1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_SKUS 0xB 105 106 #define LAN8814_WIRE_PAIR_MASK 0xF 107 108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 109 #define LAN8814_INTC 0x18 110 #define LAN8814_INTS 0x1B 111 112 #define LAN8814_INT_FLF BIT(15) 113 #define LAN8814_INT_LINK_DOWN BIT(2) 114 #define LAN8814_INT_LINK_UP BIT(0) 115 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 116 LAN8814_INT_LINK_DOWN) 117 118 #define LAN8814_INTR_CTRL_REG 0x34 119 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 121 122 #define LAN8814_EEE_STATE 0x38 123 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 124 125 #define LAN8814_PD_CONTROLS 0x9d 126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 128 129 /* Represents 1ppm adjustment in 2^32 format with 130 * each nsec contains 4 clock cycles. 131 * The value is calculated as following: (1/1000000)/((2^-32)/4) 132 */ 133 #define LAN8814_1PPM_FORMAT 17179 134 135 /* Represents 1ppm adjustment in 2^32 format with 136 * each nsec contains 8 clock cycles. 137 * The value is calculated as following: (1/1000000)/((2^-32)/8) 138 */ 139 #define LAN8841_1PPM_FORMAT 34360 140 141 #define PTP_RX_VERSION 0x0248 142 #define PTP_TX_VERSION 0x0288 143 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 144 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 145 146 #define PTP_RX_MOD 0x024F 147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 148 #define PTP_RX_TIMESTAMP_EN 0x024D 149 #define PTP_TX_TIMESTAMP_EN 0x028D 150 151 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 152 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 153 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 154 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 155 156 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 157 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 158 159 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 160 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 161 #define LTC_HARD_RESET 0x023F 162 #define LTC_HARD_RESET_ BIT(0) 163 164 #define TSU_HARD_RESET 0x02C1 165 #define TSU_HARD_RESET_ BIT(0) 166 167 #define PTP_CMD_CTL 0x0200 168 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 169 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 170 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 174 175 #define PTP_COMMON_INT_ENA 0x0204 176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 177 178 #define PTP_CLOCK_SET_SEC_HI 0x0205 179 #define PTP_CLOCK_SET_SEC_MID 0x0206 180 #define PTP_CLOCK_SET_SEC_LO 0x0207 181 #define PTP_CLOCK_SET_NS_HI 0x0208 182 #define PTP_CLOCK_SET_NS_LO 0x0209 183 184 #define PTP_CLOCK_READ_SEC_HI 0x0229 185 #define PTP_CLOCK_READ_SEC_MID 0x022A 186 #define PTP_CLOCK_READ_SEC_LO 0x022B 187 #define PTP_CLOCK_READ_NS_HI 0x022C 188 #define PTP_CLOCK_READ_NS_LO 0x022D 189 190 #define PTP_GPIO_SEL 0x0230 191 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 192 #define PTP_GPIO_CAP_MAP_LO 0x0232 193 194 #define PTP_GPIO_CAP_EN 0x0233 195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 197 198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 200 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 201 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 204 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 205 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 206 207 #define PTP_GPIO_CAP_STS 0x023D 208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 210 211 #define PTP_OPERATING_MODE 0x0241 212 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 213 214 #define PTP_TX_MOD 0x028F 215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 217 218 #define PTP_RX_PARSE_CONFIG 0x0242 219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 222 223 #define PTP_TX_PARSE_CONFIG 0x0282 224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 227 228 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 229 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 230 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 231 232 #define PTP_LTC_STEP_ADJ_HI 0x0212 233 #define PTP_LTC_STEP_ADJ_LO 0x0213 234 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 235 236 #define LAN8814_INTR_STS_REG 0x0033 237 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 238 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 239 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 240 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 241 242 #define PTP_CAP_INFO 0x022A 243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 245 246 #define PTP_TX_EGRESS_SEC_HI 0x0296 247 #define PTP_TX_EGRESS_SEC_LO 0x0297 248 #define PTP_TX_EGRESS_NS_HI 0x0294 249 #define PTP_TX_EGRESS_NS_LO 0x0295 250 #define PTP_TX_MSG_HEADER2 0x0299 251 252 #define PTP_RX_INGRESS_SEC_HI 0x0256 253 #define PTP_RX_INGRESS_SEC_LO 0x0257 254 #define PTP_RX_INGRESS_NS_HI 0x0254 255 #define PTP_RX_INGRESS_NS_LO 0x0255 256 #define PTP_RX_MSG_HEADER2 0x0259 257 258 #define PTP_TSU_INT_EN 0x0200 259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 263 264 #define PTP_TSU_INT_STS 0x0201 265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 269 270 #define LAN8814_LED_CTRL_1 0x0 271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 272 #define LAN8814_LED_CTRL_2 0x1 273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 274 275 /* PHY Control 1 */ 276 #define MII_KSZPHY_CTRL_1 0x1e 277 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 278 279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 280 #define MII_KSZPHY_CTRL_2 0x1f 281 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 282 /* bitmap of PHY register to set interrupt mode */ 283 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 286 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 287 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 289 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 290 291 /* Write/read to/from extended registers */ 292 #define MII_KSZPHY_EXTREG 0x0b 293 #define KSZPHY_EXTREG_WRITE 0x8000 294 295 #define MII_KSZPHY_EXTREG_WRITE 0x0c 296 #define MII_KSZPHY_EXTREG_READ 0x0d 297 298 /* Extended registers */ 299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 300 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 301 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 302 303 #define PS_TO_REG 200 304 #define FIFO_SIZE 8 305 306 #define LAN8814_PTP_GPIO_NUM 24 307 #define LAN8814_PTP_PEROUT_NUM 2 308 #define LAN8814_PTP_EXTTS_NUM 3 309 310 #define LAN8814_BUFFER_TIME 2 311 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 326 327 #define LAN8814_GPIO_EN1 0x20 328 #define LAN8814_GPIO_EN2 0x21 329 #define LAN8814_GPIO_DIR1 0x22 330 #define LAN8814_GPIO_DIR2 0x23 331 #define LAN8814_GPIO_BUF1 0x24 332 #define LAN8814_GPIO_BUF2 0x25 333 334 #define LAN8814_GPIO_EN_ADDR(pin) \ 335 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 336 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 337 #define LAN8814_GPIO_DIR_ADDR(pin) \ 338 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 339 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 340 #define LAN8814_GPIO_BUF_ADDR(pin) \ 341 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 342 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 343 344 #define LAN8814_EVENT_A 0 345 #define LAN8814_EVENT_B 1 346 347 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 349 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 351 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 353 ((event) ? BIT(2) : BIT(0)) 354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 355 ((event) ? BIT(3) : BIT(1)) 356 357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 361 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 366 367 /* Delay used to get the second part from the LTC */ 368 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 369 370 #define LAN8842_REV_8832 0x8832 371 372 #define LAN8814_REV_LAN8814 0x8814 373 #define LAN8814_REV_LAN8818 0x8818 374 375 struct kszphy_hw_stat { 376 const char *string; 377 u8 reg; 378 u8 bits; 379 }; 380 381 static struct kszphy_hw_stat kszphy_hw_stats[] = { 382 { "phy_receive_errors", 21, 16}, 383 { "phy_idle_errors", 10, 8 }, 384 }; 385 386 struct kszphy_type { 387 u32 led_mode_reg; 388 u16 interrupt_level_mask; 389 u16 cable_diag_reg; 390 unsigned long pair_mask; 391 u16 disable_dll_tx_bit; 392 u16 disable_dll_rx_bit; 393 u16 disable_dll_mask; 394 bool has_broadcast_disable; 395 bool has_nand_tree_disable; 396 bool has_rmii_ref_clk_sel; 397 }; 398 399 /* Shared structure between the PHYs of the same package. */ 400 struct lan8814_shared_priv { 401 struct phy_device *phydev; 402 struct ptp_clock *ptp_clock; 403 struct ptp_clock_info ptp_clock_info; 404 struct ptp_pin_desc *pin_config; 405 406 /* Lock for ptp_clock */ 407 struct mutex shared_lock; 408 }; 409 410 struct lan8814_ptp_rx_ts { 411 struct list_head list; 412 u32 seconds; 413 u32 nsec; 414 u16 seq_id; 415 }; 416 417 struct kszphy_ptp_priv { 418 struct mii_timestamper mii_ts; 419 struct phy_device *phydev; 420 421 struct sk_buff_head tx_queue; 422 struct sk_buff_head rx_queue; 423 424 struct list_head rx_ts_list; 425 /* Lock for Rx ts fifo */ 426 spinlock_t rx_ts_lock; 427 428 int hwts_tx_type; 429 enum hwtstamp_rx_filters rx_filter; 430 int layer; 431 int version; 432 433 struct ptp_clock *ptp_clock; 434 struct ptp_clock_info ptp_clock_info; 435 /* Lock for ptp_clock */ 436 struct mutex ptp_lock; 437 struct ptp_pin_desc *pin_config; 438 439 s64 seconds; 440 /* Lock for accessing seconds */ 441 spinlock_t seconds_lock; 442 }; 443 444 struct kszphy_phy_stats { 445 u64 rx_err_pkt_cnt; 446 }; 447 448 struct kszphy_priv { 449 struct kszphy_ptp_priv ptp_priv; 450 const struct kszphy_type *type; 451 struct clk *clk; 452 int led_mode; 453 u16 vct_ctrl1000; 454 bool rmii_ref_clk_sel; 455 bool rmii_ref_clk_sel_val; 456 bool clk_enable; 457 bool is_ptp_available; 458 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 459 struct kszphy_phy_stats phy_stats; 460 }; 461 462 struct lan8842_phy_stats { 463 u64 rx_packets; 464 u64 rx_errors; 465 u64 tx_packets; 466 u64 tx_errors; 467 }; 468 469 struct lan8842_priv { 470 struct lan8842_phy_stats phy_stats; 471 struct kszphy_ptp_priv ptp_priv; 472 u16 rev; 473 }; 474 475 struct lanphy_reg_data { 476 int page; 477 u16 addr; 478 u16 val; 479 }; 480 481 static const struct kszphy_type lan8814_type = { 482 .led_mode_reg = ~LAN8814_LED_CTRL_1, 483 .cable_diag_reg = LAN8814_CABLE_DIAG, 484 .pair_mask = LAN8814_WIRE_PAIR_MASK, 485 }; 486 487 static const struct kszphy_type ksz886x_type = { 488 .cable_diag_reg = KSZ8081_LMD, 489 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 490 }; 491 492 static const struct kszphy_type ksz8021_type = { 493 .led_mode_reg = MII_KSZPHY_CTRL_2, 494 .has_broadcast_disable = true, 495 .has_nand_tree_disable = true, 496 .has_rmii_ref_clk_sel = true, 497 }; 498 499 static const struct kszphy_type ksz8041_type = { 500 .led_mode_reg = MII_KSZPHY_CTRL_1, 501 }; 502 503 static const struct kszphy_type ksz8051_type = { 504 .led_mode_reg = MII_KSZPHY_CTRL_2, 505 .has_nand_tree_disable = true, 506 }; 507 508 static const struct kszphy_type ksz8081_type = { 509 .led_mode_reg = MII_KSZPHY_CTRL_2, 510 .cable_diag_reg = KSZ8081_LMD, 511 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 512 .has_broadcast_disable = true, 513 .has_nand_tree_disable = true, 514 .has_rmii_ref_clk_sel = true, 515 }; 516 517 static const struct kszphy_type ks8737_type = { 518 .interrupt_level_mask = BIT(14), 519 }; 520 521 static const struct kszphy_type ksz9021_type = { 522 .interrupt_level_mask = BIT(14), 523 }; 524 525 static const struct kszphy_type ksz9131_type = { 526 .interrupt_level_mask = BIT(14), 527 .disable_dll_tx_bit = BIT(12), 528 .disable_dll_rx_bit = BIT(12), 529 .disable_dll_mask = BIT_MASK(12), 530 }; 531 532 static const struct kszphy_type lan8841_type = { 533 .disable_dll_tx_bit = BIT(14), 534 .disable_dll_rx_bit = BIT(14), 535 .disable_dll_mask = BIT_MASK(14), 536 .cable_diag_reg = LAN8814_CABLE_DIAG, 537 .pair_mask = LAN8814_WIRE_PAIR_MASK, 538 }; 539 540 static int kszphy_extended_write(struct phy_device *phydev, 541 u32 regnum, u16 val) 542 { 543 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 544 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 545 } 546 547 static int kszphy_extended_read(struct phy_device *phydev, 548 u32 regnum) 549 { 550 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 551 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 552 } 553 554 static int kszphy_ack_interrupt(struct phy_device *phydev) 555 { 556 /* bit[7..0] int status, which is a read and clear register. */ 557 int rc; 558 559 rc = phy_read(phydev, MII_KSZPHY_INTCS); 560 561 return (rc < 0) ? rc : 0; 562 } 563 564 static int kszphy_config_intr(struct phy_device *phydev) 565 { 566 const struct kszphy_type *type = phydev->drv->driver_data; 567 int temp, err; 568 u16 mask; 569 570 if (type && type->interrupt_level_mask) 571 mask = type->interrupt_level_mask; 572 else 573 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 574 575 /* set the interrupt pin active low */ 576 temp = phy_read(phydev, MII_KSZPHY_CTRL); 577 if (temp < 0) 578 return temp; 579 temp &= ~mask; 580 phy_write(phydev, MII_KSZPHY_CTRL, temp); 581 582 /* enable / disable interrupts */ 583 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 584 err = kszphy_ack_interrupt(phydev); 585 if (err) 586 return err; 587 588 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 589 } else { 590 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 591 if (err) 592 return err; 593 594 err = kszphy_ack_interrupt(phydev); 595 } 596 597 return err; 598 } 599 600 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 601 { 602 int irq_status; 603 604 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 605 if (irq_status < 0) { 606 phy_error(phydev); 607 return IRQ_NONE; 608 } 609 610 if (!(irq_status & KSZPHY_INTCS_STATUS)) 611 return IRQ_NONE; 612 613 phy_trigger_machine(phydev); 614 615 return IRQ_HANDLED; 616 } 617 618 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 619 { 620 int ctrl; 621 622 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 623 if (ctrl < 0) 624 return ctrl; 625 626 if (val) 627 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 628 else 629 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 630 631 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 632 } 633 634 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 635 { 636 int rc, temp, shift; 637 638 switch (reg) { 639 case MII_KSZPHY_CTRL_1: 640 shift = 14; 641 break; 642 case MII_KSZPHY_CTRL_2: 643 shift = 4; 644 break; 645 default: 646 return -EINVAL; 647 } 648 649 temp = phy_read(phydev, reg); 650 if (temp < 0) { 651 rc = temp; 652 goto out; 653 } 654 655 temp &= ~(3 << shift); 656 temp |= val << shift; 657 rc = phy_write(phydev, reg, temp); 658 out: 659 if (rc < 0) 660 phydev_err(phydev, "failed to set led mode\n"); 661 662 return rc; 663 } 664 665 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 666 * unique (non-broadcast) address on a shared bus. 667 */ 668 static int kszphy_broadcast_disable(struct phy_device *phydev) 669 { 670 int ret; 671 672 ret = phy_read(phydev, MII_KSZPHY_OMSO); 673 if (ret < 0) 674 goto out; 675 676 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 677 out: 678 if (ret) 679 phydev_err(phydev, "failed to disable broadcast address\n"); 680 681 return ret; 682 } 683 684 static int kszphy_nand_tree_disable(struct phy_device *phydev) 685 { 686 int ret; 687 688 ret = phy_read(phydev, MII_KSZPHY_OMSO); 689 if (ret < 0) 690 goto out; 691 692 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 693 return 0; 694 695 ret = phy_write(phydev, MII_KSZPHY_OMSO, 696 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 697 out: 698 if (ret) 699 phydev_err(phydev, "failed to disable NAND tree mode\n"); 700 701 return ret; 702 } 703 704 /* Some config bits need to be set again on resume, handle them here. */ 705 static int kszphy_config_reset(struct phy_device *phydev) 706 { 707 struct kszphy_priv *priv = phydev->priv; 708 int ret; 709 710 if (priv->rmii_ref_clk_sel) { 711 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 712 if (ret) { 713 phydev_err(phydev, 714 "failed to set rmii reference clock\n"); 715 return ret; 716 } 717 } 718 719 if (priv->type && priv->led_mode >= 0) 720 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 721 722 return 0; 723 } 724 725 static int kszphy_config_init(struct phy_device *phydev) 726 { 727 struct kszphy_priv *priv = phydev->priv; 728 const struct kszphy_type *type; 729 730 if (!priv) 731 return 0; 732 733 type = priv->type; 734 735 if (type && type->has_broadcast_disable) 736 kszphy_broadcast_disable(phydev); 737 738 if (type && type->has_nand_tree_disable) 739 kszphy_nand_tree_disable(phydev); 740 741 return kszphy_config_reset(phydev); 742 } 743 744 static int ksz8041_fiber_mode(struct phy_device *phydev) 745 { 746 struct device_node *of_node = phydev->mdio.dev.of_node; 747 748 return of_property_read_bool(of_node, "micrel,fiber-mode"); 749 } 750 751 static int ksz8041_config_init(struct phy_device *phydev) 752 { 753 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 754 755 /* Limit supported and advertised modes in fiber mode */ 756 if (ksz8041_fiber_mode(phydev)) { 757 phydev->dev_flags |= MICREL_PHY_FXEN; 758 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 760 761 linkmode_and(phydev->supported, phydev->supported, mask); 762 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 763 phydev->supported); 764 linkmode_and(phydev->advertising, phydev->advertising, mask); 765 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 766 phydev->advertising); 767 phydev->autoneg = AUTONEG_DISABLE; 768 } 769 770 return kszphy_config_init(phydev); 771 } 772 773 static int ksz8041_config_aneg(struct phy_device *phydev) 774 { 775 /* Skip auto-negotiation in fiber mode */ 776 if (phydev->dev_flags & MICREL_PHY_FXEN) { 777 phydev->speed = SPEED_100; 778 return 0; 779 } 780 781 return genphy_config_aneg(phydev); 782 } 783 784 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 785 const bool ksz_8051) 786 { 787 int ret; 788 789 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 790 return 0; 791 792 ret = phy_read(phydev, MII_BMSR); 793 if (ret < 0) 794 return ret; 795 796 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 797 * exact PHY ID. However, they can be told apart by the extended 798 * capability registers presence. The KSZ8051 PHY has them while 799 * the switch does not. 800 */ 801 ret &= BMSR_ERCAP; 802 if (ksz_8051) 803 return ret; 804 else 805 return !ret; 806 } 807 808 static int ksz8051_match_phy_device(struct phy_device *phydev, 809 const struct phy_driver *phydrv) 810 { 811 return ksz8051_ksz8795_match_phy_device(phydev, true); 812 } 813 814 static int ksz8081_config_init(struct phy_device *phydev) 815 { 816 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 817 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 818 * pull-down is missing, the factory test mode should be cleared by 819 * manually writing a 0. 820 */ 821 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 822 823 return kszphy_config_init(phydev); 824 } 825 826 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 827 { 828 u16 val; 829 830 switch (ctrl) { 831 case ETH_TP_MDI: 832 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 833 break; 834 case ETH_TP_MDI_X: 835 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 836 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 837 break; 838 case ETH_TP_MDI_AUTO: 839 val = 0; 840 break; 841 default: 842 return 0; 843 } 844 845 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 846 KSZ8081_CTRL2_HP_MDIX | 847 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 848 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 849 KSZ8081_CTRL2_HP_MDIX | val); 850 } 851 852 static int ksz8081_config_aneg(struct phy_device *phydev) 853 { 854 int ret; 855 856 ret = genphy_config_aneg(phydev); 857 if (ret) 858 return ret; 859 860 /* The MDI-X configuration is automatically changed by the PHY after 861 * switching from autoneg off to on. So, take MDI-X configuration under 862 * own control and set it after autoneg configuration was done. 863 */ 864 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 865 } 866 867 static int ksz8081_mdix_update(struct phy_device *phydev) 868 { 869 int ret; 870 871 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 872 if (ret < 0) 873 return ret; 874 875 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 876 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 877 phydev->mdix_ctrl = ETH_TP_MDI_X; 878 else 879 phydev->mdix_ctrl = ETH_TP_MDI; 880 } else { 881 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 882 } 883 884 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 885 if (ret < 0) 886 return ret; 887 888 if (ret & KSZ8081_CTRL1_MDIX_STAT) 889 phydev->mdix = ETH_TP_MDI; 890 else 891 phydev->mdix = ETH_TP_MDI_X; 892 893 return 0; 894 } 895 896 static int ksz8081_read_status(struct phy_device *phydev) 897 { 898 int ret; 899 900 ret = ksz8081_mdix_update(phydev); 901 if (ret < 0) 902 return ret; 903 904 return genphy_read_status(phydev); 905 } 906 907 static int ksz8061_config_init(struct phy_device *phydev) 908 { 909 int ret; 910 911 /* Chip can be powered down by the bootstrap code. */ 912 ret = phy_read(phydev, MII_BMCR); 913 if (ret < 0) 914 return ret; 915 if (ret & BMCR_PDOWN) { 916 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 917 if (ret < 0) 918 return ret; 919 usleep_range(1000, 2000); 920 } 921 922 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 923 if (ret) 924 return ret; 925 926 return kszphy_config_init(phydev); 927 } 928 929 static int ksz8795_match_phy_device(struct phy_device *phydev, 930 const struct phy_driver *phydrv) 931 { 932 return ksz8051_ksz8795_match_phy_device(phydev, false); 933 } 934 935 static int ksz9021_load_values_from_of(struct phy_device *phydev, 936 const struct device_node *of_node, 937 u16 reg, 938 const char *field1, const char *field2, 939 const char *field3, const char *field4) 940 { 941 int val1 = -1; 942 int val2 = -2; 943 int val3 = -3; 944 int val4 = -4; 945 int newval; 946 int matches = 0; 947 948 if (!of_property_read_u32(of_node, field1, &val1)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field2, &val2)) 952 matches++; 953 954 if (!of_property_read_u32(of_node, field3, &val3)) 955 matches++; 956 957 if (!of_property_read_u32(of_node, field4, &val4)) 958 matches++; 959 960 if (!matches) 961 return 0; 962 963 if (matches < 4) 964 newval = kszphy_extended_read(phydev, reg); 965 else 966 newval = 0; 967 968 if (val1 != -1) 969 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 970 971 if (val2 != -2) 972 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 973 974 if (val3 != -3) 975 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 976 977 if (val4 != -4) 978 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 979 980 return kszphy_extended_write(phydev, reg, newval); 981 } 982 983 static int ksz9021_config_init(struct phy_device *phydev) 984 { 985 const struct device_node *of_node; 986 const struct device *dev_walker; 987 988 /* The Micrel driver has a deprecated option to place phy OF 989 * properties in the MAC node. Walk up the tree of devices to 990 * find a device with an OF node. 991 */ 992 dev_walker = &phydev->mdio.dev; 993 do { 994 of_node = dev_walker->of_node; 995 dev_walker = dev_walker->parent; 996 997 } while (!of_node && dev_walker); 998 999 if (of_node) { 1000 ksz9021_load_values_from_of(phydev, of_node, 1001 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 1002 "txen-skew-ps", "txc-skew-ps", 1003 "rxdv-skew-ps", "rxc-skew-ps"); 1004 ksz9021_load_values_from_of(phydev, of_node, 1005 MII_KSZPHY_RX_DATA_PAD_SKEW, 1006 "rxd0-skew-ps", "rxd1-skew-ps", 1007 "rxd2-skew-ps", "rxd3-skew-ps"); 1008 ksz9021_load_values_from_of(phydev, of_node, 1009 MII_KSZPHY_TX_DATA_PAD_SKEW, 1010 "txd0-skew-ps", "txd1-skew-ps", 1011 "txd2-skew-ps", "txd3-skew-ps"); 1012 } 1013 return 0; 1014 } 1015 1016 #define KSZ9031_PS_TO_REG 60 1017 1018 /* Extended registers */ 1019 /* MMD Address 0x0 */ 1020 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1021 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1022 1023 /* MMD Address 0x2 */ 1024 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1025 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1026 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1029 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1030 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1031 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1032 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1033 1034 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1035 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1036 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1037 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1038 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1039 1040 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1041 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1042 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1043 1044 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1045 * provide different RGMII options we need to configure delay offset 1046 * for each pad relative to build in delay. 1047 */ 1048 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1049 * 1.80ns 1050 */ 1051 #define RX_ID 0x7 1052 #define RX_CLK_ID 0x19 1053 1054 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1055 * internal 1.2ns delay. 1056 */ 1057 #define RX_ND 0xc 1058 #define RX_CLK_ND 0x0 1059 1060 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1061 #define TX_ID 0x0 1062 #define TX_CLK_ID 0x1f 1063 1064 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1065 * delay 1066 */ 1067 #define TX_ND 0x7 1068 #define TX_CLK_ND 0xf 1069 1070 /* MMD Address 0x1C */ 1071 #define MII_KSZ9031RN_EDPD 0x23 1072 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1073 1074 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1075 int speed) 1076 { 1077 u16 ctl = BMCR_LOOPBACK; 1078 int val; 1079 1080 if (!enable) 1081 return genphy_loopback(phydev, enable, 0); 1082 1083 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1084 phydev->speed = speed; 1085 else if (speed) 1086 return -EINVAL; 1087 phydev->duplex = DUPLEX_FULL; 1088 1089 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1090 1091 phy_write(phydev, MII_BMCR, ctl); 1092 1093 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1094 5000, 500000, true); 1095 } 1096 1097 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1098 const struct device_node *of_node, 1099 u16 reg, size_t field_sz, 1100 const char *field[], u8 numfields, 1101 bool *update) 1102 { 1103 int val[4] = {-1, -2, -3, -4}; 1104 int matches = 0; 1105 u16 mask; 1106 u16 maxval; 1107 u16 newval; 1108 int i; 1109 1110 for (i = 0; i < numfields; i++) 1111 if (!of_property_read_u32(of_node, field[i], val + i)) 1112 matches++; 1113 1114 if (!matches) 1115 return 0; 1116 1117 *update |= true; 1118 1119 if (matches < numfields) 1120 newval = phy_read_mmd(phydev, 2, reg); 1121 else 1122 newval = 0; 1123 1124 maxval = (field_sz == 4) ? 0xf : 0x1f; 1125 for (i = 0; i < numfields; i++) 1126 if (val[i] != -(i + 1)) { 1127 mask = 0xffff; 1128 mask ^= maxval << (field_sz * i); 1129 newval = (newval & mask) | 1130 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1131 << (field_sz * i)); 1132 } 1133 1134 return phy_write_mmd(phydev, 2, reg, newval); 1135 } 1136 1137 /* Center KSZ9031RNX FLP timing at 16ms. */ 1138 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1139 { 1140 int result; 1141 1142 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1143 0x0006); 1144 if (result) 1145 return result; 1146 1147 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1148 0x1A80); 1149 if (result) 1150 return result; 1151 1152 return genphy_restart_aneg(phydev); 1153 } 1154 1155 /* Enable energy-detect power-down mode */ 1156 static int ksz9031_enable_edpd(struct phy_device *phydev) 1157 { 1158 int reg; 1159 1160 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1161 if (reg < 0) 1162 return reg; 1163 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1164 reg | MII_KSZ9031RN_EDPD_ENABLE); 1165 } 1166 1167 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1168 { 1169 u16 rx, tx, rx_clk, tx_clk; 1170 int ret; 1171 1172 switch (phydev->interface) { 1173 case PHY_INTERFACE_MODE_RGMII: 1174 tx = TX_ND; 1175 tx_clk = TX_CLK_ND; 1176 rx = RX_ND; 1177 rx_clk = RX_CLK_ND; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_ID: 1180 tx = TX_ID; 1181 tx_clk = TX_CLK_ID; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_RXID: 1186 tx = TX_ND; 1187 tx_clk = TX_CLK_ND; 1188 rx = RX_ID; 1189 rx_clk = RX_CLK_ID; 1190 break; 1191 case PHY_INTERFACE_MODE_RGMII_TXID: 1192 tx = TX_ID; 1193 tx_clk = TX_CLK_ID; 1194 rx = RX_ND; 1195 rx_clk = RX_CLK_ND; 1196 break; 1197 default: 1198 return 0; 1199 } 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1204 if (ret < 0) 1205 return ret; 1206 1207 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1208 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1209 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1210 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1211 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1212 if (ret < 0) 1213 return ret; 1214 1215 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1216 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1217 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1218 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1219 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1220 if (ret < 0) 1221 return ret; 1222 1223 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1224 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1225 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1226 } 1227 1228 static int ksz9031_config_init(struct phy_device *phydev) 1229 { 1230 const struct device_node *of_node; 1231 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1232 static const char *rx_data_skews[4] = { 1233 "rxd0-skew-ps", "rxd1-skew-ps", 1234 "rxd2-skew-ps", "rxd3-skew-ps" 1235 }; 1236 static const char *tx_data_skews[4] = { 1237 "txd0-skew-ps", "txd1-skew-ps", 1238 "txd2-skew-ps", "txd3-skew-ps" 1239 }; 1240 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1241 const struct device *dev_walker; 1242 int result; 1243 1244 result = ksz9031_enable_edpd(phydev); 1245 if (result < 0) 1246 return result; 1247 1248 /* The Micrel driver has a deprecated option to place phy OF 1249 * properties in the MAC node. Walk up the tree of devices to 1250 * find a device with an OF node. 1251 */ 1252 dev_walker = &phydev->mdio.dev; 1253 do { 1254 of_node = dev_walker->of_node; 1255 dev_walker = dev_walker->parent; 1256 } while (!of_node && dev_walker); 1257 1258 if (of_node) { 1259 bool update = false; 1260 1261 if (phy_interface_is_rgmii(phydev)) { 1262 result = ksz9031_config_rgmii_delay(phydev); 1263 if (result < 0) 1264 return result; 1265 } 1266 1267 ksz9031_of_load_skew_values(phydev, of_node, 1268 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1269 clk_skews, 2, &update); 1270 1271 ksz9031_of_load_skew_values(phydev, of_node, 1272 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1273 control_skews, 2, &update); 1274 1275 ksz9031_of_load_skew_values(phydev, of_node, 1276 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1277 rx_data_skews, 4, &update); 1278 1279 ksz9031_of_load_skew_values(phydev, of_node, 1280 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1281 tx_data_skews, 4, &update); 1282 1283 if (update && !phy_interface_is_rgmii(phydev)) 1284 phydev_warn(phydev, 1285 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1286 1287 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1288 * When the device links in the 1000BASE-T slave mode only, 1289 * the optional 125MHz reference output clock (CLK125_NDO) 1290 * has wide duty cycle variation. 1291 * 1292 * The optional CLK125_NDO clock does not meet the RGMII 1293 * 45/55 percent (min/max) duty cycle requirement and therefore 1294 * cannot be used directly by the MAC side for clocking 1295 * applications that have setup/hold time requirements on 1296 * rising and falling clock edges. 1297 * 1298 * Workaround: 1299 * Force the phy to be the master to receive a stable clock 1300 * which meets the duty cycle requirement. 1301 */ 1302 if (of_property_read_bool(of_node, "micrel,force-master")) { 1303 result = phy_read(phydev, MII_CTRL1000); 1304 if (result < 0) 1305 goto err_force_master; 1306 1307 /* enable master mode, config & prefer master */ 1308 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1309 result = phy_write(phydev, MII_CTRL1000, result); 1310 if (result < 0) 1311 goto err_force_master; 1312 } 1313 } 1314 1315 return ksz9031_center_flp_timing(phydev); 1316 1317 err_force_master: 1318 phydev_err(phydev, "failed to force the phy to master mode\n"); 1319 return result; 1320 } 1321 1322 #define KSZ9131_SKEW_5BIT_MAX 2400 1323 #define KSZ9131_SKEW_4BIT_MAX 800 1324 #define KSZ9131_OFFSET 700 1325 #define KSZ9131_STEP 100 1326 1327 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1328 struct device_node *of_node, 1329 u16 reg, size_t field_sz, 1330 char *field[], u8 numfields) 1331 { 1332 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1333 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1334 int skewval, skewmax = 0; 1335 int matches = 0; 1336 u16 maxval; 1337 u16 newval; 1338 u16 mask; 1339 int i; 1340 1341 /* psec properties in dts should mean x pico seconds */ 1342 if (field_sz == 5) 1343 skewmax = KSZ9131_SKEW_5BIT_MAX; 1344 else 1345 skewmax = KSZ9131_SKEW_4BIT_MAX; 1346 1347 for (i = 0; i < numfields; i++) 1348 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1349 if (skewval < -KSZ9131_OFFSET) 1350 skewval = -KSZ9131_OFFSET; 1351 else if (skewval > skewmax) 1352 skewval = skewmax; 1353 1354 val[i] = skewval + KSZ9131_OFFSET; 1355 matches++; 1356 } 1357 1358 if (!matches) 1359 return 0; 1360 1361 if (matches < numfields) 1362 newval = phy_read_mmd(phydev, 2, reg); 1363 else 1364 newval = 0; 1365 1366 maxval = (field_sz == 4) ? 0xf : 0x1f; 1367 for (i = 0; i < numfields; i++) 1368 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1369 mask = 0xffff; 1370 mask ^= maxval << (field_sz * i); 1371 newval = (newval & mask) | 1372 (((val[i] / KSZ9131_STEP) & maxval) 1373 << (field_sz * i)); 1374 } 1375 1376 return phy_write_mmd(phydev, 2, reg, newval); 1377 } 1378 1379 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1380 #define KSZ9131RN_RXC_DLL_CTRL 76 1381 #define KSZ9131RN_TXC_DLL_CTRL 77 1382 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1383 1384 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1385 { 1386 const struct kszphy_type *type = phydev->drv->driver_data; 1387 u16 rxcdll_val, txcdll_val; 1388 int ret; 1389 1390 switch (phydev->interface) { 1391 case PHY_INTERFACE_MODE_RGMII: 1392 rxcdll_val = type->disable_dll_rx_bit; 1393 txcdll_val = type->disable_dll_tx_bit; 1394 break; 1395 case PHY_INTERFACE_MODE_RGMII_ID: 1396 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1397 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1398 break; 1399 case PHY_INTERFACE_MODE_RGMII_RXID: 1400 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1401 txcdll_val = type->disable_dll_tx_bit; 1402 break; 1403 case PHY_INTERFACE_MODE_RGMII_TXID: 1404 rxcdll_val = type->disable_dll_rx_bit; 1405 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1406 break; 1407 default: 1408 return 0; 1409 } 1410 1411 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1413 rxcdll_val); 1414 if (ret < 0) 1415 return ret; 1416 1417 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1418 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1419 txcdll_val); 1420 } 1421 1422 /* Silicon Errata DS80000693B 1423 * 1424 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1425 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1426 * according to the datasheet (off if there is no link). 1427 */ 1428 static int ksz9131_led_errata(struct phy_device *phydev) 1429 { 1430 int reg; 1431 1432 reg = phy_read_mmd(phydev, 2, 0); 1433 if (reg < 0) 1434 return reg; 1435 1436 if (!(reg & BIT(4))) 1437 return 0; 1438 1439 return phy_set_bits(phydev, 0x1e, BIT(9)); 1440 } 1441 1442 static int ksz9131_config_init(struct phy_device *phydev) 1443 { 1444 struct device_node *of_node; 1445 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1446 char *rx_data_skews[4] = { 1447 "rxd0-skew-psec", "rxd1-skew-psec", 1448 "rxd2-skew-psec", "rxd3-skew-psec" 1449 }; 1450 char *tx_data_skews[4] = { 1451 "txd0-skew-psec", "txd1-skew-psec", 1452 "txd2-skew-psec", "txd3-skew-psec" 1453 }; 1454 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1455 const struct device *dev_walker; 1456 int ret; 1457 1458 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1459 1460 dev_walker = &phydev->mdio.dev; 1461 do { 1462 of_node = dev_walker->of_node; 1463 dev_walker = dev_walker->parent; 1464 } while (!of_node && dev_walker); 1465 1466 if (!of_node) 1467 return 0; 1468 1469 if (phy_interface_is_rgmii(phydev)) { 1470 ret = ksz9131_config_rgmii_delay(phydev); 1471 if (ret < 0) 1472 return ret; 1473 } 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1477 clk_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1483 control_skews, 2); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1489 rx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_of_load_skew_values(phydev, of_node, 1494 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1495 tx_data_skews, 4); 1496 if (ret < 0) 1497 return ret; 1498 1499 ret = ksz9131_led_errata(phydev); 1500 if (ret < 0) 1501 return ret; 1502 1503 return 0; 1504 } 1505 1506 #define MII_KSZ9131_AUTO_MDIX 0x1C 1507 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1508 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1509 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1510 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1511 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1512 1513 static int ksz9131_mdix_update(struct phy_device *phydev) 1514 { 1515 int ret; 1516 1517 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1518 phydev->mdix = phydev->mdix_ctrl; 1519 } else { 1520 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1521 if (ret < 0) 1522 return ret; 1523 1524 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1525 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1526 phydev->mdix = ETH_TP_MDI; 1527 else 1528 phydev->mdix = ETH_TP_MDI_X; 1529 } else { 1530 phydev->mdix = ETH_TP_MDI_INVALID; 1531 } 1532 } 1533 1534 return 0; 1535 } 1536 1537 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1538 { 1539 u16 val; 1540 1541 switch (ctrl) { 1542 case ETH_TP_MDI: 1543 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1544 MII_KSZ9131_AUTO_MDI_SET; 1545 break; 1546 case ETH_TP_MDI_X: 1547 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1548 break; 1549 case ETH_TP_MDI_AUTO: 1550 val = 0; 1551 break; 1552 default: 1553 return 0; 1554 } 1555 1556 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1557 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1558 MII_KSZ9131_AUTO_MDI_SET, val); 1559 } 1560 1561 static int ksz9131_read_status(struct phy_device *phydev) 1562 { 1563 int ret; 1564 1565 ret = ksz9131_mdix_update(phydev); 1566 if (ret < 0) 1567 return ret; 1568 1569 return genphy_read_status(phydev); 1570 } 1571 1572 static int ksz9131_config_aneg(struct phy_device *phydev) 1573 { 1574 int ret; 1575 1576 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1577 if (ret) 1578 return ret; 1579 1580 return genphy_config_aneg(phydev); 1581 } 1582 1583 static int ksz9477_get_features(struct phy_device *phydev) 1584 { 1585 int ret; 1586 1587 ret = genphy_read_abilities(phydev); 1588 if (ret) 1589 return ret; 1590 1591 /* The "EEE control and capability 1" (Register 3.20) seems to be 1592 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1593 * on the 7.60 will affect 3.20. So, we need to construct our own list 1594 * of caps. 1595 * KSZ8563R should have 100BaseTX/Full only. 1596 */ 1597 linkmode_and(phydev->supported_eee, phydev->supported, 1598 PHY_EEE_CAP1_FEATURES); 1599 1600 return 0; 1601 } 1602 1603 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1604 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1605 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1606 static int ksz8873mll_read_status(struct phy_device *phydev) 1607 { 1608 int regval; 1609 1610 /* dummy read */ 1611 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1612 1613 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1614 1615 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1616 phydev->duplex = DUPLEX_HALF; 1617 else 1618 phydev->duplex = DUPLEX_FULL; 1619 1620 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1621 phydev->speed = SPEED_10; 1622 else 1623 phydev->speed = SPEED_100; 1624 1625 phydev->link = 1; 1626 phydev->pause = phydev->asym_pause = 0; 1627 1628 return 0; 1629 } 1630 1631 static int ksz9031_get_features(struct phy_device *phydev) 1632 { 1633 int ret; 1634 1635 ret = genphy_read_abilities(phydev); 1636 if (ret < 0) 1637 return ret; 1638 1639 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1640 * Whenever the device's Asymmetric Pause capability is set to 1, 1641 * link-up may fail after a link-up to link-down transition. 1642 * 1643 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1644 * 1645 * Workaround: 1646 * Do not enable the Asymmetric Pause capability bit. 1647 */ 1648 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1649 1650 /* We force setting the Pause capability as the core will force the 1651 * Asymmetric Pause capability to 1 otherwise. 1652 */ 1653 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1654 1655 return 0; 1656 } 1657 1658 static int ksz9031_read_status(struct phy_device *phydev) 1659 { 1660 int err; 1661 int regval; 1662 1663 err = genphy_read_status(phydev); 1664 if (err) 1665 return err; 1666 1667 /* Make sure the PHY is not broken. Read idle error count, 1668 * and reset the PHY if it is maxed out. 1669 */ 1670 regval = phy_read(phydev, MII_STAT1000); 1671 if ((regval & 0xFF) == 0xFF) { 1672 phy_init_hw(phydev); 1673 phydev->link = 0; 1674 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1675 phydev->drv->config_intr(phydev); 1676 return genphy_config_aneg(phydev); 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1683 { 1684 struct kszphy_priv *priv = phydev->priv; 1685 int ret; 1686 1687 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1688 * Prior to running the cable diagnostics, Auto-negotiation should 1689 * be disabled, full duplex set and the link speed set to 1000Mbps 1690 * via the Basic Control Register. 1691 */ 1692 ret = phy_modify(phydev, MII_BMCR, 1693 BMCR_SPEED1000 | BMCR_FULLDPLX | 1694 BMCR_ANENABLE | BMCR_SPEED100, 1695 BMCR_SPEED1000 | BMCR_FULLDPLX); 1696 if (ret) 1697 return ret; 1698 1699 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1700 * The Master-Slave configuration should be set to Slave by writing 1701 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1702 * Register. 1703 */ 1704 ret = phy_read(phydev, MII_CTRL1000); 1705 if (ret < 0) 1706 return ret; 1707 1708 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1709 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1710 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1711 ret |= CTL1000_ENABLE_MASTER; 1712 1713 return phy_write(phydev, MII_CTRL1000, ret); 1714 } 1715 1716 static int ksz9x31_cable_test_result_trans(u16 status) 1717 { 1718 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1719 case KSZ9x31_LMD_VCT_ST_NORMAL: 1720 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1721 case KSZ9x31_LMD_VCT_ST_OPEN: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1723 case KSZ9x31_LMD_VCT_ST_SHORT: 1724 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1725 case KSZ9x31_LMD_VCT_ST_FAIL: 1726 fallthrough; 1727 default: 1728 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1729 } 1730 } 1731 1732 static bool ksz9x31_cable_test_failed(u16 status) 1733 { 1734 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1735 1736 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1737 } 1738 1739 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1740 { 1741 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1742 case KSZ9x31_LMD_VCT_ST_OPEN: 1743 fallthrough; 1744 case KSZ9x31_LMD_VCT_ST_SHORT: 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1751 { 1752 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1753 1754 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1755 * 1756 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1757 */ 1758 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1759 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1760 dt = clamp(dt - 22, 0, 255); 1761 1762 return (dt * 400) / 10; 1763 } 1764 1765 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1766 { 1767 int val, ret; 1768 1769 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1770 !(val & KSZ9x31_LMD_VCT_EN), 1771 30000, 100000, true); 1772 1773 return ret < 0 ? ret : 0; 1774 } 1775 1776 static int ksz9x31_cable_test_get_pair(int pair) 1777 { 1778 static const int ethtool_pair[] = { 1779 ETHTOOL_A_CABLE_PAIR_A, 1780 ETHTOOL_A_CABLE_PAIR_B, 1781 ETHTOOL_A_CABLE_PAIR_C, 1782 ETHTOOL_A_CABLE_PAIR_D, 1783 }; 1784 1785 return ethtool_pair[pair]; 1786 } 1787 1788 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1789 { 1790 int ret, val; 1791 1792 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1793 * To test each individual cable pair, set the cable pair in the Cable 1794 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1795 * Diagnostic Register, along with setting the Cable Diagnostics Test 1796 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1797 * will self clear when the test is concluded. 1798 */ 1799 ret = phy_write(phydev, KSZ9x31_LMD, 1800 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1801 if (ret) 1802 return ret; 1803 1804 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1805 if (ret) 1806 return ret; 1807 1808 val = phy_read(phydev, KSZ9x31_LMD); 1809 if (val < 0) 1810 return val; 1811 1812 if (ksz9x31_cable_test_failed(val)) 1813 return -EAGAIN; 1814 1815 ret = ethnl_cable_test_result(phydev, 1816 ksz9x31_cable_test_get_pair(pair), 1817 ksz9x31_cable_test_result_trans(val)); 1818 if (ret) 1819 return ret; 1820 1821 if (!ksz9x31_cable_test_fault_length_valid(val)) 1822 return 0; 1823 1824 return ethnl_cable_test_fault_length(phydev, 1825 ksz9x31_cable_test_get_pair(pair), 1826 ksz9x31_cable_test_fault_length(phydev, val)); 1827 } 1828 1829 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1830 bool *finished) 1831 { 1832 struct kszphy_priv *priv = phydev->priv; 1833 unsigned long pair_mask; 1834 int retries = 20; 1835 int pair, ret, rv; 1836 1837 *finished = false; 1838 1839 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1840 phydev->supported) || 1841 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1842 phydev->supported)) 1843 pair_mask = 0xf; /* All pairs */ 1844 else 1845 pair_mask = 0x3; /* Pairs A and B only */ 1846 1847 /* Try harder if link partner is active */ 1848 while (pair_mask && retries--) { 1849 for_each_set_bit(pair, &pair_mask, 4) { 1850 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1851 if (ret == -EAGAIN) 1852 continue; 1853 if (ret < 0) 1854 return ret; 1855 clear_bit(pair, &pair_mask); 1856 } 1857 /* If link partner is in autonegotiation mode it will send 2ms 1858 * of FLPs with at least 6ms of silence. 1859 * Add 2ms sleep to have better chances to hit this silence. 1860 */ 1861 if (pair_mask) 1862 usleep_range(2000, 3000); 1863 } 1864 1865 /* Report remaining unfinished pair result as unknown. */ 1866 for_each_set_bit(pair, &pair_mask, 4) { 1867 ret = ethnl_cable_test_result(phydev, 1868 ksz9x31_cable_test_get_pair(pair), 1869 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1870 } 1871 1872 *finished = true; 1873 1874 /* Restore cached bits from before LinkMD got started. */ 1875 rv = phy_modify(phydev, MII_CTRL1000, 1876 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1877 priv->vct_ctrl1000); 1878 if (rv) 1879 return rv; 1880 1881 return ret; 1882 } 1883 1884 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1885 { 1886 return 0; 1887 } 1888 1889 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1890 { 1891 u16 val; 1892 1893 switch (ctrl) { 1894 case ETH_TP_MDI: 1895 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1896 break; 1897 case ETH_TP_MDI_X: 1898 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1899 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1900 * sheet seems to be missing: 1901 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1902 * 0 = Normal operation (transmit on TX+/TX- pins) 1903 */ 1904 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1905 break; 1906 case ETH_TP_MDI_AUTO: 1907 val = 0; 1908 break; 1909 default: 1910 return 0; 1911 } 1912 1913 return phy_modify(phydev, MII_BMCR, 1914 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1915 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1916 KSZ886X_BMCR_HP_MDIX | val); 1917 } 1918 1919 static int ksz886x_config_aneg(struct phy_device *phydev) 1920 { 1921 int ret; 1922 1923 ret = genphy_config_aneg(phydev); 1924 if (ret) 1925 return ret; 1926 1927 if (phydev->autoneg != AUTONEG_ENABLE) { 1928 /* When autonegotiation is disabled, we need to manually force 1929 * the link state. If we don't do this, the PHY will keep 1930 * sending Fast Link Pulses (FLPs) which are part of the 1931 * autonegotiation process. This is not desired when 1932 * autonegotiation is off. 1933 */ 1934 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1935 KSZ886X_CTRL_FORCE_LINK); 1936 if (ret) 1937 return ret; 1938 } else { 1939 /* If we had previously forced the link state, we need to 1940 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1941 * will not perform autonegotiation. 1942 */ 1943 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1944 KSZ886X_CTRL_FORCE_LINK); 1945 if (ret) 1946 return ret; 1947 } 1948 1949 /* The MDI-X configuration is automatically changed by the PHY after 1950 * switching from autoneg off to on. So, take MDI-X configuration under 1951 * own control and set it after autoneg configuration was done. 1952 */ 1953 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1954 } 1955 1956 static int ksz886x_mdix_update(struct phy_device *phydev) 1957 { 1958 int ret; 1959 1960 ret = phy_read(phydev, MII_BMCR); 1961 if (ret < 0) 1962 return ret; 1963 1964 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1965 if (ret & KSZ886X_BMCR_FORCE_MDI) 1966 phydev->mdix_ctrl = ETH_TP_MDI_X; 1967 else 1968 phydev->mdix_ctrl = ETH_TP_MDI; 1969 } else { 1970 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1971 } 1972 1973 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1974 if (ret < 0) 1975 return ret; 1976 1977 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1978 if (ret & KSZ886X_CTRL_MDIX_STAT) 1979 phydev->mdix = ETH_TP_MDI_X; 1980 else 1981 phydev->mdix = ETH_TP_MDI; 1982 1983 return 0; 1984 } 1985 1986 static int ksz886x_read_status(struct phy_device *phydev) 1987 { 1988 int ret; 1989 1990 ret = ksz886x_mdix_update(phydev); 1991 if (ret < 0) 1992 return ret; 1993 1994 return genphy_read_status(phydev); 1995 } 1996 1997 static int ksz9477_mdix_update(struct phy_device *phydev) 1998 { 1999 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 2000 phydev->mdix = phydev->mdix_ctrl; 2001 else 2002 phydev->mdix = ETH_TP_MDI_INVALID; 2003 2004 return 0; 2005 } 2006 2007 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2008 { 2009 int val; 2010 2011 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2012 if (val < 0) 2013 return val; 2014 2015 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2016 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2017 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2018 phydev->mdix_ctrl = ETH_TP_MDI; 2019 else 2020 phydev->mdix_ctrl = ETH_TP_MDI_X; 2021 2022 return 0; 2023 } 2024 2025 static int ksz9477_read_status(struct phy_device *phydev) 2026 { 2027 int ret; 2028 2029 ret = ksz9477_mdix_update(phydev); 2030 if (ret) 2031 return ret; 2032 2033 return genphy_read_status(phydev); 2034 } 2035 2036 static int ksz9477_config_aneg(struct phy_device *phydev) 2037 { 2038 int ret; 2039 2040 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2041 if (ret) 2042 return ret; 2043 2044 return genphy_config_aneg(phydev); 2045 } 2046 2047 struct ksz9477_errata_write { 2048 u8 dev_addr; 2049 u8 reg_addr; 2050 u16 val; 2051 }; 2052 2053 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2054 /* Register settings are needed to improve PHY receive performance */ 2055 {0x01, 0x6f, 0xdd0b}, 2056 {0x01, 0x8f, 0x6032}, 2057 {0x01, 0x9d, 0x248c}, 2058 {0x01, 0x75, 0x0060}, 2059 {0x01, 0xd3, 0x7777}, 2060 {0x1c, 0x06, 0x3008}, 2061 {0x1c, 0x08, 0x2000}, 2062 2063 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2064 {0x1c, 0x04, 0x00d0}, 2065 2066 /* Register settings are required to meet data sheet supply current specifications */ 2067 {0x1c, 0x13, 0x6eff}, 2068 {0x1c, 0x14, 0xe6ff}, 2069 {0x1c, 0x15, 0x6eff}, 2070 {0x1c, 0x16, 0xe6ff}, 2071 {0x1c, 0x17, 0x00ff}, 2072 {0x1c, 0x18, 0x43ff}, 2073 {0x1c, 0x19, 0xc3ff}, 2074 {0x1c, 0x1a, 0x6fff}, 2075 {0x1c, 0x1b, 0x07ff}, 2076 {0x1c, 0x1c, 0x0fff}, 2077 {0x1c, 0x1d, 0xe7ff}, 2078 {0x1c, 0x1e, 0xefff}, 2079 {0x1c, 0x20, 0xeeee}, 2080 }; 2081 2082 static int ksz9477_phy_errata(struct phy_device *phydev) 2083 { 2084 int err; 2085 int i; 2086 2087 /* Apply PHY settings to address errata listed in 2088 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2089 * Silicon Errata and Data Sheet Clarification documents. 2090 * 2091 * Document notes: Before configuring the PHY MMD registers, it is 2092 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2093 * disabled by writing to register 0xN100-0xN101. After writing the 2094 * MMD registers, and after all errata workarounds that involve PHY 2095 * register settings, write register 0xN100-0xN101 again to enable 2096 * and restart auto-negotiation. 2097 */ 2098 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2099 if (err) 2100 return err; 2101 2102 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2103 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2104 2105 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2106 if (err) 2107 return err; 2108 } 2109 2110 return genphy_restart_aneg(phydev); 2111 } 2112 2113 static int ksz9477_config_init(struct phy_device *phydev) 2114 { 2115 int err; 2116 2117 /* Only KSZ9897 family of switches needs this fix. */ 2118 if ((phydev->phy_id & 0xf) == 1) { 2119 err = ksz9477_phy_errata(phydev); 2120 if (err) 2121 return err; 2122 } 2123 2124 /* Read initial MDI-X config state. So, we do not need to poll it 2125 * later on. 2126 */ 2127 err = ksz9477_read_mdix_ctrl(phydev); 2128 if (err) 2129 return err; 2130 2131 return kszphy_config_init(phydev); 2132 } 2133 2134 static int kszphy_get_sset_count(struct phy_device *phydev) 2135 { 2136 return ARRAY_SIZE(kszphy_hw_stats); 2137 } 2138 2139 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2140 { 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2144 ethtool_puts(&data, kszphy_hw_stats[i].string); 2145 } 2146 2147 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2148 { 2149 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2150 struct kszphy_priv *priv = phydev->priv; 2151 int val; 2152 u64 ret; 2153 2154 val = phy_read(phydev, stat.reg); 2155 if (val < 0) { 2156 ret = U64_MAX; 2157 } else { 2158 val = val & ((1 << stat.bits) - 1); 2159 priv->stats[i] += val; 2160 ret = priv->stats[i]; 2161 } 2162 2163 return ret; 2164 } 2165 2166 static void kszphy_get_stats(struct phy_device *phydev, 2167 struct ethtool_stats *stats, u64 *data) 2168 { 2169 int i; 2170 2171 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2172 data[i] = kszphy_get_stat(phydev, i); 2173 } 2174 2175 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2176 * etc. The counter is incremented when the PHY receives a frame with one or 2177 * more symbol errors. The counter is cleared when the register is read. 2178 */ 2179 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2180 2181 static int kszphy_update_stats(struct phy_device *phydev) 2182 { 2183 struct kszphy_priv *priv = phydev->priv; 2184 int ret; 2185 2186 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2187 if (ret < 0) 2188 return ret; 2189 2190 priv->phy_stats.rx_err_pkt_cnt += ret; 2191 2192 return 0; 2193 } 2194 2195 static void kszphy_get_phy_stats(struct phy_device *phydev, 2196 struct ethtool_eth_phy_stats *eth_stats, 2197 struct ethtool_phy_stats *stats) 2198 { 2199 struct kszphy_priv *priv = phydev->priv; 2200 2201 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2202 } 2203 2204 /* Base register for Signal Quality Indicator (SQI) - Channel A 2205 * 2206 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2207 * Register: 0xAC (Channel A) 2208 * Each channel (pair) has its own register: 2209 * Channel A: 0xAC 2210 * Channel B: 0xAD 2211 * Channel C: 0xAE 2212 * Channel D: 0xAF 2213 */ 2214 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2215 2216 /* SQI field mask for bits [14:8] 2217 * 2218 * SQI indicates relative quality of the signal. 2219 * A lower value indicates better signal quality. 2220 */ 2221 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2222 2223 #define KSZ9477_MAX_CHANNELS 4 2224 #define KSZ9477_SQI_MAX 7 2225 2226 /* Number of SQI samples to average for a stable result. 2227 * 2228 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2229 * For noisy environments, a minimum of 30–50 readings is recommended. 2230 */ 2231 #define KSZ9477_SQI_SAMPLE_COUNT 40 2232 2233 /* The hardware SQI register provides a raw value from 0-127, where a lower 2234 * value indicates better signal quality. However, empirical testing has 2235 * shown that only the 0-7 range is relevant for a functional link. A raw 2236 * value of 8 or higher was measured directly before link drop. This aligns 2237 * with the OPEN Alliance recommendation that SQI=0 should represent the 2238 * pre-failure state. 2239 * 2240 * This table provides a non-linear mapping from the useful raw hardware 2241 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2242 */ 2243 static const u8 ksz_sqi_mapping[] = { 2244 7, /* raw 0 -> SQI 7 */ 2245 7, /* raw 1 -> SQI 7 */ 2246 6, /* raw 2 -> SQI 6 */ 2247 5, /* raw 3 -> SQI 5 */ 2248 4, /* raw 4 -> SQI 4 */ 2249 3, /* raw 5 -> SQI 3 */ 2250 2, /* raw 6 -> SQI 2 */ 2251 1, /* raw 7 -> SQI 1 */ 2252 }; 2253 2254 /** 2255 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2256 * @phydev: the PHY device 2257 * 2258 * This function reads and processes the raw Signal Quality Index from the 2259 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2260 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2261 * mapped to the standard 0-7 SQI scale via a lookup table. 2262 * 2263 * Return: SQI value (0–7), or a negative errno on failure. 2264 */ 2265 static int kszphy_get_sqi(struct phy_device *phydev) 2266 { 2267 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2268 int worst_sqi = KSZ9477_SQI_MAX; 2269 int i, val, raw_sqi, ch; 2270 u8 channels; 2271 2272 /* Determine applicable channels based on link speed */ 2273 if (phydev->speed == SPEED_1000) 2274 channels = 4; 2275 else if (phydev->speed == SPEED_100) 2276 channels = 1; 2277 else 2278 return -EOPNOTSUPP; 2279 2280 /* Sample and accumulate SQI readings for each pair (currently only one). 2281 * 2282 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2283 * - The SQI register is updated every 2 µs. 2284 * - Values may fluctuate significantly, even in low-noise environments. 2285 * - For reliable estimation, average a minimum of 30–50 samples 2286 * (recommended for noisy environments) 2287 * - In noisy environments, individual readings are highly unreliable. 2288 * 2289 * We use 40 samples per pair with a delay of 3 µs between each 2290 * read to ensure new values are captured (2 µs update interval). 2291 */ 2292 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2293 for (ch = 0; ch < channels; ch++) { 2294 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2295 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2296 if (val < 0) 2297 return val; 2298 2299 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2300 sum[ch] += raw_sqi; 2301 2302 /* We communicate with the PHY via MDIO via SPI or 2303 * I2C, which is relatively slow. At least slower than 2304 * the update interval of the SQI register. 2305 * So, we can skip the delay between reads. 2306 */ 2307 } 2308 } 2309 2310 /* Calculate average for each channel and find the worst SQI */ 2311 for (ch = 0; ch < channels; ch++) { 2312 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2313 int mapped_sqi; 2314 2315 /* Handle the pre-fail/failed state first. */ 2316 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2317 mapped_sqi = 0; 2318 else 2319 /* Use the lookup table for the good signal range. */ 2320 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2321 2322 if (mapped_sqi < worst_sqi) 2323 worst_sqi = mapped_sqi; 2324 } 2325 2326 return worst_sqi; 2327 } 2328 2329 static int kszphy_get_sqi_max(struct phy_device *phydev) 2330 { 2331 return KSZ9477_SQI_MAX; 2332 } 2333 2334 static int kszphy_get_mse_capability(struct phy_device *phydev, 2335 struct phy_mse_capability *cap) 2336 { 2337 /* Capabilities depend on link mode: 2338 * - 1000BASE-T: per-pair SQI registers exist => expose A..D 2339 * and a WORST selector. 2340 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A" 2341 * register, but with auto MDI-X there is no MDI-X resolution bit, 2342 * so we cannot map that register to a specific wire pair reliably. 2343 * To avoid misleading per-channel data, advertise only LINK. 2344 * Other speeds: no MSE exposure via this driver. 2345 * 2346 * Note: WORST is *not* a hardware selector on this family. 2347 * We expose it because the driver computes it in software 2348 * by scanning per-channel readouts (A..D) and picking the 2349 * maximum average MSE. 2350 */ 2351 if (phydev->speed == SPEED_1000) 2352 cap->supported_caps = PHY_MSE_CAP_CHANNEL_A | 2353 PHY_MSE_CAP_CHANNEL_B | 2354 PHY_MSE_CAP_CHANNEL_C | 2355 PHY_MSE_CAP_CHANNEL_D | 2356 PHY_MSE_CAP_WORST_CHANNEL; 2357 else if (phydev->speed == SPEED_100) 2358 cap->supported_caps = PHY_MSE_CAP_LINK; 2359 else 2360 return -EOPNOTSUPP; 2361 2362 cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK); 2363 cap->refresh_rate_ps = 2000000; /* 2 us */ 2364 /* Estimated from link modulation (125 MBd per channel) and documented 2365 * refresh rate of 2 us 2366 */ 2367 cap->num_symbols = 250; 2368 2369 cap->supported_caps |= PHY_MSE_CAP_AVG; 2370 2371 return 0; 2372 } 2373 2374 static int kszphy_get_mse_snapshot(struct phy_device *phydev, 2375 enum phy_mse_channel channel, 2376 struct phy_mse_snapshot *snapshot) 2377 { 2378 u8 num_channels; 2379 int ret; 2380 2381 if (phydev->speed == SPEED_1000) 2382 num_channels = 4; 2383 else if (phydev->speed == SPEED_100) 2384 num_channels = 1; 2385 else 2386 return -EOPNOTSUPP; 2387 2388 if (channel == PHY_MSE_CHANNEL_WORST) { 2389 u32 worst_val = 0; 2390 int i; 2391 2392 /* WORST is implemented in software: select the maximum 2393 * average MSE across the available per-channel registers. 2394 * Only defined when multiple channels exist (1000BASE-T). 2395 */ 2396 if (num_channels < 2) 2397 return -EOPNOTSUPP; 2398 2399 for (i = 0; i < num_channels; i++) { 2400 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2401 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i); 2402 if (ret < 0) 2403 return ret; 2404 2405 ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2406 if (ret > worst_val) 2407 worst_val = ret; 2408 } 2409 snapshot->average_mse = worst_val; 2410 } else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) { 2411 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2412 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A); 2413 if (ret < 0) 2414 return ret; 2415 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2416 } else if (channel >= PHY_MSE_CHANNEL_A && 2417 channel <= PHY_MSE_CHANNEL_D) { 2418 /* Per-channel readouts are valid only for 1000BASE-T. */ 2419 if (phydev->speed != SPEED_1000) 2420 return -EOPNOTSUPP; 2421 2422 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2423 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel); 2424 if (ret < 0) 2425 return ret; 2426 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2427 } else { 2428 return -EOPNOTSUPP; 2429 } 2430 2431 return 0; 2432 } 2433 2434 static void kszphy_enable_clk(struct phy_device *phydev) 2435 { 2436 struct kszphy_priv *priv = phydev->priv; 2437 2438 if (!priv->clk_enable && priv->clk) { 2439 clk_prepare_enable(priv->clk); 2440 priv->clk_enable = true; 2441 } 2442 } 2443 2444 static void kszphy_disable_clk(struct phy_device *phydev) 2445 { 2446 struct kszphy_priv *priv = phydev->priv; 2447 2448 if (priv->clk_enable && priv->clk) { 2449 clk_disable_unprepare(priv->clk); 2450 priv->clk_enable = false; 2451 } 2452 } 2453 2454 static int kszphy_generic_resume(struct phy_device *phydev) 2455 { 2456 kszphy_enable_clk(phydev); 2457 2458 return genphy_resume(phydev); 2459 } 2460 2461 static int kszphy_generic_suspend(struct phy_device *phydev) 2462 { 2463 int ret; 2464 2465 ret = genphy_suspend(phydev); 2466 if (ret) 2467 return ret; 2468 2469 kszphy_disable_clk(phydev); 2470 2471 return 0; 2472 } 2473 2474 static int kszphy_suspend(struct phy_device *phydev) 2475 { 2476 /* Disable PHY Interrupts */ 2477 if (phy_interrupt_is_valid(phydev)) { 2478 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2479 if (phydev->drv->config_intr) 2480 phydev->drv->config_intr(phydev); 2481 } 2482 2483 return kszphy_generic_suspend(phydev); 2484 } 2485 2486 static void kszphy_parse_led_mode(struct phy_device *phydev) 2487 { 2488 const struct kszphy_type *type = phydev->drv->driver_data; 2489 const struct device_node *np = phydev->mdio.dev.of_node; 2490 struct kszphy_priv *priv = phydev->priv; 2491 int ret; 2492 2493 if (type && type->led_mode_reg) { 2494 ret = of_property_read_u32(np, "micrel,led-mode", 2495 &priv->led_mode); 2496 2497 if (ret) 2498 priv->led_mode = -1; 2499 2500 if (priv->led_mode > 3) { 2501 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2502 priv->led_mode); 2503 priv->led_mode = -1; 2504 } 2505 } else { 2506 priv->led_mode = -1; 2507 } 2508 } 2509 2510 static int kszphy_resume(struct phy_device *phydev) 2511 { 2512 int ret; 2513 2514 ret = kszphy_generic_resume(phydev); 2515 if (ret) 2516 return ret; 2517 2518 /* After switching from power-down to normal mode, an internal global 2519 * reset is automatically generated. Wait a minimum of 1 ms before 2520 * read/write access to the PHY registers. 2521 */ 2522 usleep_range(1000, 2000); 2523 2524 ret = kszphy_config_reset(phydev); 2525 if (ret) 2526 return ret; 2527 2528 /* Enable PHY Interrupts */ 2529 if (phy_interrupt_is_valid(phydev)) { 2530 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2531 if (phydev->drv->config_intr) 2532 phydev->drv->config_intr(phydev); 2533 } 2534 2535 return 0; 2536 } 2537 2538 /* Because of errata DS80000700A, receiver error following software 2539 * power down. Suspend and resume callbacks only disable and enable 2540 * external rmii reference clock. 2541 */ 2542 static int ksz8041_resume(struct phy_device *phydev) 2543 { 2544 kszphy_enable_clk(phydev); 2545 2546 return 0; 2547 } 2548 2549 static int ksz8041_suspend(struct phy_device *phydev) 2550 { 2551 kszphy_disable_clk(phydev); 2552 2553 return 0; 2554 } 2555 2556 static int ksz9477_resume(struct phy_device *phydev) 2557 { 2558 int ret; 2559 2560 /* No need to initialize registers if not powered down. */ 2561 ret = phy_read(phydev, MII_BMCR); 2562 if (ret < 0) 2563 return ret; 2564 if (!(ret & BMCR_PDOWN)) 2565 return 0; 2566 2567 genphy_resume(phydev); 2568 2569 /* After switching from power-down to normal mode, an internal global 2570 * reset is automatically generated. Wait a minimum of 1 ms before 2571 * read/write access to the PHY registers. 2572 */ 2573 usleep_range(1000, 2000); 2574 2575 /* Only KSZ9897 family of switches needs this fix. */ 2576 if ((phydev->phy_id & 0xf) == 1) { 2577 ret = ksz9477_phy_errata(phydev); 2578 if (ret) 2579 return ret; 2580 } 2581 2582 /* Enable PHY Interrupts */ 2583 if (phy_interrupt_is_valid(phydev)) { 2584 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2585 if (phydev->drv->config_intr) 2586 phydev->drv->config_intr(phydev); 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int ksz8061_resume(struct phy_device *phydev) 2593 { 2594 int ret; 2595 2596 /* This function can be called twice when the Ethernet device is on. */ 2597 ret = phy_read(phydev, MII_BMCR); 2598 if (ret < 0) 2599 return ret; 2600 if (!(ret & BMCR_PDOWN)) 2601 return 0; 2602 2603 ret = kszphy_generic_resume(phydev); 2604 if (ret) 2605 return ret; 2606 2607 usleep_range(1000, 2000); 2608 2609 /* Re-program the value after chip is reset. */ 2610 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2611 if (ret) 2612 return ret; 2613 2614 /* Enable PHY Interrupts */ 2615 if (phy_interrupt_is_valid(phydev)) { 2616 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2617 if (phydev->drv->config_intr) 2618 phydev->drv->config_intr(phydev); 2619 } 2620 2621 return 0; 2622 } 2623 2624 static int ksz8061_suspend(struct phy_device *phydev) 2625 { 2626 return kszphy_suspend(phydev); 2627 } 2628 2629 static int kszphy_probe(struct phy_device *phydev) 2630 { 2631 const struct kszphy_type *type = phydev->drv->driver_data; 2632 const struct device_node *np = phydev->mdio.dev.of_node; 2633 struct kszphy_priv *priv; 2634 struct clk *clk; 2635 2636 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2637 if (!priv) 2638 return -ENOMEM; 2639 2640 phydev->priv = priv; 2641 2642 priv->type = type; 2643 2644 kszphy_parse_led_mode(phydev); 2645 2646 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2647 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2648 if (!IS_ERR_OR_NULL(clk)) { 2649 unsigned long rate = clk_get_rate(clk); 2650 bool rmii_ref_clk_sel_25_mhz; 2651 2652 if (type) 2653 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2654 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2655 "micrel,rmii-reference-clock-select-25-mhz"); 2656 2657 if (rate > 24500000 && rate < 25500000) { 2658 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2659 } else if (rate > 49500000 && rate < 50500000) { 2660 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2661 } else { 2662 phydev_err(phydev, "Clock rate out of range: %ld\n", 2663 rate); 2664 return -EINVAL; 2665 } 2666 } else if (!clk) { 2667 /* unnamed clock from the generic ethernet-phy binding */ 2668 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2669 } 2670 2671 if (IS_ERR(clk)) 2672 return PTR_ERR(clk); 2673 2674 clk_disable_unprepare(clk); 2675 priv->clk = clk; 2676 2677 if (ksz8041_fiber_mode(phydev)) 2678 phydev->port = PORT_FIBRE; 2679 2680 /* Support legacy board-file configuration */ 2681 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2682 priv->rmii_ref_clk_sel = true; 2683 priv->rmii_ref_clk_sel_val = true; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static int lan8814_cable_test_start(struct phy_device *phydev) 2690 { 2691 /* If autoneg is enabled, we won't be able to test cross pair 2692 * short. In this case, the PHY will "detect" a link and 2693 * confuse the internal state machine - disable auto neg here. 2694 * Set the speed to 1000mbit and full duplex. 2695 */ 2696 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2697 BMCR_SPEED1000 | BMCR_FULLDPLX); 2698 } 2699 2700 static int ksz886x_cable_test_start(struct phy_device *phydev) 2701 { 2702 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2703 return -EOPNOTSUPP; 2704 2705 /* If autoneg is enabled, we won't be able to test cross pair 2706 * short. In this case, the PHY will "detect" a link and 2707 * confuse the internal state machine - disable auto neg here. 2708 * If autoneg is disabled, we should set the speed to 10mbit. 2709 */ 2710 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2711 } 2712 2713 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2714 { 2715 switch (FIELD_GET(mask, status)) { 2716 case KSZ8081_LMD_STAT_NORMAL: 2717 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2718 case KSZ8081_LMD_STAT_SHORT: 2719 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2720 case KSZ8081_LMD_STAT_OPEN: 2721 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2722 case KSZ8081_LMD_STAT_FAIL: 2723 fallthrough; 2724 default: 2725 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2726 } 2727 } 2728 2729 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2730 { 2731 return FIELD_GET(mask, status) == 2732 KSZ8081_LMD_STAT_FAIL; 2733 } 2734 2735 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2736 { 2737 switch (FIELD_GET(mask, status)) { 2738 case KSZ8081_LMD_STAT_OPEN: 2739 fallthrough; 2740 case KSZ8081_LMD_STAT_SHORT: 2741 return true; 2742 } 2743 return false; 2744 } 2745 2746 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2747 u16 status, u16 data_mask) 2748 { 2749 int dt; 2750 2751 /* According to the data sheet the distance to the fault is 2752 * DELTA_TIME * 0.4 meters for ksz phys. 2753 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2754 */ 2755 dt = FIELD_GET(data_mask, status); 2756 2757 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2758 return ((dt - 22) * 800) / 10; 2759 else 2760 return (dt * 400) / 10; 2761 } 2762 2763 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2764 { 2765 const struct kszphy_type *type = phydev->drv->driver_data; 2766 int val, ret; 2767 2768 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2769 !(val & KSZ8081_LMD_ENABLE_TEST), 2770 30000, 100000, true); 2771 2772 return ret < 0 ? ret : 0; 2773 } 2774 2775 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2776 { 2777 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2778 ETHTOOL_A_CABLE_PAIR_B, 2779 ETHTOOL_A_CABLE_PAIR_C, 2780 ETHTOOL_A_CABLE_PAIR_D, 2781 }; 2782 u32 fault_length; 2783 int ret; 2784 int val; 2785 2786 val = KSZ8081_LMD_ENABLE_TEST; 2787 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2788 2789 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2790 if (ret < 0) 2791 return ret; 2792 2793 ret = ksz886x_cable_test_wait_for_completion(phydev); 2794 if (ret) 2795 return ret; 2796 2797 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2798 if (val < 0) 2799 return val; 2800 2801 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2802 return -EAGAIN; 2803 2804 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2805 ksz886x_cable_test_result_trans(val, 2806 LAN8814_CABLE_DIAG_STAT_MASK 2807 )); 2808 if (ret) 2809 return ret; 2810 2811 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2812 return 0; 2813 2814 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2815 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2816 2817 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2818 } 2819 2820 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2821 { 2822 static const int ethtool_pair[] = { 2823 ETHTOOL_A_CABLE_PAIR_A, 2824 ETHTOOL_A_CABLE_PAIR_B, 2825 }; 2826 int ret, val, mdix; 2827 u32 fault_length; 2828 2829 /* There is no way to choice the pair, like we do one ksz9031. 2830 * We can workaround this limitation by using the MDI-X functionality. 2831 */ 2832 if (pair == 0) 2833 mdix = ETH_TP_MDI; 2834 else 2835 mdix = ETH_TP_MDI_X; 2836 2837 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2838 case PHY_ID_KSZ8081: 2839 ret = ksz8081_config_mdix(phydev, mdix); 2840 break; 2841 case PHY_ID_KSZ886X: 2842 ret = ksz886x_config_mdix(phydev, mdix); 2843 break; 2844 default: 2845 ret = -ENODEV; 2846 } 2847 2848 if (ret) 2849 return ret; 2850 2851 /* Now we are ready to fire. This command will send a 100ns pulse 2852 * to the pair. 2853 */ 2854 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2855 if (ret) 2856 return ret; 2857 2858 ret = ksz886x_cable_test_wait_for_completion(phydev); 2859 if (ret) 2860 return ret; 2861 2862 val = phy_read(phydev, KSZ8081_LMD); 2863 if (val < 0) 2864 return val; 2865 2866 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2867 return -EAGAIN; 2868 2869 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2870 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2871 if (ret) 2872 return ret; 2873 2874 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2875 return 0; 2876 2877 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2878 2879 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2880 } 2881 2882 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2883 bool *finished) 2884 { 2885 const struct kszphy_type *type = phydev->drv->driver_data; 2886 unsigned long pair_mask = type->pair_mask; 2887 int retries = 20; 2888 int ret = 0; 2889 int pair; 2890 2891 *finished = false; 2892 2893 /* Try harder if link partner is active */ 2894 while (pair_mask && retries--) { 2895 for_each_set_bit(pair, &pair_mask, 4) { 2896 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2897 ret = lan8814_cable_test_one_pair(phydev, pair); 2898 else 2899 ret = ksz886x_cable_test_one_pair(phydev, pair); 2900 if (ret == -EAGAIN) 2901 continue; 2902 if (ret < 0) 2903 return ret; 2904 clear_bit(pair, &pair_mask); 2905 } 2906 /* If link partner is in autonegotiation mode it will send 2ms 2907 * of FLPs with at least 6ms of silence. 2908 * Add 2ms sleep to have better chances to hit this silence. 2909 */ 2910 if (pair_mask) 2911 msleep(2); 2912 } 2913 2914 *finished = true; 2915 2916 return ret; 2917 } 2918 2919 /** 2920 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2921 * 2922 * This page contains timers used for auto-negotiation, debug registers and 2923 * register to configure fast link failure. 2924 */ 2925 #define LAN8814_PAGE_PCS 0 2926 2927 /** 2928 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2929 * 2930 * This page appears to control the Analog Front-End (AFE) and Physical 2931 * Medium Attachment (PMA) layers. It is used to access registers like 2932 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2933 */ 2934 #define LAN8814_PAGE_AFE_PMA 1 2935 2936 /** 2937 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2938 * 2939 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2940 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2941 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2942 * and self-test counters in the LAN8842. 2943 */ 2944 #define LAN8814_PAGE_PCS_DIGITAL 2 2945 2946 /** 2947 * LAN8814_PAGE_EEE - Selects Extended Page 3. 2948 * 2949 * This page contains EEE registers 2950 */ 2951 #define LAN8814_PAGE_EEE 3 2952 2953 /** 2954 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2955 * 2956 * This page contains device-common registers that affect the entire chip. 2957 * It includes controls for chip-level resets, strap status, GPIO, 2958 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2959 */ 2960 #define LAN8814_PAGE_COMMON_REGS 4 2961 2962 /** 2963 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2964 * 2965 * This page contains port-specific registers that must be accessed 2966 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2967 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2968 */ 2969 #define LAN8814_PAGE_PORT_REGS 5 2970 2971 /** 2972 * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28. 2973 * 2974 * This page contains analog control registers and power mode registers. 2975 */ 2976 #define LAN8814_PAGE_POWER_REGS 28 2977 2978 /** 2979 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2980 * 2981 * This page appears to hold fundamental system or global controls. In the 2982 * driver, it is used by the related LAN8804 to access the 2983 * LAN8814_CLOCK_MANAGEMENT register. 2984 */ 2985 #define LAN8814_PAGE_SYSTEM_CTRL 31 2986 2987 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2988 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2989 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2990 2991 #define LAN8814_QSGMII_TX_CONFIG 0x35 2992 #define LAN8814_QSGMII_TX_CONFIG_QSGMII BIT(3) 2993 #define LAN8814_QSGMII_SOFT_RESET 0x43 2994 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2995 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2996 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2997 #define LAN8814_ALIGN_SWAP 0x4a 2998 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2999 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3000 3001 #define LAN8804_ALIGN_SWAP 0x4a 3002 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 3003 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3004 #define LAN8814_CLOCK_MANAGEMENT 0xd 3005 #define LAN8814_LINK_QUALITY 0x8e 3006 3007 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 3008 { 3009 int data; 3010 3011 phy_lock_mdio_bus(phydev); 3012 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3013 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3014 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3015 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3016 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 3017 phy_unlock_mdio_bus(phydev); 3018 3019 return data; 3020 } 3021 3022 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 3023 u16 val) 3024 { 3025 phy_lock_mdio_bus(phydev); 3026 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3027 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3028 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3029 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 3030 3031 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 3032 if (val != 0) 3033 phydev_err(phydev, "Error: phy_write has returned error %d\n", 3034 val); 3035 phy_unlock_mdio_bus(phydev); 3036 return val; 3037 } 3038 3039 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 3040 u16 mask, u16 set) 3041 { 3042 int ret; 3043 3044 phy_lock_mdio_bus(phydev); 3045 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3046 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3047 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3048 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3049 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 3050 mask, set); 3051 phy_unlock_mdio_bus(phydev); 3052 3053 if (ret < 0) 3054 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 3055 ERR_PTR(ret)); 3056 3057 return ret; 3058 } 3059 3060 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 3061 { 3062 u16 val = 0; 3063 3064 if (enable) 3065 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 3066 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 3067 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 3068 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 3069 3070 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3071 PTP_TSU_INT_EN, val); 3072 } 3073 3074 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 3075 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3076 { 3077 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3078 PTP_RX_INGRESS_SEC_HI); 3079 *seconds = (*seconds << 16) | 3080 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3081 PTP_RX_INGRESS_SEC_LO); 3082 3083 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3084 PTP_RX_INGRESS_NS_HI); 3085 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3086 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3087 PTP_RX_INGRESS_NS_LO); 3088 3089 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3090 PTP_RX_MSG_HEADER2); 3091 } 3092 3093 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 3094 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3095 { 3096 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3097 PTP_TX_EGRESS_SEC_HI); 3098 *seconds = *seconds << 16 | 3099 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3100 PTP_TX_EGRESS_SEC_LO); 3101 3102 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3103 PTP_TX_EGRESS_NS_HI); 3104 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3105 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3106 PTP_TX_EGRESS_NS_LO); 3107 3108 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3109 PTP_TX_MSG_HEADER2); 3110 } 3111 3112 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 3113 { 3114 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3115 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 3116 3117 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3118 SOF_TIMESTAMPING_RX_HARDWARE | 3119 SOF_TIMESTAMPING_RAW_HARDWARE; 3120 3121 info->phc_index = ptp_clock_index(shared->ptp_clock); 3122 3123 info->tx_types = 3124 (1 << HWTSTAMP_TX_OFF) | 3125 (1 << HWTSTAMP_TX_ON) | 3126 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3127 3128 info->rx_filters = 3129 (1 << HWTSTAMP_FILTER_NONE) | 3130 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3131 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3132 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3133 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3134 3135 return 0; 3136 } 3137 3138 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3139 { 3140 int i; 3141 3142 for (i = 0; i < FIFO_SIZE; ++i) 3143 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3144 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3145 3146 /* Read to clear overflow status bit */ 3147 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3148 } 3149 3150 static int lan8814_hwtstamp_set(struct mii_timestamper *mii_ts, 3151 struct kernel_hwtstamp_config *config, 3152 struct netlink_ext_ack *extack) 3153 { 3154 struct kszphy_ptp_priv *ptp_priv = 3155 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3156 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3157 int txcfg = 0, rxcfg = 0; 3158 int pkt_ts_enable; 3159 3160 ptp_priv->hwts_tx_type = config->tx_type; 3161 ptp_priv->rx_filter = config->rx_filter; 3162 3163 switch (config->rx_filter) { 3164 case HWTSTAMP_FILTER_NONE: 3165 ptp_priv->layer = 0; 3166 ptp_priv->version = 0; 3167 break; 3168 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3169 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3170 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3171 ptp_priv->layer = PTP_CLASS_L4; 3172 ptp_priv->version = PTP_CLASS_V2; 3173 break; 3174 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3175 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3176 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3177 ptp_priv->layer = PTP_CLASS_L2; 3178 ptp_priv->version = PTP_CLASS_V2; 3179 break; 3180 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3181 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3182 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3183 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3184 ptp_priv->version = PTP_CLASS_V2; 3185 break; 3186 default: 3187 return -ERANGE; 3188 } 3189 3190 if (ptp_priv->layer & PTP_CLASS_L2) { 3191 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3192 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3193 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3194 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3195 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3196 } 3197 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3198 PTP_RX_PARSE_CONFIG, rxcfg); 3199 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3200 PTP_TX_PARSE_CONFIG, txcfg); 3201 3202 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3203 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3204 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3205 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3206 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3207 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3208 3209 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3210 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3211 PTP_TX_MOD, 3212 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3213 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3214 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3215 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3216 PTP_TX_MOD, 3217 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3218 0); 3219 } 3220 3221 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3222 lan8814_config_ts_intr(ptp_priv->phydev, true); 3223 else 3224 lan8814_config_ts_intr(ptp_priv->phydev, false); 3225 3226 /* In case of multiple starts and stops, these needs to be cleared */ 3227 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3228 list_del(&rx_ts->list); 3229 kfree(rx_ts); 3230 } 3231 skb_queue_purge(&ptp_priv->rx_queue); 3232 skb_queue_purge(&ptp_priv->tx_queue); 3233 3234 lan8814_flush_fifo(ptp_priv->phydev, false); 3235 lan8814_flush_fifo(ptp_priv->phydev, true); 3236 3237 return 0; 3238 } 3239 3240 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3241 struct sk_buff *skb, int type) 3242 { 3243 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3244 3245 switch (ptp_priv->hwts_tx_type) { 3246 case HWTSTAMP_TX_ONESTEP_SYNC: 3247 if (ptp_msg_is_sync(skb, type)) { 3248 kfree_skb(skb); 3249 return; 3250 } 3251 fallthrough; 3252 case HWTSTAMP_TX_ON: 3253 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3254 skb_queue_tail(&ptp_priv->tx_queue, skb); 3255 break; 3256 case HWTSTAMP_TX_OFF: 3257 default: 3258 kfree_skb(skb); 3259 break; 3260 } 3261 } 3262 3263 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3264 { 3265 struct ptp_header *ptp_header; 3266 u32 type; 3267 3268 skb_push(skb, ETH_HLEN); 3269 type = ptp_classify_raw(skb); 3270 ptp_header = ptp_parse_header(skb, type); 3271 skb_pull_inline(skb, ETH_HLEN); 3272 3273 if (!ptp_header) 3274 return false; 3275 3276 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3277 return true; 3278 } 3279 3280 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3281 struct sk_buff *skb) 3282 { 3283 struct skb_shared_hwtstamps *shhwtstamps; 3284 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3285 unsigned long flags; 3286 bool ret = false; 3287 u16 skb_sig; 3288 3289 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3290 return ret; 3291 3292 /* Iterate over all RX timestamps and match it with the received skbs */ 3293 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3294 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3295 /* Check if we found the signature we were looking for. */ 3296 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3297 continue; 3298 3299 shhwtstamps = skb_hwtstamps(skb); 3300 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3301 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3302 rx_ts->nsec); 3303 list_del(&rx_ts->list); 3304 kfree(rx_ts); 3305 3306 ret = true; 3307 break; 3308 } 3309 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3310 3311 if (ret) 3312 netif_rx(skb); 3313 return ret; 3314 } 3315 3316 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3317 { 3318 struct kszphy_ptp_priv *ptp_priv = 3319 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3320 3321 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3322 type == PTP_CLASS_NONE) 3323 return false; 3324 3325 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3326 return false; 3327 3328 /* If we failed to match then add it to the queue for when the timestamp 3329 * will come 3330 */ 3331 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3332 skb_queue_tail(&ptp_priv->rx_queue, skb); 3333 3334 return true; 3335 } 3336 3337 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3338 time64_t sec, u32 nsec) 3339 { 3340 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3341 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3342 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3343 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3344 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3345 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3346 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3347 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3348 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3349 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3350 3351 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3352 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3353 } 3354 3355 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3356 time64_t *sec, u32 *nsec) 3357 { 3358 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3359 PTP_CMD_CTL_PTP_CLOCK_READ_); 3360 3361 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3362 PTP_CLOCK_READ_SEC_HI); 3363 *sec <<= 16; 3364 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3365 PTP_CLOCK_READ_SEC_MID); 3366 *sec <<= 16; 3367 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3368 PTP_CLOCK_READ_SEC_LO); 3369 3370 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3371 PTP_CLOCK_READ_NS_HI); 3372 *nsec <<= 16; 3373 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3374 PTP_CLOCK_READ_NS_LO); 3375 } 3376 3377 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3378 struct timespec64 *ts) 3379 { 3380 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3381 ptp_clock_info); 3382 struct phy_device *phydev = shared->phydev; 3383 u32 nano_seconds; 3384 time64_t seconds; 3385 3386 mutex_lock(&shared->shared_lock); 3387 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3388 mutex_unlock(&shared->shared_lock); 3389 ts->tv_sec = seconds; 3390 ts->tv_nsec = nano_seconds; 3391 3392 return 0; 3393 } 3394 3395 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3396 const struct timespec64 *ts) 3397 { 3398 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3399 ptp_clock_info); 3400 struct phy_device *phydev = shared->phydev; 3401 3402 mutex_lock(&shared->shared_lock); 3403 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3404 mutex_unlock(&shared->shared_lock); 3405 3406 return 0; 3407 } 3408 3409 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3410 s64 start_sec, u32 start_nsec) 3411 { 3412 /* Set the start time */ 3413 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3414 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3415 lower_16_bits(start_sec)); 3416 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3417 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3418 upper_16_bits(start_sec)); 3419 3420 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3421 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3422 lower_16_bits(start_nsec)); 3423 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3424 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3425 upper_16_bits(start_nsec) & 0x3fff); 3426 } 3427 3428 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3429 { 3430 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3431 sec + LAN8814_BUFFER_TIME, 0); 3432 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3433 sec + LAN8814_BUFFER_TIME, 0); 3434 } 3435 3436 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3437 s64 time_step_ns) 3438 { 3439 u32 nano_seconds_step; 3440 u64 abs_time_step_ns; 3441 time64_t set_seconds; 3442 u32 nano_seconds; 3443 u32 remainder; 3444 s32 seconds; 3445 3446 if (time_step_ns > 15000000000LL) { 3447 /* convert to clock set */ 3448 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3449 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3450 &remainder); 3451 nano_seconds += remainder; 3452 if (nano_seconds >= 1000000000) { 3453 set_seconds++; 3454 nano_seconds -= 1000000000; 3455 } 3456 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3457 lan8814_ptp_update_target(phydev, set_seconds); 3458 return; 3459 } else if (time_step_ns < -15000000000LL) { 3460 /* convert to clock set */ 3461 time_step_ns = -time_step_ns; 3462 3463 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3464 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3465 &remainder); 3466 nano_seconds_step = remainder; 3467 if (nano_seconds < nano_seconds_step) { 3468 set_seconds--; 3469 nano_seconds += 1000000000; 3470 } 3471 nano_seconds -= nano_seconds_step; 3472 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3473 lan8814_ptp_update_target(phydev, set_seconds); 3474 return; 3475 } 3476 3477 /* do clock step */ 3478 if (time_step_ns >= 0) { 3479 abs_time_step_ns = (u64)time_step_ns; 3480 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3481 &remainder); 3482 nano_seconds = remainder; 3483 } else { 3484 abs_time_step_ns = (u64)(-time_step_ns); 3485 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3486 &remainder)); 3487 nano_seconds = remainder; 3488 if (nano_seconds > 0) { 3489 /* subtracting nano seconds is not allowed 3490 * convert to subtracting from seconds, 3491 * and adding to nanoseconds 3492 */ 3493 seconds--; 3494 nano_seconds = (1000000000 - nano_seconds); 3495 } 3496 } 3497 3498 if (nano_seconds > 0) { 3499 /* add 8 ns to cover the likely normal increment */ 3500 nano_seconds += 8; 3501 } 3502 3503 if (nano_seconds >= 1000000000) { 3504 /* carry into seconds */ 3505 seconds++; 3506 nano_seconds -= 1000000000; 3507 } 3508 3509 while (seconds) { 3510 u32 nsec; 3511 3512 if (seconds > 0) { 3513 u32 adjustment_value = (u32)seconds; 3514 u16 adjustment_value_lo, adjustment_value_hi; 3515 3516 if (adjustment_value > 0xF) 3517 adjustment_value = 0xF; 3518 3519 adjustment_value_lo = adjustment_value & 0xffff; 3520 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3521 3522 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3523 PTP_LTC_STEP_ADJ_LO, 3524 adjustment_value_lo); 3525 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3526 PTP_LTC_STEP_ADJ_HI, 3527 PTP_LTC_STEP_ADJ_DIR_ | 3528 adjustment_value_hi); 3529 seconds -= ((s32)adjustment_value); 3530 3531 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3532 set_seconds -= adjustment_value; 3533 lan8814_ptp_update_target(phydev, set_seconds); 3534 } else { 3535 u32 adjustment_value = (u32)(-seconds); 3536 u16 adjustment_value_lo, adjustment_value_hi; 3537 3538 if (adjustment_value > 0xF) 3539 adjustment_value = 0xF; 3540 3541 adjustment_value_lo = adjustment_value & 0xffff; 3542 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3543 3544 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3545 PTP_LTC_STEP_ADJ_LO, 3546 adjustment_value_lo); 3547 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3548 PTP_LTC_STEP_ADJ_HI, 3549 adjustment_value_hi); 3550 seconds += ((s32)adjustment_value); 3551 3552 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3553 set_seconds += adjustment_value; 3554 lan8814_ptp_update_target(phydev, set_seconds); 3555 } 3556 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3557 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3558 } 3559 if (nano_seconds) { 3560 u16 nano_seconds_lo; 3561 u16 nano_seconds_hi; 3562 3563 nano_seconds_lo = nano_seconds & 0xffff; 3564 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3565 3566 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3567 PTP_LTC_STEP_ADJ_LO, 3568 nano_seconds_lo); 3569 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3570 PTP_LTC_STEP_ADJ_HI, 3571 PTP_LTC_STEP_ADJ_DIR_ | 3572 nano_seconds_hi); 3573 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3574 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3575 } 3576 } 3577 3578 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3579 { 3580 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3581 ptp_clock_info); 3582 struct phy_device *phydev = shared->phydev; 3583 3584 mutex_lock(&shared->shared_lock); 3585 lan8814_ptp_clock_step(phydev, delta); 3586 mutex_unlock(&shared->shared_lock); 3587 3588 return 0; 3589 } 3590 3591 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3592 { 3593 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3594 ptp_clock_info); 3595 struct phy_device *phydev = shared->phydev; 3596 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3597 bool positive = true; 3598 u32 kszphy_rate_adj; 3599 3600 if (scaled_ppm < 0) { 3601 scaled_ppm = -scaled_ppm; 3602 positive = false; 3603 } 3604 3605 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3606 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3607 3608 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3609 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3610 3611 if (positive) 3612 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3613 3614 mutex_lock(&shared->shared_lock); 3615 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3616 kszphy_rate_adj_hi); 3617 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3618 kszphy_rate_adj_lo); 3619 mutex_unlock(&shared->shared_lock); 3620 3621 return 0; 3622 } 3623 3624 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3625 s64 period_sec, u32 period_nsec) 3626 { 3627 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3628 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3629 lower_16_bits(period_sec)); 3630 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3631 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3632 upper_16_bits(period_sec)); 3633 3634 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3635 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3636 lower_16_bits(period_nsec)); 3637 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3638 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3639 upper_16_bits(period_nsec) & 0x3fff); 3640 } 3641 3642 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3643 int pulse_width) 3644 { 3645 /* Set the pulse width of the event, 3646 * Make sure that the target clock will be incremented each time when 3647 * local time reaches or pass it 3648 * Set the polarity high 3649 */ 3650 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3651 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3652 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3653 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3654 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3655 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3656 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3657 } 3658 3659 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3660 { 3661 /* Set target to too far in the future, effectively disabling it */ 3662 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3663 3664 /* And then reload once it reaches the target */ 3665 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3666 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3667 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3668 } 3669 3670 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3671 { 3672 /* Disable gpio alternate function, 3673 * 1: select as gpio, 3674 * 0: select alt func 3675 */ 3676 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3677 LAN8814_GPIO_EN_ADDR(pin), 3678 LAN8814_GPIO_EN_BIT(pin), 3679 LAN8814_GPIO_EN_BIT(pin)); 3680 3681 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3682 LAN8814_GPIO_DIR_ADDR(pin), 3683 LAN8814_GPIO_DIR_BIT(pin), 3684 0); 3685 3686 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3687 LAN8814_GPIO_BUF_ADDR(pin), 3688 LAN8814_GPIO_BUF_BIT(pin), 3689 0); 3690 } 3691 3692 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3693 { 3694 /* Set as gpio output */ 3695 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3696 LAN8814_GPIO_DIR_ADDR(pin), 3697 LAN8814_GPIO_DIR_BIT(pin), 3698 LAN8814_GPIO_DIR_BIT(pin)); 3699 3700 /* Enable gpio 0:for alternate function, 1:gpio */ 3701 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3702 LAN8814_GPIO_EN_ADDR(pin), 3703 LAN8814_GPIO_EN_BIT(pin), 3704 0); 3705 3706 /* Set buffer type to push pull */ 3707 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3708 LAN8814_GPIO_BUF_ADDR(pin), 3709 LAN8814_GPIO_BUF_BIT(pin), 3710 LAN8814_GPIO_BUF_BIT(pin)); 3711 } 3712 3713 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3714 struct ptp_clock_request *rq, int on) 3715 { 3716 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3717 ptp_clock_info); 3718 struct phy_device *phydev = shared->phydev; 3719 struct timespec64 ts_on, ts_period; 3720 s64 on_nsec, period_nsec; 3721 int pulse_width; 3722 int pin, event; 3723 3724 mutex_lock(&shared->shared_lock); 3725 event = rq->perout.index; 3726 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3727 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3728 mutex_unlock(&shared->shared_lock); 3729 return -EBUSY; 3730 } 3731 3732 if (!on) { 3733 lan8814_ptp_perout_off(phydev, pin); 3734 lan8814_ptp_disable_event(phydev, event); 3735 mutex_unlock(&shared->shared_lock); 3736 return 0; 3737 } 3738 3739 ts_on.tv_sec = rq->perout.on.sec; 3740 ts_on.tv_nsec = rq->perout.on.nsec; 3741 on_nsec = timespec64_to_ns(&ts_on); 3742 3743 ts_period.tv_sec = rq->perout.period.sec; 3744 ts_period.tv_nsec = rq->perout.period.nsec; 3745 period_nsec = timespec64_to_ns(&ts_period); 3746 3747 if (period_nsec < 200) { 3748 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3749 phydev_name(phydev)); 3750 mutex_unlock(&shared->shared_lock); 3751 return -EOPNOTSUPP; 3752 } 3753 3754 if (on_nsec >= period_nsec) { 3755 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3756 phydev_name(phydev)); 3757 mutex_unlock(&shared->shared_lock); 3758 return -EINVAL; 3759 } 3760 3761 switch (on_nsec) { 3762 case 200000000: 3763 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3764 break; 3765 case 100000000: 3766 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3767 break; 3768 case 50000000: 3769 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3770 break; 3771 case 10000000: 3772 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3773 break; 3774 case 5000000: 3775 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3776 break; 3777 case 1000000: 3778 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3779 break; 3780 case 500000: 3781 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3782 break; 3783 case 100000: 3784 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3785 break; 3786 case 50000: 3787 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3788 break; 3789 case 10000: 3790 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3791 break; 3792 case 5000: 3793 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3794 break; 3795 case 1000: 3796 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3797 break; 3798 case 500: 3799 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3800 break; 3801 case 100: 3802 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3803 break; 3804 default: 3805 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3806 phydev_name(phydev)); 3807 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3808 break; 3809 } 3810 3811 /* Configure to pulse every period */ 3812 lan8814_ptp_enable_event(phydev, event, pulse_width); 3813 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3814 rq->perout.start.nsec); 3815 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3816 rq->perout.period.nsec); 3817 lan8814_ptp_perout_on(phydev, pin); 3818 mutex_unlock(&shared->shared_lock); 3819 3820 return 0; 3821 } 3822 3823 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3824 { 3825 /* Set as gpio input */ 3826 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3827 LAN8814_GPIO_DIR_ADDR(pin), 3828 LAN8814_GPIO_DIR_BIT(pin), 3829 0); 3830 3831 /* Map the pin to ltc pin 0 of the capture map registers */ 3832 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3833 PTP_GPIO_CAP_MAP_LO, pin, pin); 3834 3835 /* Enable capture on the edges of the ltc pin */ 3836 if (flags & PTP_RISING_EDGE) 3837 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3838 PTP_GPIO_CAP_EN, 3839 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3840 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3841 if (flags & PTP_FALLING_EDGE) 3842 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3843 PTP_GPIO_CAP_EN, 3844 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3845 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3846 3847 /* Enable interrupt top interrupt */ 3848 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3849 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3850 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3851 } 3852 3853 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3854 { 3855 /* Set as gpio out */ 3856 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3857 LAN8814_GPIO_DIR_ADDR(pin), 3858 LAN8814_GPIO_DIR_BIT(pin), 3859 LAN8814_GPIO_DIR_BIT(pin)); 3860 3861 /* Enable alternate, 0:for alternate function, 1:gpio */ 3862 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3863 LAN8814_GPIO_EN_ADDR(pin), 3864 LAN8814_GPIO_EN_BIT(pin), 3865 0); 3866 3867 /* Clear the mapping of pin to registers 0 of the capture registers */ 3868 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3869 PTP_GPIO_CAP_MAP_LO, 3870 GENMASK(3, 0), 3871 0); 3872 3873 /* Disable capture on both of the edges */ 3874 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3875 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3876 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3877 0); 3878 3879 /* Disable interrupt top interrupt */ 3880 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3881 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3882 0); 3883 } 3884 3885 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3886 struct ptp_clock_request *rq, int on) 3887 { 3888 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3889 ptp_clock_info); 3890 struct phy_device *phydev = shared->phydev; 3891 int pin; 3892 3893 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3894 rq->extts.index); 3895 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3896 return -EINVAL; 3897 3898 mutex_lock(&shared->shared_lock); 3899 if (on) 3900 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3901 else 3902 lan8814_ptp_extts_off(phydev, pin); 3903 3904 mutex_unlock(&shared->shared_lock); 3905 3906 return 0; 3907 } 3908 3909 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3910 struct ptp_clock_request *rq, int on) 3911 { 3912 switch (rq->type) { 3913 case PTP_CLK_REQ_PEROUT: 3914 return lan8814_ptp_perout(ptpci, rq, on); 3915 case PTP_CLK_REQ_EXTTS: 3916 return lan8814_ptp_extts(ptpci, rq, on); 3917 default: 3918 return -EINVAL; 3919 } 3920 } 3921 3922 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3923 enum ptp_pin_function func, unsigned int chan) 3924 { 3925 switch (func) { 3926 case PTP_PF_NONE: 3927 case PTP_PF_PEROUT: 3928 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3929 * there is only chan 0 (event A) and for pin 1 there is only 3930 * chan 1 (event B) 3931 */ 3932 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3933 return -1; 3934 break; 3935 case PTP_PF_EXTTS: 3936 if (pin != LAN8814_PTP_EXTTS_NUM) 3937 return -1; 3938 break; 3939 default: 3940 return -1; 3941 } 3942 3943 return 0; 3944 } 3945 3946 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3947 { 3948 struct ptp_header *ptp_header; 3949 u32 type; 3950 3951 type = ptp_classify_raw(skb); 3952 ptp_header = ptp_parse_header(skb, type); 3953 3954 if (!ptp_header) 3955 return false; 3956 3957 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3958 return true; 3959 } 3960 3961 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3962 u32 seconds, u32 nsec, u16 seq_id) 3963 { 3964 struct skb_shared_hwtstamps shhwtstamps; 3965 struct sk_buff *skb, *skb_tmp; 3966 unsigned long flags; 3967 bool ret = false; 3968 u16 skb_sig; 3969 3970 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3971 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3972 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3973 continue; 3974 3975 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3976 continue; 3977 3978 __skb_unlink(skb, &ptp_priv->tx_queue); 3979 ret = true; 3980 break; 3981 } 3982 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3983 3984 if (ret) { 3985 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3986 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3987 skb_complete_tx_timestamp(skb, &shhwtstamps); 3988 } 3989 } 3990 3991 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3992 { 3993 struct phy_device *phydev = ptp_priv->phydev; 3994 u32 seconds, nsec; 3995 u16 seq_id; 3996 3997 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3998 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3999 } 4000 4001 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4002 { 4003 struct phy_device *phydev = ptp_priv->phydev; 4004 u32 reg; 4005 4006 do { 4007 lan8814_dequeue_tx_skb(ptp_priv); 4008 4009 /* If other timestamps are available in the FIFO, 4010 * process them. 4011 */ 4012 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4013 PTP_CAP_INFO); 4014 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 4015 } 4016 4017 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 4018 struct lan8814_ptp_rx_ts *rx_ts) 4019 { 4020 struct skb_shared_hwtstamps *shhwtstamps; 4021 struct sk_buff *skb, *skb_tmp; 4022 unsigned long flags; 4023 bool ret = false; 4024 u16 skb_sig; 4025 4026 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 4027 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 4028 if (!lan8814_get_sig_rx(skb, &skb_sig)) 4029 continue; 4030 4031 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 4032 continue; 4033 4034 __skb_unlink(skb, &ptp_priv->rx_queue); 4035 4036 ret = true; 4037 break; 4038 } 4039 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 4040 4041 if (ret) { 4042 shhwtstamps = skb_hwtstamps(skb); 4043 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4044 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 4045 netif_rx(skb); 4046 } 4047 4048 return ret; 4049 } 4050 4051 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 4052 struct lan8814_ptp_rx_ts *rx_ts) 4053 { 4054 unsigned long flags; 4055 4056 /* If we failed to match the skb add it to the queue for when 4057 * the frame will come 4058 */ 4059 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 4060 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 4061 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 4062 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 4063 } else { 4064 kfree(rx_ts); 4065 } 4066 } 4067 4068 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 4069 { 4070 struct phy_device *phydev = ptp_priv->phydev; 4071 struct lan8814_ptp_rx_ts *rx_ts; 4072 u32 reg; 4073 4074 do { 4075 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 4076 if (!rx_ts) 4077 return; 4078 4079 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 4080 &rx_ts->seq_id); 4081 lan8814_match_rx_ts(ptp_priv, rx_ts); 4082 4083 /* If other timestamps are available in the FIFO, 4084 * process them. 4085 */ 4086 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4087 PTP_CAP_INFO); 4088 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 4089 } 4090 4091 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 4092 { 4093 struct kszphy_priv *priv = phydev->priv; 4094 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4095 4096 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 4097 lan8814_get_tx_ts(ptp_priv); 4098 4099 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 4100 lan8814_get_rx_ts(ptp_priv); 4101 4102 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 4103 lan8814_flush_fifo(phydev, true); 4104 skb_queue_purge(&ptp_priv->tx_queue); 4105 } 4106 4107 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 4108 lan8814_flush_fifo(phydev, false); 4109 skb_queue_purge(&ptp_priv->rx_queue); 4110 } 4111 } 4112 4113 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 4114 { 4115 struct phy_device *phydev = shared->phydev; 4116 struct ptp_clock_event ptp_event = {0}; 4117 unsigned long nsec; 4118 s64 sec; 4119 u16 tmp; 4120 4121 /* This is 0 because whatever was the input pin it was mapped it to 4122 * ltc gpio pin 0 4123 */ 4124 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4125 PTP_GPIO_SEL_GPIO_SEL(0), 4126 PTP_GPIO_SEL_GPIO_SEL(0)); 4127 4128 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4129 PTP_GPIO_CAP_STS); 4130 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4131 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4132 return -1; 4133 4134 if (tmp & BIT(0)) { 4135 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4136 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4137 sec <<= 16; 4138 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4139 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4140 4141 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4142 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4143 nsec <<= 16; 4144 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4145 PTP_GPIO_RE_LTC_NS_LO_CAP); 4146 } else { 4147 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4148 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4149 sec <<= 16; 4150 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4151 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4152 4153 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4154 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4155 nsec <<= 16; 4156 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4157 PTP_GPIO_RE_LTC_NS_LO_CAP); 4158 } 4159 4160 ptp_event.index = 0; 4161 ptp_event.timestamp = ktime_set(sec, nsec); 4162 ptp_event.type = PTP_CLOCK_EXTTS; 4163 ptp_clock_event(shared->ptp_clock, &ptp_event); 4164 4165 return 0; 4166 } 4167 4168 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4169 { 4170 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4171 int ret; 4172 4173 mutex_lock(&shared->shared_lock); 4174 ret = lan8814_gpio_process_cap(shared); 4175 mutex_unlock(&shared->shared_lock); 4176 4177 return ret; 4178 } 4179 4180 static int lan8804_config_init(struct phy_device *phydev) 4181 { 4182 /* MDI-X setting for swap A,B transmit */ 4183 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4184 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4185 LAN8804_ALIGN_TX_A_B_SWAP); 4186 4187 /* Make sure that the PHY will not stop generating the clock when the 4188 * link partner goes down 4189 */ 4190 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4191 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4192 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4193 4194 return 0; 4195 } 4196 4197 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4198 { 4199 int status; 4200 4201 status = phy_read(phydev, LAN8814_INTS); 4202 if (status < 0) { 4203 phy_error(phydev); 4204 return IRQ_NONE; 4205 } 4206 4207 if (status > 0) 4208 phy_trigger_machine(phydev); 4209 4210 return IRQ_HANDLED; 4211 } 4212 4213 #define LAN8804_OUTPUT_CONTROL 25 4214 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4215 #define LAN8804_CONTROL 31 4216 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4217 4218 static int lan8804_config_intr(struct phy_device *phydev) 4219 { 4220 int err; 4221 4222 /* This is an internal PHY of lan966x and is not possible to change the 4223 * polarity on the GIC found in lan966x, therefore change the polarity 4224 * of the interrupt in the PHY from being active low instead of active 4225 * high. 4226 */ 4227 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4228 4229 /* By default interrupt buffer is open-drain in which case the interrupt 4230 * can be active only low. Therefore change the interrupt buffer to be 4231 * push-pull to be able to change interrupt polarity 4232 */ 4233 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4234 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4235 4236 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4237 err = phy_read(phydev, LAN8814_INTS); 4238 if (err < 0) 4239 return err; 4240 4241 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4242 if (err) 4243 return err; 4244 } else { 4245 err = phy_write(phydev, LAN8814_INTC, 0); 4246 if (err) 4247 return err; 4248 4249 err = phy_read(phydev, LAN8814_INTS); 4250 if (err < 0) 4251 return err; 4252 } 4253 4254 return 0; 4255 } 4256 4257 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and 4258 * some of them support PTP while others don't support it. This function will 4259 * return true is the sku supports it, otherwise will return false. 4260 */ 4261 static bool lan8814_has_ptp(struct phy_device *phydev) 4262 { 4263 struct kszphy_priv *priv = phydev->priv; 4264 4265 return priv->is_ptp_available; 4266 } 4267 4268 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4269 { 4270 int ret = IRQ_NONE; 4271 int irq_status; 4272 4273 irq_status = phy_read(phydev, LAN8814_INTS); 4274 if (irq_status < 0) { 4275 phy_error(phydev); 4276 return IRQ_NONE; 4277 } 4278 4279 if (irq_status & LAN8814_INT_LINK) { 4280 phy_trigger_machine(phydev); 4281 ret = IRQ_HANDLED; 4282 } 4283 4284 if (!lan8814_has_ptp(phydev)) 4285 return ret; 4286 4287 while (true) { 4288 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4289 PTP_TSU_INT_STS); 4290 if (!irq_status) 4291 break; 4292 4293 lan8814_handle_ptp_interrupt(phydev, irq_status); 4294 ret = IRQ_HANDLED; 4295 } 4296 4297 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4298 ret = IRQ_HANDLED; 4299 4300 return ret; 4301 } 4302 4303 static int lan8814_ack_interrupt(struct phy_device *phydev) 4304 { 4305 /* bit[12..0] int status, which is a read and clear register. */ 4306 int rc; 4307 4308 rc = phy_read(phydev, LAN8814_INTS); 4309 4310 return (rc < 0) ? rc : 0; 4311 } 4312 4313 static int lan8814_config_intr(struct phy_device *phydev) 4314 { 4315 int err; 4316 4317 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4318 LAN8814_INTR_CTRL_REG_POLARITY | 4319 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4320 4321 /* enable / disable interrupts */ 4322 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4323 err = lan8814_ack_interrupt(phydev); 4324 if (err) 4325 return err; 4326 4327 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4328 } else { 4329 err = phy_write(phydev, LAN8814_INTC, 0); 4330 if (err) 4331 return err; 4332 4333 err = lan8814_ack_interrupt(phydev); 4334 } 4335 4336 return err; 4337 } 4338 4339 static void lan8814_ptp_init(struct phy_device *phydev) 4340 { 4341 struct kszphy_priv *priv = phydev->priv; 4342 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4343 4344 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4345 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4346 return; 4347 4348 if (!lan8814_has_ptp(phydev)) 4349 return; 4350 4351 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4352 TSU_HARD_RESET, TSU_HARD_RESET_); 4353 4354 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4355 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4356 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4357 4358 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4359 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4360 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4361 4362 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4363 PTP_RX_PARSE_CONFIG, 0); 4364 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4365 PTP_TX_PARSE_CONFIG, 0); 4366 4367 /* Removing default registers configs related to L2 and IP */ 4368 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4369 PTP_TX_PARSE_L2_ADDR_EN, 0); 4370 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4371 PTP_RX_PARSE_L2_ADDR_EN, 0); 4372 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4373 PTP_TX_PARSE_IP_ADDR_EN, 0); 4374 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4375 PTP_RX_PARSE_IP_ADDR_EN, 0); 4376 4377 /* Disable checking for minorVersionPTP field */ 4378 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4379 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4380 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4381 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4382 4383 skb_queue_head_init(&ptp_priv->tx_queue); 4384 skb_queue_head_init(&ptp_priv->rx_queue); 4385 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4386 spin_lock_init(&ptp_priv->rx_ts_lock); 4387 4388 ptp_priv->phydev = phydev; 4389 4390 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4391 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4392 ptp_priv->mii_ts.hwtstamp_set = lan8814_hwtstamp_set; 4393 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4394 4395 phydev->mii_ts = &ptp_priv->mii_ts; 4396 4397 /* Timestamp selected by default to keep legacy API */ 4398 phydev->default_timestamp = true; 4399 } 4400 4401 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4402 int gpios) 4403 { 4404 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4405 4406 shared->phydev = phydev; 4407 4408 /* Initialise shared lock for clock*/ 4409 mutex_init(&shared->shared_lock); 4410 4411 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4412 gpios, 4413 sizeof(*shared->pin_config), 4414 GFP_KERNEL); 4415 if (!shared->pin_config) 4416 return -ENOMEM; 4417 4418 for (int i = 0; i < gpios; i++) { 4419 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4420 4421 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4422 snprintf(ptp_pin->name, 4423 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4424 ptp_pin->index = i; 4425 ptp_pin->func = PTP_PF_NONE; 4426 } 4427 4428 shared->ptp_clock_info.owner = THIS_MODULE; 4429 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4430 shared->ptp_clock_info.max_adj = 31249999; 4431 shared->ptp_clock_info.n_alarm = 0; 4432 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4433 shared->ptp_clock_info.n_pins = gpios; 4434 shared->ptp_clock_info.pps = 0; 4435 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4436 PTP_FALLING_EDGE | 4437 PTP_STRICT_FLAGS; 4438 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4439 shared->ptp_clock_info.pin_config = shared->pin_config; 4440 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4441 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4442 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4443 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4444 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4445 shared->ptp_clock_info.getcrosststamp = NULL; 4446 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4447 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4448 4449 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4450 &phydev->mdio.dev); 4451 if (IS_ERR(shared->ptp_clock)) { 4452 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4453 shared->ptp_clock); 4454 return -EINVAL; 4455 } 4456 4457 /* Check if PHC support is missing at the configuration level */ 4458 if (!shared->ptp_clock) 4459 return 0; 4460 4461 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4462 4463 /* The EP.4 is shared between all the PHYs in the package and also it 4464 * can be accessed by any of the PHYs 4465 */ 4466 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4467 LTC_HARD_RESET, LTC_HARD_RESET_); 4468 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4469 PTP_OPERATING_MODE_STANDALONE_); 4470 4471 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4472 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4473 PTP_CMD_CTL_PTP_ENABLE_); 4474 4475 return 0; 4476 } 4477 4478 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4479 { 4480 if (!lan8814_has_ptp(phydev)) 4481 return 0; 4482 4483 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4484 LAN8814_PTP_GPIO_NUM); 4485 } 4486 4487 static void lan8814_setup_led(struct phy_device *phydev, int val) 4488 { 4489 int temp; 4490 4491 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4492 LAN8814_LED_CTRL_1); 4493 4494 if (val) 4495 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4496 else 4497 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4498 4499 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4500 LAN8814_LED_CTRL_1, temp); 4501 } 4502 4503 static int lan8814_config_init(struct phy_device *phydev) 4504 { 4505 struct kszphy_priv *lan8814 = phydev->priv; 4506 int ret; 4507 4508 /* Based on the interface type select how the advertise ability is 4509 * encoded, to set as SGMII or as USGMII. 4510 */ 4511 if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) 4512 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4513 LAN8814_QSGMII_TX_CONFIG, 4514 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4515 LAN8814_QSGMII_TX_CONFIG_QSGMII); 4516 else 4517 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4518 LAN8814_QSGMII_TX_CONFIG, 4519 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4520 0); 4521 4522 if (ret < 0) 4523 return ret; 4524 4525 /* MDI-X setting for swap A,B transmit */ 4526 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4527 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4528 LAN8814_ALIGN_TX_A_B_SWAP); 4529 4530 if (lan8814->led_mode >= 0) 4531 lan8814_setup_led(phydev, lan8814->led_mode); 4532 4533 return 0; 4534 } 4535 4536 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4537 * function called in suspend. Because the GPIO line can be shared, so if one of 4538 * the phys goes back in coma mode, then all the other PHYs will go, which is 4539 * wrong. 4540 */ 4541 static int lan8814_release_coma_mode(struct phy_device *phydev) 4542 { 4543 struct gpio_desc *gpiod; 4544 4545 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4546 GPIOD_OUT_HIGH_OPEN_DRAIN | 4547 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4548 if (IS_ERR(gpiod)) 4549 return PTR_ERR(gpiod); 4550 4551 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4552 gpiod_set_value_cansleep(gpiod, 0); 4553 4554 return 0; 4555 } 4556 4557 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4558 { 4559 /* It was noticed that when traffic is passing through the PHY and the 4560 * cable is removed then the LED was still on even though there is no 4561 * link 4562 */ 4563 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4564 LAN8814_EEE_STATE_MASK2P5P, 4565 0); 4566 } 4567 4568 static void lan8814_update_meas_time(struct phy_device *phydev) 4569 { 4570 /* By setting the measure time to a value of 0xb this will allow cables 4571 * longer than 100m to be used. This configuration can be used 4572 * regardless of the mode of operation of the PHY 4573 */ 4574 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4575 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4576 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4577 } 4578 4579 static int lan8814_probe(struct phy_device *phydev) 4580 { 4581 const struct kszphy_type *type = phydev->drv->driver_data; 4582 struct kszphy_priv *priv; 4583 u16 addr; 4584 int err; 4585 4586 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4587 if (!priv) 4588 return -ENOMEM; 4589 4590 phydev->priv = priv; 4591 4592 priv->type = type; 4593 4594 kszphy_parse_led_mode(phydev); 4595 4596 /* Strap-in value for PHY address, below register read gives starting 4597 * phy address value 4598 */ 4599 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4600 devm_phy_package_join(&phydev->mdio.dev, phydev, 4601 addr, sizeof(struct lan8814_shared_priv)); 4602 4603 /* There are lan8814 SKUs that don't support PTP. Make sure that for 4604 * those skus no PTP device is created. Here we check if the SKU 4605 * supports PTP. 4606 */ 4607 err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4608 LAN8814_SKUS); 4609 if (err < 0) 4610 return err; 4611 4612 priv->is_ptp_available = err == LAN8814_REV_LAN8814 || 4613 err == LAN8814_REV_LAN8818; 4614 4615 if (phy_package_init_once(phydev)) { 4616 /* Reset the PHY */ 4617 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4618 LAN8814_QSGMII_SOFT_RESET, 4619 LAN8814_QSGMII_SOFT_RESET_BIT, 4620 LAN8814_QSGMII_SOFT_RESET_BIT); 4621 4622 err = lan8814_release_coma_mode(phydev); 4623 if (err) 4624 return err; 4625 4626 err = lan8814_ptp_probe_once(phydev); 4627 if (err) 4628 return err; 4629 } 4630 4631 lan8814_ptp_init(phydev); 4632 4633 /* Errata workarounds */ 4634 lan8814_clear_2psp_bit(phydev); 4635 lan8814_update_meas_time(phydev); 4636 4637 return 0; 4638 } 4639 4640 #define LAN8841_MMD_TIMER_REG 0 4641 #define LAN8841_MMD0_REGISTER_17 17 4642 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4643 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4644 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4645 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4646 #define LAN8841_MMD_ANALOG_REG 28 4647 #define LAN8841_ANALOG_CONTROL_1 1 4648 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4649 #define LAN8841_ANALOG_CONTROL_10 13 4650 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4651 #define LAN8841_ANALOG_CONTROL_11 14 4652 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4653 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4654 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4655 #define LAN8841_BTRX_POWER_DOWN 70 4656 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4657 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4658 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4659 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4660 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4661 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4662 #define LAN8841_ADC_CHANNEL_MASK 198 4663 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4664 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4665 #define LAN8841_PTP_RX_VERSION 374 4666 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4667 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4668 #define LAN8841_PTP_TX_VERSION 438 4669 #define LAN8841_PTP_CMD_CTL 256 4670 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4671 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4672 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4673 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4674 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4675 #define LAN8841_PTP_RX_MODE 381 4676 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4677 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4678 4679 static int lan8841_config_init(struct phy_device *phydev) 4680 { 4681 int ret; 4682 4683 ret = ksz9131_config_init(phydev); 4684 if (ret) 4685 return ret; 4686 4687 /* Initialize the HW by resetting everything */ 4688 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4689 LAN8841_PTP_CMD_CTL, 4690 LAN8841_PTP_CMD_CTL_PTP_RESET, 4691 LAN8841_PTP_CMD_CTL_PTP_RESET); 4692 4693 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4694 LAN8841_PTP_CMD_CTL, 4695 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4696 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4697 4698 /* Don't process any frames */ 4699 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4700 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4701 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4702 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4703 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4704 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4705 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4706 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4707 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4708 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4709 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4710 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4711 4712 /* Disable checking for minorVersionPTP field */ 4713 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4714 LAN8841_PTP_RX_VERSION, 0xff00); 4715 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4716 LAN8841_PTP_TX_VERSION, 0xff00); 4717 4718 /* 100BT Clause 40 improvement errata */ 4719 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4720 LAN8841_ANALOG_CONTROL_1, 4721 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4722 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4723 LAN8841_ANALOG_CONTROL_10, 4724 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4725 4726 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4727 * Magnetics 4728 */ 4729 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4730 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4731 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4732 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4733 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4734 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4735 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4736 LAN8841_BTRX_POWER_DOWN, 4737 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4738 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4739 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4740 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4741 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4742 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4743 } 4744 4745 /* LDO Adjustment errata */ 4746 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4747 LAN8841_ANALOG_CONTROL_11, 4748 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4749 4750 /* 100BT RGMII latency tuning errata */ 4751 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4752 LAN8841_ADC_CHANNEL_MASK, 0x0); 4753 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4754 LAN8841_MMD0_REGISTER_17, 4755 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4756 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4757 4758 return 0; 4759 } 4760 4761 #define LAN8841_OUTPUT_CTRL 25 4762 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4763 #define LAN8841_INT_PTP BIT(9) 4764 4765 static int lan8841_config_intr(struct phy_device *phydev) 4766 { 4767 int err; 4768 4769 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4770 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4771 4772 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4773 err = phy_read(phydev, LAN8814_INTS); 4774 if (err < 0) 4775 return err; 4776 4777 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4778 * even if it PTP is not enabled. Because the underneath blocks 4779 * will not enable the PTP so we will never get the PTP 4780 * interrupt. 4781 */ 4782 err = phy_write(phydev, LAN8814_INTC, 4783 LAN8814_INT_LINK | LAN8841_INT_PTP); 4784 } else { 4785 err = phy_write(phydev, LAN8814_INTC, 0); 4786 if (err) 4787 return err; 4788 4789 err = phy_read(phydev, LAN8814_INTS); 4790 if (err < 0) 4791 return err; 4792 4793 /* Getting a positive value doesn't mean that is an error, it 4794 * just indicates what was the status. Therefore make sure to 4795 * clear the value and say that there is no error. 4796 */ 4797 err = 0; 4798 } 4799 4800 return err; 4801 } 4802 4803 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4804 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4805 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4806 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4807 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4808 #define LAN8841_PTP_TX_MSG_HEADER2 455 4809 4810 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4811 u32 *sec, u32 *nsec, u16 *seq) 4812 { 4813 struct phy_device *phydev = ptp_priv->phydev; 4814 4815 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4816 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4817 return false; 4818 4819 *nsec = ((*nsec & 0x3fff) << 16); 4820 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4821 4822 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4823 *sec = *sec << 16; 4824 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4825 4826 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4827 4828 return true; 4829 } 4830 4831 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4832 { 4833 u32 sec, nsec; 4834 u16 seq; 4835 4836 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4837 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4838 } 4839 4840 #define LAN8841_PTP_INT_STS 259 4841 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4842 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4843 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4844 4845 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4846 { 4847 struct phy_device *phydev = ptp_priv->phydev; 4848 int i; 4849 4850 for (i = 0; i < FIFO_SIZE; ++i) 4851 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4852 4853 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4854 } 4855 4856 #define LAN8841_PTP_GPIO_CAP_STS 506 4857 #define LAN8841_PTP_GPIO_SEL 327 4858 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4859 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4860 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4861 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4862 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4863 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4864 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4865 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4866 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4867 4868 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4869 { 4870 struct phy_device *phydev = ptp_priv->phydev; 4871 struct ptp_clock_event ptp_event = {0}; 4872 int pin, ret, tmp; 4873 s32 sec, nsec; 4874 4875 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4876 if (pin == -1) 4877 return; 4878 4879 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4880 if (tmp < 0) 4881 return; 4882 4883 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4884 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4885 if (ret) 4886 return; 4887 4888 mutex_lock(&ptp_priv->ptp_lock); 4889 if (tmp & BIT(pin)) { 4890 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4891 sec <<= 16; 4892 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4893 4894 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4895 nsec <<= 16; 4896 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4897 } else { 4898 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4899 sec <<= 16; 4900 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4901 4902 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4903 nsec <<= 16; 4904 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4905 } 4906 mutex_unlock(&ptp_priv->ptp_lock); 4907 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4908 if (ret) 4909 return; 4910 4911 ptp_event.index = 0; 4912 ptp_event.timestamp = ktime_set(sec, nsec); 4913 ptp_event.type = PTP_CLOCK_EXTTS; 4914 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4915 } 4916 4917 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4918 { 4919 struct kszphy_priv *priv = phydev->priv; 4920 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4921 u16 status; 4922 4923 do { 4924 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4925 4926 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4927 lan8841_ptp_process_tx_ts(ptp_priv); 4928 4929 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4930 lan8841_gpio_process_cap(ptp_priv); 4931 4932 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4933 lan8841_ptp_flush_fifo(ptp_priv); 4934 skb_queue_purge(&ptp_priv->tx_queue); 4935 } 4936 4937 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4938 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4939 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4940 } 4941 4942 #define LAN8841_INTS_PTP BIT(9) 4943 4944 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4945 { 4946 irqreturn_t ret = IRQ_NONE; 4947 int irq_status; 4948 4949 irq_status = phy_read(phydev, LAN8814_INTS); 4950 if (irq_status < 0) { 4951 phy_error(phydev); 4952 return IRQ_NONE; 4953 } 4954 4955 if (irq_status & LAN8814_INT_LINK) { 4956 phy_trigger_machine(phydev); 4957 ret = IRQ_HANDLED; 4958 } 4959 4960 if (irq_status & LAN8841_INTS_PTP) { 4961 lan8841_handle_ptp_interrupt(phydev); 4962 ret = IRQ_HANDLED; 4963 } 4964 4965 return ret; 4966 } 4967 4968 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4969 struct kernel_ethtool_ts_info *info) 4970 { 4971 struct kszphy_ptp_priv *ptp_priv; 4972 4973 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4974 4975 info->phc_index = ptp_priv->ptp_clock ? 4976 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4977 if (info->phc_index == -1) 4978 return 0; 4979 4980 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4981 SOF_TIMESTAMPING_RX_HARDWARE | 4982 SOF_TIMESTAMPING_RAW_HARDWARE; 4983 4984 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4985 (1 << HWTSTAMP_TX_ON) | 4986 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4987 4988 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4989 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4990 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4991 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4992 4993 return 0; 4994 } 4995 4996 #define LAN8841_PTP_INT_EN 260 4997 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4998 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4999 5000 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 5001 bool enable) 5002 { 5003 struct phy_device *phydev = ptp_priv->phydev; 5004 5005 if (enable) { 5006 /* Enable interrupts on the TX side */ 5007 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5008 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5009 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 5010 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5011 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 5012 5013 /* Enable the modification of the frame on RX side, 5014 * this will add the ns and 2 bits of sec in the reserved field 5015 * of the PTP header 5016 */ 5017 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5018 LAN8841_PTP_RX_MODE, 5019 LAN8841_PTP_INSERT_TS_EN | 5020 LAN8841_PTP_INSERT_TS_32BIT, 5021 LAN8841_PTP_INSERT_TS_EN | 5022 LAN8841_PTP_INSERT_TS_32BIT); 5023 5024 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 5025 } else { 5026 /* Disable interrupts on the TX side */ 5027 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5028 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5029 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 5030 5031 /* Disable modification of the RX frames */ 5032 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5033 LAN8841_PTP_RX_MODE, 5034 LAN8841_PTP_INSERT_TS_EN | 5035 LAN8841_PTP_INSERT_TS_32BIT, 0); 5036 5037 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5038 } 5039 } 5040 5041 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 5042 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 5043 #define LAN8841_PTP_TX_MOD 445 5044 5045 static int lan8841_hwtstamp_set(struct mii_timestamper *mii_ts, 5046 struct kernel_hwtstamp_config *config, 5047 struct netlink_ext_ack *extack) 5048 { 5049 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5050 struct phy_device *phydev = ptp_priv->phydev; 5051 int txcfg = 0, rxcfg = 0; 5052 int pkt_ts_enable; 5053 5054 ptp_priv->hwts_tx_type = config->tx_type; 5055 ptp_priv->rx_filter = config->rx_filter; 5056 5057 switch (config->rx_filter) { 5058 case HWTSTAMP_FILTER_NONE: 5059 ptp_priv->layer = 0; 5060 ptp_priv->version = 0; 5061 break; 5062 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 5063 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5064 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5065 ptp_priv->layer = PTP_CLASS_L4; 5066 ptp_priv->version = PTP_CLASS_V2; 5067 break; 5068 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 5069 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5070 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5071 ptp_priv->layer = PTP_CLASS_L2; 5072 ptp_priv->version = PTP_CLASS_V2; 5073 break; 5074 case HWTSTAMP_FILTER_PTP_V2_EVENT: 5075 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5076 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5077 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 5078 ptp_priv->version = PTP_CLASS_V2; 5079 break; 5080 default: 5081 return -ERANGE; 5082 } 5083 5084 /* Setup parsing of the frames and enable the timestamping for ptp 5085 * frames 5086 */ 5087 if (ptp_priv->layer & PTP_CLASS_L2) { 5088 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 5089 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 5090 } else if (ptp_priv->layer & PTP_CLASS_L4) { 5091 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 5092 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 5093 } 5094 5095 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 5096 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 5097 5098 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 5099 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 5100 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 5101 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 5102 5103 /* Enable / disable of the TX timestamp in the SYNC frames */ 5104 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 5105 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 5106 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 5107 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 5108 5109 /* Now enable/disable the timestamping */ 5110 lan8841_ptp_enable_processing(ptp_priv, 5111 config->rx_filter != HWTSTAMP_FILTER_NONE); 5112 5113 skb_queue_purge(&ptp_priv->tx_queue); 5114 5115 lan8841_ptp_flush_fifo(ptp_priv); 5116 5117 return 0; 5118 } 5119 5120 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 5121 struct sk_buff *skb, int type) 5122 { 5123 struct kszphy_ptp_priv *ptp_priv = 5124 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5125 struct ptp_header *header = ptp_parse_header(skb, type); 5126 struct skb_shared_hwtstamps *shhwtstamps; 5127 struct timespec64 ts; 5128 unsigned long flags; 5129 u32 ts_header; 5130 5131 if (!header) 5132 return false; 5133 5134 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 5135 type == PTP_CLASS_NONE) 5136 return false; 5137 5138 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 5139 return false; 5140 5141 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5142 ts.tv_sec = ptp_priv->seconds; 5143 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5144 ts_header = __be32_to_cpu(header->reserved2); 5145 5146 shhwtstamps = skb_hwtstamps(skb); 5147 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5148 5149 /* Check for any wrap arounds for the second part */ 5150 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5151 ts.tv_sec -= GENMASK(1, 0) + 1; 5152 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5153 ts.tv_sec += 1; 5154 5155 shhwtstamps->hwtstamp = 5156 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5157 ts_header & GENMASK(29, 0)); 5158 header->reserved2 = 0; 5159 5160 netif_rx(skb); 5161 5162 return true; 5163 } 5164 5165 #define LAN8841_EVENT_A 0 5166 #define LAN8841_EVENT_B 1 5167 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5168 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5169 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5170 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5171 5172 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5173 s64 sec, u32 nsec) 5174 { 5175 struct phy_device *phydev = ptp_priv->phydev; 5176 int ret; 5177 5178 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5179 upper_16_bits(sec)); 5180 if (ret) 5181 return ret; 5182 5183 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5184 lower_16_bits(sec)); 5185 if (ret) 5186 return ret; 5187 5188 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5189 upper_16_bits(nsec)); 5190 if (ret) 5191 return ret; 5192 5193 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5194 lower_16_bits(nsec)); 5195 } 5196 5197 #define LAN8841_BUFFER_TIME 2 5198 5199 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5200 const struct timespec64 *ts) 5201 { 5202 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5203 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5204 } 5205 5206 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5207 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5208 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5209 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5210 5211 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5212 s64 sec, u32 nsec) 5213 { 5214 struct phy_device *phydev = ptp_priv->phydev; 5215 int ret; 5216 5217 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5218 upper_16_bits(sec)); 5219 if (ret) 5220 return ret; 5221 5222 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5223 lower_16_bits(sec)); 5224 if (ret) 5225 return ret; 5226 5227 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5228 upper_16_bits(nsec)); 5229 if (ret) 5230 return ret; 5231 5232 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5233 lower_16_bits(nsec)); 5234 } 5235 5236 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5237 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5238 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5239 #define LAN8841_PTP_LTC_SET_NS_HI 265 5240 #define LAN8841_PTP_LTC_SET_NS_LO 266 5241 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5242 5243 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5244 const struct timespec64 *ts) 5245 { 5246 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5247 ptp_clock_info); 5248 struct phy_device *phydev = ptp_priv->phydev; 5249 unsigned long flags; 5250 int ret; 5251 5252 /* Set the value to be stored */ 5253 mutex_lock(&ptp_priv->ptp_lock); 5254 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5255 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5256 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5257 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5258 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5259 5260 /* Set the command to load the LTC */ 5261 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5262 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5263 ret = lan8841_ptp_update_target(ptp_priv, ts); 5264 mutex_unlock(&ptp_priv->ptp_lock); 5265 5266 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5267 ptp_priv->seconds = ts->tv_sec; 5268 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5269 5270 return ret; 5271 } 5272 5273 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5274 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5275 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5276 #define LAN8841_PTP_LTC_RD_NS_HI 361 5277 #define LAN8841_PTP_LTC_RD_NS_LO 362 5278 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5279 5280 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5281 struct timespec64 *ts) 5282 { 5283 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5284 ptp_clock_info); 5285 struct phy_device *phydev = ptp_priv->phydev; 5286 time64_t s; 5287 s64 ns; 5288 5289 mutex_lock(&ptp_priv->ptp_lock); 5290 /* Issue the command to read the LTC */ 5291 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5292 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5293 5294 /* Read the LTC */ 5295 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5296 s <<= 16; 5297 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5298 s <<= 16; 5299 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5300 5301 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5302 ns <<= 16; 5303 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5304 mutex_unlock(&ptp_priv->ptp_lock); 5305 5306 set_normalized_timespec64(ts, s, ns); 5307 return 0; 5308 } 5309 5310 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5311 struct timespec64 *ts) 5312 { 5313 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5314 ptp_clock_info); 5315 struct phy_device *phydev = ptp_priv->phydev; 5316 time64_t s; 5317 5318 mutex_lock(&ptp_priv->ptp_lock); 5319 /* Issue the command to read the LTC */ 5320 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5321 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5322 5323 /* Read the LTC */ 5324 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5325 s <<= 16; 5326 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5327 s <<= 16; 5328 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5329 mutex_unlock(&ptp_priv->ptp_lock); 5330 5331 set_normalized_timespec64(ts, s, 0); 5332 } 5333 5334 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5335 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5336 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5337 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5338 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5339 5340 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5341 { 5342 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5343 ptp_clock_info); 5344 struct phy_device *phydev = ptp_priv->phydev; 5345 struct timespec64 ts; 5346 bool add = true; 5347 u32 nsec; 5348 s32 sec; 5349 int ret; 5350 5351 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5352 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5353 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5354 * increment so the value can be bigger than 15 sec. Therefore limit the 5355 * possible adjustments so we will not have these corner cases 5356 */ 5357 if (delta > 10000000000LL || delta < -10000000000LL) { 5358 /* The timeadjustment is too big, so fall back using set time */ 5359 u64 now; 5360 5361 ptp->gettime64(ptp, &ts); 5362 5363 now = ktime_to_ns(timespec64_to_ktime(ts)); 5364 ts = ns_to_timespec64(now + delta); 5365 5366 ptp->settime64(ptp, &ts); 5367 return 0; 5368 } 5369 5370 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5371 if (delta < 0 && nsec != 0) { 5372 /* It is not allowed to adjust low the nsec part, therefore 5373 * subtract more from second part and add to nanosecond such 5374 * that would roll over, so the second part will increase 5375 */ 5376 sec--; 5377 nsec = NSEC_PER_SEC - nsec; 5378 } 5379 5380 /* Calculate the adjustments and the direction */ 5381 if (delta < 0) 5382 add = false; 5383 5384 if (nsec > 0) 5385 /* add 8 ns to cover the likely normal increment */ 5386 nsec += 8; 5387 5388 if (nsec >= NSEC_PER_SEC) { 5389 /* carry into seconds */ 5390 sec++; 5391 nsec -= NSEC_PER_SEC; 5392 } 5393 5394 mutex_lock(&ptp_priv->ptp_lock); 5395 if (sec) { 5396 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5397 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5398 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5399 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5400 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5401 } 5402 5403 if (nsec) { 5404 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5405 nsec & 0xffff); 5406 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5407 (nsec >> 16) & 0x3fff); 5408 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5409 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5410 } 5411 mutex_unlock(&ptp_priv->ptp_lock); 5412 5413 /* Update the target clock */ 5414 ptp->gettime64(ptp, &ts); 5415 mutex_lock(&ptp_priv->ptp_lock); 5416 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5417 mutex_unlock(&ptp_priv->ptp_lock); 5418 5419 return ret; 5420 } 5421 5422 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5423 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5424 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5425 5426 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5427 { 5428 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5429 ptp_clock_info); 5430 struct phy_device *phydev = ptp_priv->phydev; 5431 bool faster = true; 5432 u32 rate; 5433 5434 if (!scaled_ppm) 5435 return 0; 5436 5437 if (scaled_ppm < 0) { 5438 scaled_ppm = -scaled_ppm; 5439 faster = false; 5440 } 5441 5442 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5443 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5444 5445 mutex_lock(&ptp_priv->ptp_lock); 5446 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5447 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5448 : upper_16_bits(rate) & 0x3fff); 5449 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5450 mutex_unlock(&ptp_priv->ptp_lock); 5451 5452 return 0; 5453 } 5454 5455 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5456 enum ptp_pin_function func, unsigned int chan) 5457 { 5458 switch (func) { 5459 case PTP_PF_NONE: 5460 case PTP_PF_PEROUT: 5461 case PTP_PF_EXTTS: 5462 break; 5463 default: 5464 return -1; 5465 } 5466 5467 return 0; 5468 } 5469 5470 #define LAN8841_PTP_GPIO_NUM 10 5471 #define LAN8841_GPIO_EN 128 5472 #define LAN8841_GPIO_DIR 129 5473 #define LAN8841_GPIO_BUF 130 5474 5475 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5476 { 5477 struct phy_device *phydev = ptp_priv->phydev; 5478 int ret; 5479 5480 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5481 if (ret) 5482 return ret; 5483 5484 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5485 if (ret) 5486 return ret; 5487 5488 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5489 } 5490 5491 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5492 { 5493 struct phy_device *phydev = ptp_priv->phydev; 5494 int ret; 5495 5496 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5497 if (ret) 5498 return ret; 5499 5500 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5501 if (ret) 5502 return ret; 5503 5504 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5505 } 5506 5507 #define LAN8841_GPIO_DATA_SEL1 131 5508 #define LAN8841_GPIO_DATA_SEL2 132 5509 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5510 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5511 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5512 #define LAN8841_PTP_GENERAL_CONFIG 257 5513 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5514 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5515 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5516 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5517 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5518 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5519 5520 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5521 u8 event) 5522 { 5523 struct phy_device *phydev = ptp_priv->phydev; 5524 u16 tmp; 5525 int ret; 5526 5527 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5528 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5529 * depending on the pin, it requires to read a different register 5530 */ 5531 if (pin < 5) { 5532 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5533 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5534 } else { 5535 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5536 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5537 } 5538 if (ret) 5539 return ret; 5540 5541 /* Disable the event */ 5542 if (event == LAN8841_EVENT_A) 5543 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5544 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5545 else 5546 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5547 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5548 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5549 } 5550 5551 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5552 u8 event, int pulse_width) 5553 { 5554 struct phy_device *phydev = ptp_priv->phydev; 5555 u16 tmp; 5556 int ret; 5557 5558 /* Enable the event */ 5559 if (event == LAN8841_EVENT_A) 5560 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5561 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5562 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5563 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5564 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5565 else 5566 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5567 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5568 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5569 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5570 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5571 if (ret) 5572 return ret; 5573 5574 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5575 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5576 * depending on the pin, it requires to read a different register 5577 */ 5578 if (event == LAN8841_EVENT_A) 5579 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5580 else 5581 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5582 5583 if (pin < 5) 5584 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5585 tmp << (3 * pin)); 5586 else 5587 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5588 tmp << (3 * (pin - 5))); 5589 5590 return ret; 5591 } 5592 5593 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5594 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5595 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5596 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5597 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5598 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5599 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5600 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5601 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5602 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5603 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5604 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5605 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5606 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5607 5608 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5609 struct ptp_clock_request *rq, int on) 5610 { 5611 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5612 ptp_clock_info); 5613 struct phy_device *phydev = ptp_priv->phydev; 5614 struct timespec64 ts_on, ts_period; 5615 s64 on_nsec, period_nsec; 5616 int pulse_width; 5617 int pin; 5618 int ret; 5619 5620 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5621 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5622 return -EINVAL; 5623 5624 if (!on) { 5625 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5626 if (ret) 5627 return ret; 5628 5629 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5630 } 5631 5632 ts_on.tv_sec = rq->perout.on.sec; 5633 ts_on.tv_nsec = rq->perout.on.nsec; 5634 on_nsec = timespec64_to_ns(&ts_on); 5635 5636 ts_period.tv_sec = rq->perout.period.sec; 5637 ts_period.tv_nsec = rq->perout.period.nsec; 5638 period_nsec = timespec64_to_ns(&ts_period); 5639 5640 if (period_nsec < 200) { 5641 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5642 phydev_name(phydev)); 5643 return -EOPNOTSUPP; 5644 } 5645 5646 if (on_nsec >= period_nsec) { 5647 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5648 phydev_name(phydev)); 5649 return -EINVAL; 5650 } 5651 5652 switch (on_nsec) { 5653 case 200000000: 5654 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5655 break; 5656 case 100000000: 5657 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5658 break; 5659 case 50000000: 5660 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5661 break; 5662 case 10000000: 5663 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5664 break; 5665 case 5000000: 5666 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5667 break; 5668 case 1000000: 5669 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5670 break; 5671 case 500000: 5672 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5673 break; 5674 case 100000: 5675 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5676 break; 5677 case 50000: 5678 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5679 break; 5680 case 10000: 5681 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5682 break; 5683 case 5000: 5684 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5685 break; 5686 case 1000: 5687 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5688 break; 5689 case 500: 5690 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5691 break; 5692 case 100: 5693 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5694 break; 5695 default: 5696 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5697 phydev_name(phydev)); 5698 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5699 break; 5700 } 5701 5702 mutex_lock(&ptp_priv->ptp_lock); 5703 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5704 rq->perout.start.nsec); 5705 mutex_unlock(&ptp_priv->ptp_lock); 5706 if (ret) 5707 return ret; 5708 5709 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5710 rq->perout.period.nsec); 5711 if (ret) 5712 return ret; 5713 5714 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5715 pulse_width); 5716 if (ret) 5717 return ret; 5718 5719 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5720 if (ret) 5721 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5722 5723 return ret; 5724 } 5725 5726 #define LAN8841_PTP_GPIO_CAP_EN 496 5727 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5728 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5729 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5730 5731 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5732 u32 flags) 5733 { 5734 struct phy_device *phydev = ptp_priv->phydev; 5735 u16 tmp = 0; 5736 int ret; 5737 5738 /* Set GPIO to be input */ 5739 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5740 if (ret) 5741 return ret; 5742 5743 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5744 if (ret) 5745 return ret; 5746 5747 /* Enable capture on the edges of the pin */ 5748 if (flags & PTP_RISING_EDGE) 5749 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5750 if (flags & PTP_FALLING_EDGE) 5751 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5752 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5753 if (ret) 5754 return ret; 5755 5756 /* Enable interrupt */ 5757 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5758 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5759 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5760 } 5761 5762 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5763 { 5764 struct phy_device *phydev = ptp_priv->phydev; 5765 int ret; 5766 5767 /* Set GPIO to be output */ 5768 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5769 if (ret) 5770 return ret; 5771 5772 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5773 if (ret) 5774 return ret; 5775 5776 /* Disable capture on both of the edges */ 5777 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5778 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5779 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5780 0); 5781 if (ret) 5782 return ret; 5783 5784 /* Disable interrupt */ 5785 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5786 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5787 0); 5788 } 5789 5790 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5791 struct ptp_clock_request *rq, int on) 5792 { 5793 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5794 ptp_clock_info); 5795 int pin; 5796 int ret; 5797 5798 /* Reject requests with unsupported flags */ 5799 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5800 PTP_EXTTS_EDGES | 5801 PTP_STRICT_FLAGS)) 5802 return -EOPNOTSUPP; 5803 5804 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5805 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5806 return -EINVAL; 5807 5808 mutex_lock(&ptp_priv->ptp_lock); 5809 if (on) 5810 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5811 else 5812 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5813 mutex_unlock(&ptp_priv->ptp_lock); 5814 5815 return ret; 5816 } 5817 5818 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5819 struct ptp_clock_request *rq, int on) 5820 { 5821 switch (rq->type) { 5822 case PTP_CLK_REQ_EXTTS: 5823 return lan8841_ptp_extts(ptp, rq, on); 5824 case PTP_CLK_REQ_PEROUT: 5825 return lan8841_ptp_perout(ptp, rq, on); 5826 default: 5827 return -EOPNOTSUPP; 5828 } 5829 5830 return 0; 5831 } 5832 5833 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5834 { 5835 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5836 ptp_clock_info); 5837 struct timespec64 ts; 5838 unsigned long flags; 5839 5840 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5841 5842 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5843 ptp_priv->seconds = ts.tv_sec; 5844 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5845 5846 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5847 } 5848 5849 static struct ptp_clock_info lan8841_ptp_clock_info = { 5850 .owner = THIS_MODULE, 5851 .name = "lan8841 ptp", 5852 .max_adj = 31249999, 5853 .gettime64 = lan8841_ptp_gettime64, 5854 .settime64 = lan8841_ptp_settime64, 5855 .adjtime = lan8841_ptp_adjtime, 5856 .adjfine = lan8841_ptp_adjfine, 5857 .verify = lan8841_ptp_verify, 5858 .enable = lan8841_ptp_enable, 5859 .do_aux_work = lan8841_ptp_do_aux_work, 5860 .n_per_out = LAN8841_PTP_GPIO_NUM, 5861 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5862 .n_pins = LAN8841_PTP_GPIO_NUM, 5863 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5864 }; 5865 5866 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5867 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5868 5869 static int lan8841_probe(struct phy_device *phydev) 5870 { 5871 struct kszphy_ptp_priv *ptp_priv; 5872 struct kszphy_priv *priv; 5873 int err; 5874 5875 err = kszphy_probe(phydev); 5876 if (err) 5877 return err; 5878 5879 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5880 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5881 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5882 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5883 5884 /* Register the clock */ 5885 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5886 return 0; 5887 5888 priv = phydev->priv; 5889 ptp_priv = &priv->ptp_priv; 5890 5891 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5892 LAN8841_PTP_GPIO_NUM, 5893 sizeof(*ptp_priv->pin_config), 5894 GFP_KERNEL); 5895 if (!ptp_priv->pin_config) 5896 return -ENOMEM; 5897 5898 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5899 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5900 5901 snprintf(p->name, sizeof(p->name), "pin%d", i); 5902 p->index = i; 5903 p->func = PTP_PF_NONE; 5904 } 5905 5906 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5907 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5908 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5909 &phydev->mdio.dev); 5910 if (IS_ERR(ptp_priv->ptp_clock)) { 5911 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5912 ptp_priv->ptp_clock); 5913 return -EINVAL; 5914 } 5915 5916 if (!ptp_priv->ptp_clock) 5917 return 0; 5918 5919 /* Initialize the SW */ 5920 skb_queue_head_init(&ptp_priv->tx_queue); 5921 ptp_priv->phydev = phydev; 5922 mutex_init(&ptp_priv->ptp_lock); 5923 spin_lock_init(&ptp_priv->seconds_lock); 5924 5925 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5926 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5927 ptp_priv->mii_ts.hwtstamp_set = lan8841_hwtstamp_set; 5928 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5929 5930 phydev->mii_ts = &ptp_priv->mii_ts; 5931 5932 /* Timestamp selected by default to keep legacy API */ 5933 phydev->default_timestamp = true; 5934 5935 return 0; 5936 } 5937 5938 static int lan8804_resume(struct phy_device *phydev) 5939 { 5940 return kszphy_resume(phydev); 5941 } 5942 5943 static int lan8804_suspend(struct phy_device *phydev) 5944 { 5945 return kszphy_generic_suspend(phydev); 5946 } 5947 5948 static int lan8841_resume(struct phy_device *phydev) 5949 { 5950 return kszphy_generic_resume(phydev); 5951 } 5952 5953 static int lan8841_suspend(struct phy_device *phydev) 5954 { 5955 struct kszphy_priv *priv = phydev->priv; 5956 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5957 5958 if (ptp_priv->ptp_clock) 5959 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5960 5961 return kszphy_generic_suspend(phydev); 5962 } 5963 5964 static int ksz9131_resume(struct phy_device *phydev) 5965 { 5966 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5967 ksz9131_config_rgmii_delay(phydev); 5968 5969 return kszphy_resume(phydev); 5970 } 5971 5972 #define LAN8842_PTP_GPIO_NUM 16 5973 5974 static int lan8842_ptp_probe_once(struct phy_device *phydev) 5975 { 5976 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5977 LAN8842_PTP_GPIO_NUM); 5978 } 5979 5980 #define LAN8842_STRAP_REG 0 /* 0x0 */ 5981 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5982 #define LAN8842_SKU_REG 11 /* 0x0b */ 5983 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5984 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5985 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5986 5987 static int lan8842_probe(struct phy_device *phydev) 5988 { 5989 struct lan8842_priv *priv; 5990 int addr; 5991 int ret; 5992 5993 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5994 if (!priv) 5995 return -ENOMEM; 5996 5997 phydev->priv = priv; 5998 5999 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 6000 * to enable to pass any traffic through it. Therefore use the same 6001 * function as lan8814 6002 */ 6003 ret = lan8814_release_coma_mode(phydev); 6004 if (ret) 6005 return ret; 6006 6007 /* Enable to count the RX and TX packets */ 6008 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6009 LAN8842_SELF_TEST, 6010 LAN8842_SELF_TEST_RX_CNT_ENA | 6011 LAN8842_SELF_TEST_TX_CNT_ENA); 6012 if (ret < 0) 6013 return ret; 6014 6015 /* Revision lan8832 doesn't have support for PTP, therefore don't add 6016 * any PTP clocks 6017 */ 6018 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6019 LAN8842_SKU_REG); 6020 if (ret < 0) 6021 return ret; 6022 6023 priv->rev = ret; 6024 if (priv->rev == LAN8842_REV_8832) 6025 return 0; 6026 6027 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 6028 * only difference is the number of the GPIOs, then make sure that the 6029 * lan8842 initialized also the shared data pointer as this is used in 6030 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 6031 * PHYs in the same package. 6032 */ 6033 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6034 LAN8842_STRAP_REG); 6035 if (addr < 0) 6036 return addr; 6037 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 6038 6039 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 6040 sizeof(struct lan8814_shared_priv)); 6041 if (ret) 6042 return ret; 6043 6044 if (phy_package_init_once(phydev)) { 6045 ret = lan8842_ptp_probe_once(phydev); 6046 if (ret) 6047 return ret; 6048 } 6049 6050 lan8814_ptp_init(phydev); 6051 6052 return 0; 6053 } 6054 6055 #define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI 0x13 6056 #define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX 0x14 6057 #define LAN8814_POWER_MGMT_MODE_5_10BT_MDI 0x15 6058 #define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX 0x16 6059 #define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN 0x17 6060 #define LAN8814_POWER_MGMT_MODE_8_100BT_MDI 0x18 6061 #define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX 0x19 6062 #define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX 0x1a 6063 #define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX 0x1b 6064 #define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX 0x1c 6065 #define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX 0x1d 6066 #define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX 0x1e 6067 6068 #define LAN8814_POWER_MGMT_DLLPD_D BIT(0) 6069 #define LAN8814_POWER_MGMT_ADCPD_D BIT(1) 6070 #define LAN8814_POWER_MGMT_PGAPD_D BIT(2) 6071 #define LAN8814_POWER_MGMT_TXPD_D BIT(3) 6072 #define LAN8814_POWER_MGMT_DLLPD_C BIT(4) 6073 #define LAN8814_POWER_MGMT_ADCPD_C BIT(5) 6074 #define LAN8814_POWER_MGMT_PGAPD_C BIT(6) 6075 #define LAN8814_POWER_MGMT_TXPD_C BIT(7) 6076 #define LAN8814_POWER_MGMT_DLLPD_B BIT(8) 6077 #define LAN8814_POWER_MGMT_ADCPD_B BIT(9) 6078 #define LAN8814_POWER_MGMT_PGAPD_B BIT(10) 6079 #define LAN8814_POWER_MGMT_TXPD_B BIT(11) 6080 #define LAN8814_POWER_MGMT_DLLPD_A BIT(12) 6081 #define LAN8814_POWER_MGMT_ADCPD_A BIT(13) 6082 #define LAN8814_POWER_MGMT_PGAPD_A BIT(14) 6083 #define LAN8814_POWER_MGMT_TXPD_A BIT(15) 6084 6085 #define LAN8814_POWER_MGMT_C_D (LAN8814_POWER_MGMT_DLLPD_D | \ 6086 LAN8814_POWER_MGMT_ADCPD_D | \ 6087 LAN8814_POWER_MGMT_PGAPD_D | \ 6088 LAN8814_POWER_MGMT_DLLPD_C | \ 6089 LAN8814_POWER_MGMT_ADCPD_C | \ 6090 LAN8814_POWER_MGMT_PGAPD_C) 6091 6092 #define LAN8814_POWER_MGMT_B_C_D (LAN8814_POWER_MGMT_C_D | \ 6093 LAN8814_POWER_MGMT_DLLPD_B | \ 6094 LAN8814_POWER_MGMT_ADCPD_B | \ 6095 LAN8814_POWER_MGMT_PGAPD_B) 6096 6097 #define LAN8814_POWER_MGMT_VAL1 (LAN8814_POWER_MGMT_C_D | \ 6098 LAN8814_POWER_MGMT_ADCPD_B | \ 6099 LAN8814_POWER_MGMT_PGAPD_B | \ 6100 LAN8814_POWER_MGMT_ADCPD_A | \ 6101 LAN8814_POWER_MGMT_PGAPD_A) 6102 6103 #define LAN8814_POWER_MGMT_VAL2 LAN8814_POWER_MGMT_C_D 6104 6105 #define LAN8814_POWER_MGMT_VAL3 (LAN8814_POWER_MGMT_C_D | \ 6106 LAN8814_POWER_MGMT_DLLPD_B | \ 6107 LAN8814_POWER_MGMT_ADCPD_B | \ 6108 LAN8814_POWER_MGMT_PGAPD_A) 6109 6110 #define LAN8814_POWER_MGMT_VAL4 (LAN8814_POWER_MGMT_B_C_D | \ 6111 LAN8814_POWER_MGMT_ADCPD_A | \ 6112 LAN8814_POWER_MGMT_PGAPD_A) 6113 6114 #define LAN8814_POWER_MGMT_VAL5 LAN8814_POWER_MGMT_B_C_D 6115 6116 #define LAN8814_EEE_WAKE_TX_TIMER 0x0e 6117 #define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL 0x1f 6118 6119 static const struct lanphy_reg_data short_center_tap_errata[] = { 6120 { LAN8814_PAGE_POWER_REGS, 6121 LAN8814_POWER_MGMT_MODE_3_ANEG_MDI, 6122 LAN8814_POWER_MGMT_VAL1 }, 6123 { LAN8814_PAGE_POWER_REGS, 6124 LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX, 6125 LAN8814_POWER_MGMT_VAL1 }, 6126 { LAN8814_PAGE_POWER_REGS, 6127 LAN8814_POWER_MGMT_MODE_5_10BT_MDI, 6128 LAN8814_POWER_MGMT_VAL1 }, 6129 { LAN8814_PAGE_POWER_REGS, 6130 LAN8814_POWER_MGMT_MODE_6_10BT_MDIX, 6131 LAN8814_POWER_MGMT_VAL1 }, 6132 { LAN8814_PAGE_POWER_REGS, 6133 LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN, 6134 LAN8814_POWER_MGMT_VAL2 }, 6135 { LAN8814_PAGE_POWER_REGS, 6136 LAN8814_POWER_MGMT_MODE_8_100BT_MDI, 6137 LAN8814_POWER_MGMT_VAL3 }, 6138 { LAN8814_PAGE_POWER_REGS, 6139 LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX, 6140 LAN8814_POWER_MGMT_VAL3 }, 6141 { LAN8814_PAGE_POWER_REGS, 6142 LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX, 6143 LAN8814_POWER_MGMT_VAL4 }, 6144 { LAN8814_PAGE_POWER_REGS, 6145 LAN8814_POWER_MGMT_MODE_11_100BT_MDIX, 6146 LAN8814_POWER_MGMT_VAL5 }, 6147 { LAN8814_PAGE_POWER_REGS, 6148 LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX, 6149 LAN8814_POWER_MGMT_VAL5 }, 6150 { LAN8814_PAGE_POWER_REGS, 6151 LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX, 6152 LAN8814_POWER_MGMT_VAL4 }, 6153 { LAN8814_PAGE_POWER_REGS, 6154 LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX, 6155 LAN8814_POWER_MGMT_VAL4 }, 6156 }; 6157 6158 static const struct lanphy_reg_data waketx_timer_errata[] = { 6159 { LAN8814_PAGE_EEE, 6160 LAN8814_EEE_WAKE_TX_TIMER, 6161 LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL }, 6162 }; 6163 6164 static int lanphy_write_reg_data(struct phy_device *phydev, 6165 const struct lanphy_reg_data *data, 6166 size_t num) 6167 { 6168 int ret = 0; 6169 6170 while (num--) { 6171 ret = lanphy_write_page_reg(phydev, data->page, data->addr, 6172 data->val); 6173 if (ret) 6174 break; 6175 } 6176 6177 return ret; 6178 } 6179 6180 static int lan8842_erratas(struct phy_device *phydev) 6181 { 6182 int ret; 6183 6184 ret = lanphy_write_reg_data(phydev, short_center_tap_errata, 6185 ARRAY_SIZE(short_center_tap_errata)); 6186 if (ret) 6187 return ret; 6188 6189 return lanphy_write_reg_data(phydev, waketx_timer_errata, 6190 ARRAY_SIZE(waketx_timer_errata)); 6191 } 6192 6193 static int lan8842_config_init(struct phy_device *phydev) 6194 { 6195 int ret; 6196 6197 /* Reset the PHY */ 6198 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6199 LAN8814_QSGMII_SOFT_RESET, 6200 LAN8814_QSGMII_SOFT_RESET_BIT, 6201 LAN8814_QSGMII_SOFT_RESET_BIT); 6202 if (ret < 0) 6203 return ret; 6204 6205 /* Apply the erratas for this device */ 6206 ret = lan8842_erratas(phydev); 6207 if (ret < 0) 6208 return ret; 6209 6210 /* Even if the GPIOs are set to control the LEDs the behaviour of the 6211 * LEDs is wrong, they are not blinking when there is traffic. 6212 * To fix this it is required to set extended LED mode 6213 */ 6214 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6215 LAN8814_LED_CTRL_1, 6216 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 6217 if (ret < 0) 6218 return ret; 6219 6220 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6221 LAN8814_LED_CTRL_2, 6222 LAN8814_LED_CTRL_2_LED1_COM_DIS, 6223 LAN8814_LED_CTRL_2_LED1_COM_DIS); 6224 if (ret < 0) 6225 return ret; 6226 6227 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 6228 * a function mode and not the GPIO. Apparently by default the value is 6229 * GPIO and not function even though the datasheet it says that it is 6230 * function. Therefore set this value. 6231 */ 6232 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6233 LAN8814_GPIO_EN2, 0); 6234 } 6235 6236 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 6237 6238 static int lan8842_config_intr(struct phy_device *phydev) 6239 { 6240 int err; 6241 6242 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6243 LAN8842_INTR_CTRL_REG, 6244 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 6245 6246 /* enable / disable interrupts */ 6247 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 6248 err = lan8814_ack_interrupt(phydev); 6249 if (err) 6250 return err; 6251 6252 err = phy_write(phydev, LAN8814_INTC, 6253 LAN8814_INT_LINK | LAN8814_INT_FLF); 6254 } else { 6255 err = phy_write(phydev, LAN8814_INTC, 0); 6256 if (err) 6257 return err; 6258 6259 err = lan8814_ack_interrupt(phydev); 6260 } 6261 6262 return err; 6263 } 6264 6265 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 6266 phy_interface_t interface) 6267 { 6268 /* Inband configuration can be enabled or disabled using the registers 6269 * PCS1G_ANEG_CONFIG. 6270 */ 6271 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 6272 } 6273 6274 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 6275 { 6276 bool enable; 6277 6278 if (modes == LINK_INBAND_DISABLE) 6279 enable = false; 6280 else 6281 enable = true; 6282 6283 /* Disable or enable in-band autoneg with PCS Host side 6284 * It has the same address as lan8814 6285 */ 6286 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6287 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6288 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6289 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6290 } 6291 6292 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6293 { 6294 struct kszphy_ptp_priv *ptp_priv; 6295 struct lan8842_priv *priv; 6296 6297 priv = phydev->priv; 6298 ptp_priv = &priv->ptp_priv; 6299 6300 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6301 lan8814_get_tx_ts(ptp_priv); 6302 6303 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6304 lan8814_get_rx_ts(ptp_priv); 6305 6306 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6307 lan8814_flush_fifo(phydev, true); 6308 skb_queue_purge(&ptp_priv->tx_queue); 6309 } 6310 6311 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6312 lan8814_flush_fifo(phydev, false); 6313 skb_queue_purge(&ptp_priv->rx_queue); 6314 } 6315 } 6316 6317 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6318 { 6319 struct lan8842_priv *priv = phydev->priv; 6320 int ret = IRQ_NONE; 6321 int irq_status; 6322 6323 irq_status = phy_read(phydev, LAN8814_INTS); 6324 if (irq_status < 0) { 6325 phy_error(phydev); 6326 return IRQ_NONE; 6327 } 6328 6329 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6330 phy_trigger_machine(phydev); 6331 ret = IRQ_HANDLED; 6332 } 6333 6334 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6335 * not need to check the PTP and GPIO interrupts 6336 */ 6337 if (priv->rev == LAN8842_REV_8832) 6338 goto out; 6339 6340 while (true) { 6341 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6342 PTP_TSU_INT_STS); 6343 if (!irq_status) 6344 break; 6345 6346 lan8842_handle_ptp_interrupt(phydev, irq_status); 6347 ret = IRQ_HANDLED; 6348 } 6349 6350 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6351 ret = IRQ_HANDLED; 6352 6353 out: 6354 return ret; 6355 } 6356 6357 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6358 { 6359 u64 ret = 0; 6360 int val; 6361 6362 for (int j = 0; j < count; ++j) { 6363 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6364 regs[j]); 6365 if (val < 0) 6366 return U64_MAX; 6367 6368 ret <<= 16; 6369 ret += val; 6370 } 6371 return ret; 6372 } 6373 6374 static int lan8842_update_stats(struct phy_device *phydev) 6375 { 6376 struct lan8842_priv *priv = phydev->priv; 6377 int rx_packets_regs[] = {88, 61, 60}; 6378 int rx_errors_regs[] = {63, 62}; 6379 int tx_packets_regs[] = {89, 85, 84}; 6380 int tx_errors_regs[] = {87, 86}; 6381 6382 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6383 ARRAY_SIZE(rx_packets_regs), 6384 rx_packets_regs); 6385 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6386 ARRAY_SIZE(rx_errors_regs), 6387 rx_errors_regs); 6388 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6389 ARRAY_SIZE(tx_packets_regs), 6390 tx_packets_regs); 6391 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6392 ARRAY_SIZE(tx_errors_regs), 6393 tx_errors_regs); 6394 6395 return 0; 6396 } 6397 6398 #define LAN8842_FLF 15 /* 0x0e */ 6399 #define LAN8842_FLF_ENA BIT(1) 6400 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6401 6402 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6403 { 6404 int ret; 6405 6406 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6407 if (ret < 0) 6408 return ret; 6409 6410 if (ret & LAN8842_FLF_ENA) 6411 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6412 else 6413 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6414 6415 return 0; 6416 } 6417 6418 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6419 { 6420 u16 flf; 6421 6422 switch (*msecs) { 6423 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6424 flf = 0; 6425 break; 6426 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6427 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6428 break; 6429 default: 6430 return -EINVAL; 6431 } 6432 6433 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6434 LAN8842_FLF, 6435 LAN8842_FLF_ENA | 6436 LAN8842_FLF_ENA_LINK_DOWN, flf); 6437 } 6438 6439 static int lan8842_get_tunable(struct phy_device *phydev, 6440 struct ethtool_tunable *tuna, void *data) 6441 { 6442 switch (tuna->id) { 6443 case ETHTOOL_PHY_FAST_LINK_DOWN: 6444 return lan8842_get_fast_down(phydev, data); 6445 default: 6446 return -EOPNOTSUPP; 6447 } 6448 } 6449 6450 static int lan8842_set_tunable(struct phy_device *phydev, 6451 struct ethtool_tunable *tuna, const void *data) 6452 { 6453 switch (tuna->id) { 6454 case ETHTOOL_PHY_FAST_LINK_DOWN: 6455 return lan8842_set_fast_down(phydev, data); 6456 default: 6457 return -EOPNOTSUPP; 6458 } 6459 } 6460 6461 static void lan8842_get_phy_stats(struct phy_device *phydev, 6462 struct ethtool_eth_phy_stats *eth_stats, 6463 struct ethtool_phy_stats *stats) 6464 { 6465 struct lan8842_priv *priv = phydev->priv; 6466 6467 stats->rx_packets = priv->phy_stats.rx_packets; 6468 stats->rx_errors = priv->phy_stats.rx_errors; 6469 stats->tx_packets = priv->phy_stats.tx_packets; 6470 stats->tx_errors = priv->phy_stats.tx_errors; 6471 } 6472 6473 static struct phy_driver ksphy_driver[] = { 6474 { 6475 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6476 .name = "Micrel KS8737", 6477 /* PHY_BASIC_FEATURES */ 6478 .driver_data = &ks8737_type, 6479 .probe = kszphy_probe, 6480 .config_init = kszphy_config_init, 6481 .config_intr = kszphy_config_intr, 6482 .handle_interrupt = kszphy_handle_interrupt, 6483 .suspend = kszphy_suspend, 6484 .resume = kszphy_resume, 6485 }, { 6486 .phy_id = PHY_ID_KSZ8021, 6487 .phy_id_mask = 0x00ffffff, 6488 .name = "Micrel KSZ8021 or KSZ8031", 6489 /* PHY_BASIC_FEATURES */ 6490 .driver_data = &ksz8021_type, 6491 .probe = kszphy_probe, 6492 .config_init = kszphy_config_init, 6493 .config_intr = kszphy_config_intr, 6494 .handle_interrupt = kszphy_handle_interrupt, 6495 .get_sset_count = kszphy_get_sset_count, 6496 .get_strings = kszphy_get_strings, 6497 .get_stats = kszphy_get_stats, 6498 .suspend = kszphy_suspend, 6499 .resume = kszphy_resume, 6500 }, { 6501 .phy_id = PHY_ID_KSZ8031, 6502 .phy_id_mask = 0x00ffffff, 6503 .name = "Micrel KSZ8031", 6504 /* PHY_BASIC_FEATURES */ 6505 .driver_data = &ksz8021_type, 6506 .probe = kszphy_probe, 6507 .config_init = kszphy_config_init, 6508 .config_intr = kszphy_config_intr, 6509 .handle_interrupt = kszphy_handle_interrupt, 6510 .get_sset_count = kszphy_get_sset_count, 6511 .get_strings = kszphy_get_strings, 6512 .get_stats = kszphy_get_stats, 6513 .suspend = kszphy_suspend, 6514 .resume = kszphy_resume, 6515 }, { 6516 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6517 .name = "Micrel KSZ8041", 6518 /* PHY_BASIC_FEATURES */ 6519 .driver_data = &ksz8041_type, 6520 .probe = kszphy_probe, 6521 .config_init = ksz8041_config_init, 6522 .config_aneg = ksz8041_config_aneg, 6523 .config_intr = kszphy_config_intr, 6524 .handle_interrupt = kszphy_handle_interrupt, 6525 .get_sset_count = kszphy_get_sset_count, 6526 .get_strings = kszphy_get_strings, 6527 .get_stats = kszphy_get_stats, 6528 .suspend = ksz8041_suspend, 6529 .resume = ksz8041_resume, 6530 }, { 6531 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6532 .name = "Micrel KSZ8041RNLI", 6533 /* PHY_BASIC_FEATURES */ 6534 .driver_data = &ksz8041_type, 6535 .probe = kszphy_probe, 6536 .config_init = kszphy_config_init, 6537 .config_intr = kszphy_config_intr, 6538 .handle_interrupt = kszphy_handle_interrupt, 6539 .get_sset_count = kszphy_get_sset_count, 6540 .get_strings = kszphy_get_strings, 6541 .get_stats = kszphy_get_stats, 6542 .suspend = kszphy_suspend, 6543 .resume = kszphy_resume, 6544 }, { 6545 .name = "Micrel KSZ8051", 6546 /* PHY_BASIC_FEATURES */ 6547 .driver_data = &ksz8051_type, 6548 .probe = kszphy_probe, 6549 .config_init = kszphy_config_init, 6550 .config_intr = kszphy_config_intr, 6551 .handle_interrupt = kszphy_handle_interrupt, 6552 .get_sset_count = kszphy_get_sset_count, 6553 .get_strings = kszphy_get_strings, 6554 .get_stats = kszphy_get_stats, 6555 .match_phy_device = ksz8051_match_phy_device, 6556 .suspend = kszphy_suspend, 6557 .resume = kszphy_resume, 6558 }, { 6559 .phy_id = PHY_ID_KSZ8001, 6560 .name = "Micrel KSZ8001 or KS8721", 6561 .phy_id_mask = 0x00fffffc, 6562 /* PHY_BASIC_FEATURES */ 6563 .driver_data = &ksz8041_type, 6564 .probe = kszphy_probe, 6565 .config_init = kszphy_config_init, 6566 .config_intr = kszphy_config_intr, 6567 .handle_interrupt = kszphy_handle_interrupt, 6568 .get_sset_count = kszphy_get_sset_count, 6569 .get_strings = kszphy_get_strings, 6570 .get_stats = kszphy_get_stats, 6571 .suspend = kszphy_suspend, 6572 .resume = kszphy_resume, 6573 }, { 6574 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6575 .name = "Micrel KSZ8081 or KSZ8091", 6576 .flags = PHY_POLL_CABLE_TEST, 6577 /* PHY_BASIC_FEATURES */ 6578 .driver_data = &ksz8081_type, 6579 .probe = kszphy_probe, 6580 .config_init = ksz8081_config_init, 6581 .soft_reset = genphy_soft_reset, 6582 .config_aneg = ksz8081_config_aneg, 6583 .read_status = ksz8081_read_status, 6584 .config_intr = kszphy_config_intr, 6585 .handle_interrupt = kszphy_handle_interrupt, 6586 .get_sset_count = kszphy_get_sset_count, 6587 .get_strings = kszphy_get_strings, 6588 .get_stats = kszphy_get_stats, 6589 .suspend = kszphy_suspend, 6590 .resume = kszphy_resume, 6591 .cable_test_start = ksz886x_cable_test_start, 6592 .cable_test_get_status = ksz886x_cable_test_get_status, 6593 }, { 6594 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6595 .name = "Micrel KSZ8061", 6596 /* PHY_BASIC_FEATURES */ 6597 .probe = kszphy_probe, 6598 .config_init = ksz8061_config_init, 6599 .soft_reset = genphy_soft_reset, 6600 .config_intr = kszphy_config_intr, 6601 .handle_interrupt = kszphy_handle_interrupt, 6602 .suspend = ksz8061_suspend, 6603 .resume = ksz8061_resume, 6604 }, { 6605 .phy_id = PHY_ID_KSZ9021, 6606 .phy_id_mask = 0x000ffffe, 6607 .name = "Micrel KSZ9021 Gigabit PHY", 6608 /* PHY_GBIT_FEATURES */ 6609 .driver_data = &ksz9021_type, 6610 .probe = kszphy_probe, 6611 .get_features = ksz9031_get_features, 6612 .config_init = ksz9021_config_init, 6613 .config_intr = kszphy_config_intr, 6614 .handle_interrupt = kszphy_handle_interrupt, 6615 .get_sset_count = kszphy_get_sset_count, 6616 .get_strings = kszphy_get_strings, 6617 .get_stats = kszphy_get_stats, 6618 .suspend = kszphy_suspend, 6619 .resume = kszphy_resume, 6620 .read_mmd = genphy_read_mmd_unsupported, 6621 .write_mmd = genphy_write_mmd_unsupported, 6622 }, { 6623 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6624 .name = "Micrel KSZ9031 Gigabit PHY", 6625 .flags = PHY_POLL_CABLE_TEST, 6626 .driver_data = &ksz9021_type, 6627 .probe = kszphy_probe, 6628 .get_features = ksz9031_get_features, 6629 .config_init = ksz9031_config_init, 6630 .soft_reset = genphy_soft_reset, 6631 .read_status = ksz9031_read_status, 6632 .config_intr = kszphy_config_intr, 6633 .handle_interrupt = kszphy_handle_interrupt, 6634 .get_sset_count = kszphy_get_sset_count, 6635 .get_strings = kszphy_get_strings, 6636 .get_stats = kszphy_get_stats, 6637 .suspend = kszphy_suspend, 6638 .resume = kszphy_resume, 6639 .cable_test_start = ksz9x31_cable_test_start, 6640 .cable_test_get_status = ksz9x31_cable_test_get_status, 6641 .set_loopback = ksz9031_set_loopback, 6642 }, { 6643 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6644 .name = "Microchip INDY Gigabit Quad PHY", 6645 .flags = PHY_POLL_CABLE_TEST, 6646 .config_init = lan8814_config_init, 6647 .driver_data = &lan8814_type, 6648 .probe = lan8814_probe, 6649 .soft_reset = genphy_soft_reset, 6650 .read_status = ksz9031_read_status, 6651 .get_sset_count = kszphy_get_sset_count, 6652 .get_strings = kszphy_get_strings, 6653 .get_stats = kszphy_get_stats, 6654 .suspend = genphy_suspend, 6655 .resume = kszphy_resume, 6656 .config_intr = lan8814_config_intr, 6657 .inband_caps = lan8842_inband_caps, 6658 .config_inband = lan8842_config_inband, 6659 .handle_interrupt = lan8814_handle_interrupt, 6660 .cable_test_start = lan8814_cable_test_start, 6661 .cable_test_get_status = ksz886x_cable_test_get_status, 6662 }, { 6663 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6664 .name = "Microchip LAN966X Gigabit PHY", 6665 .config_init = lan8804_config_init, 6666 .driver_data = &ksz9021_type, 6667 .probe = kszphy_probe, 6668 .soft_reset = genphy_soft_reset, 6669 .read_status = ksz9031_read_status, 6670 .get_sset_count = kszphy_get_sset_count, 6671 .get_strings = kszphy_get_strings, 6672 .get_stats = kszphy_get_stats, 6673 .suspend = lan8804_suspend, 6674 .resume = lan8804_resume, 6675 .config_intr = lan8804_config_intr, 6676 .handle_interrupt = lan8804_handle_interrupt, 6677 }, { 6678 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6679 .name = "Microchip LAN8841 Gigabit PHY", 6680 .flags = PHY_POLL_CABLE_TEST, 6681 .driver_data = &lan8841_type, 6682 .config_init = lan8841_config_init, 6683 .probe = lan8841_probe, 6684 .soft_reset = genphy_soft_reset, 6685 .config_intr = lan8841_config_intr, 6686 .handle_interrupt = lan8841_handle_interrupt, 6687 .get_sset_count = kszphy_get_sset_count, 6688 .get_strings = kszphy_get_strings, 6689 .get_stats = kszphy_get_stats, 6690 .suspend = lan8841_suspend, 6691 .resume = lan8841_resume, 6692 .cable_test_start = lan8814_cable_test_start, 6693 .cable_test_get_status = ksz886x_cable_test_get_status, 6694 }, { 6695 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6696 .name = "Microchip LAN8842 Gigabit PHY", 6697 .flags = PHY_POLL_CABLE_TEST, 6698 .driver_data = &lan8814_type, 6699 .probe = lan8842_probe, 6700 .config_init = lan8842_config_init, 6701 .config_intr = lan8842_config_intr, 6702 .inband_caps = lan8842_inband_caps, 6703 .config_inband = lan8842_config_inband, 6704 .handle_interrupt = lan8842_handle_interrupt, 6705 .get_phy_stats = lan8842_get_phy_stats, 6706 .update_stats = lan8842_update_stats, 6707 .get_tunable = lan8842_get_tunable, 6708 .set_tunable = lan8842_set_tunable, 6709 .cable_test_start = lan8814_cable_test_start, 6710 .cable_test_get_status = ksz886x_cable_test_get_status, 6711 }, { 6712 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6713 .name = "Microchip KSZ9131 Gigabit PHY", 6714 /* PHY_GBIT_FEATURES */ 6715 .flags = PHY_POLL_CABLE_TEST, 6716 .driver_data = &ksz9131_type, 6717 .probe = kszphy_probe, 6718 .soft_reset = genphy_soft_reset, 6719 .config_init = ksz9131_config_init, 6720 .config_intr = kszphy_config_intr, 6721 .config_aneg = ksz9131_config_aneg, 6722 .read_status = ksz9131_read_status, 6723 .handle_interrupt = kszphy_handle_interrupt, 6724 .get_sset_count = kszphy_get_sset_count, 6725 .get_strings = kszphy_get_strings, 6726 .get_stats = kszphy_get_stats, 6727 .suspend = kszphy_suspend, 6728 .resume = ksz9131_resume, 6729 .cable_test_start = ksz9x31_cable_test_start, 6730 .cable_test_get_status = ksz9x31_cable_test_get_status, 6731 .get_features = ksz9477_get_features, 6732 }, { 6733 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6734 .name = "Micrel KSZ8873MLL Switch", 6735 /* PHY_BASIC_FEATURES */ 6736 .config_init = kszphy_config_init, 6737 .config_aneg = ksz8873mll_config_aneg, 6738 .read_status = ksz8873mll_read_status, 6739 .suspend = genphy_suspend, 6740 .resume = genphy_resume, 6741 }, { 6742 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6743 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6744 .driver_data = &ksz886x_type, 6745 /* PHY_BASIC_FEATURES */ 6746 .flags = PHY_POLL_CABLE_TEST, 6747 .config_init = kszphy_config_init, 6748 .config_aneg = ksz886x_config_aneg, 6749 .read_status = ksz886x_read_status, 6750 .suspend = genphy_suspend, 6751 .resume = genphy_resume, 6752 .cable_test_start = ksz886x_cable_test_start, 6753 .cable_test_get_status = ksz886x_cable_test_get_status, 6754 }, { 6755 .name = "Micrel KSZ87XX Switch", 6756 /* PHY_BASIC_FEATURES */ 6757 .config_init = kszphy_config_init, 6758 .match_phy_device = ksz8795_match_phy_device, 6759 .suspend = genphy_suspend, 6760 .resume = genphy_resume, 6761 }, { 6762 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6763 .name = "Microchip KSZ9477", 6764 .probe = kszphy_probe, 6765 /* PHY_GBIT_FEATURES */ 6766 .config_init = ksz9477_config_init, 6767 .config_intr = kszphy_config_intr, 6768 .config_aneg = ksz9477_config_aneg, 6769 .read_status = ksz9477_read_status, 6770 .handle_interrupt = kszphy_handle_interrupt, 6771 .suspend = genphy_suspend, 6772 .resume = ksz9477_resume, 6773 .get_phy_stats = kszphy_get_phy_stats, 6774 .update_stats = kszphy_update_stats, 6775 .cable_test_start = ksz9x31_cable_test_start, 6776 .cable_test_get_status = ksz9x31_cable_test_get_status, 6777 .get_sqi = kszphy_get_sqi, 6778 .get_sqi_max = kszphy_get_sqi_max, 6779 .get_mse_capability = kszphy_get_mse_capability, 6780 .get_mse_snapshot = kszphy_get_mse_snapshot, 6781 } }; 6782 6783 module_phy_driver(ksphy_driver); 6784 6785 MODULE_DESCRIPTION("Micrel PHY driver"); 6786 MODULE_AUTHOR("David J. Choi"); 6787 MODULE_LICENSE("GPL"); 6788 6789 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6790 { PHY_ID_KSZ9021, 0x000ffffe }, 6791 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6792 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6793 { PHY_ID_KSZ8001, 0x00fffffc }, 6794 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6795 { PHY_ID_KSZ8021, 0x00ffffff }, 6796 { PHY_ID_KSZ8031, 0x00ffffff }, 6797 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6798 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6799 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6800 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6801 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6802 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6803 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6804 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6805 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6806 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6807 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6808 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6809 { } 6810 }; 6811 6812 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6813