1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 struct kszphy_hw_stat { 256 const char *string; 257 u8 reg; 258 u8 bits; 259 }; 260 261 static struct kszphy_hw_stat kszphy_hw_stats[] = { 262 { "phy_receive_errors", 21, 16}, 263 { "phy_idle_errors", 10, 8 }, 264 }; 265 266 struct kszphy_type { 267 u32 led_mode_reg; 268 u16 interrupt_level_mask; 269 u16 cable_diag_reg; 270 unsigned long pair_mask; 271 u16 disable_dll_tx_bit; 272 u16 disable_dll_rx_bit; 273 u16 disable_dll_mask; 274 bool has_broadcast_disable; 275 bool has_nand_tree_disable; 276 bool has_rmii_ref_clk_sel; 277 }; 278 279 /* Shared structure between the PHYs of the same package. */ 280 struct lan8814_shared_priv { 281 struct phy_device *phydev; 282 struct ptp_clock *ptp_clock; 283 struct ptp_clock_info ptp_clock_info; 284 285 /* Reference counter to how many ports in the package are enabling the 286 * timestamping 287 */ 288 u8 ref; 289 290 /* Lock for ptp_clock and ref */ 291 struct mutex shared_lock; 292 }; 293 294 struct lan8814_ptp_rx_ts { 295 struct list_head list; 296 u32 seconds; 297 u32 nsec; 298 u16 seq_id; 299 }; 300 301 struct kszphy_ptp_priv { 302 struct mii_timestamper mii_ts; 303 struct phy_device *phydev; 304 305 struct sk_buff_head tx_queue; 306 struct sk_buff_head rx_queue; 307 308 struct list_head rx_ts_list; 309 /* Lock for Rx ts fifo */ 310 spinlock_t rx_ts_lock; 311 312 int hwts_tx_type; 313 enum hwtstamp_rx_filters rx_filter; 314 int layer; 315 int version; 316 }; 317 318 struct kszphy_priv { 319 struct kszphy_ptp_priv ptp_priv; 320 const struct kszphy_type *type; 321 int led_mode; 322 u16 vct_ctrl1000; 323 bool rmii_ref_clk_sel; 324 bool rmii_ref_clk_sel_val; 325 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 326 }; 327 328 static const struct kszphy_type lan8814_type = { 329 .led_mode_reg = ~LAN8814_LED_CTRL_1, 330 .cable_diag_reg = LAN8814_CABLE_DIAG, 331 .pair_mask = LAN8814_WIRE_PAIR_MASK, 332 }; 333 334 static const struct kszphy_type ksz886x_type = { 335 .cable_diag_reg = KSZ8081_LMD, 336 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 337 }; 338 339 static const struct kszphy_type ksz8021_type = { 340 .led_mode_reg = MII_KSZPHY_CTRL_2, 341 .has_broadcast_disable = true, 342 .has_nand_tree_disable = true, 343 .has_rmii_ref_clk_sel = true, 344 }; 345 346 static const struct kszphy_type ksz8041_type = { 347 .led_mode_reg = MII_KSZPHY_CTRL_1, 348 }; 349 350 static const struct kszphy_type ksz8051_type = { 351 .led_mode_reg = MII_KSZPHY_CTRL_2, 352 .has_nand_tree_disable = true, 353 }; 354 355 static const struct kszphy_type ksz8081_type = { 356 .led_mode_reg = MII_KSZPHY_CTRL_2, 357 .has_broadcast_disable = true, 358 .has_nand_tree_disable = true, 359 .has_rmii_ref_clk_sel = true, 360 }; 361 362 static const struct kszphy_type ks8737_type = { 363 .interrupt_level_mask = BIT(14), 364 }; 365 366 static const struct kszphy_type ksz9021_type = { 367 .interrupt_level_mask = BIT(14), 368 }; 369 370 static const struct kszphy_type ksz9131_type = { 371 .interrupt_level_mask = BIT(14), 372 .disable_dll_tx_bit = BIT(12), 373 .disable_dll_rx_bit = BIT(12), 374 .disable_dll_mask = BIT_MASK(12), 375 }; 376 377 static const struct kszphy_type lan8841_type = { 378 .disable_dll_tx_bit = BIT(14), 379 .disable_dll_rx_bit = BIT(14), 380 .disable_dll_mask = BIT_MASK(14), 381 }; 382 383 static int kszphy_extended_write(struct phy_device *phydev, 384 u32 regnum, u16 val) 385 { 386 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 387 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 388 } 389 390 static int kszphy_extended_read(struct phy_device *phydev, 391 u32 regnum) 392 { 393 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 394 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 395 } 396 397 static int kszphy_ack_interrupt(struct phy_device *phydev) 398 { 399 /* bit[7..0] int status, which is a read and clear register. */ 400 int rc; 401 402 rc = phy_read(phydev, MII_KSZPHY_INTCS); 403 404 return (rc < 0) ? rc : 0; 405 } 406 407 static int kszphy_config_intr(struct phy_device *phydev) 408 { 409 const struct kszphy_type *type = phydev->drv->driver_data; 410 int temp, err; 411 u16 mask; 412 413 if (type && type->interrupt_level_mask) 414 mask = type->interrupt_level_mask; 415 else 416 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 417 418 /* set the interrupt pin active low */ 419 temp = phy_read(phydev, MII_KSZPHY_CTRL); 420 if (temp < 0) 421 return temp; 422 temp &= ~mask; 423 phy_write(phydev, MII_KSZPHY_CTRL, temp); 424 425 /* enable / disable interrupts */ 426 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 427 err = kszphy_ack_interrupt(phydev); 428 if (err) 429 return err; 430 431 temp = KSZPHY_INTCS_ALL; 432 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 433 } else { 434 temp = 0; 435 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 436 if (err) 437 return err; 438 439 err = kszphy_ack_interrupt(phydev); 440 } 441 442 return err; 443 } 444 445 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 446 { 447 int irq_status; 448 449 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 450 if (irq_status < 0) { 451 phy_error(phydev); 452 return IRQ_NONE; 453 } 454 455 if (!(irq_status & KSZPHY_INTCS_STATUS)) 456 return IRQ_NONE; 457 458 phy_trigger_machine(phydev); 459 460 return IRQ_HANDLED; 461 } 462 463 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 464 { 465 int ctrl; 466 467 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 468 if (ctrl < 0) 469 return ctrl; 470 471 if (val) 472 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 473 else 474 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 475 476 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 477 } 478 479 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 480 { 481 int rc, temp, shift; 482 483 switch (reg) { 484 case MII_KSZPHY_CTRL_1: 485 shift = 14; 486 break; 487 case MII_KSZPHY_CTRL_2: 488 shift = 4; 489 break; 490 default: 491 return -EINVAL; 492 } 493 494 temp = phy_read(phydev, reg); 495 if (temp < 0) { 496 rc = temp; 497 goto out; 498 } 499 500 temp &= ~(3 << shift); 501 temp |= val << shift; 502 rc = phy_write(phydev, reg, temp); 503 out: 504 if (rc < 0) 505 phydev_err(phydev, "failed to set led mode\n"); 506 507 return rc; 508 } 509 510 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 511 * unique (non-broadcast) address on a shared bus. 512 */ 513 static int kszphy_broadcast_disable(struct phy_device *phydev) 514 { 515 int ret; 516 517 ret = phy_read(phydev, MII_KSZPHY_OMSO); 518 if (ret < 0) 519 goto out; 520 521 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 522 out: 523 if (ret) 524 phydev_err(phydev, "failed to disable broadcast address\n"); 525 526 return ret; 527 } 528 529 static int kszphy_nand_tree_disable(struct phy_device *phydev) 530 { 531 int ret; 532 533 ret = phy_read(phydev, MII_KSZPHY_OMSO); 534 if (ret < 0) 535 goto out; 536 537 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 538 return 0; 539 540 ret = phy_write(phydev, MII_KSZPHY_OMSO, 541 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 542 out: 543 if (ret) 544 phydev_err(phydev, "failed to disable NAND tree mode\n"); 545 546 return ret; 547 } 548 549 /* Some config bits need to be set again on resume, handle them here. */ 550 static int kszphy_config_reset(struct phy_device *phydev) 551 { 552 struct kszphy_priv *priv = phydev->priv; 553 int ret; 554 555 if (priv->rmii_ref_clk_sel) { 556 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 557 if (ret) { 558 phydev_err(phydev, 559 "failed to set rmii reference clock\n"); 560 return ret; 561 } 562 } 563 564 if (priv->type && priv->led_mode >= 0) 565 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 566 567 return 0; 568 } 569 570 static int kszphy_config_init(struct phy_device *phydev) 571 { 572 struct kszphy_priv *priv = phydev->priv; 573 const struct kszphy_type *type; 574 575 if (!priv) 576 return 0; 577 578 type = priv->type; 579 580 if (type && type->has_broadcast_disable) 581 kszphy_broadcast_disable(phydev); 582 583 if (type && type->has_nand_tree_disable) 584 kszphy_nand_tree_disable(phydev); 585 586 return kszphy_config_reset(phydev); 587 } 588 589 static int ksz8041_fiber_mode(struct phy_device *phydev) 590 { 591 struct device_node *of_node = phydev->mdio.dev.of_node; 592 593 return of_property_read_bool(of_node, "micrel,fiber-mode"); 594 } 595 596 static int ksz8041_config_init(struct phy_device *phydev) 597 { 598 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 599 600 /* Limit supported and advertised modes in fiber mode */ 601 if (ksz8041_fiber_mode(phydev)) { 602 phydev->dev_flags |= MICREL_PHY_FXEN; 603 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 604 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 605 606 linkmode_and(phydev->supported, phydev->supported, mask); 607 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 608 phydev->supported); 609 linkmode_and(phydev->advertising, phydev->advertising, mask); 610 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 611 phydev->advertising); 612 phydev->autoneg = AUTONEG_DISABLE; 613 } 614 615 return kszphy_config_init(phydev); 616 } 617 618 static int ksz8041_config_aneg(struct phy_device *phydev) 619 { 620 /* Skip auto-negotiation in fiber mode */ 621 if (phydev->dev_flags & MICREL_PHY_FXEN) { 622 phydev->speed = SPEED_100; 623 return 0; 624 } 625 626 return genphy_config_aneg(phydev); 627 } 628 629 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 630 const bool ksz_8051) 631 { 632 int ret; 633 634 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051) 635 return 0; 636 637 ret = phy_read(phydev, MII_BMSR); 638 if (ret < 0) 639 return ret; 640 641 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 642 * exact PHY ID. However, they can be told apart by the extended 643 * capability registers presence. The KSZ8051 PHY has them while 644 * the switch does not. 645 */ 646 ret &= BMSR_ERCAP; 647 if (ksz_8051) 648 return ret; 649 else 650 return !ret; 651 } 652 653 static int ksz8051_match_phy_device(struct phy_device *phydev) 654 { 655 return ksz8051_ksz8795_match_phy_device(phydev, true); 656 } 657 658 static int ksz8081_config_init(struct phy_device *phydev) 659 { 660 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 661 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 662 * pull-down is missing, the factory test mode should be cleared by 663 * manually writing a 0. 664 */ 665 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 666 667 return kszphy_config_init(phydev); 668 } 669 670 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 671 { 672 u16 val; 673 674 switch (ctrl) { 675 case ETH_TP_MDI: 676 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 677 break; 678 case ETH_TP_MDI_X: 679 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 680 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 681 break; 682 case ETH_TP_MDI_AUTO: 683 val = 0; 684 break; 685 default: 686 return 0; 687 } 688 689 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 690 KSZ8081_CTRL2_HP_MDIX | 691 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 692 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 693 KSZ8081_CTRL2_HP_MDIX | val); 694 } 695 696 static int ksz8081_config_aneg(struct phy_device *phydev) 697 { 698 int ret; 699 700 ret = genphy_config_aneg(phydev); 701 if (ret) 702 return ret; 703 704 /* The MDI-X configuration is automatically changed by the PHY after 705 * switching from autoneg off to on. So, take MDI-X configuration under 706 * own control and set it after autoneg configuration was done. 707 */ 708 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 709 } 710 711 static int ksz8081_mdix_update(struct phy_device *phydev) 712 { 713 int ret; 714 715 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 716 if (ret < 0) 717 return ret; 718 719 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 720 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 721 phydev->mdix_ctrl = ETH_TP_MDI_X; 722 else 723 phydev->mdix_ctrl = ETH_TP_MDI; 724 } else { 725 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 726 } 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL1_MDIX_STAT) 733 phydev->mdix = ETH_TP_MDI; 734 else 735 phydev->mdix = ETH_TP_MDI_X; 736 737 return 0; 738 } 739 740 static int ksz8081_read_status(struct phy_device *phydev) 741 { 742 int ret; 743 744 ret = ksz8081_mdix_update(phydev); 745 if (ret < 0) 746 return ret; 747 748 return genphy_read_status(phydev); 749 } 750 751 static int ksz8061_config_init(struct phy_device *phydev) 752 { 753 int ret; 754 755 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 756 if (ret) 757 return ret; 758 759 return kszphy_config_init(phydev); 760 } 761 762 static int ksz8795_match_phy_device(struct phy_device *phydev) 763 { 764 return ksz8051_ksz8795_match_phy_device(phydev, false); 765 } 766 767 static int ksz9021_load_values_from_of(struct phy_device *phydev, 768 const struct device_node *of_node, 769 u16 reg, 770 const char *field1, const char *field2, 771 const char *field3, const char *field4) 772 { 773 int val1 = -1; 774 int val2 = -2; 775 int val3 = -3; 776 int val4 = -4; 777 int newval; 778 int matches = 0; 779 780 if (!of_property_read_u32(of_node, field1, &val1)) 781 matches++; 782 783 if (!of_property_read_u32(of_node, field2, &val2)) 784 matches++; 785 786 if (!of_property_read_u32(of_node, field3, &val3)) 787 matches++; 788 789 if (!of_property_read_u32(of_node, field4, &val4)) 790 matches++; 791 792 if (!matches) 793 return 0; 794 795 if (matches < 4) 796 newval = kszphy_extended_read(phydev, reg); 797 else 798 newval = 0; 799 800 if (val1 != -1) 801 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 802 803 if (val2 != -2) 804 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 805 806 if (val3 != -3) 807 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 808 809 if (val4 != -4) 810 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 811 812 return kszphy_extended_write(phydev, reg, newval); 813 } 814 815 static int ksz9021_config_init(struct phy_device *phydev) 816 { 817 const struct device_node *of_node; 818 const struct device *dev_walker; 819 820 /* The Micrel driver has a deprecated option to place phy OF 821 * properties in the MAC node. Walk up the tree of devices to 822 * find a device with an OF node. 823 */ 824 dev_walker = &phydev->mdio.dev; 825 do { 826 of_node = dev_walker->of_node; 827 dev_walker = dev_walker->parent; 828 829 } while (!of_node && dev_walker); 830 831 if (of_node) { 832 ksz9021_load_values_from_of(phydev, of_node, 833 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 834 "txen-skew-ps", "txc-skew-ps", 835 "rxdv-skew-ps", "rxc-skew-ps"); 836 ksz9021_load_values_from_of(phydev, of_node, 837 MII_KSZPHY_RX_DATA_PAD_SKEW, 838 "rxd0-skew-ps", "rxd1-skew-ps", 839 "rxd2-skew-ps", "rxd3-skew-ps"); 840 ksz9021_load_values_from_of(phydev, of_node, 841 MII_KSZPHY_TX_DATA_PAD_SKEW, 842 "txd0-skew-ps", "txd1-skew-ps", 843 "txd2-skew-ps", "txd3-skew-ps"); 844 } 845 return 0; 846 } 847 848 #define KSZ9031_PS_TO_REG 60 849 850 /* Extended registers */ 851 /* MMD Address 0x0 */ 852 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 853 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 854 855 /* MMD Address 0x2 */ 856 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 857 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 858 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 859 860 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 861 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 862 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 863 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 864 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 865 866 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 867 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 868 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 869 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 870 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 871 872 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 873 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 874 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 875 876 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 877 * provide different RGMII options we need to configure delay offset 878 * for each pad relative to build in delay. 879 */ 880 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 881 * 1.80ns 882 */ 883 #define RX_ID 0x7 884 #define RX_CLK_ID 0x19 885 886 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 887 * internal 1.2ns delay. 888 */ 889 #define RX_ND 0xc 890 #define RX_CLK_ND 0x0 891 892 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 893 #define TX_ID 0x0 894 #define TX_CLK_ID 0x1f 895 896 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 897 * dealy 898 */ 899 #define TX_ND 0x7 900 #define TX_CLK_ND 0xf 901 902 /* MMD Address 0x1C */ 903 #define MII_KSZ9031RN_EDPD 0x23 904 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 905 906 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 907 const struct device_node *of_node, 908 u16 reg, size_t field_sz, 909 const char *field[], u8 numfields, 910 bool *update) 911 { 912 int val[4] = {-1, -2, -3, -4}; 913 int matches = 0; 914 u16 mask; 915 u16 maxval; 916 u16 newval; 917 int i; 918 919 for (i = 0; i < numfields; i++) 920 if (!of_property_read_u32(of_node, field[i], val + i)) 921 matches++; 922 923 if (!matches) 924 return 0; 925 926 *update |= true; 927 928 if (matches < numfields) 929 newval = phy_read_mmd(phydev, 2, reg); 930 else 931 newval = 0; 932 933 maxval = (field_sz == 4) ? 0xf : 0x1f; 934 for (i = 0; i < numfields; i++) 935 if (val[i] != -(i + 1)) { 936 mask = 0xffff; 937 mask ^= maxval << (field_sz * i); 938 newval = (newval & mask) | 939 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 940 << (field_sz * i)); 941 } 942 943 return phy_write_mmd(phydev, 2, reg, newval); 944 } 945 946 /* Center KSZ9031RNX FLP timing at 16ms. */ 947 static int ksz9031_center_flp_timing(struct phy_device *phydev) 948 { 949 int result; 950 951 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 952 0x0006); 953 if (result) 954 return result; 955 956 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 957 0x1A80); 958 if (result) 959 return result; 960 961 return genphy_restart_aneg(phydev); 962 } 963 964 /* Enable energy-detect power-down mode */ 965 static int ksz9031_enable_edpd(struct phy_device *phydev) 966 { 967 int reg; 968 969 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 970 if (reg < 0) 971 return reg; 972 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 973 reg | MII_KSZ9031RN_EDPD_ENABLE); 974 } 975 976 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 977 { 978 u16 rx, tx, rx_clk, tx_clk; 979 int ret; 980 981 switch (phydev->interface) { 982 case PHY_INTERFACE_MODE_RGMII: 983 tx = TX_ND; 984 tx_clk = TX_CLK_ND; 985 rx = RX_ND; 986 rx_clk = RX_CLK_ND; 987 break; 988 case PHY_INTERFACE_MODE_RGMII_ID: 989 tx = TX_ID; 990 tx_clk = TX_CLK_ID; 991 rx = RX_ID; 992 rx_clk = RX_CLK_ID; 993 break; 994 case PHY_INTERFACE_MODE_RGMII_RXID: 995 tx = TX_ND; 996 tx_clk = TX_CLK_ND; 997 rx = RX_ID; 998 rx_clk = RX_CLK_ID; 999 break; 1000 case PHY_INTERFACE_MODE_RGMII_TXID: 1001 tx = TX_ID; 1002 tx_clk = TX_CLK_ID; 1003 rx = RX_ND; 1004 rx_clk = RX_CLK_ND; 1005 break; 1006 default: 1007 return 0; 1008 } 1009 1010 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1011 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1012 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1013 if (ret < 0) 1014 return ret; 1015 1016 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1017 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1018 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1019 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1020 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1021 if (ret < 0) 1022 return ret; 1023 1024 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1025 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1026 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1027 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1028 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1029 if (ret < 0) 1030 return ret; 1031 1032 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1033 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1034 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1035 } 1036 1037 static int ksz9031_config_init(struct phy_device *phydev) 1038 { 1039 const struct device_node *of_node; 1040 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1041 static const char *rx_data_skews[4] = { 1042 "rxd0-skew-ps", "rxd1-skew-ps", 1043 "rxd2-skew-ps", "rxd3-skew-ps" 1044 }; 1045 static const char *tx_data_skews[4] = { 1046 "txd0-skew-ps", "txd1-skew-ps", 1047 "txd2-skew-ps", "txd3-skew-ps" 1048 }; 1049 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1050 const struct device *dev_walker; 1051 int result; 1052 1053 result = ksz9031_enable_edpd(phydev); 1054 if (result < 0) 1055 return result; 1056 1057 /* The Micrel driver has a deprecated option to place phy OF 1058 * properties in the MAC node. Walk up the tree of devices to 1059 * find a device with an OF node. 1060 */ 1061 dev_walker = &phydev->mdio.dev; 1062 do { 1063 of_node = dev_walker->of_node; 1064 dev_walker = dev_walker->parent; 1065 } while (!of_node && dev_walker); 1066 1067 if (of_node) { 1068 bool update = false; 1069 1070 if (phy_interface_is_rgmii(phydev)) { 1071 result = ksz9031_config_rgmii_delay(phydev); 1072 if (result < 0) 1073 return result; 1074 } 1075 1076 ksz9031_of_load_skew_values(phydev, of_node, 1077 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1078 clk_skews, 2, &update); 1079 1080 ksz9031_of_load_skew_values(phydev, of_node, 1081 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1082 control_skews, 2, &update); 1083 1084 ksz9031_of_load_skew_values(phydev, of_node, 1085 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1086 rx_data_skews, 4, &update); 1087 1088 ksz9031_of_load_skew_values(phydev, of_node, 1089 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1090 tx_data_skews, 4, &update); 1091 1092 if (update && !phy_interface_is_rgmii(phydev)) 1093 phydev_warn(phydev, 1094 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1095 1096 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1097 * When the device links in the 1000BASE-T slave mode only, 1098 * the optional 125MHz reference output clock (CLK125_NDO) 1099 * has wide duty cycle variation. 1100 * 1101 * The optional CLK125_NDO clock does not meet the RGMII 1102 * 45/55 percent (min/max) duty cycle requirement and therefore 1103 * cannot be used directly by the MAC side for clocking 1104 * applications that have setup/hold time requirements on 1105 * rising and falling clock edges. 1106 * 1107 * Workaround: 1108 * Force the phy to be the master to receive a stable clock 1109 * which meets the duty cycle requirement. 1110 */ 1111 if (of_property_read_bool(of_node, "micrel,force-master")) { 1112 result = phy_read(phydev, MII_CTRL1000); 1113 if (result < 0) 1114 goto err_force_master; 1115 1116 /* enable master mode, config & prefer master */ 1117 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1118 result = phy_write(phydev, MII_CTRL1000, result); 1119 if (result < 0) 1120 goto err_force_master; 1121 } 1122 } 1123 1124 return ksz9031_center_flp_timing(phydev); 1125 1126 err_force_master: 1127 phydev_err(phydev, "failed to force the phy to master mode\n"); 1128 return result; 1129 } 1130 1131 #define KSZ9131_SKEW_5BIT_MAX 2400 1132 #define KSZ9131_SKEW_4BIT_MAX 800 1133 #define KSZ9131_OFFSET 700 1134 #define KSZ9131_STEP 100 1135 1136 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1137 struct device_node *of_node, 1138 u16 reg, size_t field_sz, 1139 char *field[], u8 numfields) 1140 { 1141 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1142 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1143 int skewval, skewmax = 0; 1144 int matches = 0; 1145 u16 maxval; 1146 u16 newval; 1147 u16 mask; 1148 int i; 1149 1150 /* psec properties in dts should mean x pico seconds */ 1151 if (field_sz == 5) 1152 skewmax = KSZ9131_SKEW_5BIT_MAX; 1153 else 1154 skewmax = KSZ9131_SKEW_4BIT_MAX; 1155 1156 for (i = 0; i < numfields; i++) 1157 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1158 if (skewval < -KSZ9131_OFFSET) 1159 skewval = -KSZ9131_OFFSET; 1160 else if (skewval > skewmax) 1161 skewval = skewmax; 1162 1163 val[i] = skewval + KSZ9131_OFFSET; 1164 matches++; 1165 } 1166 1167 if (!matches) 1168 return 0; 1169 1170 if (matches < numfields) 1171 newval = phy_read_mmd(phydev, 2, reg); 1172 else 1173 newval = 0; 1174 1175 maxval = (field_sz == 4) ? 0xf : 0x1f; 1176 for (i = 0; i < numfields; i++) 1177 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1178 mask = 0xffff; 1179 mask ^= maxval << (field_sz * i); 1180 newval = (newval & mask) | 1181 (((val[i] / KSZ9131_STEP) & maxval) 1182 << (field_sz * i)); 1183 } 1184 1185 return phy_write_mmd(phydev, 2, reg, newval); 1186 } 1187 1188 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1189 #define KSZ9131RN_RXC_DLL_CTRL 76 1190 #define KSZ9131RN_TXC_DLL_CTRL 77 1191 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1192 1193 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1194 { 1195 const struct kszphy_type *type = phydev->drv->driver_data; 1196 u16 rxcdll_val, txcdll_val; 1197 int ret; 1198 1199 switch (phydev->interface) { 1200 case PHY_INTERFACE_MODE_RGMII: 1201 rxcdll_val = type->disable_dll_rx_bit; 1202 txcdll_val = type->disable_dll_tx_bit; 1203 break; 1204 case PHY_INTERFACE_MODE_RGMII_ID: 1205 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1206 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1207 break; 1208 case PHY_INTERFACE_MODE_RGMII_RXID: 1209 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1210 txcdll_val = type->disable_dll_tx_bit; 1211 break; 1212 case PHY_INTERFACE_MODE_RGMII_TXID: 1213 rxcdll_val = type->disable_dll_rx_bit; 1214 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1215 break; 1216 default: 1217 return 0; 1218 } 1219 1220 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1221 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1222 rxcdll_val); 1223 if (ret < 0) 1224 return ret; 1225 1226 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1227 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1228 txcdll_val); 1229 } 1230 1231 /* Silicon Errata DS80000693B 1232 * 1233 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1234 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1235 * according to the datasheet (off if there is no link). 1236 */ 1237 static int ksz9131_led_errata(struct phy_device *phydev) 1238 { 1239 int reg; 1240 1241 reg = phy_read_mmd(phydev, 2, 0); 1242 if (reg < 0) 1243 return reg; 1244 1245 if (!(reg & BIT(4))) 1246 return 0; 1247 1248 return phy_set_bits(phydev, 0x1e, BIT(9)); 1249 } 1250 1251 static int ksz9131_config_init(struct phy_device *phydev) 1252 { 1253 struct device_node *of_node; 1254 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1255 char *rx_data_skews[4] = { 1256 "rxd0-skew-psec", "rxd1-skew-psec", 1257 "rxd2-skew-psec", "rxd3-skew-psec" 1258 }; 1259 char *tx_data_skews[4] = { 1260 "txd0-skew-psec", "txd1-skew-psec", 1261 "txd2-skew-psec", "txd3-skew-psec" 1262 }; 1263 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1264 const struct device *dev_walker; 1265 int ret; 1266 1267 dev_walker = &phydev->mdio.dev; 1268 do { 1269 of_node = dev_walker->of_node; 1270 dev_walker = dev_walker->parent; 1271 } while (!of_node && dev_walker); 1272 1273 if (!of_node) 1274 return 0; 1275 1276 if (phy_interface_is_rgmii(phydev)) { 1277 ret = ksz9131_config_rgmii_delay(phydev); 1278 if (ret < 0) 1279 return ret; 1280 } 1281 1282 ret = ksz9131_of_load_skew_values(phydev, of_node, 1283 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1284 clk_skews, 2); 1285 if (ret < 0) 1286 return ret; 1287 1288 ret = ksz9131_of_load_skew_values(phydev, of_node, 1289 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1290 control_skews, 2); 1291 if (ret < 0) 1292 return ret; 1293 1294 ret = ksz9131_of_load_skew_values(phydev, of_node, 1295 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1296 rx_data_skews, 4); 1297 if (ret < 0) 1298 return ret; 1299 1300 ret = ksz9131_of_load_skew_values(phydev, of_node, 1301 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1302 tx_data_skews, 4); 1303 if (ret < 0) 1304 return ret; 1305 1306 ret = ksz9131_led_errata(phydev); 1307 if (ret < 0) 1308 return ret; 1309 1310 return 0; 1311 } 1312 1313 #define MII_KSZ9131_AUTO_MDIX 0x1C 1314 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1315 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1316 1317 static int ksz9131_mdix_update(struct phy_device *phydev) 1318 { 1319 int ret; 1320 1321 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1322 if (ret < 0) 1323 return ret; 1324 1325 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1326 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1327 phydev->mdix_ctrl = ETH_TP_MDI; 1328 else 1329 phydev->mdix_ctrl = ETH_TP_MDI_X; 1330 } else { 1331 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1332 } 1333 1334 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1335 phydev->mdix = ETH_TP_MDI; 1336 else 1337 phydev->mdix = ETH_TP_MDI_X; 1338 1339 return 0; 1340 } 1341 1342 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1343 { 1344 u16 val; 1345 1346 switch (ctrl) { 1347 case ETH_TP_MDI: 1348 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1349 MII_KSZ9131_AUTO_MDI_SET; 1350 break; 1351 case ETH_TP_MDI_X: 1352 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1353 break; 1354 case ETH_TP_MDI_AUTO: 1355 val = 0; 1356 break; 1357 default: 1358 return 0; 1359 } 1360 1361 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1362 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1363 MII_KSZ9131_AUTO_MDI_SET, val); 1364 } 1365 1366 static int ksz9131_read_status(struct phy_device *phydev) 1367 { 1368 int ret; 1369 1370 ret = ksz9131_mdix_update(phydev); 1371 if (ret < 0) 1372 return ret; 1373 1374 return genphy_read_status(phydev); 1375 } 1376 1377 static int ksz9131_config_aneg(struct phy_device *phydev) 1378 { 1379 int ret; 1380 1381 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1382 if (ret) 1383 return ret; 1384 1385 return genphy_config_aneg(phydev); 1386 } 1387 1388 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1389 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1390 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1391 static int ksz8873mll_read_status(struct phy_device *phydev) 1392 { 1393 int regval; 1394 1395 /* dummy read */ 1396 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1397 1398 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1399 1400 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1401 phydev->duplex = DUPLEX_HALF; 1402 else 1403 phydev->duplex = DUPLEX_FULL; 1404 1405 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1406 phydev->speed = SPEED_10; 1407 else 1408 phydev->speed = SPEED_100; 1409 1410 phydev->link = 1; 1411 phydev->pause = phydev->asym_pause = 0; 1412 1413 return 0; 1414 } 1415 1416 static int ksz9031_get_features(struct phy_device *phydev) 1417 { 1418 int ret; 1419 1420 ret = genphy_read_abilities(phydev); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1425 * Whenever the device's Asymmetric Pause capability is set to 1, 1426 * link-up may fail after a link-up to link-down transition. 1427 * 1428 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1429 * 1430 * Workaround: 1431 * Do not enable the Asymmetric Pause capability bit. 1432 */ 1433 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1434 1435 /* We force setting the Pause capability as the core will force the 1436 * Asymmetric Pause capability to 1 otherwise. 1437 */ 1438 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1439 1440 return 0; 1441 } 1442 1443 static int ksz9031_read_status(struct phy_device *phydev) 1444 { 1445 int err; 1446 int regval; 1447 1448 err = genphy_read_status(phydev); 1449 if (err) 1450 return err; 1451 1452 /* Make sure the PHY is not broken. Read idle error count, 1453 * and reset the PHY if it is maxed out. 1454 */ 1455 regval = phy_read(phydev, MII_STAT1000); 1456 if ((regval & 0xFF) == 0xFF) { 1457 phy_init_hw(phydev); 1458 phydev->link = 0; 1459 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1460 phydev->drv->config_intr(phydev); 1461 return genphy_config_aneg(phydev); 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1468 { 1469 struct kszphy_priv *priv = phydev->priv; 1470 int ret; 1471 1472 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1473 * Prior to running the cable diagnostics, Auto-negotiation should 1474 * be disabled, full duplex set and the link speed set to 1000Mbps 1475 * via the Basic Control Register. 1476 */ 1477 ret = phy_modify(phydev, MII_BMCR, 1478 BMCR_SPEED1000 | BMCR_FULLDPLX | 1479 BMCR_ANENABLE | BMCR_SPEED100, 1480 BMCR_SPEED1000 | BMCR_FULLDPLX); 1481 if (ret) 1482 return ret; 1483 1484 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1485 * The Master-Slave configuration should be set to Slave by writing 1486 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1487 * Register. 1488 */ 1489 ret = phy_read(phydev, MII_CTRL1000); 1490 if (ret < 0) 1491 return ret; 1492 1493 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1494 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1495 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1496 ret |= CTL1000_ENABLE_MASTER; 1497 1498 return phy_write(phydev, MII_CTRL1000, ret); 1499 } 1500 1501 static int ksz9x31_cable_test_result_trans(u16 status) 1502 { 1503 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1504 case KSZ9x31_LMD_VCT_ST_NORMAL: 1505 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1506 case KSZ9x31_LMD_VCT_ST_OPEN: 1507 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1508 case KSZ9x31_LMD_VCT_ST_SHORT: 1509 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1510 case KSZ9x31_LMD_VCT_ST_FAIL: 1511 fallthrough; 1512 default: 1513 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1514 } 1515 } 1516 1517 static bool ksz9x31_cable_test_failed(u16 status) 1518 { 1519 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1520 1521 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1522 } 1523 1524 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1525 { 1526 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1527 case KSZ9x31_LMD_VCT_ST_OPEN: 1528 fallthrough; 1529 case KSZ9x31_LMD_VCT_ST_SHORT: 1530 return true; 1531 } 1532 return false; 1533 } 1534 1535 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1536 { 1537 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1538 1539 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1540 * 1541 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1542 */ 1543 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131) 1544 dt = clamp(dt - 22, 0, 255); 1545 1546 return (dt * 400) / 10; 1547 } 1548 1549 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1550 { 1551 int val, ret; 1552 1553 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1554 !(val & KSZ9x31_LMD_VCT_EN), 1555 30000, 100000, true); 1556 1557 return ret < 0 ? ret : 0; 1558 } 1559 1560 static int ksz9x31_cable_test_get_pair(int pair) 1561 { 1562 static const int ethtool_pair[] = { 1563 ETHTOOL_A_CABLE_PAIR_A, 1564 ETHTOOL_A_CABLE_PAIR_B, 1565 ETHTOOL_A_CABLE_PAIR_C, 1566 ETHTOOL_A_CABLE_PAIR_D, 1567 }; 1568 1569 return ethtool_pair[pair]; 1570 } 1571 1572 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1573 { 1574 int ret, val; 1575 1576 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1577 * To test each individual cable pair, set the cable pair in the Cable 1578 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1579 * Diagnostic Register, along with setting the Cable Diagnostics Test 1580 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1581 * will self clear when the test is concluded. 1582 */ 1583 ret = phy_write(phydev, KSZ9x31_LMD, 1584 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1585 if (ret) 1586 return ret; 1587 1588 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1589 if (ret) 1590 return ret; 1591 1592 val = phy_read(phydev, KSZ9x31_LMD); 1593 if (val < 0) 1594 return val; 1595 1596 if (ksz9x31_cable_test_failed(val)) 1597 return -EAGAIN; 1598 1599 ret = ethnl_cable_test_result(phydev, 1600 ksz9x31_cable_test_get_pair(pair), 1601 ksz9x31_cable_test_result_trans(val)); 1602 if (ret) 1603 return ret; 1604 1605 if (!ksz9x31_cable_test_fault_length_valid(val)) 1606 return 0; 1607 1608 return ethnl_cable_test_fault_length(phydev, 1609 ksz9x31_cable_test_get_pair(pair), 1610 ksz9x31_cable_test_fault_length(phydev, val)); 1611 } 1612 1613 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1614 bool *finished) 1615 { 1616 struct kszphy_priv *priv = phydev->priv; 1617 unsigned long pair_mask = 0xf; 1618 int retries = 20; 1619 int pair, ret, rv; 1620 1621 *finished = false; 1622 1623 /* Try harder if link partner is active */ 1624 while (pair_mask && retries--) { 1625 for_each_set_bit(pair, &pair_mask, 4) { 1626 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1627 if (ret == -EAGAIN) 1628 continue; 1629 if (ret < 0) 1630 return ret; 1631 clear_bit(pair, &pair_mask); 1632 } 1633 /* If link partner is in autonegotiation mode it will send 2ms 1634 * of FLPs with at least 6ms of silence. 1635 * Add 2ms sleep to have better chances to hit this silence. 1636 */ 1637 if (pair_mask) 1638 usleep_range(2000, 3000); 1639 } 1640 1641 /* Report remaining unfinished pair result as unknown. */ 1642 for_each_set_bit(pair, &pair_mask, 4) { 1643 ret = ethnl_cable_test_result(phydev, 1644 ksz9x31_cable_test_get_pair(pair), 1645 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1646 } 1647 1648 *finished = true; 1649 1650 /* Restore cached bits from before LinkMD got started. */ 1651 rv = phy_modify(phydev, MII_CTRL1000, 1652 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1653 priv->vct_ctrl1000); 1654 if (rv) 1655 return rv; 1656 1657 return ret; 1658 } 1659 1660 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1661 { 1662 return 0; 1663 } 1664 1665 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1666 { 1667 u16 val; 1668 1669 switch (ctrl) { 1670 case ETH_TP_MDI: 1671 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1672 break; 1673 case ETH_TP_MDI_X: 1674 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1675 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1676 * sheet seems to be missing: 1677 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1678 * 0 = Normal operation (transmit on TX+/TX- pins) 1679 */ 1680 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1681 break; 1682 case ETH_TP_MDI_AUTO: 1683 val = 0; 1684 break; 1685 default: 1686 return 0; 1687 } 1688 1689 return phy_modify(phydev, MII_BMCR, 1690 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1691 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1692 KSZ886X_BMCR_HP_MDIX | val); 1693 } 1694 1695 static int ksz886x_config_aneg(struct phy_device *phydev) 1696 { 1697 int ret; 1698 1699 ret = genphy_config_aneg(phydev); 1700 if (ret) 1701 return ret; 1702 1703 /* The MDI-X configuration is automatically changed by the PHY after 1704 * switching from autoneg off to on. So, take MDI-X configuration under 1705 * own control and set it after autoneg configuration was done. 1706 */ 1707 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1708 } 1709 1710 static int ksz886x_mdix_update(struct phy_device *phydev) 1711 { 1712 int ret; 1713 1714 ret = phy_read(phydev, MII_BMCR); 1715 if (ret < 0) 1716 return ret; 1717 1718 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1719 if (ret & KSZ886X_BMCR_FORCE_MDI) 1720 phydev->mdix_ctrl = ETH_TP_MDI_X; 1721 else 1722 phydev->mdix_ctrl = ETH_TP_MDI; 1723 } else { 1724 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1725 } 1726 1727 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1728 if (ret < 0) 1729 return ret; 1730 1731 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1732 if (ret & KSZ886X_CTRL_MDIX_STAT) 1733 phydev->mdix = ETH_TP_MDI_X; 1734 else 1735 phydev->mdix = ETH_TP_MDI; 1736 1737 return 0; 1738 } 1739 1740 static int ksz886x_read_status(struct phy_device *phydev) 1741 { 1742 int ret; 1743 1744 ret = ksz886x_mdix_update(phydev); 1745 if (ret < 0) 1746 return ret; 1747 1748 return genphy_read_status(phydev); 1749 } 1750 1751 static int kszphy_get_sset_count(struct phy_device *phydev) 1752 { 1753 return ARRAY_SIZE(kszphy_hw_stats); 1754 } 1755 1756 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1757 { 1758 int i; 1759 1760 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1761 strscpy(data + i * ETH_GSTRING_LEN, 1762 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1763 } 1764 } 1765 1766 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1767 { 1768 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1769 struct kszphy_priv *priv = phydev->priv; 1770 int val; 1771 u64 ret; 1772 1773 val = phy_read(phydev, stat.reg); 1774 if (val < 0) { 1775 ret = U64_MAX; 1776 } else { 1777 val = val & ((1 << stat.bits) - 1); 1778 priv->stats[i] += val; 1779 ret = priv->stats[i]; 1780 } 1781 1782 return ret; 1783 } 1784 1785 static void kszphy_get_stats(struct phy_device *phydev, 1786 struct ethtool_stats *stats, u64 *data) 1787 { 1788 int i; 1789 1790 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1791 data[i] = kszphy_get_stat(phydev, i); 1792 } 1793 1794 static int kszphy_suspend(struct phy_device *phydev) 1795 { 1796 /* Disable PHY Interrupts */ 1797 if (phy_interrupt_is_valid(phydev)) { 1798 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1799 if (phydev->drv->config_intr) 1800 phydev->drv->config_intr(phydev); 1801 } 1802 1803 return genphy_suspend(phydev); 1804 } 1805 1806 static void kszphy_parse_led_mode(struct phy_device *phydev) 1807 { 1808 const struct kszphy_type *type = phydev->drv->driver_data; 1809 const struct device_node *np = phydev->mdio.dev.of_node; 1810 struct kszphy_priv *priv = phydev->priv; 1811 int ret; 1812 1813 if (type && type->led_mode_reg) { 1814 ret = of_property_read_u32(np, "micrel,led-mode", 1815 &priv->led_mode); 1816 1817 if (ret) 1818 priv->led_mode = -1; 1819 1820 if (priv->led_mode > 3) { 1821 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1822 priv->led_mode); 1823 priv->led_mode = -1; 1824 } 1825 } else { 1826 priv->led_mode = -1; 1827 } 1828 } 1829 1830 static int kszphy_resume(struct phy_device *phydev) 1831 { 1832 int ret; 1833 1834 genphy_resume(phydev); 1835 1836 /* After switching from power-down to normal mode, an internal global 1837 * reset is automatically generated. Wait a minimum of 1 ms before 1838 * read/write access to the PHY registers. 1839 */ 1840 usleep_range(1000, 2000); 1841 1842 ret = kszphy_config_reset(phydev); 1843 if (ret) 1844 return ret; 1845 1846 /* Enable PHY Interrupts */ 1847 if (phy_interrupt_is_valid(phydev)) { 1848 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1849 if (phydev->drv->config_intr) 1850 phydev->drv->config_intr(phydev); 1851 } 1852 1853 return 0; 1854 } 1855 1856 static int kszphy_probe(struct phy_device *phydev) 1857 { 1858 const struct kszphy_type *type = phydev->drv->driver_data; 1859 const struct device_node *np = phydev->mdio.dev.of_node; 1860 struct kszphy_priv *priv; 1861 struct clk *clk; 1862 1863 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1864 if (!priv) 1865 return -ENOMEM; 1866 1867 phydev->priv = priv; 1868 1869 priv->type = type; 1870 1871 kszphy_parse_led_mode(phydev); 1872 1873 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1874 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1875 if (!IS_ERR_OR_NULL(clk)) { 1876 unsigned long rate = clk_get_rate(clk); 1877 bool rmii_ref_clk_sel_25_mhz; 1878 1879 if (type) 1880 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1881 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1882 "micrel,rmii-reference-clock-select-25-mhz"); 1883 1884 if (rate > 24500000 && rate < 25500000) { 1885 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1886 } else if (rate > 49500000 && rate < 50500000) { 1887 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1888 } else { 1889 phydev_err(phydev, "Clock rate out of range: %ld\n", 1890 rate); 1891 return -EINVAL; 1892 } 1893 } 1894 1895 if (ksz8041_fiber_mode(phydev)) 1896 phydev->port = PORT_FIBRE; 1897 1898 /* Support legacy board-file configuration */ 1899 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 1900 priv->rmii_ref_clk_sel = true; 1901 priv->rmii_ref_clk_sel_val = true; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static int lan8814_cable_test_start(struct phy_device *phydev) 1908 { 1909 /* If autoneg is enabled, we won't be able to test cross pair 1910 * short. In this case, the PHY will "detect" a link and 1911 * confuse the internal state machine - disable auto neg here. 1912 * Set the speed to 1000mbit and full duplex. 1913 */ 1914 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 1915 BMCR_SPEED1000 | BMCR_FULLDPLX); 1916 } 1917 1918 static int ksz886x_cable_test_start(struct phy_device *phydev) 1919 { 1920 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 1921 return -EOPNOTSUPP; 1922 1923 /* If autoneg is enabled, we won't be able to test cross pair 1924 * short. In this case, the PHY will "detect" a link and 1925 * confuse the internal state machine - disable auto neg here. 1926 * If autoneg is disabled, we should set the speed to 10mbit. 1927 */ 1928 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 1929 } 1930 1931 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 1932 { 1933 switch (FIELD_GET(mask, status)) { 1934 case KSZ8081_LMD_STAT_NORMAL: 1935 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1936 case KSZ8081_LMD_STAT_SHORT: 1937 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1938 case KSZ8081_LMD_STAT_OPEN: 1939 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1940 case KSZ8081_LMD_STAT_FAIL: 1941 fallthrough; 1942 default: 1943 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1944 } 1945 } 1946 1947 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 1948 { 1949 return FIELD_GET(mask, status) == 1950 KSZ8081_LMD_STAT_FAIL; 1951 } 1952 1953 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 1954 { 1955 switch (FIELD_GET(mask, status)) { 1956 case KSZ8081_LMD_STAT_OPEN: 1957 fallthrough; 1958 case KSZ8081_LMD_STAT_SHORT: 1959 return true; 1960 } 1961 return false; 1962 } 1963 1964 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 1965 u16 status, u16 data_mask) 1966 { 1967 int dt; 1968 1969 /* According to the data sheet the distance to the fault is 1970 * DELTA_TIME * 0.4 meters for ksz phys. 1971 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 1972 */ 1973 dt = FIELD_GET(data_mask, status); 1974 1975 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814) 1976 return ((dt - 22) * 800) / 10; 1977 else 1978 return (dt * 400) / 10; 1979 } 1980 1981 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 1982 { 1983 const struct kszphy_type *type = phydev->drv->driver_data; 1984 int val, ret; 1985 1986 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 1987 !(val & KSZ8081_LMD_ENABLE_TEST), 1988 30000, 100000, true); 1989 1990 return ret < 0 ? ret : 0; 1991 } 1992 1993 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 1994 { 1995 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 1996 ETHTOOL_A_CABLE_PAIR_B, 1997 ETHTOOL_A_CABLE_PAIR_C, 1998 ETHTOOL_A_CABLE_PAIR_D, 1999 }; 2000 u32 fault_length; 2001 int ret; 2002 int val; 2003 2004 val = KSZ8081_LMD_ENABLE_TEST; 2005 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2006 2007 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2008 if (ret < 0) 2009 return ret; 2010 2011 ret = ksz886x_cable_test_wait_for_completion(phydev); 2012 if (ret) 2013 return ret; 2014 2015 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2016 if (val < 0) 2017 return val; 2018 2019 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2020 return -EAGAIN; 2021 2022 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2023 ksz886x_cable_test_result_trans(val, 2024 LAN8814_CABLE_DIAG_STAT_MASK 2025 )); 2026 if (ret) 2027 return ret; 2028 2029 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2030 return 0; 2031 2032 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2033 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2034 2035 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2036 } 2037 2038 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2039 { 2040 static const int ethtool_pair[] = { 2041 ETHTOOL_A_CABLE_PAIR_A, 2042 ETHTOOL_A_CABLE_PAIR_B, 2043 }; 2044 int ret, val, mdix; 2045 u32 fault_length; 2046 2047 /* There is no way to choice the pair, like we do one ksz9031. 2048 * We can workaround this limitation by using the MDI-X functionality. 2049 */ 2050 if (pair == 0) 2051 mdix = ETH_TP_MDI; 2052 else 2053 mdix = ETH_TP_MDI_X; 2054 2055 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2056 case PHY_ID_KSZ8081: 2057 ret = ksz8081_config_mdix(phydev, mdix); 2058 break; 2059 case PHY_ID_KSZ886X: 2060 ret = ksz886x_config_mdix(phydev, mdix); 2061 break; 2062 default: 2063 ret = -ENODEV; 2064 } 2065 2066 if (ret) 2067 return ret; 2068 2069 /* Now we are ready to fire. This command will send a 100ns pulse 2070 * to the pair. 2071 */ 2072 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2073 if (ret) 2074 return ret; 2075 2076 ret = ksz886x_cable_test_wait_for_completion(phydev); 2077 if (ret) 2078 return ret; 2079 2080 val = phy_read(phydev, KSZ8081_LMD); 2081 if (val < 0) 2082 return val; 2083 2084 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2085 return -EAGAIN; 2086 2087 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2088 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2089 if (ret) 2090 return ret; 2091 2092 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2093 return 0; 2094 2095 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2096 2097 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2098 } 2099 2100 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2101 bool *finished) 2102 { 2103 const struct kszphy_type *type = phydev->drv->driver_data; 2104 unsigned long pair_mask = type->pair_mask; 2105 int retries = 20; 2106 int ret = 0; 2107 int pair; 2108 2109 *finished = false; 2110 2111 /* Try harder if link partner is active */ 2112 while (pair_mask && retries--) { 2113 for_each_set_bit(pair, &pair_mask, 4) { 2114 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2115 ret = lan8814_cable_test_one_pair(phydev, pair); 2116 else 2117 ret = ksz886x_cable_test_one_pair(phydev, pair); 2118 if (ret == -EAGAIN) 2119 continue; 2120 if (ret < 0) 2121 return ret; 2122 clear_bit(pair, &pair_mask); 2123 } 2124 /* If link partner is in autonegotiation mode it will send 2ms 2125 * of FLPs with at least 6ms of silence. 2126 * Add 2ms sleep to have better chances to hit this silence. 2127 */ 2128 if (pair_mask) 2129 msleep(2); 2130 } 2131 2132 *finished = true; 2133 2134 return ret; 2135 } 2136 2137 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2138 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2139 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2140 2141 #define LAN8814_QSGMII_SOFT_RESET 0x43 2142 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2143 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2144 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2145 #define LAN8814_ALIGN_SWAP 0x4a 2146 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2147 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2148 2149 #define LAN8804_ALIGN_SWAP 0x4a 2150 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2151 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2152 #define LAN8814_CLOCK_MANAGEMENT 0xd 2153 #define LAN8814_LINK_QUALITY 0x8e 2154 2155 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2156 { 2157 int data; 2158 2159 phy_lock_mdio_bus(phydev); 2160 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2161 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2162 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2163 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2164 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2165 phy_unlock_mdio_bus(phydev); 2166 2167 return data; 2168 } 2169 2170 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2171 u16 val) 2172 { 2173 phy_lock_mdio_bus(phydev); 2174 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2175 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2176 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2177 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2178 2179 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2180 if (val != 0) 2181 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2182 val); 2183 phy_unlock_mdio_bus(phydev); 2184 return val; 2185 } 2186 2187 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2188 { 2189 u16 val = 0; 2190 2191 if (enable) 2192 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2193 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2194 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2195 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2196 2197 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2198 } 2199 2200 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2201 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2202 { 2203 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2204 *seconds = (*seconds << 16) | 2205 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2206 2207 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2208 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2209 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2210 2211 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2212 } 2213 2214 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2215 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2216 { 2217 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2218 *seconds = *seconds << 16 | 2219 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2220 2221 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2222 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2223 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2224 2225 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2226 } 2227 2228 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2229 { 2230 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2231 struct phy_device *phydev = ptp_priv->phydev; 2232 struct lan8814_shared_priv *shared = phydev->shared->priv; 2233 2234 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2235 SOF_TIMESTAMPING_RX_HARDWARE | 2236 SOF_TIMESTAMPING_RAW_HARDWARE; 2237 2238 info->phc_index = ptp_clock_index(shared->ptp_clock); 2239 2240 info->tx_types = 2241 (1 << HWTSTAMP_TX_OFF) | 2242 (1 << HWTSTAMP_TX_ON) | 2243 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2244 2245 info->rx_filters = 2246 (1 << HWTSTAMP_FILTER_NONE) | 2247 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2248 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2249 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2250 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2251 2252 return 0; 2253 } 2254 2255 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2256 { 2257 int i; 2258 2259 for (i = 0; i < FIFO_SIZE; ++i) 2260 lanphy_read_page_reg(phydev, 5, 2261 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2262 2263 /* Read to clear overflow status bit */ 2264 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2265 } 2266 2267 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2268 { 2269 struct kszphy_ptp_priv *ptp_priv = 2270 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2271 struct phy_device *phydev = ptp_priv->phydev; 2272 struct lan8814_shared_priv *shared = phydev->shared->priv; 2273 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2274 struct hwtstamp_config config; 2275 int txcfg = 0, rxcfg = 0; 2276 int pkt_ts_enable; 2277 2278 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2279 return -EFAULT; 2280 2281 ptp_priv->hwts_tx_type = config.tx_type; 2282 ptp_priv->rx_filter = config.rx_filter; 2283 2284 switch (config.rx_filter) { 2285 case HWTSTAMP_FILTER_NONE: 2286 ptp_priv->layer = 0; 2287 ptp_priv->version = 0; 2288 break; 2289 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2290 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2291 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2292 ptp_priv->layer = PTP_CLASS_L4; 2293 ptp_priv->version = PTP_CLASS_V2; 2294 break; 2295 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2296 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2297 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2298 ptp_priv->layer = PTP_CLASS_L2; 2299 ptp_priv->version = PTP_CLASS_V2; 2300 break; 2301 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2302 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2303 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2304 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2305 ptp_priv->version = PTP_CLASS_V2; 2306 break; 2307 default: 2308 return -ERANGE; 2309 } 2310 2311 if (ptp_priv->layer & PTP_CLASS_L2) { 2312 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2313 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2314 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2315 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2316 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2317 } 2318 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2319 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2320 2321 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2322 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2323 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2324 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2325 2326 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2327 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2328 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2329 2330 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2331 lan8814_config_ts_intr(ptp_priv->phydev, true); 2332 else 2333 lan8814_config_ts_intr(ptp_priv->phydev, false); 2334 2335 mutex_lock(&shared->shared_lock); 2336 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2337 shared->ref++; 2338 else 2339 shared->ref--; 2340 2341 if (shared->ref) 2342 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2343 PTP_CMD_CTL_PTP_ENABLE_); 2344 else 2345 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2346 PTP_CMD_CTL_PTP_DISABLE_); 2347 mutex_unlock(&shared->shared_lock); 2348 2349 /* In case of multiple starts and stops, these needs to be cleared */ 2350 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2351 list_del(&rx_ts->list); 2352 kfree(rx_ts); 2353 } 2354 skb_queue_purge(&ptp_priv->rx_queue); 2355 skb_queue_purge(&ptp_priv->tx_queue); 2356 2357 lan8814_flush_fifo(ptp_priv->phydev, false); 2358 lan8814_flush_fifo(ptp_priv->phydev, true); 2359 2360 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2361 } 2362 2363 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2364 struct sk_buff *skb, int type) 2365 { 2366 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2367 2368 switch (ptp_priv->hwts_tx_type) { 2369 case HWTSTAMP_TX_ONESTEP_SYNC: 2370 if (ptp_msg_is_sync(skb, type)) { 2371 kfree_skb(skb); 2372 return; 2373 } 2374 fallthrough; 2375 case HWTSTAMP_TX_ON: 2376 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2377 skb_queue_tail(&ptp_priv->tx_queue, skb); 2378 break; 2379 case HWTSTAMP_TX_OFF: 2380 default: 2381 kfree_skb(skb); 2382 break; 2383 } 2384 } 2385 2386 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2387 { 2388 struct ptp_header *ptp_header; 2389 u32 type; 2390 2391 skb_push(skb, ETH_HLEN); 2392 type = ptp_classify_raw(skb); 2393 ptp_header = ptp_parse_header(skb, type); 2394 skb_pull_inline(skb, ETH_HLEN); 2395 2396 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2397 } 2398 2399 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2400 struct sk_buff *skb) 2401 { 2402 struct skb_shared_hwtstamps *shhwtstamps; 2403 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2404 unsigned long flags; 2405 bool ret = false; 2406 u16 skb_sig; 2407 2408 lan8814_get_sig_rx(skb, &skb_sig); 2409 2410 /* Iterate over all RX timestamps and match it with the received skbs */ 2411 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2412 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2413 /* Check if we found the signature we were looking for. */ 2414 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2415 continue; 2416 2417 shhwtstamps = skb_hwtstamps(skb); 2418 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2419 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2420 rx_ts->nsec); 2421 list_del(&rx_ts->list); 2422 kfree(rx_ts); 2423 2424 ret = true; 2425 break; 2426 } 2427 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2428 2429 if (ret) 2430 netif_rx(skb); 2431 return ret; 2432 } 2433 2434 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2435 { 2436 struct kszphy_ptp_priv *ptp_priv = 2437 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2438 2439 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2440 type == PTP_CLASS_NONE) 2441 return false; 2442 2443 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2444 return false; 2445 2446 /* If we failed to match then add it to the queue for when the timestamp 2447 * will come 2448 */ 2449 if (!lan8814_match_rx_ts(ptp_priv, skb)) 2450 skb_queue_tail(&ptp_priv->rx_queue, skb); 2451 2452 return true; 2453 } 2454 2455 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2456 u32 seconds, u32 nano_seconds) 2457 { 2458 u32 sec_low, sec_high, nsec_low, nsec_high; 2459 2460 sec_low = seconds & 0xffff; 2461 sec_high = (seconds >> 16) & 0xffff; 2462 nsec_low = nano_seconds & 0xffff; 2463 nsec_high = (nano_seconds >> 16) & 0x3fff; 2464 2465 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2466 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2467 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2468 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2469 2470 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2471 } 2472 2473 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2474 u32 *seconds, u32 *nano_seconds) 2475 { 2476 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2477 2478 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2479 *seconds = (*seconds << 16) | 2480 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2481 2482 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2483 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2484 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2485 } 2486 2487 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2488 struct timespec64 *ts) 2489 { 2490 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2491 ptp_clock_info); 2492 struct phy_device *phydev = shared->phydev; 2493 u32 nano_seconds; 2494 u32 seconds; 2495 2496 mutex_lock(&shared->shared_lock); 2497 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2498 mutex_unlock(&shared->shared_lock); 2499 ts->tv_sec = seconds; 2500 ts->tv_nsec = nano_seconds; 2501 2502 return 0; 2503 } 2504 2505 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2506 const struct timespec64 *ts) 2507 { 2508 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2509 ptp_clock_info); 2510 struct phy_device *phydev = shared->phydev; 2511 2512 mutex_lock(&shared->shared_lock); 2513 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2514 mutex_unlock(&shared->shared_lock); 2515 2516 return 0; 2517 } 2518 2519 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2520 s64 time_step_ns) 2521 { 2522 u32 nano_seconds_step; 2523 u64 abs_time_step_ns; 2524 u32 unsigned_seconds; 2525 u32 nano_seconds; 2526 u32 remainder; 2527 s32 seconds; 2528 2529 if (time_step_ns > 15000000000LL) { 2530 /* convert to clock set */ 2531 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2532 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2533 &remainder); 2534 nano_seconds += remainder; 2535 if (nano_seconds >= 1000000000) { 2536 unsigned_seconds++; 2537 nano_seconds -= 1000000000; 2538 } 2539 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2540 return; 2541 } else if (time_step_ns < -15000000000LL) { 2542 /* convert to clock set */ 2543 time_step_ns = -time_step_ns; 2544 2545 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2546 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2547 &remainder); 2548 nano_seconds_step = remainder; 2549 if (nano_seconds < nano_seconds_step) { 2550 unsigned_seconds--; 2551 nano_seconds += 1000000000; 2552 } 2553 nano_seconds -= nano_seconds_step; 2554 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2555 nano_seconds); 2556 return; 2557 } 2558 2559 /* do clock step */ 2560 if (time_step_ns >= 0) { 2561 abs_time_step_ns = (u64)time_step_ns; 2562 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2563 &remainder); 2564 nano_seconds = remainder; 2565 } else { 2566 abs_time_step_ns = (u64)(-time_step_ns); 2567 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2568 &remainder)); 2569 nano_seconds = remainder; 2570 if (nano_seconds > 0) { 2571 /* subtracting nano seconds is not allowed 2572 * convert to subtracting from seconds, 2573 * and adding to nanoseconds 2574 */ 2575 seconds--; 2576 nano_seconds = (1000000000 - nano_seconds); 2577 } 2578 } 2579 2580 if (nano_seconds > 0) { 2581 /* add 8 ns to cover the likely normal increment */ 2582 nano_seconds += 8; 2583 } 2584 2585 if (nano_seconds >= 1000000000) { 2586 /* carry into seconds */ 2587 seconds++; 2588 nano_seconds -= 1000000000; 2589 } 2590 2591 while (seconds) { 2592 if (seconds > 0) { 2593 u32 adjustment_value = (u32)seconds; 2594 u16 adjustment_value_lo, adjustment_value_hi; 2595 2596 if (adjustment_value > 0xF) 2597 adjustment_value = 0xF; 2598 2599 adjustment_value_lo = adjustment_value & 0xffff; 2600 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2601 2602 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2603 adjustment_value_lo); 2604 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2605 PTP_LTC_STEP_ADJ_DIR_ | 2606 adjustment_value_hi); 2607 seconds -= ((s32)adjustment_value); 2608 } else { 2609 u32 adjustment_value = (u32)(-seconds); 2610 u16 adjustment_value_lo, adjustment_value_hi; 2611 2612 if (adjustment_value > 0xF) 2613 adjustment_value = 0xF; 2614 2615 adjustment_value_lo = adjustment_value & 0xffff; 2616 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2617 2618 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2619 adjustment_value_lo); 2620 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2621 adjustment_value_hi); 2622 seconds += ((s32)adjustment_value); 2623 } 2624 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2625 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2626 } 2627 if (nano_seconds) { 2628 u16 nano_seconds_lo; 2629 u16 nano_seconds_hi; 2630 2631 nano_seconds_lo = nano_seconds & 0xffff; 2632 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2633 2634 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2635 nano_seconds_lo); 2636 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2637 PTP_LTC_STEP_ADJ_DIR_ | 2638 nano_seconds_hi); 2639 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2640 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2641 } 2642 } 2643 2644 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2645 { 2646 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2647 ptp_clock_info); 2648 struct phy_device *phydev = shared->phydev; 2649 2650 mutex_lock(&shared->shared_lock); 2651 lan8814_ptp_clock_step(phydev, delta); 2652 mutex_unlock(&shared->shared_lock); 2653 2654 return 0; 2655 } 2656 2657 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2658 { 2659 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2660 ptp_clock_info); 2661 struct phy_device *phydev = shared->phydev; 2662 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2663 bool positive = true; 2664 u32 kszphy_rate_adj; 2665 2666 if (scaled_ppm < 0) { 2667 scaled_ppm = -scaled_ppm; 2668 positive = false; 2669 } 2670 2671 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2672 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2673 2674 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2675 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2676 2677 if (positive) 2678 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2679 2680 mutex_lock(&shared->shared_lock); 2681 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2682 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2683 mutex_unlock(&shared->shared_lock); 2684 2685 return 0; 2686 } 2687 2688 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2689 { 2690 struct ptp_header *ptp_header; 2691 u32 type; 2692 2693 type = ptp_classify_raw(skb); 2694 ptp_header = ptp_parse_header(skb, type); 2695 2696 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2697 } 2698 2699 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2700 { 2701 struct phy_device *phydev = ptp_priv->phydev; 2702 struct skb_shared_hwtstamps shhwtstamps; 2703 struct sk_buff *skb, *skb_tmp; 2704 unsigned long flags; 2705 u32 seconds, nsec; 2706 bool ret = false; 2707 u16 skb_sig; 2708 u16 seq_id; 2709 2710 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2711 2712 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2713 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2714 lan8814_get_sig_tx(skb, &skb_sig); 2715 2716 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2717 continue; 2718 2719 __skb_unlink(skb, &ptp_priv->tx_queue); 2720 ret = true; 2721 break; 2722 } 2723 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2724 2725 if (ret) { 2726 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2727 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2728 skb_complete_tx_timestamp(skb, &shhwtstamps); 2729 } 2730 } 2731 2732 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2733 { 2734 struct phy_device *phydev = ptp_priv->phydev; 2735 u32 reg; 2736 2737 do { 2738 lan8814_dequeue_tx_skb(ptp_priv); 2739 2740 /* If other timestamps are available in the FIFO, 2741 * process them. 2742 */ 2743 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2744 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2745 } 2746 2747 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2748 struct lan8814_ptp_rx_ts *rx_ts) 2749 { 2750 struct skb_shared_hwtstamps *shhwtstamps; 2751 struct sk_buff *skb, *skb_tmp; 2752 unsigned long flags; 2753 bool ret = false; 2754 u16 skb_sig; 2755 2756 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2757 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2758 lan8814_get_sig_rx(skb, &skb_sig); 2759 2760 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2761 continue; 2762 2763 __skb_unlink(skb, &ptp_priv->rx_queue); 2764 2765 ret = true; 2766 break; 2767 } 2768 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2769 2770 if (ret) { 2771 shhwtstamps = skb_hwtstamps(skb); 2772 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2773 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2774 netif_rx(skb); 2775 } 2776 2777 return ret; 2778 } 2779 2780 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2781 { 2782 struct phy_device *phydev = ptp_priv->phydev; 2783 struct lan8814_ptp_rx_ts *rx_ts; 2784 unsigned long flags; 2785 u32 reg; 2786 2787 do { 2788 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2789 if (!rx_ts) 2790 return; 2791 2792 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2793 &rx_ts->seq_id); 2794 2795 /* If we failed to match the skb add it to the queue for when 2796 * the frame will come 2797 */ 2798 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2799 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2800 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2801 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2802 } else { 2803 kfree(rx_ts); 2804 } 2805 2806 /* If other timestamps are available in the FIFO, 2807 * process them. 2808 */ 2809 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2810 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2811 } 2812 2813 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2814 { 2815 struct kszphy_priv *priv = phydev->priv; 2816 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2817 2818 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2819 lan8814_get_tx_ts(ptp_priv); 2820 2821 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2822 lan8814_get_rx_ts(ptp_priv); 2823 2824 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2825 lan8814_flush_fifo(phydev, true); 2826 skb_queue_purge(&ptp_priv->tx_queue); 2827 } 2828 2829 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2830 lan8814_flush_fifo(phydev, false); 2831 skb_queue_purge(&ptp_priv->rx_queue); 2832 } 2833 } 2834 2835 static int lan8804_config_init(struct phy_device *phydev) 2836 { 2837 int val; 2838 2839 /* MDI-X setting for swap A,B transmit */ 2840 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2841 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2842 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2843 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2844 2845 /* Make sure that the PHY will not stop generating the clock when the 2846 * link partner goes down 2847 */ 2848 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2849 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2850 2851 return 0; 2852 } 2853 2854 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2855 { 2856 int status; 2857 2858 status = phy_read(phydev, LAN8814_INTS); 2859 if (status < 0) { 2860 phy_error(phydev); 2861 return IRQ_NONE; 2862 } 2863 2864 if (status > 0) 2865 phy_trigger_machine(phydev); 2866 2867 return IRQ_HANDLED; 2868 } 2869 2870 #define LAN8804_OUTPUT_CONTROL 25 2871 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 2872 #define LAN8804_CONTROL 31 2873 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 2874 2875 static int lan8804_config_intr(struct phy_device *phydev) 2876 { 2877 int err; 2878 2879 /* This is an internal PHY of lan966x and is not possible to change the 2880 * polarity on the GIC found in lan966x, therefore change the polarity 2881 * of the interrupt in the PHY from being active low instead of active 2882 * high. 2883 */ 2884 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 2885 2886 /* By default interrupt buffer is open-drain in which case the interrupt 2887 * can be active only low. Therefore change the interrupt buffer to be 2888 * push-pull to be able to change interrupt polarity 2889 */ 2890 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 2891 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 2892 2893 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2894 err = phy_read(phydev, LAN8814_INTS); 2895 if (err < 0) 2896 return err; 2897 2898 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2899 if (err) 2900 return err; 2901 } else { 2902 err = phy_write(phydev, LAN8814_INTC, 0); 2903 if (err) 2904 return err; 2905 2906 err = phy_read(phydev, LAN8814_INTS); 2907 if (err < 0) 2908 return err; 2909 } 2910 2911 return 0; 2912 } 2913 2914 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 2915 { 2916 int ret = IRQ_NONE; 2917 int irq_status; 2918 2919 irq_status = phy_read(phydev, LAN8814_INTS); 2920 if (irq_status < 0) { 2921 phy_error(phydev); 2922 return IRQ_NONE; 2923 } 2924 2925 if (irq_status & LAN8814_INT_LINK) { 2926 phy_trigger_machine(phydev); 2927 ret = IRQ_HANDLED; 2928 } 2929 2930 while (true) { 2931 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2932 if (!irq_status) 2933 break; 2934 2935 lan8814_handle_ptp_interrupt(phydev, irq_status); 2936 ret = IRQ_HANDLED; 2937 } 2938 2939 return ret; 2940 } 2941 2942 static int lan8814_ack_interrupt(struct phy_device *phydev) 2943 { 2944 /* bit[12..0] int status, which is a read and clear register. */ 2945 int rc; 2946 2947 rc = phy_read(phydev, LAN8814_INTS); 2948 2949 return (rc < 0) ? rc : 0; 2950 } 2951 2952 static int lan8814_config_intr(struct phy_device *phydev) 2953 { 2954 int err; 2955 2956 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 2957 LAN8814_INTR_CTRL_REG_POLARITY | 2958 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 2959 2960 /* enable / disable interrupts */ 2961 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2962 err = lan8814_ack_interrupt(phydev); 2963 if (err) 2964 return err; 2965 2966 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2967 } else { 2968 err = phy_write(phydev, LAN8814_INTC, 0); 2969 if (err) 2970 return err; 2971 2972 err = lan8814_ack_interrupt(phydev); 2973 } 2974 2975 return err; 2976 } 2977 2978 static void lan8814_ptp_init(struct phy_device *phydev) 2979 { 2980 struct kszphy_priv *priv = phydev->priv; 2981 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2982 u32 temp; 2983 2984 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2985 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2986 return; 2987 2988 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 2989 2990 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 2991 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2992 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 2993 2994 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 2995 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2996 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 2997 2998 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 2999 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3000 3001 /* Removing default registers configs related to L2 and IP */ 3002 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3003 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3004 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3005 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3006 3007 skb_queue_head_init(&ptp_priv->tx_queue); 3008 skb_queue_head_init(&ptp_priv->rx_queue); 3009 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3010 spin_lock_init(&ptp_priv->rx_ts_lock); 3011 3012 ptp_priv->phydev = phydev; 3013 3014 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3015 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3016 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3017 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3018 3019 phydev->mii_ts = &ptp_priv->mii_ts; 3020 } 3021 3022 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3023 { 3024 struct lan8814_shared_priv *shared = phydev->shared->priv; 3025 3026 /* Initialise shared lock for clock*/ 3027 mutex_init(&shared->shared_lock); 3028 3029 shared->ptp_clock_info.owner = THIS_MODULE; 3030 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3031 shared->ptp_clock_info.max_adj = 31249999; 3032 shared->ptp_clock_info.n_alarm = 0; 3033 shared->ptp_clock_info.n_ext_ts = 0; 3034 shared->ptp_clock_info.n_pins = 0; 3035 shared->ptp_clock_info.pps = 0; 3036 shared->ptp_clock_info.pin_config = NULL; 3037 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3038 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3039 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3040 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3041 shared->ptp_clock_info.getcrosststamp = NULL; 3042 3043 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3044 &phydev->mdio.dev); 3045 if (IS_ERR(shared->ptp_clock)) { 3046 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3047 PTR_ERR(shared->ptp_clock)); 3048 return -EINVAL; 3049 } 3050 3051 /* Check if PHC support is missing at the configuration level */ 3052 if (!shared->ptp_clock) 3053 return 0; 3054 3055 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3056 3057 shared->phydev = phydev; 3058 3059 /* The EP.4 is shared between all the PHYs in the package and also it 3060 * can be accessed by any of the PHYs 3061 */ 3062 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3063 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3064 PTP_OPERATING_MODE_STANDALONE_); 3065 3066 return 0; 3067 } 3068 3069 static void lan8814_setup_led(struct phy_device *phydev, int val) 3070 { 3071 int temp; 3072 3073 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3074 3075 if (val) 3076 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3077 else 3078 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3079 3080 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3081 } 3082 3083 static int lan8814_config_init(struct phy_device *phydev) 3084 { 3085 struct kszphy_priv *lan8814 = phydev->priv; 3086 int val; 3087 3088 /* Reset the PHY */ 3089 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3090 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3091 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3092 3093 /* Disable ANEG with QSGMII PCS Host side */ 3094 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3095 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3096 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3097 3098 /* MDI-X setting for swap A,B transmit */ 3099 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3100 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3101 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3102 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3103 3104 if (lan8814->led_mode >= 0) 3105 lan8814_setup_led(phydev, lan8814->led_mode); 3106 3107 return 0; 3108 } 3109 3110 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3111 * function called in suspend. Because the GPIO line can be shared, so if one of 3112 * the phys goes back in coma mode, then all the other PHYs will go, which is 3113 * wrong. 3114 */ 3115 static int lan8814_release_coma_mode(struct phy_device *phydev) 3116 { 3117 struct gpio_desc *gpiod; 3118 3119 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3120 GPIOD_OUT_HIGH_OPEN_DRAIN | 3121 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3122 if (IS_ERR(gpiod)) 3123 return PTR_ERR(gpiod); 3124 3125 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3126 gpiod_set_value_cansleep(gpiod, 0); 3127 3128 return 0; 3129 } 3130 3131 static int lan8814_probe(struct phy_device *phydev) 3132 { 3133 const struct kszphy_type *type = phydev->drv->driver_data; 3134 struct kszphy_priv *priv; 3135 u16 addr; 3136 int err; 3137 3138 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3139 if (!priv) 3140 return -ENOMEM; 3141 3142 phydev->priv = priv; 3143 3144 priv->type = type; 3145 3146 kszphy_parse_led_mode(phydev); 3147 3148 /* Strap-in value for PHY address, below register read gives starting 3149 * phy address value 3150 */ 3151 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3152 devm_phy_package_join(&phydev->mdio.dev, phydev, 3153 addr, sizeof(struct lan8814_shared_priv)); 3154 3155 if (phy_package_init_once(phydev)) { 3156 err = lan8814_release_coma_mode(phydev); 3157 if (err) 3158 return err; 3159 3160 err = lan8814_ptp_probe_once(phydev); 3161 if (err) 3162 return err; 3163 } 3164 3165 lan8814_ptp_init(phydev); 3166 3167 return 0; 3168 } 3169 3170 #define LAN8841_MMD_TIMER_REG 0 3171 #define LAN8841_MMD0_REGISTER_17 17 3172 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3173 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3174 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3175 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3176 #define LAN8841_MMD_ANALOG_REG 28 3177 #define LAN8841_ANALOG_CONTROL_1 1 3178 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3179 #define LAN8841_ANALOG_CONTROL_10 13 3180 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3181 #define LAN8841_ANALOG_CONTROL_11 14 3182 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3183 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3184 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3185 #define LAN8841_BTRX_POWER_DOWN 70 3186 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3187 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3188 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3189 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3190 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3191 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3192 #define LAN8841_ADC_CHANNEL_MASK 198 3193 3194 static int lan8841_config_init(struct phy_device *phydev) 3195 { 3196 int ret; 3197 3198 ret = ksz9131_config_init(phydev); 3199 if (ret) 3200 return ret; 3201 3202 /* 100BT Clause 40 improvenent errata */ 3203 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3204 LAN8841_ANALOG_CONTROL_1, 3205 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3206 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3207 LAN8841_ANALOG_CONTROL_10, 3208 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3209 3210 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3211 * Magnetics 3212 */ 3213 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3214 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3215 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3216 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3217 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3218 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3219 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3220 LAN8841_BTRX_POWER_DOWN, 3221 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3222 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3223 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3224 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3225 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3226 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3227 } 3228 3229 /* LDO Adjustment errata */ 3230 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3231 LAN8841_ANALOG_CONTROL_11, 3232 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3233 3234 /* 100BT RGMII latency tuning errata */ 3235 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3236 LAN8841_ADC_CHANNEL_MASK, 0x0); 3237 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3238 LAN8841_MMD0_REGISTER_17, 3239 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3240 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3241 3242 return 0; 3243 } 3244 3245 #define LAN8841_OUTPUT_CTRL 25 3246 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3247 3248 static int lan8841_config_intr(struct phy_device *phydev) 3249 { 3250 int err; 3251 3252 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3253 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3254 3255 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3256 err = phy_read(phydev, LAN8814_INTS); 3257 if (err) 3258 return err; 3259 3260 err = phy_write(phydev, LAN8814_INTC, 3261 LAN8814_INT_LINK); 3262 } else { 3263 err = phy_write(phydev, LAN8814_INTC, 0); 3264 if (err) 3265 return err; 3266 3267 err = phy_read(phydev, LAN8814_INTS); 3268 } 3269 3270 return err; 3271 } 3272 3273 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3274 { 3275 int irq_status; 3276 3277 irq_status = phy_read(phydev, LAN8814_INTS); 3278 if (irq_status < 0) { 3279 phy_error(phydev); 3280 return IRQ_NONE; 3281 } 3282 3283 if (irq_status & LAN8814_INT_LINK) { 3284 phy_trigger_machine(phydev); 3285 return IRQ_HANDLED; 3286 } 3287 3288 return IRQ_NONE; 3289 } 3290 3291 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 3292 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 3293 3294 static int lan8841_probe(struct phy_device *phydev) 3295 { 3296 int err; 3297 3298 err = kszphy_probe(phydev); 3299 if (err) 3300 return err; 3301 3302 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3303 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 3304 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 3305 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 3306 3307 return 0; 3308 } 3309 3310 static struct phy_driver ksphy_driver[] = { 3311 { 3312 .phy_id = PHY_ID_KS8737, 3313 .phy_id_mask = MICREL_PHY_ID_MASK, 3314 .name = "Micrel KS8737", 3315 /* PHY_BASIC_FEATURES */ 3316 .driver_data = &ks8737_type, 3317 .probe = kszphy_probe, 3318 .config_init = kszphy_config_init, 3319 .config_intr = kszphy_config_intr, 3320 .handle_interrupt = kszphy_handle_interrupt, 3321 .suspend = kszphy_suspend, 3322 .resume = kszphy_resume, 3323 }, { 3324 .phy_id = PHY_ID_KSZ8021, 3325 .phy_id_mask = 0x00ffffff, 3326 .name = "Micrel KSZ8021 or KSZ8031", 3327 /* PHY_BASIC_FEATURES */ 3328 .driver_data = &ksz8021_type, 3329 .probe = kszphy_probe, 3330 .config_init = kszphy_config_init, 3331 .config_intr = kszphy_config_intr, 3332 .handle_interrupt = kszphy_handle_interrupt, 3333 .get_sset_count = kszphy_get_sset_count, 3334 .get_strings = kszphy_get_strings, 3335 .get_stats = kszphy_get_stats, 3336 .suspend = kszphy_suspend, 3337 .resume = kszphy_resume, 3338 }, { 3339 .phy_id = PHY_ID_KSZ8031, 3340 .phy_id_mask = 0x00ffffff, 3341 .name = "Micrel KSZ8031", 3342 /* PHY_BASIC_FEATURES */ 3343 .driver_data = &ksz8021_type, 3344 .probe = kszphy_probe, 3345 .config_init = kszphy_config_init, 3346 .config_intr = kszphy_config_intr, 3347 .handle_interrupt = kszphy_handle_interrupt, 3348 .get_sset_count = kszphy_get_sset_count, 3349 .get_strings = kszphy_get_strings, 3350 .get_stats = kszphy_get_stats, 3351 .suspend = kszphy_suspend, 3352 .resume = kszphy_resume, 3353 }, { 3354 .phy_id = PHY_ID_KSZ8041, 3355 .phy_id_mask = MICREL_PHY_ID_MASK, 3356 .name = "Micrel KSZ8041", 3357 /* PHY_BASIC_FEATURES */ 3358 .driver_data = &ksz8041_type, 3359 .probe = kszphy_probe, 3360 .config_init = ksz8041_config_init, 3361 .config_aneg = ksz8041_config_aneg, 3362 .config_intr = kszphy_config_intr, 3363 .handle_interrupt = kszphy_handle_interrupt, 3364 .get_sset_count = kszphy_get_sset_count, 3365 .get_strings = kszphy_get_strings, 3366 .get_stats = kszphy_get_stats, 3367 /* No suspend/resume callbacks because of errata DS80000700A, 3368 * receiver error following software power down. 3369 */ 3370 }, { 3371 .phy_id = PHY_ID_KSZ8041RNLI, 3372 .phy_id_mask = MICREL_PHY_ID_MASK, 3373 .name = "Micrel KSZ8041RNLI", 3374 /* PHY_BASIC_FEATURES */ 3375 .driver_data = &ksz8041_type, 3376 .probe = kszphy_probe, 3377 .config_init = kszphy_config_init, 3378 .config_intr = kszphy_config_intr, 3379 .handle_interrupt = kszphy_handle_interrupt, 3380 .get_sset_count = kszphy_get_sset_count, 3381 .get_strings = kszphy_get_strings, 3382 .get_stats = kszphy_get_stats, 3383 .suspend = kszphy_suspend, 3384 .resume = kszphy_resume, 3385 }, { 3386 .name = "Micrel KSZ8051", 3387 /* PHY_BASIC_FEATURES */ 3388 .driver_data = &ksz8051_type, 3389 .probe = kszphy_probe, 3390 .config_init = kszphy_config_init, 3391 .config_intr = kszphy_config_intr, 3392 .handle_interrupt = kszphy_handle_interrupt, 3393 .get_sset_count = kszphy_get_sset_count, 3394 .get_strings = kszphy_get_strings, 3395 .get_stats = kszphy_get_stats, 3396 .match_phy_device = ksz8051_match_phy_device, 3397 .suspend = kszphy_suspend, 3398 .resume = kszphy_resume, 3399 }, { 3400 .phy_id = PHY_ID_KSZ8001, 3401 .name = "Micrel KSZ8001 or KS8721", 3402 .phy_id_mask = 0x00fffffc, 3403 /* PHY_BASIC_FEATURES */ 3404 .driver_data = &ksz8041_type, 3405 .probe = kszphy_probe, 3406 .config_init = kszphy_config_init, 3407 .config_intr = kszphy_config_intr, 3408 .handle_interrupt = kszphy_handle_interrupt, 3409 .get_sset_count = kszphy_get_sset_count, 3410 .get_strings = kszphy_get_strings, 3411 .get_stats = kszphy_get_stats, 3412 .suspend = kszphy_suspend, 3413 .resume = kszphy_resume, 3414 }, { 3415 .phy_id = PHY_ID_KSZ8081, 3416 .name = "Micrel KSZ8081 or KSZ8091", 3417 .phy_id_mask = MICREL_PHY_ID_MASK, 3418 .flags = PHY_POLL_CABLE_TEST, 3419 /* PHY_BASIC_FEATURES */ 3420 .driver_data = &ksz8081_type, 3421 .probe = kszphy_probe, 3422 .config_init = ksz8081_config_init, 3423 .soft_reset = genphy_soft_reset, 3424 .config_aneg = ksz8081_config_aneg, 3425 .read_status = ksz8081_read_status, 3426 .config_intr = kszphy_config_intr, 3427 .handle_interrupt = kszphy_handle_interrupt, 3428 .get_sset_count = kszphy_get_sset_count, 3429 .get_strings = kszphy_get_strings, 3430 .get_stats = kszphy_get_stats, 3431 .suspend = kszphy_suspend, 3432 .resume = kszphy_resume, 3433 .cable_test_start = ksz886x_cable_test_start, 3434 .cable_test_get_status = ksz886x_cable_test_get_status, 3435 }, { 3436 .phy_id = PHY_ID_KSZ8061, 3437 .name = "Micrel KSZ8061", 3438 .phy_id_mask = MICREL_PHY_ID_MASK, 3439 /* PHY_BASIC_FEATURES */ 3440 .probe = kszphy_probe, 3441 .config_init = ksz8061_config_init, 3442 .config_intr = kszphy_config_intr, 3443 .handle_interrupt = kszphy_handle_interrupt, 3444 .suspend = kszphy_suspend, 3445 .resume = kszphy_resume, 3446 }, { 3447 .phy_id = PHY_ID_KSZ9021, 3448 .phy_id_mask = 0x000ffffe, 3449 .name = "Micrel KSZ9021 Gigabit PHY", 3450 /* PHY_GBIT_FEATURES */ 3451 .driver_data = &ksz9021_type, 3452 .probe = kszphy_probe, 3453 .get_features = ksz9031_get_features, 3454 .config_init = ksz9021_config_init, 3455 .config_intr = kszphy_config_intr, 3456 .handle_interrupt = kszphy_handle_interrupt, 3457 .get_sset_count = kszphy_get_sset_count, 3458 .get_strings = kszphy_get_strings, 3459 .get_stats = kszphy_get_stats, 3460 .suspend = kszphy_suspend, 3461 .resume = kszphy_resume, 3462 .read_mmd = genphy_read_mmd_unsupported, 3463 .write_mmd = genphy_write_mmd_unsupported, 3464 }, { 3465 .phy_id = PHY_ID_KSZ9031, 3466 .phy_id_mask = MICREL_PHY_ID_MASK, 3467 .name = "Micrel KSZ9031 Gigabit PHY", 3468 .flags = PHY_POLL_CABLE_TEST, 3469 .driver_data = &ksz9021_type, 3470 .probe = kszphy_probe, 3471 .get_features = ksz9031_get_features, 3472 .config_init = ksz9031_config_init, 3473 .soft_reset = genphy_soft_reset, 3474 .read_status = ksz9031_read_status, 3475 .config_intr = kszphy_config_intr, 3476 .handle_interrupt = kszphy_handle_interrupt, 3477 .get_sset_count = kszphy_get_sset_count, 3478 .get_strings = kszphy_get_strings, 3479 .get_stats = kszphy_get_stats, 3480 .suspend = kszphy_suspend, 3481 .resume = kszphy_resume, 3482 .cable_test_start = ksz9x31_cable_test_start, 3483 .cable_test_get_status = ksz9x31_cable_test_get_status, 3484 }, { 3485 .phy_id = PHY_ID_LAN8814, 3486 .phy_id_mask = MICREL_PHY_ID_MASK, 3487 .name = "Microchip INDY Gigabit Quad PHY", 3488 .flags = PHY_POLL_CABLE_TEST, 3489 .config_init = lan8814_config_init, 3490 .driver_data = &lan8814_type, 3491 .probe = lan8814_probe, 3492 .soft_reset = genphy_soft_reset, 3493 .read_status = ksz9031_read_status, 3494 .get_sset_count = kszphy_get_sset_count, 3495 .get_strings = kszphy_get_strings, 3496 .get_stats = kszphy_get_stats, 3497 .suspend = genphy_suspend, 3498 .resume = kszphy_resume, 3499 .config_intr = lan8814_config_intr, 3500 .handle_interrupt = lan8814_handle_interrupt, 3501 .cable_test_start = lan8814_cable_test_start, 3502 .cable_test_get_status = ksz886x_cable_test_get_status, 3503 }, { 3504 .phy_id = PHY_ID_LAN8804, 3505 .phy_id_mask = MICREL_PHY_ID_MASK, 3506 .name = "Microchip LAN966X Gigabit PHY", 3507 .config_init = lan8804_config_init, 3508 .driver_data = &ksz9021_type, 3509 .probe = kszphy_probe, 3510 .soft_reset = genphy_soft_reset, 3511 .read_status = ksz9031_read_status, 3512 .get_sset_count = kszphy_get_sset_count, 3513 .get_strings = kszphy_get_strings, 3514 .get_stats = kszphy_get_stats, 3515 .suspend = genphy_suspend, 3516 .resume = kszphy_resume, 3517 .config_intr = lan8804_config_intr, 3518 .handle_interrupt = lan8804_handle_interrupt, 3519 }, { 3520 .phy_id = PHY_ID_LAN8841, 3521 .phy_id_mask = MICREL_PHY_ID_MASK, 3522 .name = "Microchip LAN8841 Gigabit PHY", 3523 .driver_data = &lan8841_type, 3524 .config_init = lan8841_config_init, 3525 .probe = lan8841_probe, 3526 .soft_reset = genphy_soft_reset, 3527 .config_intr = lan8841_config_intr, 3528 .handle_interrupt = lan8841_handle_interrupt, 3529 .get_sset_count = kszphy_get_sset_count, 3530 .get_strings = kszphy_get_strings, 3531 .get_stats = kszphy_get_stats, 3532 .suspend = genphy_suspend, 3533 .resume = genphy_resume, 3534 }, { 3535 .phy_id = PHY_ID_KSZ9131, 3536 .phy_id_mask = MICREL_PHY_ID_MASK, 3537 .name = "Microchip KSZ9131 Gigabit PHY", 3538 /* PHY_GBIT_FEATURES */ 3539 .flags = PHY_POLL_CABLE_TEST, 3540 .driver_data = &ksz9131_type, 3541 .probe = kszphy_probe, 3542 .config_init = ksz9131_config_init, 3543 .config_intr = kszphy_config_intr, 3544 .config_aneg = ksz9131_config_aneg, 3545 .read_status = ksz9131_read_status, 3546 .handle_interrupt = kszphy_handle_interrupt, 3547 .get_sset_count = kszphy_get_sset_count, 3548 .get_strings = kszphy_get_strings, 3549 .get_stats = kszphy_get_stats, 3550 .suspend = kszphy_suspend, 3551 .resume = kszphy_resume, 3552 .cable_test_start = ksz9x31_cable_test_start, 3553 .cable_test_get_status = ksz9x31_cable_test_get_status, 3554 }, { 3555 .phy_id = PHY_ID_KSZ8873MLL, 3556 .phy_id_mask = MICREL_PHY_ID_MASK, 3557 .name = "Micrel KSZ8873MLL Switch", 3558 /* PHY_BASIC_FEATURES */ 3559 .config_init = kszphy_config_init, 3560 .config_aneg = ksz8873mll_config_aneg, 3561 .read_status = ksz8873mll_read_status, 3562 .suspend = genphy_suspend, 3563 .resume = genphy_resume, 3564 }, { 3565 .phy_id = PHY_ID_KSZ886X, 3566 .phy_id_mask = MICREL_PHY_ID_MASK, 3567 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 3568 .driver_data = &ksz886x_type, 3569 /* PHY_BASIC_FEATURES */ 3570 .flags = PHY_POLL_CABLE_TEST, 3571 .config_init = kszphy_config_init, 3572 .config_aneg = ksz886x_config_aneg, 3573 .read_status = ksz886x_read_status, 3574 .suspend = genphy_suspend, 3575 .resume = genphy_resume, 3576 .cable_test_start = ksz886x_cable_test_start, 3577 .cable_test_get_status = ksz886x_cable_test_get_status, 3578 }, { 3579 .name = "Micrel KSZ87XX Switch", 3580 /* PHY_BASIC_FEATURES */ 3581 .config_init = kszphy_config_init, 3582 .match_phy_device = ksz8795_match_phy_device, 3583 .suspend = genphy_suspend, 3584 .resume = genphy_resume, 3585 }, { 3586 .phy_id = PHY_ID_KSZ9477, 3587 .phy_id_mask = MICREL_PHY_ID_MASK, 3588 .name = "Microchip KSZ9477", 3589 /* PHY_GBIT_FEATURES */ 3590 .config_init = kszphy_config_init, 3591 .config_intr = kszphy_config_intr, 3592 .handle_interrupt = kszphy_handle_interrupt, 3593 .suspend = genphy_suspend, 3594 .resume = genphy_resume, 3595 } }; 3596 3597 module_phy_driver(ksphy_driver); 3598 3599 MODULE_DESCRIPTION("Micrel PHY driver"); 3600 MODULE_AUTHOR("David J. Choi"); 3601 MODULE_LICENSE("GPL"); 3602 3603 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 3604 { PHY_ID_KSZ9021, 0x000ffffe }, 3605 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 3606 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 3607 { PHY_ID_KSZ8001, 0x00fffffc }, 3608 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 3609 { PHY_ID_KSZ8021, 0x00ffffff }, 3610 { PHY_ID_KSZ8031, 0x00ffffff }, 3611 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 3612 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 3613 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 3614 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 3615 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 3616 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 3617 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 3618 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 3619 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 3620 { } 3621 }; 3622 3623 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 3624