1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_priv { 435 struct kszphy_ptp_priv ptp_priv; 436 const struct kszphy_type *type; 437 struct clk *clk; 438 int led_mode; 439 u16 vct_ctrl1000; 440 bool rmii_ref_clk_sel; 441 bool rmii_ref_clk_sel_val; 442 bool clk_enable; 443 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 444 }; 445 446 static const struct kszphy_type lan8814_type = { 447 .led_mode_reg = ~LAN8814_LED_CTRL_1, 448 .cable_diag_reg = LAN8814_CABLE_DIAG, 449 .pair_mask = LAN8814_WIRE_PAIR_MASK, 450 }; 451 452 static const struct kszphy_type ksz886x_type = { 453 .cable_diag_reg = KSZ8081_LMD, 454 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz8021_type = { 458 .led_mode_reg = MII_KSZPHY_CTRL_2, 459 .has_broadcast_disable = true, 460 .has_nand_tree_disable = true, 461 .has_rmii_ref_clk_sel = true, 462 }; 463 464 static const struct kszphy_type ksz8041_type = { 465 .led_mode_reg = MII_KSZPHY_CTRL_1, 466 }; 467 468 static const struct kszphy_type ksz8051_type = { 469 .led_mode_reg = MII_KSZPHY_CTRL_2, 470 .has_nand_tree_disable = true, 471 }; 472 473 static const struct kszphy_type ksz8081_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_broadcast_disable = true, 476 .has_nand_tree_disable = true, 477 .has_rmii_ref_clk_sel = true, 478 }; 479 480 static const struct kszphy_type ks8737_type = { 481 .interrupt_level_mask = BIT(14), 482 }; 483 484 static const struct kszphy_type ksz9021_type = { 485 .interrupt_level_mask = BIT(14), 486 }; 487 488 static const struct kszphy_type ksz9131_type = { 489 .interrupt_level_mask = BIT(14), 490 .disable_dll_tx_bit = BIT(12), 491 .disable_dll_rx_bit = BIT(12), 492 .disable_dll_mask = BIT_MASK(12), 493 }; 494 495 static const struct kszphy_type lan8841_type = { 496 .disable_dll_tx_bit = BIT(14), 497 .disable_dll_rx_bit = BIT(14), 498 .disable_dll_mask = BIT_MASK(14), 499 .cable_diag_reg = LAN8814_CABLE_DIAG, 500 .pair_mask = LAN8814_WIRE_PAIR_MASK, 501 }; 502 503 static int kszphy_extended_write(struct phy_device *phydev, 504 u32 regnum, u16 val) 505 { 506 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 507 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 508 } 509 510 static int kszphy_extended_read(struct phy_device *phydev, 511 u32 regnum) 512 { 513 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 514 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 515 } 516 517 static int kszphy_ack_interrupt(struct phy_device *phydev) 518 { 519 /* bit[7..0] int status, which is a read and clear register. */ 520 int rc; 521 522 rc = phy_read(phydev, MII_KSZPHY_INTCS); 523 524 return (rc < 0) ? rc : 0; 525 } 526 527 static int kszphy_config_intr(struct phy_device *phydev) 528 { 529 const struct kszphy_type *type = phydev->drv->driver_data; 530 int temp, err; 531 u16 mask; 532 533 if (type && type->interrupt_level_mask) 534 mask = type->interrupt_level_mask; 535 else 536 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 537 538 /* set the interrupt pin active low */ 539 temp = phy_read(phydev, MII_KSZPHY_CTRL); 540 if (temp < 0) 541 return temp; 542 temp &= ~mask; 543 phy_write(phydev, MII_KSZPHY_CTRL, temp); 544 545 /* enable / disable interrupts */ 546 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 547 err = kszphy_ack_interrupt(phydev); 548 if (err) 549 return err; 550 551 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 552 } else { 553 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 554 if (err) 555 return err; 556 557 err = kszphy_ack_interrupt(phydev); 558 } 559 560 return err; 561 } 562 563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 564 { 565 int irq_status; 566 567 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 568 if (irq_status < 0) { 569 phy_error(phydev); 570 return IRQ_NONE; 571 } 572 573 if (!(irq_status & KSZPHY_INTCS_STATUS)) 574 return IRQ_NONE; 575 576 phy_trigger_machine(phydev); 577 578 return IRQ_HANDLED; 579 } 580 581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 582 { 583 int ctrl; 584 585 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 586 if (ctrl < 0) 587 return ctrl; 588 589 if (val) 590 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 591 else 592 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 593 594 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 595 } 596 597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 598 { 599 int rc, temp, shift; 600 601 switch (reg) { 602 case MII_KSZPHY_CTRL_1: 603 shift = 14; 604 break; 605 case MII_KSZPHY_CTRL_2: 606 shift = 4; 607 break; 608 default: 609 return -EINVAL; 610 } 611 612 temp = phy_read(phydev, reg); 613 if (temp < 0) { 614 rc = temp; 615 goto out; 616 } 617 618 temp &= ~(3 << shift); 619 temp |= val << shift; 620 rc = phy_write(phydev, reg, temp); 621 out: 622 if (rc < 0) 623 phydev_err(phydev, "failed to set led mode\n"); 624 625 return rc; 626 } 627 628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 629 * unique (non-broadcast) address on a shared bus. 630 */ 631 static int kszphy_broadcast_disable(struct phy_device *phydev) 632 { 633 int ret; 634 635 ret = phy_read(phydev, MII_KSZPHY_OMSO); 636 if (ret < 0) 637 goto out; 638 639 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 640 out: 641 if (ret) 642 phydev_err(phydev, "failed to disable broadcast address\n"); 643 644 return ret; 645 } 646 647 static int kszphy_nand_tree_disable(struct phy_device *phydev) 648 { 649 int ret; 650 651 ret = phy_read(phydev, MII_KSZPHY_OMSO); 652 if (ret < 0) 653 goto out; 654 655 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 656 return 0; 657 658 ret = phy_write(phydev, MII_KSZPHY_OMSO, 659 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 660 out: 661 if (ret) 662 phydev_err(phydev, "failed to disable NAND tree mode\n"); 663 664 return ret; 665 } 666 667 /* Some config bits need to be set again on resume, handle them here. */ 668 static int kszphy_config_reset(struct phy_device *phydev) 669 { 670 struct kszphy_priv *priv = phydev->priv; 671 int ret; 672 673 if (priv->rmii_ref_clk_sel) { 674 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 675 if (ret) { 676 phydev_err(phydev, 677 "failed to set rmii reference clock\n"); 678 return ret; 679 } 680 } 681 682 if (priv->type && priv->led_mode >= 0) 683 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 684 685 return 0; 686 } 687 688 static int kszphy_config_init(struct phy_device *phydev) 689 { 690 struct kszphy_priv *priv = phydev->priv; 691 const struct kszphy_type *type; 692 693 if (!priv) 694 return 0; 695 696 type = priv->type; 697 698 if (type && type->has_broadcast_disable) 699 kszphy_broadcast_disable(phydev); 700 701 if (type && type->has_nand_tree_disable) 702 kszphy_nand_tree_disable(phydev); 703 704 return kszphy_config_reset(phydev); 705 } 706 707 static int ksz8041_fiber_mode(struct phy_device *phydev) 708 { 709 struct device_node *of_node = phydev->mdio.dev.of_node; 710 711 return of_property_read_bool(of_node, "micrel,fiber-mode"); 712 } 713 714 static int ksz8041_config_init(struct phy_device *phydev) 715 { 716 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 717 718 /* Limit supported and advertised modes in fiber mode */ 719 if (ksz8041_fiber_mode(phydev)) { 720 phydev->dev_flags |= MICREL_PHY_FXEN; 721 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 722 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 723 724 linkmode_and(phydev->supported, phydev->supported, mask); 725 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 726 phydev->supported); 727 linkmode_and(phydev->advertising, phydev->advertising, mask); 728 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 729 phydev->advertising); 730 phydev->autoneg = AUTONEG_DISABLE; 731 } 732 733 return kszphy_config_init(phydev); 734 } 735 736 static int ksz8041_config_aneg(struct phy_device *phydev) 737 { 738 /* Skip auto-negotiation in fiber mode */ 739 if (phydev->dev_flags & MICREL_PHY_FXEN) { 740 phydev->speed = SPEED_100; 741 return 0; 742 } 743 744 return genphy_config_aneg(phydev); 745 } 746 747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 748 const bool ksz_8051) 749 { 750 int ret; 751 752 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 753 return 0; 754 755 ret = phy_read(phydev, MII_BMSR); 756 if (ret < 0) 757 return ret; 758 759 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 760 * exact PHY ID. However, they can be told apart by the extended 761 * capability registers presence. The KSZ8051 PHY has them while 762 * the switch does not. 763 */ 764 ret &= BMSR_ERCAP; 765 if (ksz_8051) 766 return ret; 767 else 768 return !ret; 769 } 770 771 static int ksz8051_match_phy_device(struct phy_device *phydev) 772 { 773 return ksz8051_ksz8795_match_phy_device(phydev, true); 774 } 775 776 static int ksz8081_config_init(struct phy_device *phydev) 777 { 778 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 779 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 780 * pull-down is missing, the factory test mode should be cleared by 781 * manually writing a 0. 782 */ 783 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 784 785 return kszphy_config_init(phydev); 786 } 787 788 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 789 { 790 u16 val; 791 792 switch (ctrl) { 793 case ETH_TP_MDI: 794 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 795 break; 796 case ETH_TP_MDI_X: 797 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 798 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 799 break; 800 case ETH_TP_MDI_AUTO: 801 val = 0; 802 break; 803 default: 804 return 0; 805 } 806 807 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 808 KSZ8081_CTRL2_HP_MDIX | 809 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 810 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 811 KSZ8081_CTRL2_HP_MDIX | val); 812 } 813 814 static int ksz8081_config_aneg(struct phy_device *phydev) 815 { 816 int ret; 817 818 ret = genphy_config_aneg(phydev); 819 if (ret) 820 return ret; 821 822 /* The MDI-X configuration is automatically changed by the PHY after 823 * switching from autoneg off to on. So, take MDI-X configuration under 824 * own control and set it after autoneg configuration was done. 825 */ 826 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 827 } 828 829 static int ksz8081_mdix_update(struct phy_device *phydev) 830 { 831 int ret; 832 833 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 834 if (ret < 0) 835 return ret; 836 837 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 838 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 839 phydev->mdix_ctrl = ETH_TP_MDI_X; 840 else 841 phydev->mdix_ctrl = ETH_TP_MDI; 842 } else { 843 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 844 } 845 846 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 847 if (ret < 0) 848 return ret; 849 850 if (ret & KSZ8081_CTRL1_MDIX_STAT) 851 phydev->mdix = ETH_TP_MDI; 852 else 853 phydev->mdix = ETH_TP_MDI_X; 854 855 return 0; 856 } 857 858 static int ksz8081_read_status(struct phy_device *phydev) 859 { 860 int ret; 861 862 ret = ksz8081_mdix_update(phydev); 863 if (ret < 0) 864 return ret; 865 866 return genphy_read_status(phydev); 867 } 868 869 static int ksz8061_config_init(struct phy_device *phydev) 870 { 871 int ret; 872 873 /* Chip can be powered down by the bootstrap code. */ 874 ret = phy_read(phydev, MII_BMCR); 875 if (ret < 0) 876 return ret; 877 if (ret & BMCR_PDOWN) { 878 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 879 if (ret < 0) 880 return ret; 881 usleep_range(1000, 2000); 882 } 883 884 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 885 if (ret) 886 return ret; 887 888 return kszphy_config_init(phydev); 889 } 890 891 static int ksz8795_match_phy_device(struct phy_device *phydev) 892 { 893 return ksz8051_ksz8795_match_phy_device(phydev, false); 894 } 895 896 static int ksz9021_load_values_from_of(struct phy_device *phydev, 897 const struct device_node *of_node, 898 u16 reg, 899 const char *field1, const char *field2, 900 const char *field3, const char *field4) 901 { 902 int val1 = -1; 903 int val2 = -2; 904 int val3 = -3; 905 int val4 = -4; 906 int newval; 907 int matches = 0; 908 909 if (!of_property_read_u32(of_node, field1, &val1)) 910 matches++; 911 912 if (!of_property_read_u32(of_node, field2, &val2)) 913 matches++; 914 915 if (!of_property_read_u32(of_node, field3, &val3)) 916 matches++; 917 918 if (!of_property_read_u32(of_node, field4, &val4)) 919 matches++; 920 921 if (!matches) 922 return 0; 923 924 if (matches < 4) 925 newval = kszphy_extended_read(phydev, reg); 926 else 927 newval = 0; 928 929 if (val1 != -1) 930 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 931 932 if (val2 != -2) 933 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 934 935 if (val3 != -3) 936 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 937 938 if (val4 != -4) 939 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 940 941 return kszphy_extended_write(phydev, reg, newval); 942 } 943 944 static int ksz9021_config_init(struct phy_device *phydev) 945 { 946 const struct device_node *of_node; 947 const struct device *dev_walker; 948 949 /* The Micrel driver has a deprecated option to place phy OF 950 * properties in the MAC node. Walk up the tree of devices to 951 * find a device with an OF node. 952 */ 953 dev_walker = &phydev->mdio.dev; 954 do { 955 of_node = dev_walker->of_node; 956 dev_walker = dev_walker->parent; 957 958 } while (!of_node && dev_walker); 959 960 if (of_node) { 961 ksz9021_load_values_from_of(phydev, of_node, 962 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 963 "txen-skew-ps", "txc-skew-ps", 964 "rxdv-skew-ps", "rxc-skew-ps"); 965 ksz9021_load_values_from_of(phydev, of_node, 966 MII_KSZPHY_RX_DATA_PAD_SKEW, 967 "rxd0-skew-ps", "rxd1-skew-ps", 968 "rxd2-skew-ps", "rxd3-skew-ps"); 969 ksz9021_load_values_from_of(phydev, of_node, 970 MII_KSZPHY_TX_DATA_PAD_SKEW, 971 "txd0-skew-ps", "txd1-skew-ps", 972 "txd2-skew-ps", "txd3-skew-ps"); 973 } 974 return 0; 975 } 976 977 #define KSZ9031_PS_TO_REG 60 978 979 /* Extended registers */ 980 /* MMD Address 0x0 */ 981 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 982 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 983 984 /* MMD Address 0x2 */ 985 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 986 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 987 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 988 989 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 990 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 991 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 992 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 993 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 994 995 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 996 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 997 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 998 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 999 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1000 1001 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1002 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1003 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1004 1005 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1006 * provide different RGMII options we need to configure delay offset 1007 * for each pad relative to build in delay. 1008 */ 1009 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1010 * 1.80ns 1011 */ 1012 #define RX_ID 0x7 1013 #define RX_CLK_ID 0x19 1014 1015 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1016 * internal 1.2ns delay. 1017 */ 1018 #define RX_ND 0xc 1019 #define RX_CLK_ND 0x0 1020 1021 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1022 #define TX_ID 0x0 1023 #define TX_CLK_ID 0x1f 1024 1025 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1026 * dealy 1027 */ 1028 #define TX_ND 0x7 1029 #define TX_CLK_ND 0xf 1030 1031 /* MMD Address 0x1C */ 1032 #define MII_KSZ9031RN_EDPD 0x23 1033 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1034 1035 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1036 int speed) 1037 { 1038 u16 ctl = BMCR_LOOPBACK; 1039 int val; 1040 1041 if (!enable) 1042 return genphy_loopback(phydev, enable, 0); 1043 1044 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1045 phydev->speed = speed; 1046 else if (speed) 1047 return -EINVAL; 1048 phydev->duplex = DUPLEX_FULL; 1049 1050 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1051 1052 phy_write(phydev, MII_BMCR, ctl); 1053 1054 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1055 5000, 500000, true); 1056 } 1057 1058 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1059 const struct device_node *of_node, 1060 u16 reg, size_t field_sz, 1061 const char *field[], u8 numfields, 1062 bool *update) 1063 { 1064 int val[4] = {-1, -2, -3, -4}; 1065 int matches = 0; 1066 u16 mask; 1067 u16 maxval; 1068 u16 newval; 1069 int i; 1070 1071 for (i = 0; i < numfields; i++) 1072 if (!of_property_read_u32(of_node, field[i], val + i)) 1073 matches++; 1074 1075 if (!matches) 1076 return 0; 1077 1078 *update |= true; 1079 1080 if (matches < numfields) 1081 newval = phy_read_mmd(phydev, 2, reg); 1082 else 1083 newval = 0; 1084 1085 maxval = (field_sz == 4) ? 0xf : 0x1f; 1086 for (i = 0; i < numfields; i++) 1087 if (val[i] != -(i + 1)) { 1088 mask = 0xffff; 1089 mask ^= maxval << (field_sz * i); 1090 newval = (newval & mask) | 1091 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1092 << (field_sz * i)); 1093 } 1094 1095 return phy_write_mmd(phydev, 2, reg, newval); 1096 } 1097 1098 /* Center KSZ9031RNX FLP timing at 16ms. */ 1099 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1100 { 1101 int result; 1102 1103 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1104 0x0006); 1105 if (result) 1106 return result; 1107 1108 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1109 0x1A80); 1110 if (result) 1111 return result; 1112 1113 return genphy_restart_aneg(phydev); 1114 } 1115 1116 /* Enable energy-detect power-down mode */ 1117 static int ksz9031_enable_edpd(struct phy_device *phydev) 1118 { 1119 int reg; 1120 1121 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1122 if (reg < 0) 1123 return reg; 1124 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1125 reg | MII_KSZ9031RN_EDPD_ENABLE); 1126 } 1127 1128 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1129 { 1130 u16 rx, tx, rx_clk, tx_clk; 1131 int ret; 1132 1133 switch (phydev->interface) { 1134 case PHY_INTERFACE_MODE_RGMII: 1135 tx = TX_ND; 1136 tx_clk = TX_CLK_ND; 1137 rx = RX_ND; 1138 rx_clk = RX_CLK_ND; 1139 break; 1140 case PHY_INTERFACE_MODE_RGMII_ID: 1141 tx = TX_ID; 1142 tx_clk = TX_CLK_ID; 1143 rx = RX_ID; 1144 rx_clk = RX_CLK_ID; 1145 break; 1146 case PHY_INTERFACE_MODE_RGMII_RXID: 1147 tx = TX_ND; 1148 tx_clk = TX_CLK_ND; 1149 rx = RX_ID; 1150 rx_clk = RX_CLK_ID; 1151 break; 1152 case PHY_INTERFACE_MODE_RGMII_TXID: 1153 tx = TX_ID; 1154 tx_clk = TX_CLK_ID; 1155 rx = RX_ND; 1156 rx_clk = RX_CLK_ND; 1157 break; 1158 default: 1159 return 0; 1160 } 1161 1162 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1163 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1164 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1165 if (ret < 0) 1166 return ret; 1167 1168 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1169 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1170 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1171 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1172 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1173 if (ret < 0) 1174 return ret; 1175 1176 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1177 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1178 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1179 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1180 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1181 if (ret < 0) 1182 return ret; 1183 1184 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1185 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1186 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1187 } 1188 1189 static int ksz9031_config_init(struct phy_device *phydev) 1190 { 1191 const struct device_node *of_node; 1192 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1193 static const char *rx_data_skews[4] = { 1194 "rxd0-skew-ps", "rxd1-skew-ps", 1195 "rxd2-skew-ps", "rxd3-skew-ps" 1196 }; 1197 static const char *tx_data_skews[4] = { 1198 "txd0-skew-ps", "txd1-skew-ps", 1199 "txd2-skew-ps", "txd3-skew-ps" 1200 }; 1201 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1202 const struct device *dev_walker; 1203 int result; 1204 1205 result = ksz9031_enable_edpd(phydev); 1206 if (result < 0) 1207 return result; 1208 1209 /* The Micrel driver has a deprecated option to place phy OF 1210 * properties in the MAC node. Walk up the tree of devices to 1211 * find a device with an OF node. 1212 */ 1213 dev_walker = &phydev->mdio.dev; 1214 do { 1215 of_node = dev_walker->of_node; 1216 dev_walker = dev_walker->parent; 1217 } while (!of_node && dev_walker); 1218 1219 if (of_node) { 1220 bool update = false; 1221 1222 if (phy_interface_is_rgmii(phydev)) { 1223 result = ksz9031_config_rgmii_delay(phydev); 1224 if (result < 0) 1225 return result; 1226 } 1227 1228 ksz9031_of_load_skew_values(phydev, of_node, 1229 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1230 clk_skews, 2, &update); 1231 1232 ksz9031_of_load_skew_values(phydev, of_node, 1233 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1234 control_skews, 2, &update); 1235 1236 ksz9031_of_load_skew_values(phydev, of_node, 1237 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1238 rx_data_skews, 4, &update); 1239 1240 ksz9031_of_load_skew_values(phydev, of_node, 1241 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1242 tx_data_skews, 4, &update); 1243 1244 if (update && !phy_interface_is_rgmii(phydev)) 1245 phydev_warn(phydev, 1246 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1247 1248 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1249 * When the device links in the 1000BASE-T slave mode only, 1250 * the optional 125MHz reference output clock (CLK125_NDO) 1251 * has wide duty cycle variation. 1252 * 1253 * The optional CLK125_NDO clock does not meet the RGMII 1254 * 45/55 percent (min/max) duty cycle requirement and therefore 1255 * cannot be used directly by the MAC side for clocking 1256 * applications that have setup/hold time requirements on 1257 * rising and falling clock edges. 1258 * 1259 * Workaround: 1260 * Force the phy to be the master to receive a stable clock 1261 * which meets the duty cycle requirement. 1262 */ 1263 if (of_property_read_bool(of_node, "micrel,force-master")) { 1264 result = phy_read(phydev, MII_CTRL1000); 1265 if (result < 0) 1266 goto err_force_master; 1267 1268 /* enable master mode, config & prefer master */ 1269 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1270 result = phy_write(phydev, MII_CTRL1000, result); 1271 if (result < 0) 1272 goto err_force_master; 1273 } 1274 } 1275 1276 return ksz9031_center_flp_timing(phydev); 1277 1278 err_force_master: 1279 phydev_err(phydev, "failed to force the phy to master mode\n"); 1280 return result; 1281 } 1282 1283 #define KSZ9131_SKEW_5BIT_MAX 2400 1284 #define KSZ9131_SKEW_4BIT_MAX 800 1285 #define KSZ9131_OFFSET 700 1286 #define KSZ9131_STEP 100 1287 1288 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1289 struct device_node *of_node, 1290 u16 reg, size_t field_sz, 1291 char *field[], u8 numfields) 1292 { 1293 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1294 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1295 int skewval, skewmax = 0; 1296 int matches = 0; 1297 u16 maxval; 1298 u16 newval; 1299 u16 mask; 1300 int i; 1301 1302 /* psec properties in dts should mean x pico seconds */ 1303 if (field_sz == 5) 1304 skewmax = KSZ9131_SKEW_5BIT_MAX; 1305 else 1306 skewmax = KSZ9131_SKEW_4BIT_MAX; 1307 1308 for (i = 0; i < numfields; i++) 1309 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1310 if (skewval < -KSZ9131_OFFSET) 1311 skewval = -KSZ9131_OFFSET; 1312 else if (skewval > skewmax) 1313 skewval = skewmax; 1314 1315 val[i] = skewval + KSZ9131_OFFSET; 1316 matches++; 1317 } 1318 1319 if (!matches) 1320 return 0; 1321 1322 if (matches < numfields) 1323 newval = phy_read_mmd(phydev, 2, reg); 1324 else 1325 newval = 0; 1326 1327 maxval = (field_sz == 4) ? 0xf : 0x1f; 1328 for (i = 0; i < numfields; i++) 1329 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1330 mask = 0xffff; 1331 mask ^= maxval << (field_sz * i); 1332 newval = (newval & mask) | 1333 (((val[i] / KSZ9131_STEP) & maxval) 1334 << (field_sz * i)); 1335 } 1336 1337 return phy_write_mmd(phydev, 2, reg, newval); 1338 } 1339 1340 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1341 #define KSZ9131RN_RXC_DLL_CTRL 76 1342 #define KSZ9131RN_TXC_DLL_CTRL 77 1343 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1344 1345 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1346 { 1347 const struct kszphy_type *type = phydev->drv->driver_data; 1348 u16 rxcdll_val, txcdll_val; 1349 int ret; 1350 1351 switch (phydev->interface) { 1352 case PHY_INTERFACE_MODE_RGMII: 1353 rxcdll_val = type->disable_dll_rx_bit; 1354 txcdll_val = type->disable_dll_tx_bit; 1355 break; 1356 case PHY_INTERFACE_MODE_RGMII_ID: 1357 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1358 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1359 break; 1360 case PHY_INTERFACE_MODE_RGMII_RXID: 1361 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1362 txcdll_val = type->disable_dll_tx_bit; 1363 break; 1364 case PHY_INTERFACE_MODE_RGMII_TXID: 1365 rxcdll_val = type->disable_dll_rx_bit; 1366 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1367 break; 1368 default: 1369 return 0; 1370 } 1371 1372 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1373 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1374 rxcdll_val); 1375 if (ret < 0) 1376 return ret; 1377 1378 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1379 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1380 txcdll_val); 1381 } 1382 1383 /* Silicon Errata DS80000693B 1384 * 1385 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1386 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1387 * according to the datasheet (off if there is no link). 1388 */ 1389 static int ksz9131_led_errata(struct phy_device *phydev) 1390 { 1391 int reg; 1392 1393 reg = phy_read_mmd(phydev, 2, 0); 1394 if (reg < 0) 1395 return reg; 1396 1397 if (!(reg & BIT(4))) 1398 return 0; 1399 1400 return phy_set_bits(phydev, 0x1e, BIT(9)); 1401 } 1402 1403 static int ksz9131_config_init(struct phy_device *phydev) 1404 { 1405 struct device_node *of_node; 1406 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1407 char *rx_data_skews[4] = { 1408 "rxd0-skew-psec", "rxd1-skew-psec", 1409 "rxd2-skew-psec", "rxd3-skew-psec" 1410 }; 1411 char *tx_data_skews[4] = { 1412 "txd0-skew-psec", "txd1-skew-psec", 1413 "txd2-skew-psec", "txd3-skew-psec" 1414 }; 1415 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1416 const struct device *dev_walker; 1417 int ret; 1418 1419 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1420 1421 dev_walker = &phydev->mdio.dev; 1422 do { 1423 of_node = dev_walker->of_node; 1424 dev_walker = dev_walker->parent; 1425 } while (!of_node && dev_walker); 1426 1427 if (!of_node) 1428 return 0; 1429 1430 if (phy_interface_is_rgmii(phydev)) { 1431 ret = ksz9131_config_rgmii_delay(phydev); 1432 if (ret < 0) 1433 return ret; 1434 } 1435 1436 ret = ksz9131_of_load_skew_values(phydev, of_node, 1437 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1438 clk_skews, 2); 1439 if (ret < 0) 1440 return ret; 1441 1442 ret = ksz9131_of_load_skew_values(phydev, of_node, 1443 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1444 control_skews, 2); 1445 if (ret < 0) 1446 return ret; 1447 1448 ret = ksz9131_of_load_skew_values(phydev, of_node, 1449 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1450 rx_data_skews, 4); 1451 if (ret < 0) 1452 return ret; 1453 1454 ret = ksz9131_of_load_skew_values(phydev, of_node, 1455 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1456 tx_data_skews, 4); 1457 if (ret < 0) 1458 return ret; 1459 1460 ret = ksz9131_led_errata(phydev); 1461 if (ret < 0) 1462 return ret; 1463 1464 return 0; 1465 } 1466 1467 #define MII_KSZ9131_AUTO_MDIX 0x1C 1468 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1469 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1470 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1471 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1472 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1473 1474 static int ksz9131_mdix_update(struct phy_device *phydev) 1475 { 1476 int ret; 1477 1478 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1479 phydev->mdix = phydev->mdix_ctrl; 1480 } else { 1481 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1482 if (ret < 0) 1483 return ret; 1484 1485 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1486 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1487 phydev->mdix = ETH_TP_MDI; 1488 else 1489 phydev->mdix = ETH_TP_MDI_X; 1490 } else { 1491 phydev->mdix = ETH_TP_MDI_INVALID; 1492 } 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1499 { 1500 u16 val; 1501 1502 switch (ctrl) { 1503 case ETH_TP_MDI: 1504 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1505 MII_KSZ9131_AUTO_MDI_SET; 1506 break; 1507 case ETH_TP_MDI_X: 1508 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1509 break; 1510 case ETH_TP_MDI_AUTO: 1511 val = 0; 1512 break; 1513 default: 1514 return 0; 1515 } 1516 1517 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1518 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1519 MII_KSZ9131_AUTO_MDI_SET, val); 1520 } 1521 1522 static int ksz9131_read_status(struct phy_device *phydev) 1523 { 1524 int ret; 1525 1526 ret = ksz9131_mdix_update(phydev); 1527 if (ret < 0) 1528 return ret; 1529 1530 return genphy_read_status(phydev); 1531 } 1532 1533 static int ksz9131_config_aneg(struct phy_device *phydev) 1534 { 1535 int ret; 1536 1537 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1538 if (ret) 1539 return ret; 1540 1541 return genphy_config_aneg(phydev); 1542 } 1543 1544 static int ksz9477_get_features(struct phy_device *phydev) 1545 { 1546 int ret; 1547 1548 ret = genphy_read_abilities(phydev); 1549 if (ret) 1550 return ret; 1551 1552 /* The "EEE control and capability 1" (Register 3.20) seems to be 1553 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1554 * on the 7.60 will affect 3.20. So, we need to construct our own list 1555 * of caps. 1556 * KSZ8563R should have 100BaseTX/Full only. 1557 */ 1558 linkmode_and(phydev->supported_eee, phydev->supported, 1559 PHY_EEE_CAP1_FEATURES); 1560 1561 return 0; 1562 } 1563 1564 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1565 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1566 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1567 static int ksz8873mll_read_status(struct phy_device *phydev) 1568 { 1569 int regval; 1570 1571 /* dummy read */ 1572 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1573 1574 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1575 1576 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1577 phydev->duplex = DUPLEX_HALF; 1578 else 1579 phydev->duplex = DUPLEX_FULL; 1580 1581 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1582 phydev->speed = SPEED_10; 1583 else 1584 phydev->speed = SPEED_100; 1585 1586 phydev->link = 1; 1587 phydev->pause = phydev->asym_pause = 0; 1588 1589 return 0; 1590 } 1591 1592 static int ksz9031_get_features(struct phy_device *phydev) 1593 { 1594 int ret; 1595 1596 ret = genphy_read_abilities(phydev); 1597 if (ret < 0) 1598 return ret; 1599 1600 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1601 * Whenever the device's Asymmetric Pause capability is set to 1, 1602 * link-up may fail after a link-up to link-down transition. 1603 * 1604 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1605 * 1606 * Workaround: 1607 * Do not enable the Asymmetric Pause capability bit. 1608 */ 1609 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1610 1611 /* We force setting the Pause capability as the core will force the 1612 * Asymmetric Pause capability to 1 otherwise. 1613 */ 1614 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1615 1616 return 0; 1617 } 1618 1619 static int ksz9031_read_status(struct phy_device *phydev) 1620 { 1621 int err; 1622 int regval; 1623 1624 err = genphy_read_status(phydev); 1625 if (err) 1626 return err; 1627 1628 /* Make sure the PHY is not broken. Read idle error count, 1629 * and reset the PHY if it is maxed out. 1630 */ 1631 regval = phy_read(phydev, MII_STAT1000); 1632 if ((regval & 0xFF) == 0xFF) { 1633 phy_init_hw(phydev); 1634 phydev->link = 0; 1635 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1636 phydev->drv->config_intr(phydev); 1637 return genphy_config_aneg(phydev); 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1644 { 1645 struct kszphy_priv *priv = phydev->priv; 1646 int ret; 1647 1648 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1649 * Prior to running the cable diagnostics, Auto-negotiation should 1650 * be disabled, full duplex set and the link speed set to 1000Mbps 1651 * via the Basic Control Register. 1652 */ 1653 ret = phy_modify(phydev, MII_BMCR, 1654 BMCR_SPEED1000 | BMCR_FULLDPLX | 1655 BMCR_ANENABLE | BMCR_SPEED100, 1656 BMCR_SPEED1000 | BMCR_FULLDPLX); 1657 if (ret) 1658 return ret; 1659 1660 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1661 * The Master-Slave configuration should be set to Slave by writing 1662 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1663 * Register. 1664 */ 1665 ret = phy_read(phydev, MII_CTRL1000); 1666 if (ret < 0) 1667 return ret; 1668 1669 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1670 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1671 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1672 ret |= CTL1000_ENABLE_MASTER; 1673 1674 return phy_write(phydev, MII_CTRL1000, ret); 1675 } 1676 1677 static int ksz9x31_cable_test_result_trans(u16 status) 1678 { 1679 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1680 case KSZ9x31_LMD_VCT_ST_NORMAL: 1681 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1682 case KSZ9x31_LMD_VCT_ST_OPEN: 1683 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1684 case KSZ9x31_LMD_VCT_ST_SHORT: 1685 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1686 case KSZ9x31_LMD_VCT_ST_FAIL: 1687 fallthrough; 1688 default: 1689 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1690 } 1691 } 1692 1693 static bool ksz9x31_cable_test_failed(u16 status) 1694 { 1695 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1696 1697 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1698 } 1699 1700 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1701 { 1702 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1703 case KSZ9x31_LMD_VCT_ST_OPEN: 1704 fallthrough; 1705 case KSZ9x31_LMD_VCT_ST_SHORT: 1706 return true; 1707 } 1708 return false; 1709 } 1710 1711 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1712 { 1713 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1714 1715 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1716 * 1717 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1718 */ 1719 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1720 dt = clamp(dt - 22, 0, 255); 1721 1722 return (dt * 400) / 10; 1723 } 1724 1725 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1726 { 1727 int val, ret; 1728 1729 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1730 !(val & KSZ9x31_LMD_VCT_EN), 1731 30000, 100000, true); 1732 1733 return ret < 0 ? ret : 0; 1734 } 1735 1736 static int ksz9x31_cable_test_get_pair(int pair) 1737 { 1738 static const int ethtool_pair[] = { 1739 ETHTOOL_A_CABLE_PAIR_A, 1740 ETHTOOL_A_CABLE_PAIR_B, 1741 ETHTOOL_A_CABLE_PAIR_C, 1742 ETHTOOL_A_CABLE_PAIR_D, 1743 }; 1744 1745 return ethtool_pair[pair]; 1746 } 1747 1748 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1749 { 1750 int ret, val; 1751 1752 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1753 * To test each individual cable pair, set the cable pair in the Cable 1754 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1755 * Diagnostic Register, along with setting the Cable Diagnostics Test 1756 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1757 * will self clear when the test is concluded. 1758 */ 1759 ret = phy_write(phydev, KSZ9x31_LMD, 1760 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1761 if (ret) 1762 return ret; 1763 1764 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1765 if (ret) 1766 return ret; 1767 1768 val = phy_read(phydev, KSZ9x31_LMD); 1769 if (val < 0) 1770 return val; 1771 1772 if (ksz9x31_cable_test_failed(val)) 1773 return -EAGAIN; 1774 1775 ret = ethnl_cable_test_result(phydev, 1776 ksz9x31_cable_test_get_pair(pair), 1777 ksz9x31_cable_test_result_trans(val)); 1778 if (ret) 1779 return ret; 1780 1781 if (!ksz9x31_cable_test_fault_length_valid(val)) 1782 return 0; 1783 1784 return ethnl_cable_test_fault_length(phydev, 1785 ksz9x31_cable_test_get_pair(pair), 1786 ksz9x31_cable_test_fault_length(phydev, val)); 1787 } 1788 1789 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1790 bool *finished) 1791 { 1792 struct kszphy_priv *priv = phydev->priv; 1793 unsigned long pair_mask = 0xf; 1794 int retries = 20; 1795 int pair, ret, rv; 1796 1797 *finished = false; 1798 1799 /* Try harder if link partner is active */ 1800 while (pair_mask && retries--) { 1801 for_each_set_bit(pair, &pair_mask, 4) { 1802 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1803 if (ret == -EAGAIN) 1804 continue; 1805 if (ret < 0) 1806 return ret; 1807 clear_bit(pair, &pair_mask); 1808 } 1809 /* If link partner is in autonegotiation mode it will send 2ms 1810 * of FLPs with at least 6ms of silence. 1811 * Add 2ms sleep to have better chances to hit this silence. 1812 */ 1813 if (pair_mask) 1814 usleep_range(2000, 3000); 1815 } 1816 1817 /* Report remaining unfinished pair result as unknown. */ 1818 for_each_set_bit(pair, &pair_mask, 4) { 1819 ret = ethnl_cable_test_result(phydev, 1820 ksz9x31_cable_test_get_pair(pair), 1821 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1822 } 1823 1824 *finished = true; 1825 1826 /* Restore cached bits from before LinkMD got started. */ 1827 rv = phy_modify(phydev, MII_CTRL1000, 1828 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1829 priv->vct_ctrl1000); 1830 if (rv) 1831 return rv; 1832 1833 return ret; 1834 } 1835 1836 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1837 { 1838 return 0; 1839 } 1840 1841 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1842 { 1843 u16 val; 1844 1845 switch (ctrl) { 1846 case ETH_TP_MDI: 1847 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1848 break; 1849 case ETH_TP_MDI_X: 1850 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1851 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1852 * sheet seems to be missing: 1853 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1854 * 0 = Normal operation (transmit on TX+/TX- pins) 1855 */ 1856 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1857 break; 1858 case ETH_TP_MDI_AUTO: 1859 val = 0; 1860 break; 1861 default: 1862 return 0; 1863 } 1864 1865 return phy_modify(phydev, MII_BMCR, 1866 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1867 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1868 KSZ886X_BMCR_HP_MDIX | val); 1869 } 1870 1871 static int ksz886x_config_aneg(struct phy_device *phydev) 1872 { 1873 int ret; 1874 1875 ret = genphy_config_aneg(phydev); 1876 if (ret) 1877 return ret; 1878 1879 if (phydev->autoneg != AUTONEG_ENABLE) { 1880 /* When autonegotation is disabled, we need to manually force 1881 * the link state. If we don't do this, the PHY will keep 1882 * sending Fast Link Pulses (FLPs) which are part of the 1883 * autonegotiation process. This is not desired when 1884 * autonegotiation is off. 1885 */ 1886 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1887 KSZ886X_CTRL_FORCE_LINK); 1888 if (ret) 1889 return ret; 1890 } else { 1891 /* If we had previously forced the link state, we need to 1892 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1893 * will not perform autonegotiation. 1894 */ 1895 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1896 KSZ886X_CTRL_FORCE_LINK); 1897 if (ret) 1898 return ret; 1899 } 1900 1901 /* The MDI-X configuration is automatically changed by the PHY after 1902 * switching from autoneg off to on. So, take MDI-X configuration under 1903 * own control and set it after autoneg configuration was done. 1904 */ 1905 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1906 } 1907 1908 static int ksz886x_mdix_update(struct phy_device *phydev) 1909 { 1910 int ret; 1911 1912 ret = phy_read(phydev, MII_BMCR); 1913 if (ret < 0) 1914 return ret; 1915 1916 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1917 if (ret & KSZ886X_BMCR_FORCE_MDI) 1918 phydev->mdix_ctrl = ETH_TP_MDI_X; 1919 else 1920 phydev->mdix_ctrl = ETH_TP_MDI; 1921 } else { 1922 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1923 } 1924 1925 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1926 if (ret < 0) 1927 return ret; 1928 1929 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1930 if (ret & KSZ886X_CTRL_MDIX_STAT) 1931 phydev->mdix = ETH_TP_MDI_X; 1932 else 1933 phydev->mdix = ETH_TP_MDI; 1934 1935 return 0; 1936 } 1937 1938 static int ksz886x_read_status(struct phy_device *phydev) 1939 { 1940 int ret; 1941 1942 ret = ksz886x_mdix_update(phydev); 1943 if (ret < 0) 1944 return ret; 1945 1946 return genphy_read_status(phydev); 1947 } 1948 1949 struct ksz9477_errata_write { 1950 u8 dev_addr; 1951 u8 reg_addr; 1952 u16 val; 1953 }; 1954 1955 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1956 /* Register settings are needed to improve PHY receive performance */ 1957 {0x01, 0x6f, 0xdd0b}, 1958 {0x01, 0x8f, 0x6032}, 1959 {0x01, 0x9d, 0x248c}, 1960 {0x01, 0x75, 0x0060}, 1961 {0x01, 0xd3, 0x7777}, 1962 {0x1c, 0x06, 0x3008}, 1963 {0x1c, 0x08, 0x2000}, 1964 1965 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1966 {0x1c, 0x04, 0x00d0}, 1967 1968 /* Register settings are required to meet data sheet supply current specifications */ 1969 {0x1c, 0x13, 0x6eff}, 1970 {0x1c, 0x14, 0xe6ff}, 1971 {0x1c, 0x15, 0x6eff}, 1972 {0x1c, 0x16, 0xe6ff}, 1973 {0x1c, 0x17, 0x00ff}, 1974 {0x1c, 0x18, 0x43ff}, 1975 {0x1c, 0x19, 0xc3ff}, 1976 {0x1c, 0x1a, 0x6fff}, 1977 {0x1c, 0x1b, 0x07ff}, 1978 {0x1c, 0x1c, 0x0fff}, 1979 {0x1c, 0x1d, 0xe7ff}, 1980 {0x1c, 0x1e, 0xefff}, 1981 {0x1c, 0x20, 0xeeee}, 1982 }; 1983 1984 static int ksz9477_phy_errata(struct phy_device *phydev) 1985 { 1986 int err; 1987 int i; 1988 1989 /* Apply PHY settings to address errata listed in 1990 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1991 * Silicon Errata and Data Sheet Clarification documents. 1992 * 1993 * Document notes: Before configuring the PHY MMD registers, it is 1994 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1995 * disabled by writing to register 0xN100-0xN101. After writing the 1996 * MMD registers, and after all errata workarounds that involve PHY 1997 * register settings, write register 0xN100-0xN101 again to enable 1998 * and restart auto-negotiation. 1999 */ 2000 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2001 if (err) 2002 return err; 2003 2004 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2005 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2006 2007 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2008 if (err) 2009 return err; 2010 } 2011 2012 err = genphy_restart_aneg(phydev); 2013 if (err) 2014 return err; 2015 2016 return err; 2017 } 2018 2019 static int ksz9477_config_init(struct phy_device *phydev) 2020 { 2021 int err; 2022 2023 /* Only KSZ9897 family of switches needs this fix. */ 2024 if ((phydev->phy_id & 0xf) == 1) { 2025 err = ksz9477_phy_errata(phydev); 2026 if (err) 2027 return err; 2028 } 2029 2030 return kszphy_config_init(phydev); 2031 } 2032 2033 static int kszphy_get_sset_count(struct phy_device *phydev) 2034 { 2035 return ARRAY_SIZE(kszphy_hw_stats); 2036 } 2037 2038 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2039 { 2040 int i; 2041 2042 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2043 ethtool_puts(&data, kszphy_hw_stats[i].string); 2044 } 2045 2046 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2047 { 2048 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2049 struct kszphy_priv *priv = phydev->priv; 2050 int val; 2051 u64 ret; 2052 2053 val = phy_read(phydev, stat.reg); 2054 if (val < 0) { 2055 ret = U64_MAX; 2056 } else { 2057 val = val & ((1 << stat.bits) - 1); 2058 priv->stats[i] += val; 2059 ret = priv->stats[i]; 2060 } 2061 2062 return ret; 2063 } 2064 2065 static void kszphy_get_stats(struct phy_device *phydev, 2066 struct ethtool_stats *stats, u64 *data) 2067 { 2068 int i; 2069 2070 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2071 data[i] = kszphy_get_stat(phydev, i); 2072 } 2073 2074 static void kszphy_enable_clk(struct phy_device *phydev) 2075 { 2076 struct kszphy_priv *priv = phydev->priv; 2077 2078 if (!priv->clk_enable && priv->clk) { 2079 clk_prepare_enable(priv->clk); 2080 priv->clk_enable = true; 2081 } 2082 } 2083 2084 static void kszphy_disable_clk(struct phy_device *phydev) 2085 { 2086 struct kszphy_priv *priv = phydev->priv; 2087 2088 if (priv->clk_enable && priv->clk) { 2089 clk_disable_unprepare(priv->clk); 2090 priv->clk_enable = false; 2091 } 2092 } 2093 2094 static int kszphy_generic_resume(struct phy_device *phydev) 2095 { 2096 kszphy_enable_clk(phydev); 2097 2098 return genphy_resume(phydev); 2099 } 2100 2101 static int kszphy_generic_suspend(struct phy_device *phydev) 2102 { 2103 int ret; 2104 2105 ret = genphy_suspend(phydev); 2106 if (ret) 2107 return ret; 2108 2109 kszphy_disable_clk(phydev); 2110 2111 return 0; 2112 } 2113 2114 static int kszphy_suspend(struct phy_device *phydev) 2115 { 2116 /* Disable PHY Interrupts */ 2117 if (phy_interrupt_is_valid(phydev)) { 2118 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2119 if (phydev->drv->config_intr) 2120 phydev->drv->config_intr(phydev); 2121 } 2122 2123 return kszphy_generic_suspend(phydev); 2124 } 2125 2126 static void kszphy_parse_led_mode(struct phy_device *phydev) 2127 { 2128 const struct kszphy_type *type = phydev->drv->driver_data; 2129 const struct device_node *np = phydev->mdio.dev.of_node; 2130 struct kszphy_priv *priv = phydev->priv; 2131 int ret; 2132 2133 if (type && type->led_mode_reg) { 2134 ret = of_property_read_u32(np, "micrel,led-mode", 2135 &priv->led_mode); 2136 2137 if (ret) 2138 priv->led_mode = -1; 2139 2140 if (priv->led_mode > 3) { 2141 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2142 priv->led_mode); 2143 priv->led_mode = -1; 2144 } 2145 } else { 2146 priv->led_mode = -1; 2147 } 2148 } 2149 2150 static int kszphy_resume(struct phy_device *phydev) 2151 { 2152 int ret; 2153 2154 ret = kszphy_generic_resume(phydev); 2155 if (ret) 2156 return ret; 2157 2158 /* After switching from power-down to normal mode, an internal global 2159 * reset is automatically generated. Wait a minimum of 1 ms before 2160 * read/write access to the PHY registers. 2161 */ 2162 usleep_range(1000, 2000); 2163 2164 ret = kszphy_config_reset(phydev); 2165 if (ret) 2166 return ret; 2167 2168 /* Enable PHY Interrupts */ 2169 if (phy_interrupt_is_valid(phydev)) { 2170 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2171 if (phydev->drv->config_intr) 2172 phydev->drv->config_intr(phydev); 2173 } 2174 2175 return 0; 2176 } 2177 2178 /* Because of errata DS80000700A, receiver error following software 2179 * power down. Suspend and resume callbacks only disable and enable 2180 * external rmii reference clock. 2181 */ 2182 static int ksz8041_resume(struct phy_device *phydev) 2183 { 2184 kszphy_enable_clk(phydev); 2185 2186 return 0; 2187 } 2188 2189 static int ksz8041_suspend(struct phy_device *phydev) 2190 { 2191 kszphy_disable_clk(phydev); 2192 2193 return 0; 2194 } 2195 2196 static int ksz9477_resume(struct phy_device *phydev) 2197 { 2198 int ret; 2199 2200 /* No need to initialize registers if not powered down. */ 2201 ret = phy_read(phydev, MII_BMCR); 2202 if (ret < 0) 2203 return ret; 2204 if (!(ret & BMCR_PDOWN)) 2205 return 0; 2206 2207 genphy_resume(phydev); 2208 2209 /* After switching from power-down to normal mode, an internal global 2210 * reset is automatically generated. Wait a minimum of 1 ms before 2211 * read/write access to the PHY registers. 2212 */ 2213 usleep_range(1000, 2000); 2214 2215 /* Only KSZ9897 family of switches needs this fix. */ 2216 if ((phydev->phy_id & 0xf) == 1) { 2217 ret = ksz9477_phy_errata(phydev); 2218 if (ret) 2219 return ret; 2220 } 2221 2222 /* Enable PHY Interrupts */ 2223 if (phy_interrupt_is_valid(phydev)) { 2224 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2225 if (phydev->drv->config_intr) 2226 phydev->drv->config_intr(phydev); 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int ksz8061_resume(struct phy_device *phydev) 2233 { 2234 int ret; 2235 2236 /* This function can be called twice when the Ethernet device is on. */ 2237 ret = phy_read(phydev, MII_BMCR); 2238 if (ret < 0) 2239 return ret; 2240 if (!(ret & BMCR_PDOWN)) 2241 return 0; 2242 2243 ret = kszphy_generic_resume(phydev); 2244 if (ret) 2245 return ret; 2246 2247 usleep_range(1000, 2000); 2248 2249 /* Re-program the value after chip is reset. */ 2250 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2251 if (ret) 2252 return ret; 2253 2254 /* Enable PHY Interrupts */ 2255 if (phy_interrupt_is_valid(phydev)) { 2256 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2257 if (phydev->drv->config_intr) 2258 phydev->drv->config_intr(phydev); 2259 } 2260 2261 return 0; 2262 } 2263 2264 static int ksz8061_suspend(struct phy_device *phydev) 2265 { 2266 return kszphy_suspend(phydev); 2267 } 2268 2269 static int kszphy_probe(struct phy_device *phydev) 2270 { 2271 const struct kszphy_type *type = phydev->drv->driver_data; 2272 const struct device_node *np = phydev->mdio.dev.of_node; 2273 struct kszphy_priv *priv; 2274 struct clk *clk; 2275 2276 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2277 if (!priv) 2278 return -ENOMEM; 2279 2280 phydev->priv = priv; 2281 2282 priv->type = type; 2283 2284 kszphy_parse_led_mode(phydev); 2285 2286 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2287 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2288 if (!IS_ERR_OR_NULL(clk)) { 2289 unsigned long rate = clk_get_rate(clk); 2290 bool rmii_ref_clk_sel_25_mhz; 2291 2292 if (type) 2293 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2294 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2295 "micrel,rmii-reference-clock-select-25-mhz"); 2296 2297 if (rate > 24500000 && rate < 25500000) { 2298 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2299 } else if (rate > 49500000 && rate < 50500000) { 2300 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2301 } else { 2302 phydev_err(phydev, "Clock rate out of range: %ld\n", 2303 rate); 2304 return -EINVAL; 2305 } 2306 } else if (!clk) { 2307 /* unnamed clock from the generic ethernet-phy binding */ 2308 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2309 } 2310 2311 if (IS_ERR(clk)) 2312 return PTR_ERR(clk); 2313 2314 clk_disable_unprepare(clk); 2315 priv->clk = clk; 2316 2317 if (ksz8041_fiber_mode(phydev)) 2318 phydev->port = PORT_FIBRE; 2319 2320 /* Support legacy board-file configuration */ 2321 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2322 priv->rmii_ref_clk_sel = true; 2323 priv->rmii_ref_clk_sel_val = true; 2324 } 2325 2326 return 0; 2327 } 2328 2329 static int lan8814_cable_test_start(struct phy_device *phydev) 2330 { 2331 /* If autoneg is enabled, we won't be able to test cross pair 2332 * short. In this case, the PHY will "detect" a link and 2333 * confuse the internal state machine - disable auto neg here. 2334 * Set the speed to 1000mbit and full duplex. 2335 */ 2336 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2337 BMCR_SPEED1000 | BMCR_FULLDPLX); 2338 } 2339 2340 static int ksz886x_cable_test_start(struct phy_device *phydev) 2341 { 2342 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2343 return -EOPNOTSUPP; 2344 2345 /* If autoneg is enabled, we won't be able to test cross pair 2346 * short. In this case, the PHY will "detect" a link and 2347 * confuse the internal state machine - disable auto neg here. 2348 * If autoneg is disabled, we should set the speed to 10mbit. 2349 */ 2350 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2351 } 2352 2353 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2354 { 2355 switch (FIELD_GET(mask, status)) { 2356 case KSZ8081_LMD_STAT_NORMAL: 2357 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2358 case KSZ8081_LMD_STAT_SHORT: 2359 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2360 case KSZ8081_LMD_STAT_OPEN: 2361 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2362 case KSZ8081_LMD_STAT_FAIL: 2363 fallthrough; 2364 default: 2365 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2366 } 2367 } 2368 2369 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2370 { 2371 return FIELD_GET(mask, status) == 2372 KSZ8081_LMD_STAT_FAIL; 2373 } 2374 2375 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2376 { 2377 switch (FIELD_GET(mask, status)) { 2378 case KSZ8081_LMD_STAT_OPEN: 2379 fallthrough; 2380 case KSZ8081_LMD_STAT_SHORT: 2381 return true; 2382 } 2383 return false; 2384 } 2385 2386 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2387 u16 status, u16 data_mask) 2388 { 2389 int dt; 2390 2391 /* According to the data sheet the distance to the fault is 2392 * DELTA_TIME * 0.4 meters for ksz phys. 2393 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2394 */ 2395 dt = FIELD_GET(data_mask, status); 2396 2397 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2398 return ((dt - 22) * 800) / 10; 2399 else 2400 return (dt * 400) / 10; 2401 } 2402 2403 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2404 { 2405 const struct kszphy_type *type = phydev->drv->driver_data; 2406 int val, ret; 2407 2408 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2409 !(val & KSZ8081_LMD_ENABLE_TEST), 2410 30000, 100000, true); 2411 2412 return ret < 0 ? ret : 0; 2413 } 2414 2415 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2416 { 2417 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2418 ETHTOOL_A_CABLE_PAIR_B, 2419 ETHTOOL_A_CABLE_PAIR_C, 2420 ETHTOOL_A_CABLE_PAIR_D, 2421 }; 2422 u32 fault_length; 2423 int ret; 2424 int val; 2425 2426 val = KSZ8081_LMD_ENABLE_TEST; 2427 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2428 2429 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2430 if (ret < 0) 2431 return ret; 2432 2433 ret = ksz886x_cable_test_wait_for_completion(phydev); 2434 if (ret) 2435 return ret; 2436 2437 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2438 if (val < 0) 2439 return val; 2440 2441 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2442 return -EAGAIN; 2443 2444 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2445 ksz886x_cable_test_result_trans(val, 2446 LAN8814_CABLE_DIAG_STAT_MASK 2447 )); 2448 if (ret) 2449 return ret; 2450 2451 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2452 return 0; 2453 2454 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2455 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2456 2457 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2458 } 2459 2460 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2461 { 2462 static const int ethtool_pair[] = { 2463 ETHTOOL_A_CABLE_PAIR_A, 2464 ETHTOOL_A_CABLE_PAIR_B, 2465 }; 2466 int ret, val, mdix; 2467 u32 fault_length; 2468 2469 /* There is no way to choice the pair, like we do one ksz9031. 2470 * We can workaround this limitation by using the MDI-X functionality. 2471 */ 2472 if (pair == 0) 2473 mdix = ETH_TP_MDI; 2474 else 2475 mdix = ETH_TP_MDI_X; 2476 2477 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2478 case PHY_ID_KSZ8081: 2479 ret = ksz8081_config_mdix(phydev, mdix); 2480 break; 2481 case PHY_ID_KSZ886X: 2482 ret = ksz886x_config_mdix(phydev, mdix); 2483 break; 2484 default: 2485 ret = -ENODEV; 2486 } 2487 2488 if (ret) 2489 return ret; 2490 2491 /* Now we are ready to fire. This command will send a 100ns pulse 2492 * to the pair. 2493 */ 2494 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2495 if (ret) 2496 return ret; 2497 2498 ret = ksz886x_cable_test_wait_for_completion(phydev); 2499 if (ret) 2500 return ret; 2501 2502 val = phy_read(phydev, KSZ8081_LMD); 2503 if (val < 0) 2504 return val; 2505 2506 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2507 return -EAGAIN; 2508 2509 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2510 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2511 if (ret) 2512 return ret; 2513 2514 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2515 return 0; 2516 2517 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2518 2519 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2520 } 2521 2522 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2523 bool *finished) 2524 { 2525 const struct kszphy_type *type = phydev->drv->driver_data; 2526 unsigned long pair_mask = type->pair_mask; 2527 int retries = 20; 2528 int ret = 0; 2529 int pair; 2530 2531 *finished = false; 2532 2533 /* Try harder if link partner is active */ 2534 while (pair_mask && retries--) { 2535 for_each_set_bit(pair, &pair_mask, 4) { 2536 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2537 ret = lan8814_cable_test_one_pair(phydev, pair); 2538 else 2539 ret = ksz886x_cable_test_one_pair(phydev, pair); 2540 if (ret == -EAGAIN) 2541 continue; 2542 if (ret < 0) 2543 return ret; 2544 clear_bit(pair, &pair_mask); 2545 } 2546 /* If link partner is in autonegotiation mode it will send 2ms 2547 * of FLPs with at least 6ms of silence. 2548 * Add 2ms sleep to have better chances to hit this silence. 2549 */ 2550 if (pair_mask) 2551 msleep(2); 2552 } 2553 2554 *finished = true; 2555 2556 return ret; 2557 } 2558 2559 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2560 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2561 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2562 2563 #define LAN8814_QSGMII_SOFT_RESET 0x43 2564 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2565 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2566 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2567 #define LAN8814_ALIGN_SWAP 0x4a 2568 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2569 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2570 2571 #define LAN8804_ALIGN_SWAP 0x4a 2572 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2573 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2574 #define LAN8814_CLOCK_MANAGEMENT 0xd 2575 #define LAN8814_LINK_QUALITY 0x8e 2576 2577 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2578 { 2579 int data; 2580 2581 phy_lock_mdio_bus(phydev); 2582 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2583 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2584 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2585 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2586 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2587 phy_unlock_mdio_bus(phydev); 2588 2589 return data; 2590 } 2591 2592 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2593 u16 val) 2594 { 2595 phy_lock_mdio_bus(phydev); 2596 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2597 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2598 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2599 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2600 2601 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2602 if (val != 0) 2603 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2604 val); 2605 phy_unlock_mdio_bus(phydev); 2606 return val; 2607 } 2608 2609 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2610 { 2611 u16 val = 0; 2612 2613 if (enable) 2614 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2615 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2616 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2617 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2618 2619 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2620 } 2621 2622 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2623 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2624 { 2625 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2626 *seconds = (*seconds << 16) | 2627 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2628 2629 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2630 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2631 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2632 2633 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2634 } 2635 2636 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2637 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2638 { 2639 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2640 *seconds = *seconds << 16 | 2641 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2642 2643 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2644 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2645 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2646 2647 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2648 } 2649 2650 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2651 { 2652 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2653 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2654 2655 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2656 SOF_TIMESTAMPING_RX_HARDWARE | 2657 SOF_TIMESTAMPING_RAW_HARDWARE; 2658 2659 info->phc_index = ptp_clock_index(shared->ptp_clock); 2660 2661 info->tx_types = 2662 (1 << HWTSTAMP_TX_OFF) | 2663 (1 << HWTSTAMP_TX_ON) | 2664 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2665 2666 info->rx_filters = 2667 (1 << HWTSTAMP_FILTER_NONE) | 2668 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2669 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2670 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2671 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2672 2673 return 0; 2674 } 2675 2676 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2677 { 2678 int i; 2679 2680 for (i = 0; i < FIFO_SIZE; ++i) 2681 lanphy_read_page_reg(phydev, 5, 2682 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2683 2684 /* Read to clear overflow status bit */ 2685 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2686 } 2687 2688 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2689 struct kernel_hwtstamp_config *config, 2690 struct netlink_ext_ack *extack) 2691 { 2692 struct kszphy_ptp_priv *ptp_priv = 2693 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2694 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2695 int txcfg = 0, rxcfg = 0; 2696 int pkt_ts_enable; 2697 int tx_mod; 2698 2699 ptp_priv->hwts_tx_type = config->tx_type; 2700 ptp_priv->rx_filter = config->rx_filter; 2701 2702 switch (config->rx_filter) { 2703 case HWTSTAMP_FILTER_NONE: 2704 ptp_priv->layer = 0; 2705 ptp_priv->version = 0; 2706 break; 2707 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2708 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2709 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2710 ptp_priv->layer = PTP_CLASS_L4; 2711 ptp_priv->version = PTP_CLASS_V2; 2712 break; 2713 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2714 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2715 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2716 ptp_priv->layer = PTP_CLASS_L2; 2717 ptp_priv->version = PTP_CLASS_V2; 2718 break; 2719 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2720 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2721 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2722 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2723 ptp_priv->version = PTP_CLASS_V2; 2724 break; 2725 default: 2726 return -ERANGE; 2727 } 2728 2729 if (ptp_priv->layer & PTP_CLASS_L2) { 2730 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2731 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2732 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2733 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2734 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2735 } 2736 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2737 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2738 2739 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2740 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2741 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2742 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2743 2744 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2745 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2746 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2747 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2748 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2749 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2750 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2751 } 2752 2753 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2754 lan8814_config_ts_intr(ptp_priv->phydev, true); 2755 else 2756 lan8814_config_ts_intr(ptp_priv->phydev, false); 2757 2758 /* In case of multiple starts and stops, these needs to be cleared */ 2759 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2760 list_del(&rx_ts->list); 2761 kfree(rx_ts); 2762 } 2763 skb_queue_purge(&ptp_priv->rx_queue); 2764 skb_queue_purge(&ptp_priv->tx_queue); 2765 2766 lan8814_flush_fifo(ptp_priv->phydev, false); 2767 lan8814_flush_fifo(ptp_priv->phydev, true); 2768 2769 return 0; 2770 } 2771 2772 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2773 struct sk_buff *skb, int type) 2774 { 2775 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2776 2777 switch (ptp_priv->hwts_tx_type) { 2778 case HWTSTAMP_TX_ONESTEP_SYNC: 2779 if (ptp_msg_is_sync(skb, type)) { 2780 kfree_skb(skb); 2781 return; 2782 } 2783 fallthrough; 2784 case HWTSTAMP_TX_ON: 2785 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2786 skb_queue_tail(&ptp_priv->tx_queue, skb); 2787 break; 2788 case HWTSTAMP_TX_OFF: 2789 default: 2790 kfree_skb(skb); 2791 break; 2792 } 2793 } 2794 2795 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2796 { 2797 struct ptp_header *ptp_header; 2798 u32 type; 2799 2800 skb_push(skb, ETH_HLEN); 2801 type = ptp_classify_raw(skb); 2802 ptp_header = ptp_parse_header(skb, type); 2803 skb_pull_inline(skb, ETH_HLEN); 2804 2805 if (!ptp_header) 2806 return false; 2807 2808 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2809 return true; 2810 } 2811 2812 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2813 struct sk_buff *skb) 2814 { 2815 struct skb_shared_hwtstamps *shhwtstamps; 2816 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2817 unsigned long flags; 2818 bool ret = false; 2819 u16 skb_sig; 2820 2821 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2822 return ret; 2823 2824 /* Iterate over all RX timestamps and match it with the received skbs */ 2825 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2826 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2827 /* Check if we found the signature we were looking for. */ 2828 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2829 continue; 2830 2831 shhwtstamps = skb_hwtstamps(skb); 2832 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2833 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2834 rx_ts->nsec); 2835 list_del(&rx_ts->list); 2836 kfree(rx_ts); 2837 2838 ret = true; 2839 break; 2840 } 2841 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2842 2843 if (ret) 2844 netif_rx(skb); 2845 return ret; 2846 } 2847 2848 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2849 { 2850 struct kszphy_ptp_priv *ptp_priv = 2851 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2852 2853 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2854 type == PTP_CLASS_NONE) 2855 return false; 2856 2857 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2858 return false; 2859 2860 /* If we failed to match then add it to the queue for when the timestamp 2861 * will come 2862 */ 2863 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2864 skb_queue_tail(&ptp_priv->rx_queue, skb); 2865 2866 return true; 2867 } 2868 2869 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2870 time64_t sec, u32 nsec) 2871 { 2872 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 2873 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 2874 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 2875 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 2876 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 2877 2878 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2879 } 2880 2881 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2882 time64_t *sec, u32 *nsec) 2883 { 2884 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2885 2886 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 2887 *sec <<= 16; 2888 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2889 *sec <<= 16; 2890 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2891 2892 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2893 *nsec <<= 16; 2894 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2895 } 2896 2897 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2898 struct timespec64 *ts) 2899 { 2900 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2901 ptp_clock_info); 2902 struct phy_device *phydev = shared->phydev; 2903 u32 nano_seconds; 2904 time64_t seconds; 2905 2906 mutex_lock(&shared->shared_lock); 2907 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2908 mutex_unlock(&shared->shared_lock); 2909 ts->tv_sec = seconds; 2910 ts->tv_nsec = nano_seconds; 2911 2912 return 0; 2913 } 2914 2915 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2916 const struct timespec64 *ts) 2917 { 2918 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2919 ptp_clock_info); 2920 struct phy_device *phydev = shared->phydev; 2921 2922 mutex_lock(&shared->shared_lock); 2923 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2924 mutex_unlock(&shared->shared_lock); 2925 2926 return 0; 2927 } 2928 2929 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 2930 s64 start_sec, u32 start_nsec) 2931 { 2932 /* Set the start time */ 2933 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 2934 lower_16_bits(start_sec)); 2935 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 2936 upper_16_bits(start_sec)); 2937 2938 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 2939 lower_16_bits(start_nsec)); 2940 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 2941 upper_16_bits(start_nsec) & 0x3fff); 2942 } 2943 2944 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 2945 { 2946 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 2947 sec + LAN8814_BUFFER_TIME, 0); 2948 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 2949 sec + LAN8814_BUFFER_TIME, 0); 2950 } 2951 2952 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2953 s64 time_step_ns) 2954 { 2955 u32 nano_seconds_step; 2956 u64 abs_time_step_ns; 2957 time64_t set_seconds; 2958 u32 nano_seconds; 2959 u32 remainder; 2960 s32 seconds; 2961 2962 if (time_step_ns > 15000000000LL) { 2963 /* convert to clock set */ 2964 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2965 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2966 &remainder); 2967 nano_seconds += remainder; 2968 if (nano_seconds >= 1000000000) { 2969 set_seconds++; 2970 nano_seconds -= 1000000000; 2971 } 2972 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2973 lan8814_ptp_update_target(phydev, set_seconds); 2974 return; 2975 } else if (time_step_ns < -15000000000LL) { 2976 /* convert to clock set */ 2977 time_step_ns = -time_step_ns; 2978 2979 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2980 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2981 &remainder); 2982 nano_seconds_step = remainder; 2983 if (nano_seconds < nano_seconds_step) { 2984 set_seconds--; 2985 nano_seconds += 1000000000; 2986 } 2987 nano_seconds -= nano_seconds_step; 2988 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2989 lan8814_ptp_update_target(phydev, set_seconds); 2990 return; 2991 } 2992 2993 /* do clock step */ 2994 if (time_step_ns >= 0) { 2995 abs_time_step_ns = (u64)time_step_ns; 2996 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2997 &remainder); 2998 nano_seconds = remainder; 2999 } else { 3000 abs_time_step_ns = (u64)(-time_step_ns); 3001 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3002 &remainder)); 3003 nano_seconds = remainder; 3004 if (nano_seconds > 0) { 3005 /* subtracting nano seconds is not allowed 3006 * convert to subtracting from seconds, 3007 * and adding to nanoseconds 3008 */ 3009 seconds--; 3010 nano_seconds = (1000000000 - nano_seconds); 3011 } 3012 } 3013 3014 if (nano_seconds > 0) { 3015 /* add 8 ns to cover the likely normal increment */ 3016 nano_seconds += 8; 3017 } 3018 3019 if (nano_seconds >= 1000000000) { 3020 /* carry into seconds */ 3021 seconds++; 3022 nano_seconds -= 1000000000; 3023 } 3024 3025 while (seconds) { 3026 u32 nsec; 3027 3028 if (seconds > 0) { 3029 u32 adjustment_value = (u32)seconds; 3030 u16 adjustment_value_lo, adjustment_value_hi; 3031 3032 if (adjustment_value > 0xF) 3033 adjustment_value = 0xF; 3034 3035 adjustment_value_lo = adjustment_value & 0xffff; 3036 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3037 3038 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3039 adjustment_value_lo); 3040 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3041 PTP_LTC_STEP_ADJ_DIR_ | 3042 adjustment_value_hi); 3043 seconds -= ((s32)adjustment_value); 3044 3045 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3046 set_seconds -= adjustment_value; 3047 lan8814_ptp_update_target(phydev, set_seconds); 3048 } else { 3049 u32 adjustment_value = (u32)(-seconds); 3050 u16 adjustment_value_lo, adjustment_value_hi; 3051 3052 if (adjustment_value > 0xF) 3053 adjustment_value = 0xF; 3054 3055 adjustment_value_lo = adjustment_value & 0xffff; 3056 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3057 3058 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3059 adjustment_value_lo); 3060 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3061 adjustment_value_hi); 3062 seconds += ((s32)adjustment_value); 3063 3064 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3065 set_seconds += adjustment_value; 3066 lan8814_ptp_update_target(phydev, set_seconds); 3067 } 3068 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3069 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3070 } 3071 if (nano_seconds) { 3072 u16 nano_seconds_lo; 3073 u16 nano_seconds_hi; 3074 3075 nano_seconds_lo = nano_seconds & 0xffff; 3076 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3077 3078 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3079 nano_seconds_lo); 3080 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3081 PTP_LTC_STEP_ADJ_DIR_ | 3082 nano_seconds_hi); 3083 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3084 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3085 } 3086 } 3087 3088 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3089 { 3090 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3091 ptp_clock_info); 3092 struct phy_device *phydev = shared->phydev; 3093 3094 mutex_lock(&shared->shared_lock); 3095 lan8814_ptp_clock_step(phydev, delta); 3096 mutex_unlock(&shared->shared_lock); 3097 3098 return 0; 3099 } 3100 3101 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3102 { 3103 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3104 ptp_clock_info); 3105 struct phy_device *phydev = shared->phydev; 3106 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3107 bool positive = true; 3108 u32 kszphy_rate_adj; 3109 3110 if (scaled_ppm < 0) { 3111 scaled_ppm = -scaled_ppm; 3112 positive = false; 3113 } 3114 3115 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3116 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3117 3118 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3119 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3120 3121 if (positive) 3122 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3123 3124 mutex_lock(&shared->shared_lock); 3125 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3126 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3127 mutex_unlock(&shared->shared_lock); 3128 3129 return 0; 3130 } 3131 3132 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3133 s64 period_sec, u32 period_nsec) 3134 { 3135 lanphy_write_page_reg(phydev, 4, 3136 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3137 lower_16_bits(period_sec)); 3138 lanphy_write_page_reg(phydev, 4, 3139 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3140 upper_16_bits(period_sec)); 3141 3142 lanphy_write_page_reg(phydev, 4, 3143 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3144 lower_16_bits(period_nsec)); 3145 lanphy_write_page_reg(phydev, 4, 3146 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3147 upper_16_bits(period_nsec) & 0x3fff); 3148 } 3149 3150 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3151 int pulse_width) 3152 { 3153 u16 val; 3154 3155 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3156 /* Set the pulse width of the event */ 3157 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3158 /* Make sure that the target clock will be incremented each time when 3159 * local time reaches or pass it 3160 */ 3161 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3162 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3163 /* Set the polarity high */ 3164 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3165 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3166 } 3167 3168 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3169 { 3170 u16 val; 3171 3172 /* Set target to too far in the future, effectively disabling it */ 3173 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3174 3175 /* And then reload once it recheas the target */ 3176 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3177 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3178 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3179 } 3180 3181 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3182 { 3183 u16 val; 3184 3185 /* Disable gpio alternate function, 3186 * 1: select as gpio, 3187 * 0: select alt func 3188 */ 3189 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3190 val |= LAN8814_GPIO_EN_BIT(pin); 3191 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3192 3193 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3194 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3195 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3196 3197 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3198 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3199 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3200 } 3201 3202 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3203 { 3204 int val; 3205 3206 /* Set as gpio output */ 3207 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3208 val |= LAN8814_GPIO_DIR_BIT(pin); 3209 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3210 3211 /* Enable gpio 0:for alternate function, 1:gpio */ 3212 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3213 val &= ~LAN8814_GPIO_EN_BIT(pin); 3214 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3215 3216 /* Set buffer type to push pull */ 3217 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3218 val |= LAN8814_GPIO_BUF_BIT(pin); 3219 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3220 } 3221 3222 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3223 struct ptp_clock_request *rq, int on) 3224 { 3225 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3226 ptp_clock_info); 3227 struct phy_device *phydev = shared->phydev; 3228 struct timespec64 ts_on, ts_period; 3229 s64 on_nsec, period_nsec; 3230 int pulse_width; 3231 int pin, event; 3232 3233 /* Reject requests with unsupported flags */ 3234 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 3235 return -EOPNOTSUPP; 3236 3237 mutex_lock(&shared->shared_lock); 3238 event = rq->perout.index; 3239 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3240 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3241 mutex_unlock(&shared->shared_lock); 3242 return -EBUSY; 3243 } 3244 3245 if (!on) { 3246 lan8814_ptp_perout_off(phydev, pin); 3247 lan8814_ptp_disable_event(phydev, event); 3248 mutex_unlock(&shared->shared_lock); 3249 return 0; 3250 } 3251 3252 ts_on.tv_sec = rq->perout.on.sec; 3253 ts_on.tv_nsec = rq->perout.on.nsec; 3254 on_nsec = timespec64_to_ns(&ts_on); 3255 3256 ts_period.tv_sec = rq->perout.period.sec; 3257 ts_period.tv_nsec = rq->perout.period.nsec; 3258 period_nsec = timespec64_to_ns(&ts_period); 3259 3260 if (period_nsec < 200) { 3261 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3262 phydev_name(phydev)); 3263 mutex_unlock(&shared->shared_lock); 3264 return -EOPNOTSUPP; 3265 } 3266 3267 if (on_nsec >= period_nsec) { 3268 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3269 phydev_name(phydev)); 3270 mutex_unlock(&shared->shared_lock); 3271 return -EINVAL; 3272 } 3273 3274 switch (on_nsec) { 3275 case 200000000: 3276 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3277 break; 3278 case 100000000: 3279 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3280 break; 3281 case 50000000: 3282 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3283 break; 3284 case 10000000: 3285 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3286 break; 3287 case 5000000: 3288 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3289 break; 3290 case 1000000: 3291 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3292 break; 3293 case 500000: 3294 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3295 break; 3296 case 100000: 3297 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3298 break; 3299 case 50000: 3300 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3301 break; 3302 case 10000: 3303 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3304 break; 3305 case 5000: 3306 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3307 break; 3308 case 1000: 3309 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3310 break; 3311 case 500: 3312 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3313 break; 3314 case 100: 3315 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3316 break; 3317 default: 3318 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3319 phydev_name(phydev)); 3320 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3321 break; 3322 } 3323 3324 /* Configure to pulse every period */ 3325 lan8814_ptp_enable_event(phydev, event, pulse_width); 3326 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3327 rq->perout.start.nsec); 3328 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3329 rq->perout.period.nsec); 3330 lan8814_ptp_perout_on(phydev, pin); 3331 mutex_unlock(&shared->shared_lock); 3332 3333 return 0; 3334 } 3335 3336 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3337 { 3338 u16 tmp; 3339 3340 /* Set as gpio input */ 3341 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3342 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3343 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3344 3345 /* Map the pin to ltc pin 0 of the capture map registers */ 3346 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3347 tmp |= pin; 3348 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3349 3350 /* Enable capture on the edges of the ltc pin */ 3351 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3352 if (flags & PTP_RISING_EDGE) 3353 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3354 if (flags & PTP_FALLING_EDGE) 3355 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3356 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3357 3358 /* Enable interrupt top interrupt */ 3359 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3360 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3361 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3362 } 3363 3364 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3365 { 3366 u16 tmp; 3367 3368 /* Set as gpio out */ 3369 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3370 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3371 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3372 3373 /* Enable alternate, 0:for alternate function, 1:gpio */ 3374 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3375 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3376 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3377 3378 /* Clear the mapping of pin to registers 0 of the capture registers */ 3379 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3380 tmp &= ~GENMASK(3, 0); 3381 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3382 3383 /* Disable capture on both of the edges */ 3384 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3385 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3386 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3387 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3388 3389 /* Disable interrupt top interrupt */ 3390 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3391 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3392 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3393 } 3394 3395 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3396 struct ptp_clock_request *rq, int on) 3397 { 3398 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3399 ptp_clock_info); 3400 struct phy_device *phydev = shared->phydev; 3401 int pin; 3402 3403 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 3404 PTP_EXTTS_EDGES | 3405 PTP_STRICT_FLAGS)) 3406 return -EOPNOTSUPP; 3407 3408 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3409 rq->extts.index); 3410 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3411 return -EINVAL; 3412 3413 mutex_lock(&shared->shared_lock); 3414 if (on) 3415 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3416 else 3417 lan8814_ptp_extts_off(phydev, pin); 3418 3419 mutex_unlock(&shared->shared_lock); 3420 3421 return 0; 3422 } 3423 3424 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3425 struct ptp_clock_request *rq, int on) 3426 { 3427 switch (rq->type) { 3428 case PTP_CLK_REQ_PEROUT: 3429 return lan8814_ptp_perout(ptpci, rq, on); 3430 case PTP_CLK_REQ_EXTTS: 3431 return lan8814_ptp_extts(ptpci, rq, on); 3432 default: 3433 return -EINVAL; 3434 } 3435 } 3436 3437 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3438 enum ptp_pin_function func, unsigned int chan) 3439 { 3440 switch (func) { 3441 case PTP_PF_NONE: 3442 case PTP_PF_PEROUT: 3443 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3444 * there is only chan 0 (event A) and for pin 1 there is only 3445 * chan 1 (event B) 3446 */ 3447 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3448 return -1; 3449 break; 3450 case PTP_PF_EXTTS: 3451 if (pin != LAN8814_PTP_EXTTS_NUM) 3452 return -1; 3453 break; 3454 default: 3455 return -1; 3456 } 3457 3458 return 0; 3459 } 3460 3461 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3462 { 3463 struct ptp_header *ptp_header; 3464 u32 type; 3465 3466 type = ptp_classify_raw(skb); 3467 ptp_header = ptp_parse_header(skb, type); 3468 3469 if (!ptp_header) 3470 return false; 3471 3472 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3473 return true; 3474 } 3475 3476 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3477 u32 seconds, u32 nsec, u16 seq_id) 3478 { 3479 struct skb_shared_hwtstamps shhwtstamps; 3480 struct sk_buff *skb, *skb_tmp; 3481 unsigned long flags; 3482 bool ret = false; 3483 u16 skb_sig; 3484 3485 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3486 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3487 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3488 continue; 3489 3490 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3491 continue; 3492 3493 __skb_unlink(skb, &ptp_priv->tx_queue); 3494 ret = true; 3495 break; 3496 } 3497 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3498 3499 if (ret) { 3500 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3501 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3502 skb_complete_tx_timestamp(skb, &shhwtstamps); 3503 } 3504 } 3505 3506 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3507 { 3508 struct phy_device *phydev = ptp_priv->phydev; 3509 u32 seconds, nsec; 3510 u16 seq_id; 3511 3512 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3513 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3514 } 3515 3516 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3517 { 3518 struct phy_device *phydev = ptp_priv->phydev; 3519 u32 reg; 3520 3521 do { 3522 lan8814_dequeue_tx_skb(ptp_priv); 3523 3524 /* If other timestamps are available in the FIFO, 3525 * process them. 3526 */ 3527 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3528 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3529 } 3530 3531 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3532 struct lan8814_ptp_rx_ts *rx_ts) 3533 { 3534 struct skb_shared_hwtstamps *shhwtstamps; 3535 struct sk_buff *skb, *skb_tmp; 3536 unsigned long flags; 3537 bool ret = false; 3538 u16 skb_sig; 3539 3540 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3541 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3542 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3543 continue; 3544 3545 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3546 continue; 3547 3548 __skb_unlink(skb, &ptp_priv->rx_queue); 3549 3550 ret = true; 3551 break; 3552 } 3553 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3554 3555 if (ret) { 3556 shhwtstamps = skb_hwtstamps(skb); 3557 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3558 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3559 netif_rx(skb); 3560 } 3561 3562 return ret; 3563 } 3564 3565 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3566 struct lan8814_ptp_rx_ts *rx_ts) 3567 { 3568 unsigned long flags; 3569 3570 /* If we failed to match the skb add it to the queue for when 3571 * the frame will come 3572 */ 3573 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3574 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3575 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3576 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3577 } else { 3578 kfree(rx_ts); 3579 } 3580 } 3581 3582 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3583 { 3584 struct phy_device *phydev = ptp_priv->phydev; 3585 struct lan8814_ptp_rx_ts *rx_ts; 3586 u32 reg; 3587 3588 do { 3589 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3590 if (!rx_ts) 3591 return; 3592 3593 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3594 &rx_ts->seq_id); 3595 lan8814_match_rx_ts(ptp_priv, rx_ts); 3596 3597 /* If other timestamps are available in the FIFO, 3598 * process them. 3599 */ 3600 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3601 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3602 } 3603 3604 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3605 { 3606 struct kszphy_priv *priv = phydev->priv; 3607 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3608 3609 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3610 lan8814_get_tx_ts(ptp_priv); 3611 3612 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3613 lan8814_get_rx_ts(ptp_priv); 3614 3615 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3616 lan8814_flush_fifo(phydev, true); 3617 skb_queue_purge(&ptp_priv->tx_queue); 3618 } 3619 3620 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3621 lan8814_flush_fifo(phydev, false); 3622 skb_queue_purge(&ptp_priv->rx_queue); 3623 } 3624 } 3625 3626 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3627 { 3628 struct phy_device *phydev = shared->phydev; 3629 struct ptp_clock_event ptp_event = {0}; 3630 unsigned long nsec; 3631 s64 sec; 3632 u16 tmp; 3633 3634 /* This is 0 because whatever was the input pin it was mapped it to 3635 * ltc gpio pin 0 3636 */ 3637 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3638 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3639 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3640 3641 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3642 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3643 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3644 return -1; 3645 3646 if (tmp & BIT(0)) { 3647 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3648 sec <<= 16; 3649 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3650 3651 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3652 nsec <<= 16; 3653 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3654 } else { 3655 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3656 sec <<= 16; 3657 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3658 3659 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3660 nsec <<= 16; 3661 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3662 } 3663 3664 ptp_event.index = 0; 3665 ptp_event.timestamp = ktime_set(sec, nsec); 3666 ptp_event.type = PTP_CLOCK_EXTTS; 3667 ptp_clock_event(shared->ptp_clock, &ptp_event); 3668 3669 return 0; 3670 } 3671 3672 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3673 { 3674 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3675 int ret; 3676 3677 mutex_lock(&shared->shared_lock); 3678 ret = lan8814_gpio_process_cap(shared); 3679 mutex_unlock(&shared->shared_lock); 3680 3681 return ret; 3682 } 3683 3684 static int lan8804_config_init(struct phy_device *phydev) 3685 { 3686 int val; 3687 3688 /* MDI-X setting for swap A,B transmit */ 3689 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3690 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3691 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3692 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3693 3694 /* Make sure that the PHY will not stop generating the clock when the 3695 * link partner goes down 3696 */ 3697 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3698 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3699 3700 return 0; 3701 } 3702 3703 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3704 { 3705 int status; 3706 3707 status = phy_read(phydev, LAN8814_INTS); 3708 if (status < 0) { 3709 phy_error(phydev); 3710 return IRQ_NONE; 3711 } 3712 3713 if (status > 0) 3714 phy_trigger_machine(phydev); 3715 3716 return IRQ_HANDLED; 3717 } 3718 3719 #define LAN8804_OUTPUT_CONTROL 25 3720 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3721 #define LAN8804_CONTROL 31 3722 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3723 3724 static int lan8804_config_intr(struct phy_device *phydev) 3725 { 3726 int err; 3727 3728 /* This is an internal PHY of lan966x and is not possible to change the 3729 * polarity on the GIC found in lan966x, therefore change the polarity 3730 * of the interrupt in the PHY from being active low instead of active 3731 * high. 3732 */ 3733 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3734 3735 /* By default interrupt buffer is open-drain in which case the interrupt 3736 * can be active only low. Therefore change the interrupt buffer to be 3737 * push-pull to be able to change interrupt polarity 3738 */ 3739 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3740 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3741 3742 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3743 err = phy_read(phydev, LAN8814_INTS); 3744 if (err < 0) 3745 return err; 3746 3747 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3748 if (err) 3749 return err; 3750 } else { 3751 err = phy_write(phydev, LAN8814_INTC, 0); 3752 if (err) 3753 return err; 3754 3755 err = phy_read(phydev, LAN8814_INTS); 3756 if (err < 0) 3757 return err; 3758 } 3759 3760 return 0; 3761 } 3762 3763 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3764 { 3765 int ret = IRQ_NONE; 3766 int irq_status; 3767 3768 irq_status = phy_read(phydev, LAN8814_INTS); 3769 if (irq_status < 0) { 3770 phy_error(phydev); 3771 return IRQ_NONE; 3772 } 3773 3774 if (irq_status & LAN8814_INT_LINK) { 3775 phy_trigger_machine(phydev); 3776 ret = IRQ_HANDLED; 3777 } 3778 3779 while (true) { 3780 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3781 if (!irq_status) 3782 break; 3783 3784 lan8814_handle_ptp_interrupt(phydev, irq_status); 3785 ret = IRQ_HANDLED; 3786 } 3787 3788 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 3789 ret = IRQ_HANDLED; 3790 3791 return ret; 3792 } 3793 3794 static int lan8814_ack_interrupt(struct phy_device *phydev) 3795 { 3796 /* bit[12..0] int status, which is a read and clear register. */ 3797 int rc; 3798 3799 rc = phy_read(phydev, LAN8814_INTS); 3800 3801 return (rc < 0) ? rc : 0; 3802 } 3803 3804 static int lan8814_config_intr(struct phy_device *phydev) 3805 { 3806 int err; 3807 3808 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3809 LAN8814_INTR_CTRL_REG_POLARITY | 3810 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3811 3812 /* enable / disable interrupts */ 3813 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3814 err = lan8814_ack_interrupt(phydev); 3815 if (err) 3816 return err; 3817 3818 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3819 } else { 3820 err = phy_write(phydev, LAN8814_INTC, 0); 3821 if (err) 3822 return err; 3823 3824 err = lan8814_ack_interrupt(phydev); 3825 } 3826 3827 return err; 3828 } 3829 3830 static void lan8814_ptp_init(struct phy_device *phydev) 3831 { 3832 struct kszphy_priv *priv = phydev->priv; 3833 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3834 u32 temp; 3835 3836 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3837 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3838 return; 3839 3840 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3841 3842 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3843 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3844 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3845 3846 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3847 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3848 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3849 3850 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3851 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3852 3853 /* Removing default registers configs related to L2 and IP */ 3854 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3855 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3856 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3857 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3858 3859 /* Disable checking for minorVersionPTP field */ 3860 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 3861 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3862 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 3863 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3864 3865 skb_queue_head_init(&ptp_priv->tx_queue); 3866 skb_queue_head_init(&ptp_priv->rx_queue); 3867 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3868 spin_lock_init(&ptp_priv->rx_ts_lock); 3869 3870 ptp_priv->phydev = phydev; 3871 3872 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3873 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3874 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3875 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3876 3877 phydev->mii_ts = &ptp_priv->mii_ts; 3878 3879 /* Timestamp selected by default to keep legacy API */ 3880 phydev->default_timestamp = true; 3881 } 3882 3883 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3884 { 3885 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3886 3887 /* Initialise shared lock for clock*/ 3888 mutex_init(&shared->shared_lock); 3889 3890 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 3891 LAN8814_PTP_GPIO_NUM, 3892 sizeof(*shared->pin_config), 3893 GFP_KERNEL); 3894 if (!shared->pin_config) 3895 return -ENOMEM; 3896 3897 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 3898 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 3899 3900 memset(ptp_pin, 0, sizeof(*ptp_pin)); 3901 snprintf(ptp_pin->name, 3902 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 3903 ptp_pin->index = i; 3904 ptp_pin->func = PTP_PF_NONE; 3905 } 3906 3907 shared->ptp_clock_info.owner = THIS_MODULE; 3908 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3909 shared->ptp_clock_info.max_adj = 31249999; 3910 shared->ptp_clock_info.n_alarm = 0; 3911 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 3912 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 3913 shared->ptp_clock_info.pps = 0; 3914 shared->ptp_clock_info.pin_config = shared->pin_config; 3915 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 3916 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3917 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3918 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3919 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3920 shared->ptp_clock_info.getcrosststamp = NULL; 3921 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 3922 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 3923 3924 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3925 &phydev->mdio.dev); 3926 if (IS_ERR(shared->ptp_clock)) { 3927 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3928 PTR_ERR(shared->ptp_clock)); 3929 return -EINVAL; 3930 } 3931 3932 /* Check if PHC support is missing at the configuration level */ 3933 if (!shared->ptp_clock) 3934 return 0; 3935 3936 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3937 3938 shared->phydev = phydev; 3939 3940 /* The EP.4 is shared between all the PHYs in the package and also it 3941 * can be accessed by any of the PHYs 3942 */ 3943 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3944 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3945 PTP_OPERATING_MODE_STANDALONE_); 3946 3947 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 3948 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 3949 3950 return 0; 3951 } 3952 3953 static void lan8814_setup_led(struct phy_device *phydev, int val) 3954 { 3955 int temp; 3956 3957 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3958 3959 if (val) 3960 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3961 else 3962 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3963 3964 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3965 } 3966 3967 static int lan8814_config_init(struct phy_device *phydev) 3968 { 3969 struct kszphy_priv *lan8814 = phydev->priv; 3970 int val; 3971 3972 /* Reset the PHY */ 3973 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3974 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3975 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3976 3977 /* Disable ANEG with QSGMII PCS Host side */ 3978 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3979 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3980 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3981 3982 /* MDI-X setting for swap A,B transmit */ 3983 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3984 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3985 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3986 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3987 3988 if (lan8814->led_mode >= 0) 3989 lan8814_setup_led(phydev, lan8814->led_mode); 3990 3991 return 0; 3992 } 3993 3994 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3995 * function called in suspend. Because the GPIO line can be shared, so if one of 3996 * the phys goes back in coma mode, then all the other PHYs will go, which is 3997 * wrong. 3998 */ 3999 static int lan8814_release_coma_mode(struct phy_device *phydev) 4000 { 4001 struct gpio_desc *gpiod; 4002 4003 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4004 GPIOD_OUT_HIGH_OPEN_DRAIN | 4005 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4006 if (IS_ERR(gpiod)) 4007 return PTR_ERR(gpiod); 4008 4009 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4010 gpiod_set_value_cansleep(gpiod, 0); 4011 4012 return 0; 4013 } 4014 4015 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4016 { 4017 u16 val; 4018 4019 /* It was noticed that when traffic is passing through the PHY and the 4020 * cable is removed then the LED was still one even though there is no 4021 * link 4022 */ 4023 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4024 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4025 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4026 } 4027 4028 static void lan8814_update_meas_time(struct phy_device *phydev) 4029 { 4030 u16 val; 4031 4032 /* By setting the measure time to a value of 0xb this will allow cables 4033 * longer than 100m to be used. This configuration can be used 4034 * regardless of the mode of operation of the PHY 4035 */ 4036 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4037 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4038 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4039 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4040 } 4041 4042 static int lan8814_probe(struct phy_device *phydev) 4043 { 4044 const struct kszphy_type *type = phydev->drv->driver_data; 4045 struct kszphy_priv *priv; 4046 u16 addr; 4047 int err; 4048 4049 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4050 if (!priv) 4051 return -ENOMEM; 4052 4053 phydev->priv = priv; 4054 4055 priv->type = type; 4056 4057 kszphy_parse_led_mode(phydev); 4058 4059 /* Strap-in value for PHY address, below register read gives starting 4060 * phy address value 4061 */ 4062 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4063 devm_phy_package_join(&phydev->mdio.dev, phydev, 4064 addr, sizeof(struct lan8814_shared_priv)); 4065 4066 if (phy_package_init_once(phydev)) { 4067 err = lan8814_release_coma_mode(phydev); 4068 if (err) 4069 return err; 4070 4071 err = lan8814_ptp_probe_once(phydev); 4072 if (err) 4073 return err; 4074 } 4075 4076 lan8814_ptp_init(phydev); 4077 4078 /* Errata workarounds */ 4079 lan8814_clear_2psp_bit(phydev); 4080 lan8814_update_meas_time(phydev); 4081 4082 return 0; 4083 } 4084 4085 #define LAN8841_MMD_TIMER_REG 0 4086 #define LAN8841_MMD0_REGISTER_17 17 4087 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4088 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4089 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4090 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4091 #define LAN8841_MMD_ANALOG_REG 28 4092 #define LAN8841_ANALOG_CONTROL_1 1 4093 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4094 #define LAN8841_ANALOG_CONTROL_10 13 4095 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4096 #define LAN8841_ANALOG_CONTROL_11 14 4097 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4098 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4099 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4100 #define LAN8841_BTRX_POWER_DOWN 70 4101 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4102 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4103 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4104 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4105 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4106 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4107 #define LAN8841_ADC_CHANNEL_MASK 198 4108 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4109 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4110 #define LAN8841_PTP_RX_VERSION 374 4111 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4112 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4113 #define LAN8841_PTP_TX_VERSION 438 4114 #define LAN8841_PTP_CMD_CTL 256 4115 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4116 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4117 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4118 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4119 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4120 #define LAN8841_PTP_RX_MODE 381 4121 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4122 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4123 4124 static int lan8841_config_init(struct phy_device *phydev) 4125 { 4126 int ret; 4127 4128 ret = ksz9131_config_init(phydev); 4129 if (ret) 4130 return ret; 4131 4132 /* Initialize the HW by resetting everything */ 4133 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4134 LAN8841_PTP_CMD_CTL, 4135 LAN8841_PTP_CMD_CTL_PTP_RESET, 4136 LAN8841_PTP_CMD_CTL_PTP_RESET); 4137 4138 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4139 LAN8841_PTP_CMD_CTL, 4140 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4141 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4142 4143 /* Don't process any frames */ 4144 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4145 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4146 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4147 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4148 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4149 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4150 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4151 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4152 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4153 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4154 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4155 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4156 4157 /* Disable checking for minorVersionPTP field */ 4158 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4159 LAN8841_PTP_RX_VERSION, 0xff00); 4160 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4161 LAN8841_PTP_TX_VERSION, 0xff00); 4162 4163 /* 100BT Clause 40 improvenent errata */ 4164 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4165 LAN8841_ANALOG_CONTROL_1, 4166 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4167 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4168 LAN8841_ANALOG_CONTROL_10, 4169 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4170 4171 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4172 * Magnetics 4173 */ 4174 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4175 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4176 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4177 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4178 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4179 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4180 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4181 LAN8841_BTRX_POWER_DOWN, 4182 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4183 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4184 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4185 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4186 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4187 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4188 } 4189 4190 /* LDO Adjustment errata */ 4191 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4192 LAN8841_ANALOG_CONTROL_11, 4193 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4194 4195 /* 100BT RGMII latency tuning errata */ 4196 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4197 LAN8841_ADC_CHANNEL_MASK, 0x0); 4198 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4199 LAN8841_MMD0_REGISTER_17, 4200 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4201 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4202 4203 return 0; 4204 } 4205 4206 #define LAN8841_OUTPUT_CTRL 25 4207 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4208 #define LAN8841_INT_PTP BIT(9) 4209 4210 static int lan8841_config_intr(struct phy_device *phydev) 4211 { 4212 int err; 4213 4214 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4215 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4216 4217 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4218 err = phy_read(phydev, LAN8814_INTS); 4219 if (err < 0) 4220 return err; 4221 4222 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4223 * even if it PTP is not enabled. Because the underneath blocks 4224 * will not enable the PTP so we will never get the PTP 4225 * interrupt. 4226 */ 4227 err = phy_write(phydev, LAN8814_INTC, 4228 LAN8814_INT_LINK | LAN8841_INT_PTP); 4229 } else { 4230 err = phy_write(phydev, LAN8814_INTC, 0); 4231 if (err) 4232 return err; 4233 4234 err = phy_read(phydev, LAN8814_INTS); 4235 if (err < 0) 4236 return err; 4237 4238 /* Getting a positive value doesn't mean that is an error, it 4239 * just indicates what was the status. Therefore make sure to 4240 * clear the value and say that there is no error. 4241 */ 4242 err = 0; 4243 } 4244 4245 return err; 4246 } 4247 4248 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4249 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4250 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4251 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4252 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4253 #define LAN8841_PTP_TX_MSG_HEADER2 455 4254 4255 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4256 u32 *sec, u32 *nsec, u16 *seq) 4257 { 4258 struct phy_device *phydev = ptp_priv->phydev; 4259 4260 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4261 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4262 return false; 4263 4264 *nsec = ((*nsec & 0x3fff) << 16); 4265 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4266 4267 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4268 *sec = *sec << 16; 4269 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4270 4271 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4272 4273 return true; 4274 } 4275 4276 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4277 { 4278 u32 sec, nsec; 4279 u16 seq; 4280 4281 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4282 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4283 } 4284 4285 #define LAN8841_PTP_INT_STS 259 4286 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4287 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4288 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4289 4290 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4291 { 4292 struct phy_device *phydev = ptp_priv->phydev; 4293 int i; 4294 4295 for (i = 0; i < FIFO_SIZE; ++i) 4296 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4297 4298 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4299 } 4300 4301 #define LAN8841_PTP_GPIO_CAP_STS 506 4302 #define LAN8841_PTP_GPIO_SEL 327 4303 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4304 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4305 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4306 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4307 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4308 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4309 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4310 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4311 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4312 4313 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4314 { 4315 struct phy_device *phydev = ptp_priv->phydev; 4316 struct ptp_clock_event ptp_event = {0}; 4317 int pin, ret, tmp; 4318 s32 sec, nsec; 4319 4320 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4321 if (pin == -1) 4322 return; 4323 4324 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4325 if (tmp < 0) 4326 return; 4327 4328 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4329 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4330 if (ret) 4331 return; 4332 4333 mutex_lock(&ptp_priv->ptp_lock); 4334 if (tmp & BIT(pin)) { 4335 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4336 sec <<= 16; 4337 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4338 4339 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4340 nsec <<= 16; 4341 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4342 } else { 4343 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4344 sec <<= 16; 4345 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4346 4347 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4348 nsec <<= 16; 4349 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4350 } 4351 mutex_unlock(&ptp_priv->ptp_lock); 4352 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4353 if (ret) 4354 return; 4355 4356 ptp_event.index = 0; 4357 ptp_event.timestamp = ktime_set(sec, nsec); 4358 ptp_event.type = PTP_CLOCK_EXTTS; 4359 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4360 } 4361 4362 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4363 { 4364 struct kszphy_priv *priv = phydev->priv; 4365 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4366 u16 status; 4367 4368 do { 4369 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4370 4371 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4372 lan8841_ptp_process_tx_ts(ptp_priv); 4373 4374 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4375 lan8841_gpio_process_cap(ptp_priv); 4376 4377 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4378 lan8841_ptp_flush_fifo(ptp_priv); 4379 skb_queue_purge(&ptp_priv->tx_queue); 4380 } 4381 4382 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4383 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4384 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4385 } 4386 4387 #define LAN8841_INTS_PTP BIT(9) 4388 4389 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4390 { 4391 irqreturn_t ret = IRQ_NONE; 4392 int irq_status; 4393 4394 irq_status = phy_read(phydev, LAN8814_INTS); 4395 if (irq_status < 0) { 4396 phy_error(phydev); 4397 return IRQ_NONE; 4398 } 4399 4400 if (irq_status & LAN8814_INT_LINK) { 4401 phy_trigger_machine(phydev); 4402 ret = IRQ_HANDLED; 4403 } 4404 4405 if (irq_status & LAN8841_INTS_PTP) { 4406 lan8841_handle_ptp_interrupt(phydev); 4407 ret = IRQ_HANDLED; 4408 } 4409 4410 return ret; 4411 } 4412 4413 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4414 struct kernel_ethtool_ts_info *info) 4415 { 4416 struct kszphy_ptp_priv *ptp_priv; 4417 4418 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4419 4420 info->phc_index = ptp_priv->ptp_clock ? 4421 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4422 if (info->phc_index == -1) 4423 return 0; 4424 4425 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4426 SOF_TIMESTAMPING_RX_HARDWARE | 4427 SOF_TIMESTAMPING_RAW_HARDWARE; 4428 4429 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4430 (1 << HWTSTAMP_TX_ON) | 4431 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4432 4433 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4434 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4435 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4436 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4437 4438 return 0; 4439 } 4440 4441 #define LAN8841_PTP_INT_EN 260 4442 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4443 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4444 4445 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4446 bool enable) 4447 { 4448 struct phy_device *phydev = ptp_priv->phydev; 4449 4450 if (enable) { 4451 /* Enable interrupts on the TX side */ 4452 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4453 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4454 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4455 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4456 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4457 4458 /* Enable the modification of the frame on RX side, 4459 * this will add the ns and 2 bits of sec in the reserved field 4460 * of the PTP header 4461 */ 4462 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4463 LAN8841_PTP_RX_MODE, 4464 LAN8841_PTP_INSERT_TS_EN | 4465 LAN8841_PTP_INSERT_TS_32BIT, 4466 LAN8841_PTP_INSERT_TS_EN | 4467 LAN8841_PTP_INSERT_TS_32BIT); 4468 4469 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4470 } else { 4471 /* Disable interrupts on the TX side */ 4472 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4473 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4474 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4475 4476 /* Disable modification of the RX frames */ 4477 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4478 LAN8841_PTP_RX_MODE, 4479 LAN8841_PTP_INSERT_TS_EN | 4480 LAN8841_PTP_INSERT_TS_32BIT, 0); 4481 4482 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4483 } 4484 } 4485 4486 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4487 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4488 #define LAN8841_PTP_TX_MOD 445 4489 4490 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4491 struct kernel_hwtstamp_config *config, 4492 struct netlink_ext_ack *extack) 4493 { 4494 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4495 struct phy_device *phydev = ptp_priv->phydev; 4496 int txcfg = 0, rxcfg = 0; 4497 int pkt_ts_enable; 4498 4499 ptp_priv->hwts_tx_type = config->tx_type; 4500 ptp_priv->rx_filter = config->rx_filter; 4501 4502 switch (config->rx_filter) { 4503 case HWTSTAMP_FILTER_NONE: 4504 ptp_priv->layer = 0; 4505 ptp_priv->version = 0; 4506 break; 4507 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4508 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4509 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4510 ptp_priv->layer = PTP_CLASS_L4; 4511 ptp_priv->version = PTP_CLASS_V2; 4512 break; 4513 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4514 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4515 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4516 ptp_priv->layer = PTP_CLASS_L2; 4517 ptp_priv->version = PTP_CLASS_V2; 4518 break; 4519 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4520 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4521 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4522 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4523 ptp_priv->version = PTP_CLASS_V2; 4524 break; 4525 default: 4526 return -ERANGE; 4527 } 4528 4529 /* Setup parsing of the frames and enable the timestamping for ptp 4530 * frames 4531 */ 4532 if (ptp_priv->layer & PTP_CLASS_L2) { 4533 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4534 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4535 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4536 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4537 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4538 } 4539 4540 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4541 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4542 4543 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4544 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4545 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4546 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4547 4548 /* Enable / disable of the TX timestamp in the SYNC frames */ 4549 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4550 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4551 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4552 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4553 4554 /* Now enable/disable the timestamping */ 4555 lan8841_ptp_enable_processing(ptp_priv, 4556 config->rx_filter != HWTSTAMP_FILTER_NONE); 4557 4558 skb_queue_purge(&ptp_priv->tx_queue); 4559 4560 lan8841_ptp_flush_fifo(ptp_priv); 4561 4562 return 0; 4563 } 4564 4565 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4566 struct sk_buff *skb, int type) 4567 { 4568 struct kszphy_ptp_priv *ptp_priv = 4569 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4570 struct ptp_header *header = ptp_parse_header(skb, type); 4571 struct skb_shared_hwtstamps *shhwtstamps; 4572 struct timespec64 ts; 4573 unsigned long flags; 4574 u32 ts_header; 4575 4576 if (!header) 4577 return false; 4578 4579 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4580 type == PTP_CLASS_NONE) 4581 return false; 4582 4583 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4584 return false; 4585 4586 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4587 ts.tv_sec = ptp_priv->seconds; 4588 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4589 ts_header = __be32_to_cpu(header->reserved2); 4590 4591 shhwtstamps = skb_hwtstamps(skb); 4592 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4593 4594 /* Check for any wrap arounds for the second part */ 4595 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4596 ts.tv_sec -= GENMASK(1, 0) + 1; 4597 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4598 ts.tv_sec += 1; 4599 4600 shhwtstamps->hwtstamp = 4601 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4602 ts_header & GENMASK(29, 0)); 4603 header->reserved2 = 0; 4604 4605 netif_rx(skb); 4606 4607 return true; 4608 } 4609 4610 #define LAN8841_EVENT_A 0 4611 #define LAN8841_EVENT_B 1 4612 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4613 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4614 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4615 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4616 4617 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4618 s64 sec, u32 nsec) 4619 { 4620 struct phy_device *phydev = ptp_priv->phydev; 4621 int ret; 4622 4623 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4624 upper_16_bits(sec)); 4625 if (ret) 4626 return ret; 4627 4628 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4629 lower_16_bits(sec)); 4630 if (ret) 4631 return ret; 4632 4633 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4634 upper_16_bits(nsec)); 4635 if (ret) 4636 return ret; 4637 4638 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4639 lower_16_bits(nsec)); 4640 } 4641 4642 #define LAN8841_BUFFER_TIME 2 4643 4644 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4645 const struct timespec64 *ts) 4646 { 4647 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4648 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4649 } 4650 4651 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4652 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4653 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4654 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4655 4656 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4657 s64 sec, u32 nsec) 4658 { 4659 struct phy_device *phydev = ptp_priv->phydev; 4660 int ret; 4661 4662 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4663 upper_16_bits(sec)); 4664 if (ret) 4665 return ret; 4666 4667 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4668 lower_16_bits(sec)); 4669 if (ret) 4670 return ret; 4671 4672 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4673 upper_16_bits(nsec)); 4674 if (ret) 4675 return ret; 4676 4677 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4678 lower_16_bits(nsec)); 4679 } 4680 4681 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4682 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4683 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4684 #define LAN8841_PTP_LTC_SET_NS_HI 265 4685 #define LAN8841_PTP_LTC_SET_NS_LO 266 4686 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4687 4688 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4689 const struct timespec64 *ts) 4690 { 4691 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4692 ptp_clock_info); 4693 struct phy_device *phydev = ptp_priv->phydev; 4694 unsigned long flags; 4695 int ret; 4696 4697 /* Set the value to be stored */ 4698 mutex_lock(&ptp_priv->ptp_lock); 4699 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4700 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4701 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4702 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4703 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4704 4705 /* Set the command to load the LTC */ 4706 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4707 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4708 ret = lan8841_ptp_update_target(ptp_priv, ts); 4709 mutex_unlock(&ptp_priv->ptp_lock); 4710 4711 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4712 ptp_priv->seconds = ts->tv_sec; 4713 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4714 4715 return ret; 4716 } 4717 4718 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4719 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4720 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4721 #define LAN8841_PTP_LTC_RD_NS_HI 361 4722 #define LAN8841_PTP_LTC_RD_NS_LO 362 4723 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4724 4725 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4726 struct timespec64 *ts) 4727 { 4728 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4729 ptp_clock_info); 4730 struct phy_device *phydev = ptp_priv->phydev; 4731 time64_t s; 4732 s64 ns; 4733 4734 mutex_lock(&ptp_priv->ptp_lock); 4735 /* Issue the command to read the LTC */ 4736 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4737 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4738 4739 /* Read the LTC */ 4740 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4741 s <<= 16; 4742 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4743 s <<= 16; 4744 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4745 4746 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4747 ns <<= 16; 4748 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4749 mutex_unlock(&ptp_priv->ptp_lock); 4750 4751 set_normalized_timespec64(ts, s, ns); 4752 return 0; 4753 } 4754 4755 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4756 struct timespec64 *ts) 4757 { 4758 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4759 ptp_clock_info); 4760 struct phy_device *phydev = ptp_priv->phydev; 4761 time64_t s; 4762 4763 mutex_lock(&ptp_priv->ptp_lock); 4764 /* Issue the command to read the LTC */ 4765 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4766 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4767 4768 /* Read the LTC */ 4769 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4770 s <<= 16; 4771 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4772 s <<= 16; 4773 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4774 mutex_unlock(&ptp_priv->ptp_lock); 4775 4776 set_normalized_timespec64(ts, s, 0); 4777 } 4778 4779 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4780 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4781 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4782 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4783 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4784 4785 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4786 { 4787 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4788 ptp_clock_info); 4789 struct phy_device *phydev = ptp_priv->phydev; 4790 struct timespec64 ts; 4791 bool add = true; 4792 u32 nsec; 4793 s32 sec; 4794 int ret; 4795 4796 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4797 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4798 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4799 * increment so the value can be bigger than 15 sec. Therefore limit the 4800 * possible adjustments so we will not have these corner cases 4801 */ 4802 if (delta > 10000000000LL || delta < -10000000000LL) { 4803 /* The timeadjustment is too big, so fall back using set time */ 4804 u64 now; 4805 4806 ptp->gettime64(ptp, &ts); 4807 4808 now = ktime_to_ns(timespec64_to_ktime(ts)); 4809 ts = ns_to_timespec64(now + delta); 4810 4811 ptp->settime64(ptp, &ts); 4812 return 0; 4813 } 4814 4815 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4816 if (delta < 0 && nsec != 0) { 4817 /* It is not allowed to adjust low the nsec part, therefore 4818 * subtract more from second part and add to nanosecond such 4819 * that would roll over, so the second part will increase 4820 */ 4821 sec--; 4822 nsec = NSEC_PER_SEC - nsec; 4823 } 4824 4825 /* Calculate the adjustments and the direction */ 4826 if (delta < 0) 4827 add = false; 4828 4829 if (nsec > 0) 4830 /* add 8 ns to cover the likely normal increment */ 4831 nsec += 8; 4832 4833 if (nsec >= NSEC_PER_SEC) { 4834 /* carry into seconds */ 4835 sec++; 4836 nsec -= NSEC_PER_SEC; 4837 } 4838 4839 mutex_lock(&ptp_priv->ptp_lock); 4840 if (sec) { 4841 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4842 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4843 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4844 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4845 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4846 } 4847 4848 if (nsec) { 4849 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4850 nsec & 0xffff); 4851 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4852 (nsec >> 16) & 0x3fff); 4853 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4854 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4855 } 4856 mutex_unlock(&ptp_priv->ptp_lock); 4857 4858 /* Update the target clock */ 4859 ptp->gettime64(ptp, &ts); 4860 mutex_lock(&ptp_priv->ptp_lock); 4861 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4862 mutex_unlock(&ptp_priv->ptp_lock); 4863 4864 return ret; 4865 } 4866 4867 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4868 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4869 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4870 4871 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4872 { 4873 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4874 ptp_clock_info); 4875 struct phy_device *phydev = ptp_priv->phydev; 4876 bool faster = true; 4877 u32 rate; 4878 4879 if (!scaled_ppm) 4880 return 0; 4881 4882 if (scaled_ppm < 0) { 4883 scaled_ppm = -scaled_ppm; 4884 faster = false; 4885 } 4886 4887 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4888 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4889 4890 mutex_lock(&ptp_priv->ptp_lock); 4891 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4892 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4893 : upper_16_bits(rate) & 0x3fff); 4894 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4895 mutex_unlock(&ptp_priv->ptp_lock); 4896 4897 return 0; 4898 } 4899 4900 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4901 enum ptp_pin_function func, unsigned int chan) 4902 { 4903 switch (func) { 4904 case PTP_PF_NONE: 4905 case PTP_PF_PEROUT: 4906 case PTP_PF_EXTTS: 4907 break; 4908 default: 4909 return -1; 4910 } 4911 4912 return 0; 4913 } 4914 4915 #define LAN8841_PTP_GPIO_NUM 10 4916 #define LAN8841_GPIO_EN 128 4917 #define LAN8841_GPIO_DIR 129 4918 #define LAN8841_GPIO_BUF 130 4919 4920 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4921 { 4922 struct phy_device *phydev = ptp_priv->phydev; 4923 int ret; 4924 4925 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4926 if (ret) 4927 return ret; 4928 4929 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4930 if (ret) 4931 return ret; 4932 4933 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4934 } 4935 4936 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4937 { 4938 struct phy_device *phydev = ptp_priv->phydev; 4939 int ret; 4940 4941 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4942 if (ret) 4943 return ret; 4944 4945 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4946 if (ret) 4947 return ret; 4948 4949 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4950 } 4951 4952 #define LAN8841_GPIO_DATA_SEL1 131 4953 #define LAN8841_GPIO_DATA_SEL2 132 4954 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4955 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4956 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4957 #define LAN8841_PTP_GENERAL_CONFIG 257 4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4961 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4962 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4963 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4964 4965 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4966 u8 event) 4967 { 4968 struct phy_device *phydev = ptp_priv->phydev; 4969 u16 tmp; 4970 int ret; 4971 4972 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4973 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4974 * depending on the pin, it requires to read a different register 4975 */ 4976 if (pin < 5) { 4977 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4978 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4979 } else { 4980 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4981 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4982 } 4983 if (ret) 4984 return ret; 4985 4986 /* Disable the event */ 4987 if (event == LAN8841_EVENT_A) 4988 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4989 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4990 else 4991 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4992 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4993 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4994 } 4995 4996 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4997 u8 event, int pulse_width) 4998 { 4999 struct phy_device *phydev = ptp_priv->phydev; 5000 u16 tmp; 5001 int ret; 5002 5003 /* Enable the event */ 5004 if (event == LAN8841_EVENT_A) 5005 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5006 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5007 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5008 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5009 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5010 else 5011 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5012 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5013 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5014 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5015 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5016 if (ret) 5017 return ret; 5018 5019 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5020 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5021 * depending on the pin, it requires to read a different register 5022 */ 5023 if (event == LAN8841_EVENT_A) 5024 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5025 else 5026 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5027 5028 if (pin < 5) 5029 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5030 tmp << (3 * pin)); 5031 else 5032 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5033 tmp << (3 * (pin - 5))); 5034 5035 return ret; 5036 } 5037 5038 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5039 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5040 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5041 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5042 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5043 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5049 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5050 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5051 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5052 5053 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5054 struct ptp_clock_request *rq, int on) 5055 { 5056 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5057 ptp_clock_info); 5058 struct phy_device *phydev = ptp_priv->phydev; 5059 struct timespec64 ts_on, ts_period; 5060 s64 on_nsec, period_nsec; 5061 int pulse_width; 5062 int pin; 5063 int ret; 5064 5065 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 5066 return -EOPNOTSUPP; 5067 5068 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5069 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5070 return -EINVAL; 5071 5072 if (!on) { 5073 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5074 if (ret) 5075 return ret; 5076 5077 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5078 } 5079 5080 ts_on.tv_sec = rq->perout.on.sec; 5081 ts_on.tv_nsec = rq->perout.on.nsec; 5082 on_nsec = timespec64_to_ns(&ts_on); 5083 5084 ts_period.tv_sec = rq->perout.period.sec; 5085 ts_period.tv_nsec = rq->perout.period.nsec; 5086 period_nsec = timespec64_to_ns(&ts_period); 5087 5088 if (period_nsec < 200) { 5089 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5090 phydev_name(phydev)); 5091 return -EOPNOTSUPP; 5092 } 5093 5094 if (on_nsec >= period_nsec) { 5095 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5096 phydev_name(phydev)); 5097 return -EINVAL; 5098 } 5099 5100 switch (on_nsec) { 5101 case 200000000: 5102 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5103 break; 5104 case 100000000: 5105 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5106 break; 5107 case 50000000: 5108 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5109 break; 5110 case 10000000: 5111 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5112 break; 5113 case 5000000: 5114 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5115 break; 5116 case 1000000: 5117 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5118 break; 5119 case 500000: 5120 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5121 break; 5122 case 100000: 5123 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5124 break; 5125 case 50000: 5126 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5127 break; 5128 case 10000: 5129 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5130 break; 5131 case 5000: 5132 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5133 break; 5134 case 1000: 5135 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5136 break; 5137 case 500: 5138 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5139 break; 5140 case 100: 5141 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5142 break; 5143 default: 5144 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5145 phydev_name(phydev)); 5146 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5147 break; 5148 } 5149 5150 mutex_lock(&ptp_priv->ptp_lock); 5151 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5152 rq->perout.start.nsec); 5153 mutex_unlock(&ptp_priv->ptp_lock); 5154 if (ret) 5155 return ret; 5156 5157 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5158 rq->perout.period.nsec); 5159 if (ret) 5160 return ret; 5161 5162 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5163 pulse_width); 5164 if (ret) 5165 return ret; 5166 5167 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5168 if (ret) 5169 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5170 5171 return ret; 5172 } 5173 5174 #define LAN8841_PTP_GPIO_CAP_EN 496 5175 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5176 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5177 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5178 5179 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5180 u32 flags) 5181 { 5182 struct phy_device *phydev = ptp_priv->phydev; 5183 u16 tmp = 0; 5184 int ret; 5185 5186 /* Set GPIO to be intput */ 5187 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5188 if (ret) 5189 return ret; 5190 5191 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5192 if (ret) 5193 return ret; 5194 5195 /* Enable capture on the edges of the pin */ 5196 if (flags & PTP_RISING_EDGE) 5197 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5198 if (flags & PTP_FALLING_EDGE) 5199 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5200 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5201 if (ret) 5202 return ret; 5203 5204 /* Enable interrupt */ 5205 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5206 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5207 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5208 } 5209 5210 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5211 { 5212 struct phy_device *phydev = ptp_priv->phydev; 5213 int ret; 5214 5215 /* Set GPIO to be output */ 5216 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5217 if (ret) 5218 return ret; 5219 5220 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5221 if (ret) 5222 return ret; 5223 5224 /* Disable capture on both of the edges */ 5225 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5226 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5227 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5228 0); 5229 if (ret) 5230 return ret; 5231 5232 /* Disable interrupt */ 5233 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5234 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5235 0); 5236 } 5237 5238 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5239 struct ptp_clock_request *rq, int on) 5240 { 5241 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5242 ptp_clock_info); 5243 int pin; 5244 int ret; 5245 5246 /* Reject requests with unsupported flags */ 5247 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5248 PTP_EXTTS_EDGES | 5249 PTP_STRICT_FLAGS)) 5250 return -EOPNOTSUPP; 5251 5252 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5253 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5254 return -EINVAL; 5255 5256 mutex_lock(&ptp_priv->ptp_lock); 5257 if (on) 5258 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5259 else 5260 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5261 mutex_unlock(&ptp_priv->ptp_lock); 5262 5263 return ret; 5264 } 5265 5266 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5267 struct ptp_clock_request *rq, int on) 5268 { 5269 switch (rq->type) { 5270 case PTP_CLK_REQ_EXTTS: 5271 return lan8841_ptp_extts(ptp, rq, on); 5272 case PTP_CLK_REQ_PEROUT: 5273 return lan8841_ptp_perout(ptp, rq, on); 5274 default: 5275 return -EOPNOTSUPP; 5276 } 5277 5278 return 0; 5279 } 5280 5281 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5282 { 5283 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5284 ptp_clock_info); 5285 struct timespec64 ts; 5286 unsigned long flags; 5287 5288 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5289 5290 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5291 ptp_priv->seconds = ts.tv_sec; 5292 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5293 5294 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5295 } 5296 5297 static struct ptp_clock_info lan8841_ptp_clock_info = { 5298 .owner = THIS_MODULE, 5299 .name = "lan8841 ptp", 5300 .max_adj = 31249999, 5301 .gettime64 = lan8841_ptp_gettime64, 5302 .settime64 = lan8841_ptp_settime64, 5303 .adjtime = lan8841_ptp_adjtime, 5304 .adjfine = lan8841_ptp_adjfine, 5305 .verify = lan8841_ptp_verify, 5306 .enable = lan8841_ptp_enable, 5307 .do_aux_work = lan8841_ptp_do_aux_work, 5308 .n_per_out = LAN8841_PTP_GPIO_NUM, 5309 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5310 .n_pins = LAN8841_PTP_GPIO_NUM, 5311 }; 5312 5313 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5314 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5315 5316 static int lan8841_probe(struct phy_device *phydev) 5317 { 5318 struct kszphy_ptp_priv *ptp_priv; 5319 struct kszphy_priv *priv; 5320 int err; 5321 5322 err = kszphy_probe(phydev); 5323 if (err) 5324 return err; 5325 5326 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5327 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5328 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5329 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5330 5331 /* Register the clock */ 5332 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5333 return 0; 5334 5335 priv = phydev->priv; 5336 ptp_priv = &priv->ptp_priv; 5337 5338 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5339 LAN8841_PTP_GPIO_NUM, 5340 sizeof(*ptp_priv->pin_config), 5341 GFP_KERNEL); 5342 if (!ptp_priv->pin_config) 5343 return -ENOMEM; 5344 5345 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5346 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5347 5348 snprintf(p->name, sizeof(p->name), "pin%d", i); 5349 p->index = i; 5350 p->func = PTP_PF_NONE; 5351 } 5352 5353 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5354 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5355 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5356 &phydev->mdio.dev); 5357 if (IS_ERR(ptp_priv->ptp_clock)) { 5358 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5359 PTR_ERR(ptp_priv->ptp_clock)); 5360 return -EINVAL; 5361 } 5362 5363 if (!ptp_priv->ptp_clock) 5364 return 0; 5365 5366 /* Initialize the SW */ 5367 skb_queue_head_init(&ptp_priv->tx_queue); 5368 ptp_priv->phydev = phydev; 5369 mutex_init(&ptp_priv->ptp_lock); 5370 spin_lock_init(&ptp_priv->seconds_lock); 5371 5372 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5373 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5374 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5375 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5376 5377 phydev->mii_ts = &ptp_priv->mii_ts; 5378 5379 /* Timestamp selected by default to keep legacy API */ 5380 phydev->default_timestamp = true; 5381 5382 return 0; 5383 } 5384 5385 static int lan8804_resume(struct phy_device *phydev) 5386 { 5387 return kszphy_resume(phydev); 5388 } 5389 5390 static int lan8804_suspend(struct phy_device *phydev) 5391 { 5392 return kszphy_generic_suspend(phydev); 5393 } 5394 5395 static int lan8841_resume(struct phy_device *phydev) 5396 { 5397 return kszphy_generic_resume(phydev); 5398 } 5399 5400 static int lan8841_suspend(struct phy_device *phydev) 5401 { 5402 struct kszphy_priv *priv = phydev->priv; 5403 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5404 5405 if (ptp_priv->ptp_clock) 5406 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5407 5408 return kszphy_generic_suspend(phydev); 5409 } 5410 5411 static struct phy_driver ksphy_driver[] = { 5412 { 5413 .phy_id = PHY_ID_KS8737, 5414 .phy_id_mask = MICREL_PHY_ID_MASK, 5415 .name = "Micrel KS8737", 5416 /* PHY_BASIC_FEATURES */ 5417 .driver_data = &ks8737_type, 5418 .probe = kszphy_probe, 5419 .config_init = kszphy_config_init, 5420 .config_intr = kszphy_config_intr, 5421 .handle_interrupt = kszphy_handle_interrupt, 5422 .suspend = kszphy_suspend, 5423 .resume = kszphy_resume, 5424 }, { 5425 .phy_id = PHY_ID_KSZ8021, 5426 .phy_id_mask = 0x00ffffff, 5427 .name = "Micrel KSZ8021 or KSZ8031", 5428 /* PHY_BASIC_FEATURES */ 5429 .driver_data = &ksz8021_type, 5430 .probe = kszphy_probe, 5431 .config_init = kszphy_config_init, 5432 .config_intr = kszphy_config_intr, 5433 .handle_interrupt = kszphy_handle_interrupt, 5434 .get_sset_count = kszphy_get_sset_count, 5435 .get_strings = kszphy_get_strings, 5436 .get_stats = kszphy_get_stats, 5437 .suspend = kszphy_suspend, 5438 .resume = kszphy_resume, 5439 }, { 5440 .phy_id = PHY_ID_KSZ8031, 5441 .phy_id_mask = 0x00ffffff, 5442 .name = "Micrel KSZ8031", 5443 /* PHY_BASIC_FEATURES */ 5444 .driver_data = &ksz8021_type, 5445 .probe = kszphy_probe, 5446 .config_init = kszphy_config_init, 5447 .config_intr = kszphy_config_intr, 5448 .handle_interrupt = kszphy_handle_interrupt, 5449 .get_sset_count = kszphy_get_sset_count, 5450 .get_strings = kszphy_get_strings, 5451 .get_stats = kszphy_get_stats, 5452 .suspend = kszphy_suspend, 5453 .resume = kszphy_resume, 5454 }, { 5455 .phy_id = PHY_ID_KSZ8041, 5456 .phy_id_mask = MICREL_PHY_ID_MASK, 5457 .name = "Micrel KSZ8041", 5458 /* PHY_BASIC_FEATURES */ 5459 .driver_data = &ksz8041_type, 5460 .probe = kszphy_probe, 5461 .config_init = ksz8041_config_init, 5462 .config_aneg = ksz8041_config_aneg, 5463 .config_intr = kszphy_config_intr, 5464 .handle_interrupt = kszphy_handle_interrupt, 5465 .get_sset_count = kszphy_get_sset_count, 5466 .get_strings = kszphy_get_strings, 5467 .get_stats = kszphy_get_stats, 5468 .suspend = ksz8041_suspend, 5469 .resume = ksz8041_resume, 5470 }, { 5471 .phy_id = PHY_ID_KSZ8041RNLI, 5472 .phy_id_mask = MICREL_PHY_ID_MASK, 5473 .name = "Micrel KSZ8041RNLI", 5474 /* PHY_BASIC_FEATURES */ 5475 .driver_data = &ksz8041_type, 5476 .probe = kszphy_probe, 5477 .config_init = kszphy_config_init, 5478 .config_intr = kszphy_config_intr, 5479 .handle_interrupt = kszphy_handle_interrupt, 5480 .get_sset_count = kszphy_get_sset_count, 5481 .get_strings = kszphy_get_strings, 5482 .get_stats = kszphy_get_stats, 5483 .suspend = kszphy_suspend, 5484 .resume = kszphy_resume, 5485 }, { 5486 .name = "Micrel KSZ8051", 5487 /* PHY_BASIC_FEATURES */ 5488 .driver_data = &ksz8051_type, 5489 .probe = kszphy_probe, 5490 .config_init = kszphy_config_init, 5491 .config_intr = kszphy_config_intr, 5492 .handle_interrupt = kszphy_handle_interrupt, 5493 .get_sset_count = kszphy_get_sset_count, 5494 .get_strings = kszphy_get_strings, 5495 .get_stats = kszphy_get_stats, 5496 .match_phy_device = ksz8051_match_phy_device, 5497 .suspend = kszphy_suspend, 5498 .resume = kszphy_resume, 5499 }, { 5500 .phy_id = PHY_ID_KSZ8001, 5501 .name = "Micrel KSZ8001 or KS8721", 5502 .phy_id_mask = 0x00fffffc, 5503 /* PHY_BASIC_FEATURES */ 5504 .driver_data = &ksz8041_type, 5505 .probe = kszphy_probe, 5506 .config_init = kszphy_config_init, 5507 .config_intr = kszphy_config_intr, 5508 .handle_interrupt = kszphy_handle_interrupt, 5509 .get_sset_count = kszphy_get_sset_count, 5510 .get_strings = kszphy_get_strings, 5511 .get_stats = kszphy_get_stats, 5512 .suspend = kszphy_suspend, 5513 .resume = kszphy_resume, 5514 }, { 5515 .phy_id = PHY_ID_KSZ8081, 5516 .name = "Micrel KSZ8081 or KSZ8091", 5517 .phy_id_mask = MICREL_PHY_ID_MASK, 5518 .flags = PHY_POLL_CABLE_TEST, 5519 /* PHY_BASIC_FEATURES */ 5520 .driver_data = &ksz8081_type, 5521 .probe = kszphy_probe, 5522 .config_init = ksz8081_config_init, 5523 .soft_reset = genphy_soft_reset, 5524 .config_aneg = ksz8081_config_aneg, 5525 .read_status = ksz8081_read_status, 5526 .config_intr = kszphy_config_intr, 5527 .handle_interrupt = kszphy_handle_interrupt, 5528 .get_sset_count = kszphy_get_sset_count, 5529 .get_strings = kszphy_get_strings, 5530 .get_stats = kszphy_get_stats, 5531 .suspend = kszphy_suspend, 5532 .resume = kszphy_resume, 5533 .cable_test_start = ksz886x_cable_test_start, 5534 .cable_test_get_status = ksz886x_cable_test_get_status, 5535 }, { 5536 .phy_id = PHY_ID_KSZ8061, 5537 .name = "Micrel KSZ8061", 5538 .phy_id_mask = MICREL_PHY_ID_MASK, 5539 /* PHY_BASIC_FEATURES */ 5540 .probe = kszphy_probe, 5541 .config_init = ksz8061_config_init, 5542 .soft_reset = genphy_soft_reset, 5543 .config_intr = kszphy_config_intr, 5544 .handle_interrupt = kszphy_handle_interrupt, 5545 .suspend = ksz8061_suspend, 5546 .resume = ksz8061_resume, 5547 }, { 5548 .phy_id = PHY_ID_KSZ9021, 5549 .phy_id_mask = 0x000ffffe, 5550 .name = "Micrel KSZ9021 Gigabit PHY", 5551 /* PHY_GBIT_FEATURES */ 5552 .driver_data = &ksz9021_type, 5553 .probe = kszphy_probe, 5554 .get_features = ksz9031_get_features, 5555 .config_init = ksz9021_config_init, 5556 .config_intr = kszphy_config_intr, 5557 .handle_interrupt = kszphy_handle_interrupt, 5558 .get_sset_count = kszphy_get_sset_count, 5559 .get_strings = kszphy_get_strings, 5560 .get_stats = kszphy_get_stats, 5561 .suspend = kszphy_suspend, 5562 .resume = kszphy_resume, 5563 .read_mmd = genphy_read_mmd_unsupported, 5564 .write_mmd = genphy_write_mmd_unsupported, 5565 }, { 5566 .phy_id = PHY_ID_KSZ9031, 5567 .phy_id_mask = MICREL_PHY_ID_MASK, 5568 .name = "Micrel KSZ9031 Gigabit PHY", 5569 .flags = PHY_POLL_CABLE_TEST, 5570 .driver_data = &ksz9021_type, 5571 .probe = kszphy_probe, 5572 .get_features = ksz9031_get_features, 5573 .config_init = ksz9031_config_init, 5574 .soft_reset = genphy_soft_reset, 5575 .read_status = ksz9031_read_status, 5576 .config_intr = kszphy_config_intr, 5577 .handle_interrupt = kszphy_handle_interrupt, 5578 .get_sset_count = kszphy_get_sset_count, 5579 .get_strings = kszphy_get_strings, 5580 .get_stats = kszphy_get_stats, 5581 .suspend = kszphy_suspend, 5582 .resume = kszphy_resume, 5583 .cable_test_start = ksz9x31_cable_test_start, 5584 .cable_test_get_status = ksz9x31_cable_test_get_status, 5585 .set_loopback = ksz9031_set_loopback, 5586 }, { 5587 .phy_id = PHY_ID_LAN8814, 5588 .phy_id_mask = MICREL_PHY_ID_MASK, 5589 .name = "Microchip INDY Gigabit Quad PHY", 5590 .flags = PHY_POLL_CABLE_TEST, 5591 .config_init = lan8814_config_init, 5592 .driver_data = &lan8814_type, 5593 .probe = lan8814_probe, 5594 .soft_reset = genphy_soft_reset, 5595 .read_status = ksz9031_read_status, 5596 .get_sset_count = kszphy_get_sset_count, 5597 .get_strings = kszphy_get_strings, 5598 .get_stats = kszphy_get_stats, 5599 .suspend = genphy_suspend, 5600 .resume = kszphy_resume, 5601 .config_intr = lan8814_config_intr, 5602 .handle_interrupt = lan8814_handle_interrupt, 5603 .cable_test_start = lan8814_cable_test_start, 5604 .cable_test_get_status = ksz886x_cable_test_get_status, 5605 }, { 5606 .phy_id = PHY_ID_LAN8804, 5607 .phy_id_mask = MICREL_PHY_ID_MASK, 5608 .name = "Microchip LAN966X Gigabit PHY", 5609 .config_init = lan8804_config_init, 5610 .driver_data = &ksz9021_type, 5611 .probe = kszphy_probe, 5612 .soft_reset = genphy_soft_reset, 5613 .read_status = ksz9031_read_status, 5614 .get_sset_count = kszphy_get_sset_count, 5615 .get_strings = kszphy_get_strings, 5616 .get_stats = kszphy_get_stats, 5617 .suspend = lan8804_suspend, 5618 .resume = lan8804_resume, 5619 .config_intr = lan8804_config_intr, 5620 .handle_interrupt = lan8804_handle_interrupt, 5621 }, { 5622 .phy_id = PHY_ID_LAN8841, 5623 .phy_id_mask = MICREL_PHY_ID_MASK, 5624 .name = "Microchip LAN8841 Gigabit PHY", 5625 .flags = PHY_POLL_CABLE_TEST, 5626 .driver_data = &lan8841_type, 5627 .config_init = lan8841_config_init, 5628 .probe = lan8841_probe, 5629 .soft_reset = genphy_soft_reset, 5630 .config_intr = lan8841_config_intr, 5631 .handle_interrupt = lan8841_handle_interrupt, 5632 .get_sset_count = kszphy_get_sset_count, 5633 .get_strings = kszphy_get_strings, 5634 .get_stats = kszphy_get_stats, 5635 .suspend = lan8841_suspend, 5636 .resume = lan8841_resume, 5637 .cable_test_start = lan8814_cable_test_start, 5638 .cable_test_get_status = ksz886x_cable_test_get_status, 5639 }, { 5640 .phy_id = PHY_ID_KSZ9131, 5641 .phy_id_mask = MICREL_PHY_ID_MASK, 5642 .name = "Microchip KSZ9131 Gigabit PHY", 5643 /* PHY_GBIT_FEATURES */ 5644 .flags = PHY_POLL_CABLE_TEST, 5645 .driver_data = &ksz9131_type, 5646 .probe = kszphy_probe, 5647 .soft_reset = genphy_soft_reset, 5648 .config_init = ksz9131_config_init, 5649 .config_intr = kszphy_config_intr, 5650 .config_aneg = ksz9131_config_aneg, 5651 .read_status = ksz9131_read_status, 5652 .handle_interrupt = kszphy_handle_interrupt, 5653 .get_sset_count = kszphy_get_sset_count, 5654 .get_strings = kszphy_get_strings, 5655 .get_stats = kszphy_get_stats, 5656 .suspend = kszphy_suspend, 5657 .resume = kszphy_resume, 5658 .cable_test_start = ksz9x31_cable_test_start, 5659 .cable_test_get_status = ksz9x31_cable_test_get_status, 5660 .get_features = ksz9477_get_features, 5661 }, { 5662 .phy_id = PHY_ID_KSZ8873MLL, 5663 .phy_id_mask = MICREL_PHY_ID_MASK, 5664 .name = "Micrel KSZ8873MLL Switch", 5665 /* PHY_BASIC_FEATURES */ 5666 .config_init = kszphy_config_init, 5667 .config_aneg = ksz8873mll_config_aneg, 5668 .read_status = ksz8873mll_read_status, 5669 .suspend = genphy_suspend, 5670 .resume = genphy_resume, 5671 }, { 5672 .phy_id = PHY_ID_KSZ886X, 5673 .phy_id_mask = MICREL_PHY_ID_MASK, 5674 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5675 .driver_data = &ksz886x_type, 5676 /* PHY_BASIC_FEATURES */ 5677 .flags = PHY_POLL_CABLE_TEST, 5678 .config_init = kszphy_config_init, 5679 .config_aneg = ksz886x_config_aneg, 5680 .read_status = ksz886x_read_status, 5681 .suspend = genphy_suspend, 5682 .resume = genphy_resume, 5683 .cable_test_start = ksz886x_cable_test_start, 5684 .cable_test_get_status = ksz886x_cable_test_get_status, 5685 }, { 5686 .name = "Micrel KSZ87XX Switch", 5687 /* PHY_BASIC_FEATURES */ 5688 .config_init = kszphy_config_init, 5689 .match_phy_device = ksz8795_match_phy_device, 5690 .suspend = genphy_suspend, 5691 .resume = genphy_resume, 5692 }, { 5693 .phy_id = PHY_ID_KSZ9477, 5694 .phy_id_mask = MICREL_PHY_ID_MASK, 5695 .name = "Microchip KSZ9477", 5696 /* PHY_GBIT_FEATURES */ 5697 .config_init = ksz9477_config_init, 5698 .config_intr = kszphy_config_intr, 5699 .handle_interrupt = kszphy_handle_interrupt, 5700 .suspend = genphy_suspend, 5701 .resume = ksz9477_resume, 5702 } }; 5703 5704 module_phy_driver(ksphy_driver); 5705 5706 MODULE_DESCRIPTION("Micrel PHY driver"); 5707 MODULE_AUTHOR("David J. Choi"); 5708 MODULE_LICENSE("GPL"); 5709 5710 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5711 { PHY_ID_KSZ9021, 0x000ffffe }, 5712 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5713 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5714 { PHY_ID_KSZ8001, 0x00fffffc }, 5715 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5716 { PHY_ID_KSZ8021, 0x00ffffff }, 5717 { PHY_ID_KSZ8031, 0x00ffffff }, 5718 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5719 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5720 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5721 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5722 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5723 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5724 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5725 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5726 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5727 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5728 { } 5729 }; 5730 5731 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5732