable_test_start = ksz886x_cable_test_start, 4873 .cable_test_get_status = ksz886x_cable_test_get_status, 4874 }, { 4875 .name = "Micrel KSZ87XX Switch", 4876 /* PHY_BASIC_FEATURES */ 4877 .config_init = kszphy_config_init, 4878 .match_phy_device = ksz8795_match_phy_device, 4879 .suspend = genphy_suspend, 4880 .resume = genphy_resume, 4881 }, { 4882 .phy_id = PHY_ID_KSZ9477, 4883 .phy_id_mask = MICREL_PHY_ID_MASK, 4884 .name = "Microchip KSZ9477", 4885 /* PHY_GBIT_FEATURES */ 4886 .config_init = ksz9477_config_init, 4887 .config_intr = kszphy_config_intr, 4888 .handle_interrupt = kszphy_handle_interrupt, 4889 .suspend = genphy_suspend, 4890 .resume = genphy_resume, 4891 .get_features = ksz9477_get_features, 4892 } }; 4893 4894 module_phy_driver(ksphy_driver); 4895 4896 MODULE_DESCRIPTION("Micrel PHY driver"); 4897 MODULE_AUTHOR("David J. Choi"); 4898 MODULE_LICENSE("GPL"); 4899 4900 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 4901 { PHY_ID_KSZ9021, 0x000ffffe }, 4902 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 4903 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 4904 { PHY_ID_KSZ8001, 0x00fffffc }, 4905 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 4906 { PHY_ID_KSZ8021, 0x00ffffff }, 4907 { PHY_ID_KSZ8031, 0x00ffffff }, 4908 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 4909 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 4910 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 4911 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 4912 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 4913 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 4914 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 4915 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 4916 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 4917 { } 4918 }; 4919 4920 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 4921