1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_phy_stats { 435 u64 rx_err_pkt_cnt; 436 }; 437 438 struct kszphy_priv { 439 struct kszphy_ptp_priv ptp_priv; 440 const struct kszphy_type *type; 441 struct clk *clk; 442 int led_mode; 443 u16 vct_ctrl1000; 444 bool rmii_ref_clk_sel; 445 bool rmii_ref_clk_sel_val; 446 bool clk_enable; 447 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 448 struct kszphy_phy_stats phy_stats; 449 }; 450 451 static const struct kszphy_type lan8814_type = { 452 .led_mode_reg = ~LAN8814_LED_CTRL_1, 453 .cable_diag_reg = LAN8814_CABLE_DIAG, 454 .pair_mask = LAN8814_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz886x_type = { 458 .cable_diag_reg = KSZ8081_LMD, 459 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 460 }; 461 462 static const struct kszphy_type ksz8021_type = { 463 .led_mode_reg = MII_KSZPHY_CTRL_2, 464 .has_broadcast_disable = true, 465 .has_nand_tree_disable = true, 466 .has_rmii_ref_clk_sel = true, 467 }; 468 469 static const struct kszphy_type ksz8041_type = { 470 .led_mode_reg = MII_KSZPHY_CTRL_1, 471 }; 472 473 static const struct kszphy_type ksz8051_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_nand_tree_disable = true, 476 }; 477 478 static const struct kszphy_type ksz8081_type = { 479 .led_mode_reg = MII_KSZPHY_CTRL_2, 480 .cable_diag_reg = KSZ8081_LMD, 481 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 482 .has_broadcast_disable = true, 483 .has_nand_tree_disable = true, 484 .has_rmii_ref_clk_sel = true, 485 }; 486 487 static const struct kszphy_type ks8737_type = { 488 .interrupt_level_mask = BIT(14), 489 }; 490 491 static const struct kszphy_type ksz9021_type = { 492 .interrupt_level_mask = BIT(14), 493 }; 494 495 static const struct kszphy_type ksz9131_type = { 496 .interrupt_level_mask = BIT(14), 497 .disable_dll_tx_bit = BIT(12), 498 .disable_dll_rx_bit = BIT(12), 499 .disable_dll_mask = BIT_MASK(12), 500 }; 501 502 static const struct kszphy_type lan8841_type = { 503 .disable_dll_tx_bit = BIT(14), 504 .disable_dll_rx_bit = BIT(14), 505 .disable_dll_mask = BIT_MASK(14), 506 .cable_diag_reg = LAN8814_CABLE_DIAG, 507 .pair_mask = LAN8814_WIRE_PAIR_MASK, 508 }; 509 510 static int kszphy_extended_write(struct phy_device *phydev, 511 u32 regnum, u16 val) 512 { 513 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 514 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 515 } 516 517 static int kszphy_extended_read(struct phy_device *phydev, 518 u32 regnum) 519 { 520 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 521 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 522 } 523 524 static int kszphy_ack_interrupt(struct phy_device *phydev) 525 { 526 /* bit[7..0] int status, which is a read and clear register. */ 527 int rc; 528 529 rc = phy_read(phydev, MII_KSZPHY_INTCS); 530 531 return (rc < 0) ? rc : 0; 532 } 533 534 static int kszphy_config_intr(struct phy_device *phydev) 535 { 536 const struct kszphy_type *type = phydev->drv->driver_data; 537 int temp, err; 538 u16 mask; 539 540 if (type && type->interrupt_level_mask) 541 mask = type->interrupt_level_mask; 542 else 543 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 544 545 /* set the interrupt pin active low */ 546 temp = phy_read(phydev, MII_KSZPHY_CTRL); 547 if (temp < 0) 548 return temp; 549 temp &= ~mask; 550 phy_write(phydev, MII_KSZPHY_CTRL, temp); 551 552 /* enable / disable interrupts */ 553 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 554 err = kszphy_ack_interrupt(phydev); 555 if (err) 556 return err; 557 558 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 559 } else { 560 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 561 if (err) 562 return err; 563 564 err = kszphy_ack_interrupt(phydev); 565 } 566 567 return err; 568 } 569 570 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 571 { 572 int irq_status; 573 574 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 575 if (irq_status < 0) { 576 phy_error(phydev); 577 return IRQ_NONE; 578 } 579 580 if (!(irq_status & KSZPHY_INTCS_STATUS)) 581 return IRQ_NONE; 582 583 phy_trigger_machine(phydev); 584 585 return IRQ_HANDLED; 586 } 587 588 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 589 { 590 int ctrl; 591 592 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 593 if (ctrl < 0) 594 return ctrl; 595 596 if (val) 597 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 598 else 599 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 600 601 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 602 } 603 604 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 605 { 606 int rc, temp, shift; 607 608 switch (reg) { 609 case MII_KSZPHY_CTRL_1: 610 shift = 14; 611 break; 612 case MII_KSZPHY_CTRL_2: 613 shift = 4; 614 break; 615 default: 616 return -EINVAL; 617 } 618 619 temp = phy_read(phydev, reg); 620 if (temp < 0) { 621 rc = temp; 622 goto out; 623 } 624 625 temp &= ~(3 << shift); 626 temp |= val << shift; 627 rc = phy_write(phydev, reg, temp); 628 out: 629 if (rc < 0) 630 phydev_err(phydev, "failed to set led mode\n"); 631 632 return rc; 633 } 634 635 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 636 * unique (non-broadcast) address on a shared bus. 637 */ 638 static int kszphy_broadcast_disable(struct phy_device *phydev) 639 { 640 int ret; 641 642 ret = phy_read(phydev, MII_KSZPHY_OMSO); 643 if (ret < 0) 644 goto out; 645 646 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 647 out: 648 if (ret) 649 phydev_err(phydev, "failed to disable broadcast address\n"); 650 651 return ret; 652 } 653 654 static int kszphy_nand_tree_disable(struct phy_device *phydev) 655 { 656 int ret; 657 658 ret = phy_read(phydev, MII_KSZPHY_OMSO); 659 if (ret < 0) 660 goto out; 661 662 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 663 return 0; 664 665 ret = phy_write(phydev, MII_KSZPHY_OMSO, 666 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 667 out: 668 if (ret) 669 phydev_err(phydev, "failed to disable NAND tree mode\n"); 670 671 return ret; 672 } 673 674 /* Some config bits need to be set again on resume, handle them here. */ 675 static int kszphy_config_reset(struct phy_device *phydev) 676 { 677 struct kszphy_priv *priv = phydev->priv; 678 int ret; 679 680 if (priv->rmii_ref_clk_sel) { 681 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 682 if (ret) { 683 phydev_err(phydev, 684 "failed to set rmii reference clock\n"); 685 return ret; 686 } 687 } 688 689 if (priv->type && priv->led_mode >= 0) 690 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 691 692 return 0; 693 } 694 695 static int kszphy_config_init(struct phy_device *phydev) 696 { 697 struct kszphy_priv *priv = phydev->priv; 698 const struct kszphy_type *type; 699 700 if (!priv) 701 return 0; 702 703 type = priv->type; 704 705 if (type && type->has_broadcast_disable) 706 kszphy_broadcast_disable(phydev); 707 708 if (type && type->has_nand_tree_disable) 709 kszphy_nand_tree_disable(phydev); 710 711 return kszphy_config_reset(phydev); 712 } 713 714 static int ksz8041_fiber_mode(struct phy_device *phydev) 715 { 716 struct device_node *of_node = phydev->mdio.dev.of_node; 717 718 return of_property_read_bool(of_node, "micrel,fiber-mode"); 719 } 720 721 static int ksz8041_config_init(struct phy_device *phydev) 722 { 723 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 724 725 /* Limit supported and advertised modes in fiber mode */ 726 if (ksz8041_fiber_mode(phydev)) { 727 phydev->dev_flags |= MICREL_PHY_FXEN; 728 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 729 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 730 731 linkmode_and(phydev->supported, phydev->supported, mask); 732 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 733 phydev->supported); 734 linkmode_and(phydev->advertising, phydev->advertising, mask); 735 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 736 phydev->advertising); 737 phydev->autoneg = AUTONEG_DISABLE; 738 } 739 740 return kszphy_config_init(phydev); 741 } 742 743 static int ksz8041_config_aneg(struct phy_device *phydev) 744 { 745 /* Skip auto-negotiation in fiber mode */ 746 if (phydev->dev_flags & MICREL_PHY_FXEN) { 747 phydev->speed = SPEED_100; 748 return 0; 749 } 750 751 return genphy_config_aneg(phydev); 752 } 753 754 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 755 const bool ksz_8051) 756 { 757 int ret; 758 759 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 760 return 0; 761 762 ret = phy_read(phydev, MII_BMSR); 763 if (ret < 0) 764 return ret; 765 766 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 767 * exact PHY ID. However, they can be told apart by the extended 768 * capability registers presence. The KSZ8051 PHY has them while 769 * the switch does not. 770 */ 771 ret &= BMSR_ERCAP; 772 if (ksz_8051) 773 return ret; 774 else 775 return !ret; 776 } 777 778 static int ksz8051_match_phy_device(struct phy_device *phydev, 779 const struct phy_driver *phydrv) 780 { 781 return ksz8051_ksz8795_match_phy_device(phydev, true); 782 } 783 784 static int ksz8081_config_init(struct phy_device *phydev) 785 { 786 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 787 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 788 * pull-down is missing, the factory test mode should be cleared by 789 * manually writing a 0. 790 */ 791 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 792 793 return kszphy_config_init(phydev); 794 } 795 796 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 797 { 798 u16 val; 799 800 switch (ctrl) { 801 case ETH_TP_MDI: 802 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 803 break; 804 case ETH_TP_MDI_X: 805 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 806 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 807 break; 808 case ETH_TP_MDI_AUTO: 809 val = 0; 810 break; 811 default: 812 return 0; 813 } 814 815 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 816 KSZ8081_CTRL2_HP_MDIX | 817 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 818 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 819 KSZ8081_CTRL2_HP_MDIX | val); 820 } 821 822 static int ksz8081_config_aneg(struct phy_device *phydev) 823 { 824 int ret; 825 826 ret = genphy_config_aneg(phydev); 827 if (ret) 828 return ret; 829 830 /* The MDI-X configuration is automatically changed by the PHY after 831 * switching from autoneg off to on. So, take MDI-X configuration under 832 * own control and set it after autoneg configuration was done. 833 */ 834 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 835 } 836 837 static int ksz8081_mdix_update(struct phy_device *phydev) 838 { 839 int ret; 840 841 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 842 if (ret < 0) 843 return ret; 844 845 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 846 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 847 phydev->mdix_ctrl = ETH_TP_MDI_X; 848 else 849 phydev->mdix_ctrl = ETH_TP_MDI; 850 } else { 851 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 852 } 853 854 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 855 if (ret < 0) 856 return ret; 857 858 if (ret & KSZ8081_CTRL1_MDIX_STAT) 859 phydev->mdix = ETH_TP_MDI; 860 else 861 phydev->mdix = ETH_TP_MDI_X; 862 863 return 0; 864 } 865 866 static int ksz8081_read_status(struct phy_device *phydev) 867 { 868 int ret; 869 870 ret = ksz8081_mdix_update(phydev); 871 if (ret < 0) 872 return ret; 873 874 return genphy_read_status(phydev); 875 } 876 877 static int ksz8061_config_init(struct phy_device *phydev) 878 { 879 int ret; 880 881 /* Chip can be powered down by the bootstrap code. */ 882 ret = phy_read(phydev, MII_BMCR); 883 if (ret < 0) 884 return ret; 885 if (ret & BMCR_PDOWN) { 886 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 887 if (ret < 0) 888 return ret; 889 usleep_range(1000, 2000); 890 } 891 892 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 893 if (ret) 894 return ret; 895 896 return kszphy_config_init(phydev); 897 } 898 899 static int ksz8795_match_phy_device(struct phy_device *phydev, 900 const struct phy_driver *phydrv) 901 { 902 return ksz8051_ksz8795_match_phy_device(phydev, false); 903 } 904 905 static int ksz9021_load_values_from_of(struct phy_device *phydev, 906 const struct device_node *of_node, 907 u16 reg, 908 const char *field1, const char *field2, 909 const char *field3, const char *field4) 910 { 911 int val1 = -1; 912 int val2 = -2; 913 int val3 = -3; 914 int val4 = -4; 915 int newval; 916 int matches = 0; 917 918 if (!of_property_read_u32(of_node, field1, &val1)) 919 matches++; 920 921 if (!of_property_read_u32(of_node, field2, &val2)) 922 matches++; 923 924 if (!of_property_read_u32(of_node, field3, &val3)) 925 matches++; 926 927 if (!of_property_read_u32(of_node, field4, &val4)) 928 matches++; 929 930 if (!matches) 931 return 0; 932 933 if (matches < 4) 934 newval = kszphy_extended_read(phydev, reg); 935 else 936 newval = 0; 937 938 if (val1 != -1) 939 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 940 941 if (val2 != -2) 942 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 943 944 if (val3 != -3) 945 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 946 947 if (val4 != -4) 948 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 949 950 return kszphy_extended_write(phydev, reg, newval); 951 } 952 953 static int ksz9021_config_init(struct phy_device *phydev) 954 { 955 const struct device_node *of_node; 956 const struct device *dev_walker; 957 958 /* The Micrel driver has a deprecated option to place phy OF 959 * properties in the MAC node. Walk up the tree of devices to 960 * find a device with an OF node. 961 */ 962 dev_walker = &phydev->mdio.dev; 963 do { 964 of_node = dev_walker->of_node; 965 dev_walker = dev_walker->parent; 966 967 } while (!of_node && dev_walker); 968 969 if (of_node) { 970 ksz9021_load_values_from_of(phydev, of_node, 971 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 972 "txen-skew-ps", "txc-skew-ps", 973 "rxdv-skew-ps", "rxc-skew-ps"); 974 ksz9021_load_values_from_of(phydev, of_node, 975 MII_KSZPHY_RX_DATA_PAD_SKEW, 976 "rxd0-skew-ps", "rxd1-skew-ps", 977 "rxd2-skew-ps", "rxd3-skew-ps"); 978 ksz9021_load_values_from_of(phydev, of_node, 979 MII_KSZPHY_TX_DATA_PAD_SKEW, 980 "txd0-skew-ps", "txd1-skew-ps", 981 "txd2-skew-ps", "txd3-skew-ps"); 982 } 983 return 0; 984 } 985 986 #define KSZ9031_PS_TO_REG 60 987 988 /* Extended registers */ 989 /* MMD Address 0x0 */ 990 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 991 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 992 993 /* MMD Address 0x2 */ 994 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 995 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 996 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 997 998 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 999 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1000 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1001 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1002 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1003 1004 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1005 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1006 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1007 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1008 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1009 1010 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1011 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1012 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1013 1014 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1015 * provide different RGMII options we need to configure delay offset 1016 * for each pad relative to build in delay. 1017 */ 1018 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1019 * 1.80ns 1020 */ 1021 #define RX_ID 0x7 1022 #define RX_CLK_ID 0x19 1023 1024 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1025 * internal 1.2ns delay. 1026 */ 1027 #define RX_ND 0xc 1028 #define RX_CLK_ND 0x0 1029 1030 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1031 #define TX_ID 0x0 1032 #define TX_CLK_ID 0x1f 1033 1034 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1035 * dealy 1036 */ 1037 #define TX_ND 0x7 1038 #define TX_CLK_ND 0xf 1039 1040 /* MMD Address 0x1C */ 1041 #define MII_KSZ9031RN_EDPD 0x23 1042 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1043 1044 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1045 int speed) 1046 { 1047 u16 ctl = BMCR_LOOPBACK; 1048 int val; 1049 1050 if (!enable) 1051 return genphy_loopback(phydev, enable, 0); 1052 1053 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1054 phydev->speed = speed; 1055 else if (speed) 1056 return -EINVAL; 1057 phydev->duplex = DUPLEX_FULL; 1058 1059 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1060 1061 phy_write(phydev, MII_BMCR, ctl); 1062 1063 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1064 5000, 500000, true); 1065 } 1066 1067 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1068 const struct device_node *of_node, 1069 u16 reg, size_t field_sz, 1070 const char *field[], u8 numfields, 1071 bool *update) 1072 { 1073 int val[4] = {-1, -2, -3, -4}; 1074 int matches = 0; 1075 u16 mask; 1076 u16 maxval; 1077 u16 newval; 1078 int i; 1079 1080 for (i = 0; i < numfields; i++) 1081 if (!of_property_read_u32(of_node, field[i], val + i)) 1082 matches++; 1083 1084 if (!matches) 1085 return 0; 1086 1087 *update |= true; 1088 1089 if (matches < numfields) 1090 newval = phy_read_mmd(phydev, 2, reg); 1091 else 1092 newval = 0; 1093 1094 maxval = (field_sz == 4) ? 0xf : 0x1f; 1095 for (i = 0; i < numfields; i++) 1096 if (val[i] != -(i + 1)) { 1097 mask = 0xffff; 1098 mask ^= maxval << (field_sz * i); 1099 newval = (newval & mask) | 1100 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1101 << (field_sz * i)); 1102 } 1103 1104 return phy_write_mmd(phydev, 2, reg, newval); 1105 } 1106 1107 /* Center KSZ9031RNX FLP timing at 16ms. */ 1108 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1109 { 1110 int result; 1111 1112 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1113 0x0006); 1114 if (result) 1115 return result; 1116 1117 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1118 0x1A80); 1119 if (result) 1120 return result; 1121 1122 return genphy_restart_aneg(phydev); 1123 } 1124 1125 /* Enable energy-detect power-down mode */ 1126 static int ksz9031_enable_edpd(struct phy_device *phydev) 1127 { 1128 int reg; 1129 1130 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1131 if (reg < 0) 1132 return reg; 1133 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1134 reg | MII_KSZ9031RN_EDPD_ENABLE); 1135 } 1136 1137 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1138 { 1139 u16 rx, tx, rx_clk, tx_clk; 1140 int ret; 1141 1142 switch (phydev->interface) { 1143 case PHY_INTERFACE_MODE_RGMII: 1144 tx = TX_ND; 1145 tx_clk = TX_CLK_ND; 1146 rx = RX_ND; 1147 rx_clk = RX_CLK_ND; 1148 break; 1149 case PHY_INTERFACE_MODE_RGMII_ID: 1150 tx = TX_ID; 1151 tx_clk = TX_CLK_ID; 1152 rx = RX_ID; 1153 rx_clk = RX_CLK_ID; 1154 break; 1155 case PHY_INTERFACE_MODE_RGMII_RXID: 1156 tx = TX_ND; 1157 tx_clk = TX_CLK_ND; 1158 rx = RX_ID; 1159 rx_clk = RX_CLK_ID; 1160 break; 1161 case PHY_INTERFACE_MODE_RGMII_TXID: 1162 tx = TX_ID; 1163 tx_clk = TX_CLK_ID; 1164 rx = RX_ND; 1165 rx_clk = RX_CLK_ND; 1166 break; 1167 default: 1168 return 0; 1169 } 1170 1171 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1172 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1173 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1174 if (ret < 0) 1175 return ret; 1176 1177 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1178 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1179 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1180 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1181 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1182 if (ret < 0) 1183 return ret; 1184 1185 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1186 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1187 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1188 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1189 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1190 if (ret < 0) 1191 return ret; 1192 1193 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1194 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1195 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1196 } 1197 1198 static int ksz9031_config_init(struct phy_device *phydev) 1199 { 1200 const struct device_node *of_node; 1201 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1202 static const char *rx_data_skews[4] = { 1203 "rxd0-skew-ps", "rxd1-skew-ps", 1204 "rxd2-skew-ps", "rxd3-skew-ps" 1205 }; 1206 static const char *tx_data_skews[4] = { 1207 "txd0-skew-ps", "txd1-skew-ps", 1208 "txd2-skew-ps", "txd3-skew-ps" 1209 }; 1210 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1211 const struct device *dev_walker; 1212 int result; 1213 1214 result = ksz9031_enable_edpd(phydev); 1215 if (result < 0) 1216 return result; 1217 1218 /* The Micrel driver has a deprecated option to place phy OF 1219 * properties in the MAC node. Walk up the tree of devices to 1220 * find a device with an OF node. 1221 */ 1222 dev_walker = &phydev->mdio.dev; 1223 do { 1224 of_node = dev_walker->of_node; 1225 dev_walker = dev_walker->parent; 1226 } while (!of_node && dev_walker); 1227 1228 if (of_node) { 1229 bool update = false; 1230 1231 if (phy_interface_is_rgmii(phydev)) { 1232 result = ksz9031_config_rgmii_delay(phydev); 1233 if (result < 0) 1234 return result; 1235 } 1236 1237 ksz9031_of_load_skew_values(phydev, of_node, 1238 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1239 clk_skews, 2, &update); 1240 1241 ksz9031_of_load_skew_values(phydev, of_node, 1242 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1243 control_skews, 2, &update); 1244 1245 ksz9031_of_load_skew_values(phydev, of_node, 1246 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1247 rx_data_skews, 4, &update); 1248 1249 ksz9031_of_load_skew_values(phydev, of_node, 1250 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1251 tx_data_skews, 4, &update); 1252 1253 if (update && !phy_interface_is_rgmii(phydev)) 1254 phydev_warn(phydev, 1255 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1256 1257 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1258 * When the device links in the 1000BASE-T slave mode only, 1259 * the optional 125MHz reference output clock (CLK125_NDO) 1260 * has wide duty cycle variation. 1261 * 1262 * The optional CLK125_NDO clock does not meet the RGMII 1263 * 45/55 percent (min/max) duty cycle requirement and therefore 1264 * cannot be used directly by the MAC side for clocking 1265 * applications that have setup/hold time requirements on 1266 * rising and falling clock edges. 1267 * 1268 * Workaround: 1269 * Force the phy to be the master to receive a stable clock 1270 * which meets the duty cycle requirement. 1271 */ 1272 if (of_property_read_bool(of_node, "micrel,force-master")) { 1273 result = phy_read(phydev, MII_CTRL1000); 1274 if (result < 0) 1275 goto err_force_master; 1276 1277 /* enable master mode, config & prefer master */ 1278 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1279 result = phy_write(phydev, MII_CTRL1000, result); 1280 if (result < 0) 1281 goto err_force_master; 1282 } 1283 } 1284 1285 return ksz9031_center_flp_timing(phydev); 1286 1287 err_force_master: 1288 phydev_err(phydev, "failed to force the phy to master mode\n"); 1289 return result; 1290 } 1291 1292 #define KSZ9131_SKEW_5BIT_MAX 2400 1293 #define KSZ9131_SKEW_4BIT_MAX 800 1294 #define KSZ9131_OFFSET 700 1295 #define KSZ9131_STEP 100 1296 1297 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1298 struct device_node *of_node, 1299 u16 reg, size_t field_sz, 1300 char *field[], u8 numfields) 1301 { 1302 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1303 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1304 int skewval, skewmax = 0; 1305 int matches = 0; 1306 u16 maxval; 1307 u16 newval; 1308 u16 mask; 1309 int i; 1310 1311 /* psec properties in dts should mean x pico seconds */ 1312 if (field_sz == 5) 1313 skewmax = KSZ9131_SKEW_5BIT_MAX; 1314 else 1315 skewmax = KSZ9131_SKEW_4BIT_MAX; 1316 1317 for (i = 0; i < numfields; i++) 1318 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1319 if (skewval < -KSZ9131_OFFSET) 1320 skewval = -KSZ9131_OFFSET; 1321 else if (skewval > skewmax) 1322 skewval = skewmax; 1323 1324 val[i] = skewval + KSZ9131_OFFSET; 1325 matches++; 1326 } 1327 1328 if (!matches) 1329 return 0; 1330 1331 if (matches < numfields) 1332 newval = phy_read_mmd(phydev, 2, reg); 1333 else 1334 newval = 0; 1335 1336 maxval = (field_sz == 4) ? 0xf : 0x1f; 1337 for (i = 0; i < numfields; i++) 1338 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1339 mask = 0xffff; 1340 mask ^= maxval << (field_sz * i); 1341 newval = (newval & mask) | 1342 (((val[i] / KSZ9131_STEP) & maxval) 1343 << (field_sz * i)); 1344 } 1345 1346 return phy_write_mmd(phydev, 2, reg, newval); 1347 } 1348 1349 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1350 #define KSZ9131RN_RXC_DLL_CTRL 76 1351 #define KSZ9131RN_TXC_DLL_CTRL 77 1352 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1353 1354 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1355 { 1356 const struct kszphy_type *type = phydev->drv->driver_data; 1357 u16 rxcdll_val, txcdll_val; 1358 int ret; 1359 1360 switch (phydev->interface) { 1361 case PHY_INTERFACE_MODE_RGMII: 1362 rxcdll_val = type->disable_dll_rx_bit; 1363 txcdll_val = type->disable_dll_tx_bit; 1364 break; 1365 case PHY_INTERFACE_MODE_RGMII_ID: 1366 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1367 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1368 break; 1369 case PHY_INTERFACE_MODE_RGMII_RXID: 1370 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1371 txcdll_val = type->disable_dll_tx_bit; 1372 break; 1373 case PHY_INTERFACE_MODE_RGMII_TXID: 1374 rxcdll_val = type->disable_dll_rx_bit; 1375 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1376 break; 1377 default: 1378 return 0; 1379 } 1380 1381 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1382 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1383 rxcdll_val); 1384 if (ret < 0) 1385 return ret; 1386 1387 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1388 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1389 txcdll_val); 1390 } 1391 1392 /* Silicon Errata DS80000693B 1393 * 1394 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1395 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1396 * according to the datasheet (off if there is no link). 1397 */ 1398 static int ksz9131_led_errata(struct phy_device *phydev) 1399 { 1400 int reg; 1401 1402 reg = phy_read_mmd(phydev, 2, 0); 1403 if (reg < 0) 1404 return reg; 1405 1406 if (!(reg & BIT(4))) 1407 return 0; 1408 1409 return phy_set_bits(phydev, 0x1e, BIT(9)); 1410 } 1411 1412 static int ksz9131_config_init(struct phy_device *phydev) 1413 { 1414 struct device_node *of_node; 1415 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1416 char *rx_data_skews[4] = { 1417 "rxd0-skew-psec", "rxd1-skew-psec", 1418 "rxd2-skew-psec", "rxd3-skew-psec" 1419 }; 1420 char *tx_data_skews[4] = { 1421 "txd0-skew-psec", "txd1-skew-psec", 1422 "txd2-skew-psec", "txd3-skew-psec" 1423 }; 1424 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1425 const struct device *dev_walker; 1426 int ret; 1427 1428 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1429 1430 dev_walker = &phydev->mdio.dev; 1431 do { 1432 of_node = dev_walker->of_node; 1433 dev_walker = dev_walker->parent; 1434 } while (!of_node && dev_walker); 1435 1436 if (!of_node) 1437 return 0; 1438 1439 if (phy_interface_is_rgmii(phydev)) { 1440 ret = ksz9131_config_rgmii_delay(phydev); 1441 if (ret < 0) 1442 return ret; 1443 } 1444 1445 ret = ksz9131_of_load_skew_values(phydev, of_node, 1446 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1447 clk_skews, 2); 1448 if (ret < 0) 1449 return ret; 1450 1451 ret = ksz9131_of_load_skew_values(phydev, of_node, 1452 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1453 control_skews, 2); 1454 if (ret < 0) 1455 return ret; 1456 1457 ret = ksz9131_of_load_skew_values(phydev, of_node, 1458 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1459 rx_data_skews, 4); 1460 if (ret < 0) 1461 return ret; 1462 1463 ret = ksz9131_of_load_skew_values(phydev, of_node, 1464 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1465 tx_data_skews, 4); 1466 if (ret < 0) 1467 return ret; 1468 1469 ret = ksz9131_led_errata(phydev); 1470 if (ret < 0) 1471 return ret; 1472 1473 return 0; 1474 } 1475 1476 #define MII_KSZ9131_AUTO_MDIX 0x1C 1477 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1478 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1479 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1480 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1481 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1482 1483 static int ksz9131_mdix_update(struct phy_device *phydev) 1484 { 1485 int ret; 1486 1487 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1488 phydev->mdix = phydev->mdix_ctrl; 1489 } else { 1490 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1491 if (ret < 0) 1492 return ret; 1493 1494 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1495 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1496 phydev->mdix = ETH_TP_MDI; 1497 else 1498 phydev->mdix = ETH_TP_MDI_X; 1499 } else { 1500 phydev->mdix = ETH_TP_MDI_INVALID; 1501 } 1502 } 1503 1504 return 0; 1505 } 1506 1507 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1508 { 1509 u16 val; 1510 1511 switch (ctrl) { 1512 case ETH_TP_MDI: 1513 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1514 MII_KSZ9131_AUTO_MDI_SET; 1515 break; 1516 case ETH_TP_MDI_X: 1517 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1518 break; 1519 case ETH_TP_MDI_AUTO: 1520 val = 0; 1521 break; 1522 default: 1523 return 0; 1524 } 1525 1526 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1527 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1528 MII_KSZ9131_AUTO_MDI_SET, val); 1529 } 1530 1531 static int ksz9131_read_status(struct phy_device *phydev) 1532 { 1533 int ret; 1534 1535 ret = ksz9131_mdix_update(phydev); 1536 if (ret < 0) 1537 return ret; 1538 1539 return genphy_read_status(phydev); 1540 } 1541 1542 static int ksz9131_config_aneg(struct phy_device *phydev) 1543 { 1544 int ret; 1545 1546 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1547 if (ret) 1548 return ret; 1549 1550 return genphy_config_aneg(phydev); 1551 } 1552 1553 static int ksz9477_get_features(struct phy_device *phydev) 1554 { 1555 int ret; 1556 1557 ret = genphy_read_abilities(phydev); 1558 if (ret) 1559 return ret; 1560 1561 /* The "EEE control and capability 1" (Register 3.20) seems to be 1562 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1563 * on the 7.60 will affect 3.20. So, we need to construct our own list 1564 * of caps. 1565 * KSZ8563R should have 100BaseTX/Full only. 1566 */ 1567 linkmode_and(phydev->supported_eee, phydev->supported, 1568 PHY_EEE_CAP1_FEATURES); 1569 1570 return 0; 1571 } 1572 1573 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1574 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1575 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1576 static int ksz8873mll_read_status(struct phy_device *phydev) 1577 { 1578 int regval; 1579 1580 /* dummy read */ 1581 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1582 1583 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1584 1585 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1586 phydev->duplex = DUPLEX_HALF; 1587 else 1588 phydev->duplex = DUPLEX_FULL; 1589 1590 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1591 phydev->speed = SPEED_10; 1592 else 1593 phydev->speed = SPEED_100; 1594 1595 phydev->link = 1; 1596 phydev->pause = phydev->asym_pause = 0; 1597 1598 return 0; 1599 } 1600 1601 static int ksz9031_get_features(struct phy_device *phydev) 1602 { 1603 int ret; 1604 1605 ret = genphy_read_abilities(phydev); 1606 if (ret < 0) 1607 return ret; 1608 1609 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1610 * Whenever the device's Asymmetric Pause capability is set to 1, 1611 * link-up may fail after a link-up to link-down transition. 1612 * 1613 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1614 * 1615 * Workaround: 1616 * Do not enable the Asymmetric Pause capability bit. 1617 */ 1618 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1619 1620 /* We force setting the Pause capability as the core will force the 1621 * Asymmetric Pause capability to 1 otherwise. 1622 */ 1623 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1624 1625 return 0; 1626 } 1627 1628 static int ksz9031_read_status(struct phy_device *phydev) 1629 { 1630 int err; 1631 int regval; 1632 1633 err = genphy_read_status(phydev); 1634 if (err) 1635 return err; 1636 1637 /* Make sure the PHY is not broken. Read idle error count, 1638 * and reset the PHY if it is maxed out. 1639 */ 1640 regval = phy_read(phydev, MII_STAT1000); 1641 if ((regval & 0xFF) == 0xFF) { 1642 phy_init_hw(phydev); 1643 phydev->link = 0; 1644 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1645 phydev->drv->config_intr(phydev); 1646 return genphy_config_aneg(phydev); 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1653 { 1654 struct kszphy_priv *priv = phydev->priv; 1655 int ret; 1656 1657 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1658 * Prior to running the cable diagnostics, Auto-negotiation should 1659 * be disabled, full duplex set and the link speed set to 1000Mbps 1660 * via the Basic Control Register. 1661 */ 1662 ret = phy_modify(phydev, MII_BMCR, 1663 BMCR_SPEED1000 | BMCR_FULLDPLX | 1664 BMCR_ANENABLE | BMCR_SPEED100, 1665 BMCR_SPEED1000 | BMCR_FULLDPLX); 1666 if (ret) 1667 return ret; 1668 1669 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1670 * The Master-Slave configuration should be set to Slave by writing 1671 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1672 * Register. 1673 */ 1674 ret = phy_read(phydev, MII_CTRL1000); 1675 if (ret < 0) 1676 return ret; 1677 1678 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1679 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1680 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1681 ret |= CTL1000_ENABLE_MASTER; 1682 1683 return phy_write(phydev, MII_CTRL1000, ret); 1684 } 1685 1686 static int ksz9x31_cable_test_result_trans(u16 status) 1687 { 1688 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1689 case KSZ9x31_LMD_VCT_ST_NORMAL: 1690 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1691 case KSZ9x31_LMD_VCT_ST_OPEN: 1692 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1693 case KSZ9x31_LMD_VCT_ST_SHORT: 1694 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1695 case KSZ9x31_LMD_VCT_ST_FAIL: 1696 fallthrough; 1697 default: 1698 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1699 } 1700 } 1701 1702 static bool ksz9x31_cable_test_failed(u16 status) 1703 { 1704 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1705 1706 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1707 } 1708 1709 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1710 { 1711 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1712 case KSZ9x31_LMD_VCT_ST_OPEN: 1713 fallthrough; 1714 case KSZ9x31_LMD_VCT_ST_SHORT: 1715 return true; 1716 } 1717 return false; 1718 } 1719 1720 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1721 { 1722 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1723 1724 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1725 * 1726 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1727 */ 1728 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1729 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1730 dt = clamp(dt - 22, 0, 255); 1731 1732 return (dt * 400) / 10; 1733 } 1734 1735 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1736 { 1737 int val, ret; 1738 1739 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1740 !(val & KSZ9x31_LMD_VCT_EN), 1741 30000, 100000, true); 1742 1743 return ret < 0 ? ret : 0; 1744 } 1745 1746 static int ksz9x31_cable_test_get_pair(int pair) 1747 { 1748 static const int ethtool_pair[] = { 1749 ETHTOOL_A_CABLE_PAIR_A, 1750 ETHTOOL_A_CABLE_PAIR_B, 1751 ETHTOOL_A_CABLE_PAIR_C, 1752 ETHTOOL_A_CABLE_PAIR_D, 1753 }; 1754 1755 return ethtool_pair[pair]; 1756 } 1757 1758 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1759 { 1760 int ret, val; 1761 1762 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1763 * To test each individual cable pair, set the cable pair in the Cable 1764 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1765 * Diagnostic Register, along with setting the Cable Diagnostics Test 1766 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1767 * will self clear when the test is concluded. 1768 */ 1769 ret = phy_write(phydev, KSZ9x31_LMD, 1770 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1771 if (ret) 1772 return ret; 1773 1774 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1775 if (ret) 1776 return ret; 1777 1778 val = phy_read(phydev, KSZ9x31_LMD); 1779 if (val < 0) 1780 return val; 1781 1782 if (ksz9x31_cable_test_failed(val)) 1783 return -EAGAIN; 1784 1785 ret = ethnl_cable_test_result(phydev, 1786 ksz9x31_cable_test_get_pair(pair), 1787 ksz9x31_cable_test_result_trans(val)); 1788 if (ret) 1789 return ret; 1790 1791 if (!ksz9x31_cable_test_fault_length_valid(val)) 1792 return 0; 1793 1794 return ethnl_cable_test_fault_length(phydev, 1795 ksz9x31_cable_test_get_pair(pair), 1796 ksz9x31_cable_test_fault_length(phydev, val)); 1797 } 1798 1799 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1800 bool *finished) 1801 { 1802 struct kszphy_priv *priv = phydev->priv; 1803 unsigned long pair_mask; 1804 int retries = 20; 1805 int pair, ret, rv; 1806 1807 *finished = false; 1808 1809 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1810 phydev->supported) || 1811 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1812 phydev->supported)) 1813 pair_mask = 0xf; /* All pairs */ 1814 else 1815 pair_mask = 0x3; /* Pairs A and B only */ 1816 1817 /* Try harder if link partner is active */ 1818 while (pair_mask && retries--) { 1819 for_each_set_bit(pair, &pair_mask, 4) { 1820 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1821 if (ret == -EAGAIN) 1822 continue; 1823 if (ret < 0) 1824 return ret; 1825 clear_bit(pair, &pair_mask); 1826 } 1827 /* If link partner is in autonegotiation mode it will send 2ms 1828 * of FLPs with at least 6ms of silence. 1829 * Add 2ms sleep to have better chances to hit this silence. 1830 */ 1831 if (pair_mask) 1832 usleep_range(2000, 3000); 1833 } 1834 1835 /* Report remaining unfinished pair result as unknown. */ 1836 for_each_set_bit(pair, &pair_mask, 4) { 1837 ret = ethnl_cable_test_result(phydev, 1838 ksz9x31_cable_test_get_pair(pair), 1839 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1840 } 1841 1842 *finished = true; 1843 1844 /* Restore cached bits from before LinkMD got started. */ 1845 rv = phy_modify(phydev, MII_CTRL1000, 1846 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1847 priv->vct_ctrl1000); 1848 if (rv) 1849 return rv; 1850 1851 return ret; 1852 } 1853 1854 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1855 { 1856 return 0; 1857 } 1858 1859 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1860 { 1861 u16 val; 1862 1863 switch (ctrl) { 1864 case ETH_TP_MDI: 1865 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1866 break; 1867 case ETH_TP_MDI_X: 1868 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1869 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1870 * sheet seems to be missing: 1871 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1872 * 0 = Normal operation (transmit on TX+/TX- pins) 1873 */ 1874 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1875 break; 1876 case ETH_TP_MDI_AUTO: 1877 val = 0; 1878 break; 1879 default: 1880 return 0; 1881 } 1882 1883 return phy_modify(phydev, MII_BMCR, 1884 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1885 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1886 KSZ886X_BMCR_HP_MDIX | val); 1887 } 1888 1889 static int ksz886x_config_aneg(struct phy_device *phydev) 1890 { 1891 int ret; 1892 1893 ret = genphy_config_aneg(phydev); 1894 if (ret) 1895 return ret; 1896 1897 if (phydev->autoneg != AUTONEG_ENABLE) { 1898 /* When autonegotation is disabled, we need to manually force 1899 * the link state. If we don't do this, the PHY will keep 1900 * sending Fast Link Pulses (FLPs) which are part of the 1901 * autonegotiation process. This is not desired when 1902 * autonegotiation is off. 1903 */ 1904 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1905 KSZ886X_CTRL_FORCE_LINK); 1906 if (ret) 1907 return ret; 1908 } else { 1909 /* If we had previously forced the link state, we need to 1910 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1911 * will not perform autonegotiation. 1912 */ 1913 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1914 KSZ886X_CTRL_FORCE_LINK); 1915 if (ret) 1916 return ret; 1917 } 1918 1919 /* The MDI-X configuration is automatically changed by the PHY after 1920 * switching from autoneg off to on. So, take MDI-X configuration under 1921 * own control and set it after autoneg configuration was done. 1922 */ 1923 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1924 } 1925 1926 static int ksz886x_mdix_update(struct phy_device *phydev) 1927 { 1928 int ret; 1929 1930 ret = phy_read(phydev, MII_BMCR); 1931 if (ret < 0) 1932 return ret; 1933 1934 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1935 if (ret & KSZ886X_BMCR_FORCE_MDI) 1936 phydev->mdix_ctrl = ETH_TP_MDI_X; 1937 else 1938 phydev->mdix_ctrl = ETH_TP_MDI; 1939 } else { 1940 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1941 } 1942 1943 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1944 if (ret < 0) 1945 return ret; 1946 1947 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1948 if (ret & KSZ886X_CTRL_MDIX_STAT) 1949 phydev->mdix = ETH_TP_MDI_X; 1950 else 1951 phydev->mdix = ETH_TP_MDI; 1952 1953 return 0; 1954 } 1955 1956 static int ksz886x_read_status(struct phy_device *phydev) 1957 { 1958 int ret; 1959 1960 ret = ksz886x_mdix_update(phydev); 1961 if (ret < 0) 1962 return ret; 1963 1964 return genphy_read_status(phydev); 1965 } 1966 1967 static int ksz9477_mdix_update(struct phy_device *phydev) 1968 { 1969 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1970 phydev->mdix = phydev->mdix_ctrl; 1971 else 1972 phydev->mdix = ETH_TP_MDI_INVALID; 1973 1974 return 0; 1975 } 1976 1977 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 1978 { 1979 int val; 1980 1981 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1982 if (val < 0) 1983 return val; 1984 1985 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 1986 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1987 else if (val & MII_KSZ9131_AUTO_MDI_SET) 1988 phydev->mdix_ctrl = ETH_TP_MDI; 1989 else 1990 phydev->mdix_ctrl = ETH_TP_MDI_X; 1991 1992 return 0; 1993 } 1994 1995 static int ksz9477_read_status(struct phy_device *phydev) 1996 { 1997 int ret; 1998 1999 ret = ksz9477_mdix_update(phydev); 2000 if (ret) 2001 return ret; 2002 2003 return genphy_read_status(phydev); 2004 } 2005 2006 static int ksz9477_config_aneg(struct phy_device *phydev) 2007 { 2008 int ret; 2009 2010 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2011 if (ret) 2012 return ret; 2013 2014 return genphy_config_aneg(phydev); 2015 } 2016 2017 struct ksz9477_errata_write { 2018 u8 dev_addr; 2019 u8 reg_addr; 2020 u16 val; 2021 }; 2022 2023 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2024 /* Register settings are needed to improve PHY receive performance */ 2025 {0x01, 0x6f, 0xdd0b}, 2026 {0x01, 0x8f, 0x6032}, 2027 {0x01, 0x9d, 0x248c}, 2028 {0x01, 0x75, 0x0060}, 2029 {0x01, 0xd3, 0x7777}, 2030 {0x1c, 0x06, 0x3008}, 2031 {0x1c, 0x08, 0x2000}, 2032 2033 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2034 {0x1c, 0x04, 0x00d0}, 2035 2036 /* Register settings are required to meet data sheet supply current specifications */ 2037 {0x1c, 0x13, 0x6eff}, 2038 {0x1c, 0x14, 0xe6ff}, 2039 {0x1c, 0x15, 0x6eff}, 2040 {0x1c, 0x16, 0xe6ff}, 2041 {0x1c, 0x17, 0x00ff}, 2042 {0x1c, 0x18, 0x43ff}, 2043 {0x1c, 0x19, 0xc3ff}, 2044 {0x1c, 0x1a, 0x6fff}, 2045 {0x1c, 0x1b, 0x07ff}, 2046 {0x1c, 0x1c, 0x0fff}, 2047 {0x1c, 0x1d, 0xe7ff}, 2048 {0x1c, 0x1e, 0xefff}, 2049 {0x1c, 0x20, 0xeeee}, 2050 }; 2051 2052 static int ksz9477_phy_errata(struct phy_device *phydev) 2053 { 2054 int err; 2055 int i; 2056 2057 /* Apply PHY settings to address errata listed in 2058 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2059 * Silicon Errata and Data Sheet Clarification documents. 2060 * 2061 * Document notes: Before configuring the PHY MMD registers, it is 2062 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2063 * disabled by writing to register 0xN100-0xN101. After writing the 2064 * MMD registers, and after all errata workarounds that involve PHY 2065 * register settings, write register 0xN100-0xN101 again to enable 2066 * and restart auto-negotiation. 2067 */ 2068 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2069 if (err) 2070 return err; 2071 2072 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2073 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2074 2075 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2076 if (err) 2077 return err; 2078 } 2079 2080 err = genphy_restart_aneg(phydev); 2081 if (err) 2082 return err; 2083 2084 return err; 2085 } 2086 2087 static int ksz9477_config_init(struct phy_device *phydev) 2088 { 2089 int err; 2090 2091 /* Only KSZ9897 family of switches needs this fix. */ 2092 if ((phydev->phy_id & 0xf) == 1) { 2093 err = ksz9477_phy_errata(phydev); 2094 if (err) 2095 return err; 2096 } 2097 2098 /* Read initial MDI-X config state. So, we do not need to poll it 2099 * later on. 2100 */ 2101 err = ksz9477_read_mdix_ctrl(phydev); 2102 if (err) 2103 return err; 2104 2105 return kszphy_config_init(phydev); 2106 } 2107 2108 static int kszphy_get_sset_count(struct phy_device *phydev) 2109 { 2110 return ARRAY_SIZE(kszphy_hw_stats); 2111 } 2112 2113 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2114 { 2115 int i; 2116 2117 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2118 ethtool_puts(&data, kszphy_hw_stats[i].string); 2119 } 2120 2121 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2122 { 2123 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2124 struct kszphy_priv *priv = phydev->priv; 2125 int val; 2126 u64 ret; 2127 2128 val = phy_read(phydev, stat.reg); 2129 if (val < 0) { 2130 ret = U64_MAX; 2131 } else { 2132 val = val & ((1 << stat.bits) - 1); 2133 priv->stats[i] += val; 2134 ret = priv->stats[i]; 2135 } 2136 2137 return ret; 2138 } 2139 2140 static void kszphy_get_stats(struct phy_device *phydev, 2141 struct ethtool_stats *stats, u64 *data) 2142 { 2143 int i; 2144 2145 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2146 data[i] = kszphy_get_stat(phydev, i); 2147 } 2148 2149 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2150 * etc. The counter is incremented when the PHY receives a frame with one or 2151 * more symbol errors. The counter is cleared when the register is read. 2152 */ 2153 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2154 2155 static int kszphy_update_stats(struct phy_device *phydev) 2156 { 2157 struct kszphy_priv *priv = phydev->priv; 2158 int ret; 2159 2160 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2161 if (ret < 0) 2162 return ret; 2163 2164 priv->phy_stats.rx_err_pkt_cnt += ret; 2165 2166 return 0; 2167 } 2168 2169 static void kszphy_get_phy_stats(struct phy_device *phydev, 2170 struct ethtool_eth_phy_stats *eth_stats, 2171 struct ethtool_phy_stats *stats) 2172 { 2173 struct kszphy_priv *priv = phydev->priv; 2174 2175 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2176 } 2177 2178 /* Base register for Signal Quality Indicator (SQI) - Channel A 2179 * 2180 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2181 * Register: 0xAC (Channel A) 2182 * Each channel (pair) has its own register: 2183 * Channel A: 0xAC 2184 * Channel B: 0xAD 2185 * Channel C: 0xAE 2186 * Channel D: 0xAF 2187 */ 2188 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2189 2190 /* SQI field mask for bits [14:8] 2191 * 2192 * SQI indicates relative quality of the signal. 2193 * A lower value indicates better signal quality. 2194 */ 2195 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2196 2197 #define KSZ9477_MAX_CHANNELS 4 2198 #define KSZ9477_SQI_MAX 7 2199 2200 /* Number of SQI samples to average for a stable result. 2201 * 2202 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2203 * For noisy environments, a minimum of 30–50 readings is recommended. 2204 */ 2205 #define KSZ9477_SQI_SAMPLE_COUNT 40 2206 2207 /* The hardware SQI register provides a raw value from 0-127, where a lower 2208 * value indicates better signal quality. However, empirical testing has 2209 * shown that only the 0-7 range is relevant for a functional link. A raw 2210 * value of 8 or higher was measured directly before link drop. This aligns 2211 * with the OPEN Alliance recommendation that SQI=0 should represent the 2212 * pre-failure state. 2213 * 2214 * This table provides a non-linear mapping from the useful raw hardware 2215 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2216 */ 2217 static const u8 ksz_sqi_mapping[] = { 2218 7, /* raw 0 -> SQI 7 */ 2219 7, /* raw 1 -> SQI 7 */ 2220 6, /* raw 2 -> SQI 6 */ 2221 5, /* raw 3 -> SQI 5 */ 2222 4, /* raw 4 -> SQI 4 */ 2223 3, /* raw 5 -> SQI 3 */ 2224 2, /* raw 6 -> SQI 2 */ 2225 1, /* raw 7 -> SQI 1 */ 2226 }; 2227 2228 /** 2229 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2230 * @phydev: the PHY device 2231 * 2232 * This function reads and processes the raw Signal Quality Index from the 2233 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2234 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2235 * mapped to the standard 0-7 SQI scale via a lookup table. 2236 * 2237 * Return: SQI value (0–7), or a negative errno on failure. 2238 */ 2239 static int kszphy_get_sqi(struct phy_device *phydev) 2240 { 2241 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2242 int worst_sqi = KSZ9477_SQI_MAX; 2243 int i, val, raw_sqi, ch; 2244 u8 channels; 2245 2246 /* Determine applicable channels based on link speed */ 2247 if (phydev->speed == SPEED_1000) 2248 channels = 4; 2249 else if (phydev->speed == SPEED_100) 2250 channels = 1; 2251 else 2252 return -EOPNOTSUPP; 2253 2254 /* Sample and accumulate SQI readings for each pair (currently only one). 2255 * 2256 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2257 * - The SQI register is updated every 2 µs. 2258 * - Values may fluctuate significantly, even in low-noise environments. 2259 * - For reliable estimation, average a minimum of 30–50 samples 2260 * (recommended for noisy environments) 2261 * - In noisy environments, individual readings are highly unreliable. 2262 * 2263 * We use 40 samples per pair with a delay of 3 µs between each 2264 * read to ensure new values are captured (2 µs update interval). 2265 */ 2266 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2267 for (ch = 0; ch < channels; ch++) { 2268 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2269 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2270 if (val < 0) 2271 return val; 2272 2273 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2274 sum[ch] += raw_sqi; 2275 2276 /* We communicate with the PHY via MDIO via SPI or 2277 * I2C, which is relatively slow. At least slower than 2278 * the update interval of the SQI register. 2279 * So, we can skip the delay between reads. 2280 */ 2281 } 2282 } 2283 2284 /* Calculate average for each channel and find the worst SQI */ 2285 for (ch = 0; ch < channels; ch++) { 2286 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2287 int mapped_sqi; 2288 2289 /* Handle the pre-fail/failed state first. */ 2290 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2291 mapped_sqi = 0; 2292 else 2293 /* Use the lookup table for the good signal range. */ 2294 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2295 2296 if (mapped_sqi < worst_sqi) 2297 worst_sqi = mapped_sqi; 2298 } 2299 2300 return worst_sqi; 2301 } 2302 2303 static int kszphy_get_sqi_max(struct phy_device *phydev) 2304 { 2305 return KSZ9477_SQI_MAX; 2306 } 2307 2308 static void kszphy_enable_clk(struct phy_device *phydev) 2309 { 2310 struct kszphy_priv *priv = phydev->priv; 2311 2312 if (!priv->clk_enable && priv->clk) { 2313 clk_prepare_enable(priv->clk); 2314 priv->clk_enable = true; 2315 } 2316 } 2317 2318 static void kszphy_disable_clk(struct phy_device *phydev) 2319 { 2320 struct kszphy_priv *priv = phydev->priv; 2321 2322 if (priv->clk_enable && priv->clk) { 2323 clk_disable_unprepare(priv->clk); 2324 priv->clk_enable = false; 2325 } 2326 } 2327 2328 static int kszphy_generic_resume(struct phy_device *phydev) 2329 { 2330 kszphy_enable_clk(phydev); 2331 2332 return genphy_resume(phydev); 2333 } 2334 2335 static int kszphy_generic_suspend(struct phy_device *phydev) 2336 { 2337 int ret; 2338 2339 ret = genphy_suspend(phydev); 2340 if (ret) 2341 return ret; 2342 2343 kszphy_disable_clk(phydev); 2344 2345 return 0; 2346 } 2347 2348 static int kszphy_suspend(struct phy_device *phydev) 2349 { 2350 /* Disable PHY Interrupts */ 2351 if (phy_interrupt_is_valid(phydev)) { 2352 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2353 if (phydev->drv->config_intr) 2354 phydev->drv->config_intr(phydev); 2355 } 2356 2357 return kszphy_generic_suspend(phydev); 2358 } 2359 2360 static void kszphy_parse_led_mode(struct phy_device *phydev) 2361 { 2362 const struct kszphy_type *type = phydev->drv->driver_data; 2363 const struct device_node *np = phydev->mdio.dev.of_node; 2364 struct kszphy_priv *priv = phydev->priv; 2365 int ret; 2366 2367 if (type && type->led_mode_reg) { 2368 ret = of_property_read_u32(np, "micrel,led-mode", 2369 &priv->led_mode); 2370 2371 if (ret) 2372 priv->led_mode = -1; 2373 2374 if (priv->led_mode > 3) { 2375 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2376 priv->led_mode); 2377 priv->led_mode = -1; 2378 } 2379 } else { 2380 priv->led_mode = -1; 2381 } 2382 } 2383 2384 static int kszphy_resume(struct phy_device *phydev) 2385 { 2386 int ret; 2387 2388 ret = kszphy_generic_resume(phydev); 2389 if (ret) 2390 return ret; 2391 2392 /* After switching from power-down to normal mode, an internal global 2393 * reset is automatically generated. Wait a minimum of 1 ms before 2394 * read/write access to the PHY registers. 2395 */ 2396 usleep_range(1000, 2000); 2397 2398 ret = kszphy_config_reset(phydev); 2399 if (ret) 2400 return ret; 2401 2402 /* Enable PHY Interrupts */ 2403 if (phy_interrupt_is_valid(phydev)) { 2404 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2405 if (phydev->drv->config_intr) 2406 phydev->drv->config_intr(phydev); 2407 } 2408 2409 return 0; 2410 } 2411 2412 /* Because of errata DS80000700A, receiver error following software 2413 * power down. Suspend and resume callbacks only disable and enable 2414 * external rmii reference clock. 2415 */ 2416 static int ksz8041_resume(struct phy_device *phydev) 2417 { 2418 kszphy_enable_clk(phydev); 2419 2420 return 0; 2421 } 2422 2423 static int ksz8041_suspend(struct phy_device *phydev) 2424 { 2425 kszphy_disable_clk(phydev); 2426 2427 return 0; 2428 } 2429 2430 static int ksz9477_resume(struct phy_device *phydev) 2431 { 2432 int ret; 2433 2434 /* No need to initialize registers if not powered down. */ 2435 ret = phy_read(phydev, MII_BMCR); 2436 if (ret < 0) 2437 return ret; 2438 if (!(ret & BMCR_PDOWN)) 2439 return 0; 2440 2441 genphy_resume(phydev); 2442 2443 /* After switching from power-down to normal mode, an internal global 2444 * reset is automatically generated. Wait a minimum of 1 ms before 2445 * read/write access to the PHY registers. 2446 */ 2447 usleep_range(1000, 2000); 2448 2449 /* Only KSZ9897 family of switches needs this fix. */ 2450 if ((phydev->phy_id & 0xf) == 1) { 2451 ret = ksz9477_phy_errata(phydev); 2452 if (ret) 2453 return ret; 2454 } 2455 2456 /* Enable PHY Interrupts */ 2457 if (phy_interrupt_is_valid(phydev)) { 2458 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2459 if (phydev->drv->config_intr) 2460 phydev->drv->config_intr(phydev); 2461 } 2462 2463 return 0; 2464 } 2465 2466 static int ksz8061_resume(struct phy_device *phydev) 2467 { 2468 int ret; 2469 2470 /* This function can be called twice when the Ethernet device is on. */ 2471 ret = phy_read(phydev, MII_BMCR); 2472 if (ret < 0) 2473 return ret; 2474 if (!(ret & BMCR_PDOWN)) 2475 return 0; 2476 2477 ret = kszphy_generic_resume(phydev); 2478 if (ret) 2479 return ret; 2480 2481 usleep_range(1000, 2000); 2482 2483 /* Re-program the value after chip is reset. */ 2484 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2485 if (ret) 2486 return ret; 2487 2488 /* Enable PHY Interrupts */ 2489 if (phy_interrupt_is_valid(phydev)) { 2490 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2491 if (phydev->drv->config_intr) 2492 phydev->drv->config_intr(phydev); 2493 } 2494 2495 return 0; 2496 } 2497 2498 static int ksz8061_suspend(struct phy_device *phydev) 2499 { 2500 return kszphy_suspend(phydev); 2501 } 2502 2503 static int kszphy_probe(struct phy_device *phydev) 2504 { 2505 const struct kszphy_type *type = phydev->drv->driver_data; 2506 const struct device_node *np = phydev->mdio.dev.of_node; 2507 struct kszphy_priv *priv; 2508 struct clk *clk; 2509 2510 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2511 if (!priv) 2512 return -ENOMEM; 2513 2514 phydev->priv = priv; 2515 2516 priv->type = type; 2517 2518 kszphy_parse_led_mode(phydev); 2519 2520 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2521 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2522 if (!IS_ERR_OR_NULL(clk)) { 2523 unsigned long rate = clk_get_rate(clk); 2524 bool rmii_ref_clk_sel_25_mhz; 2525 2526 if (type) 2527 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2528 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2529 "micrel,rmii-reference-clock-select-25-mhz"); 2530 2531 if (rate > 24500000 && rate < 25500000) { 2532 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2533 } else if (rate > 49500000 && rate < 50500000) { 2534 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2535 } else { 2536 phydev_err(phydev, "Clock rate out of range: %ld\n", 2537 rate); 2538 return -EINVAL; 2539 } 2540 } else if (!clk) { 2541 /* unnamed clock from the generic ethernet-phy binding */ 2542 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2543 } 2544 2545 if (IS_ERR(clk)) 2546 return PTR_ERR(clk); 2547 2548 clk_disable_unprepare(clk); 2549 priv->clk = clk; 2550 2551 if (ksz8041_fiber_mode(phydev)) 2552 phydev->port = PORT_FIBRE; 2553 2554 /* Support legacy board-file configuration */ 2555 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2556 priv->rmii_ref_clk_sel = true; 2557 priv->rmii_ref_clk_sel_val = true; 2558 } 2559 2560 return 0; 2561 } 2562 2563 static int lan8814_cable_test_start(struct phy_device *phydev) 2564 { 2565 /* If autoneg is enabled, we won't be able to test cross pair 2566 * short. In this case, the PHY will "detect" a link and 2567 * confuse the internal state machine - disable auto neg here. 2568 * Set the speed to 1000mbit and full duplex. 2569 */ 2570 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2571 BMCR_SPEED1000 | BMCR_FULLDPLX); 2572 } 2573 2574 static int ksz886x_cable_test_start(struct phy_device *phydev) 2575 { 2576 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2577 return -EOPNOTSUPP; 2578 2579 /* If autoneg is enabled, we won't be able to test cross pair 2580 * short. In this case, the PHY will "detect" a link and 2581 * confuse the internal state machine - disable auto neg here. 2582 * If autoneg is disabled, we should set the speed to 10mbit. 2583 */ 2584 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2585 } 2586 2587 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2588 { 2589 switch (FIELD_GET(mask, status)) { 2590 case KSZ8081_LMD_STAT_NORMAL: 2591 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2592 case KSZ8081_LMD_STAT_SHORT: 2593 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2594 case KSZ8081_LMD_STAT_OPEN: 2595 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2596 case KSZ8081_LMD_STAT_FAIL: 2597 fallthrough; 2598 default: 2599 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2600 } 2601 } 2602 2603 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2604 { 2605 return FIELD_GET(mask, status) == 2606 KSZ8081_LMD_STAT_FAIL; 2607 } 2608 2609 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2610 { 2611 switch (FIELD_GET(mask, status)) { 2612 case KSZ8081_LMD_STAT_OPEN: 2613 fallthrough; 2614 case KSZ8081_LMD_STAT_SHORT: 2615 return true; 2616 } 2617 return false; 2618 } 2619 2620 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2621 u16 status, u16 data_mask) 2622 { 2623 int dt; 2624 2625 /* According to the data sheet the distance to the fault is 2626 * DELTA_TIME * 0.4 meters for ksz phys. 2627 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2628 */ 2629 dt = FIELD_GET(data_mask, status); 2630 2631 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2632 return ((dt - 22) * 800) / 10; 2633 else 2634 return (dt * 400) / 10; 2635 } 2636 2637 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2638 { 2639 const struct kszphy_type *type = phydev->drv->driver_data; 2640 int val, ret; 2641 2642 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2643 !(val & KSZ8081_LMD_ENABLE_TEST), 2644 30000, 100000, true); 2645 2646 return ret < 0 ? ret : 0; 2647 } 2648 2649 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2650 { 2651 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2652 ETHTOOL_A_CABLE_PAIR_B, 2653 ETHTOOL_A_CABLE_PAIR_C, 2654 ETHTOOL_A_CABLE_PAIR_D, 2655 }; 2656 u32 fault_length; 2657 int ret; 2658 int val; 2659 2660 val = KSZ8081_LMD_ENABLE_TEST; 2661 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2662 2663 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2664 if (ret < 0) 2665 return ret; 2666 2667 ret = ksz886x_cable_test_wait_for_completion(phydev); 2668 if (ret) 2669 return ret; 2670 2671 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2672 if (val < 0) 2673 return val; 2674 2675 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2676 return -EAGAIN; 2677 2678 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2679 ksz886x_cable_test_result_trans(val, 2680 LAN8814_CABLE_DIAG_STAT_MASK 2681 )); 2682 if (ret) 2683 return ret; 2684 2685 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2686 return 0; 2687 2688 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2689 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2690 2691 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2692 } 2693 2694 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2695 { 2696 static const int ethtool_pair[] = { 2697 ETHTOOL_A_CABLE_PAIR_A, 2698 ETHTOOL_A_CABLE_PAIR_B, 2699 }; 2700 int ret, val, mdix; 2701 u32 fault_length; 2702 2703 /* There is no way to choice the pair, like we do one ksz9031. 2704 * We can workaround this limitation by using the MDI-X functionality. 2705 */ 2706 if (pair == 0) 2707 mdix = ETH_TP_MDI; 2708 else 2709 mdix = ETH_TP_MDI_X; 2710 2711 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2712 case PHY_ID_KSZ8081: 2713 ret = ksz8081_config_mdix(phydev, mdix); 2714 break; 2715 case PHY_ID_KSZ886X: 2716 ret = ksz886x_config_mdix(phydev, mdix); 2717 break; 2718 default: 2719 ret = -ENODEV; 2720 } 2721 2722 if (ret) 2723 return ret; 2724 2725 /* Now we are ready to fire. This command will send a 100ns pulse 2726 * to the pair. 2727 */ 2728 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2729 if (ret) 2730 return ret; 2731 2732 ret = ksz886x_cable_test_wait_for_completion(phydev); 2733 if (ret) 2734 return ret; 2735 2736 val = phy_read(phydev, KSZ8081_LMD); 2737 if (val < 0) 2738 return val; 2739 2740 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2741 return -EAGAIN; 2742 2743 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2744 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2745 if (ret) 2746 return ret; 2747 2748 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2749 return 0; 2750 2751 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2752 2753 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2754 } 2755 2756 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2757 bool *finished) 2758 { 2759 const struct kszphy_type *type = phydev->drv->driver_data; 2760 unsigned long pair_mask = type->pair_mask; 2761 int retries = 20; 2762 int ret = 0; 2763 int pair; 2764 2765 *finished = false; 2766 2767 /* Try harder if link partner is active */ 2768 while (pair_mask && retries--) { 2769 for_each_set_bit(pair, &pair_mask, 4) { 2770 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2771 ret = lan8814_cable_test_one_pair(phydev, pair); 2772 else 2773 ret = ksz886x_cable_test_one_pair(phydev, pair); 2774 if (ret == -EAGAIN) 2775 continue; 2776 if (ret < 0) 2777 return ret; 2778 clear_bit(pair, &pair_mask); 2779 } 2780 /* If link partner is in autonegotiation mode it will send 2ms 2781 * of FLPs with at least 6ms of silence. 2782 * Add 2ms sleep to have better chances to hit this silence. 2783 */ 2784 if (pair_mask) 2785 msleep(2); 2786 } 2787 2788 *finished = true; 2789 2790 return ret; 2791 } 2792 2793 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2794 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2795 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2796 2797 #define LAN8814_QSGMII_SOFT_RESET 0x43 2798 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2799 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2800 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2801 #define LAN8814_ALIGN_SWAP 0x4a 2802 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2803 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2804 2805 #define LAN8804_ALIGN_SWAP 0x4a 2806 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2807 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2808 #define LAN8814_CLOCK_MANAGEMENT 0xd 2809 #define LAN8814_LINK_QUALITY 0x8e 2810 2811 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2812 { 2813 int data; 2814 2815 phy_lock_mdio_bus(phydev); 2816 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2817 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2818 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2819 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2820 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2821 phy_unlock_mdio_bus(phydev); 2822 2823 return data; 2824 } 2825 2826 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2827 u16 val) 2828 { 2829 phy_lock_mdio_bus(phydev); 2830 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2831 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2832 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2833 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2834 2835 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2836 if (val != 0) 2837 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2838 val); 2839 phy_unlock_mdio_bus(phydev); 2840 return val; 2841 } 2842 2843 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2844 { 2845 u16 val = 0; 2846 2847 if (enable) 2848 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2849 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2850 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2851 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2852 2853 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2854 } 2855 2856 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2857 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2858 { 2859 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2860 *seconds = (*seconds << 16) | 2861 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2862 2863 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2864 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2865 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2866 2867 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2868 } 2869 2870 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2871 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2872 { 2873 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2874 *seconds = *seconds << 16 | 2875 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2876 2877 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2878 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2879 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2880 2881 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2882 } 2883 2884 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2885 { 2886 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2887 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2888 2889 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2890 SOF_TIMESTAMPING_RX_HARDWARE | 2891 SOF_TIMESTAMPING_RAW_HARDWARE; 2892 2893 info->phc_index = ptp_clock_index(shared->ptp_clock); 2894 2895 info->tx_types = 2896 (1 << HWTSTAMP_TX_OFF) | 2897 (1 << HWTSTAMP_TX_ON) | 2898 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2899 2900 info->rx_filters = 2901 (1 << HWTSTAMP_FILTER_NONE) | 2902 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2903 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2904 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2905 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2906 2907 return 0; 2908 } 2909 2910 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2911 { 2912 int i; 2913 2914 for (i = 0; i < FIFO_SIZE; ++i) 2915 lanphy_read_page_reg(phydev, 5, 2916 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2917 2918 /* Read to clear overflow status bit */ 2919 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2920 } 2921 2922 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2923 struct kernel_hwtstamp_config *config, 2924 struct netlink_ext_ack *extack) 2925 { 2926 struct kszphy_ptp_priv *ptp_priv = 2927 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2928 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2929 int txcfg = 0, rxcfg = 0; 2930 int pkt_ts_enable; 2931 int tx_mod; 2932 2933 ptp_priv->hwts_tx_type = config->tx_type; 2934 ptp_priv->rx_filter = config->rx_filter; 2935 2936 switch (config->rx_filter) { 2937 case HWTSTAMP_FILTER_NONE: 2938 ptp_priv->layer = 0; 2939 ptp_priv->version = 0; 2940 break; 2941 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2942 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2943 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2944 ptp_priv->layer = PTP_CLASS_L4; 2945 ptp_priv->version = PTP_CLASS_V2; 2946 break; 2947 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2948 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2949 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2950 ptp_priv->layer = PTP_CLASS_L2; 2951 ptp_priv->version = PTP_CLASS_V2; 2952 break; 2953 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2954 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2955 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2956 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2957 ptp_priv->version = PTP_CLASS_V2; 2958 break; 2959 default: 2960 return -ERANGE; 2961 } 2962 2963 if (ptp_priv->layer & PTP_CLASS_L2) { 2964 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2965 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2966 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2967 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2968 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2969 } 2970 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2971 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2972 2973 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2974 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2975 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2976 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2977 2978 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2979 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2980 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2981 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2982 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2983 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2984 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2985 } 2986 2987 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2988 lan8814_config_ts_intr(ptp_priv->phydev, true); 2989 else 2990 lan8814_config_ts_intr(ptp_priv->phydev, false); 2991 2992 /* In case of multiple starts and stops, these needs to be cleared */ 2993 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2994 list_del(&rx_ts->list); 2995 kfree(rx_ts); 2996 } 2997 skb_queue_purge(&ptp_priv->rx_queue); 2998 skb_queue_purge(&ptp_priv->tx_queue); 2999 3000 lan8814_flush_fifo(ptp_priv->phydev, false); 3001 lan8814_flush_fifo(ptp_priv->phydev, true); 3002 3003 return 0; 3004 } 3005 3006 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3007 struct sk_buff *skb, int type) 3008 { 3009 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3010 3011 switch (ptp_priv->hwts_tx_type) { 3012 case HWTSTAMP_TX_ONESTEP_SYNC: 3013 if (ptp_msg_is_sync(skb, type)) { 3014 kfree_skb(skb); 3015 return; 3016 } 3017 fallthrough; 3018 case HWTSTAMP_TX_ON: 3019 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3020 skb_queue_tail(&ptp_priv->tx_queue, skb); 3021 break; 3022 case HWTSTAMP_TX_OFF: 3023 default: 3024 kfree_skb(skb); 3025 break; 3026 } 3027 } 3028 3029 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3030 { 3031 struct ptp_header *ptp_header; 3032 u32 type; 3033 3034 skb_push(skb, ETH_HLEN); 3035 type = ptp_classify_raw(skb); 3036 ptp_header = ptp_parse_header(skb, type); 3037 skb_pull_inline(skb, ETH_HLEN); 3038 3039 if (!ptp_header) 3040 return false; 3041 3042 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3043 return true; 3044 } 3045 3046 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3047 struct sk_buff *skb) 3048 { 3049 struct skb_shared_hwtstamps *shhwtstamps; 3050 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3051 unsigned long flags; 3052 bool ret = false; 3053 u16 skb_sig; 3054 3055 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3056 return ret; 3057 3058 /* Iterate over all RX timestamps and match it with the received skbs */ 3059 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3060 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3061 /* Check if we found the signature we were looking for. */ 3062 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3063 continue; 3064 3065 shhwtstamps = skb_hwtstamps(skb); 3066 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3067 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3068 rx_ts->nsec); 3069 list_del(&rx_ts->list); 3070 kfree(rx_ts); 3071 3072 ret = true; 3073 break; 3074 } 3075 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3076 3077 if (ret) 3078 netif_rx(skb); 3079 return ret; 3080 } 3081 3082 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3083 { 3084 struct kszphy_ptp_priv *ptp_priv = 3085 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3086 3087 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3088 type == PTP_CLASS_NONE) 3089 return false; 3090 3091 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3092 return false; 3093 3094 /* If we failed to match then add it to the queue for when the timestamp 3095 * will come 3096 */ 3097 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3098 skb_queue_tail(&ptp_priv->rx_queue, skb); 3099 3100 return true; 3101 } 3102 3103 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3104 time64_t sec, u32 nsec) 3105 { 3106 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3107 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3108 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3109 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3110 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3111 3112 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3113 } 3114 3115 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3116 time64_t *sec, u32 *nsec) 3117 { 3118 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 3119 3120 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 3121 *sec <<= 16; 3122 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 3123 *sec <<= 16; 3124 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 3125 3126 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 3127 *nsec <<= 16; 3128 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 3129 } 3130 3131 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3132 struct timespec64 *ts) 3133 { 3134 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3135 ptp_clock_info); 3136 struct phy_device *phydev = shared->phydev; 3137 u32 nano_seconds; 3138 time64_t seconds; 3139 3140 mutex_lock(&shared->shared_lock); 3141 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3142 mutex_unlock(&shared->shared_lock); 3143 ts->tv_sec = seconds; 3144 ts->tv_nsec = nano_seconds; 3145 3146 return 0; 3147 } 3148 3149 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3150 const struct timespec64 *ts) 3151 { 3152 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3153 ptp_clock_info); 3154 struct phy_device *phydev = shared->phydev; 3155 3156 mutex_lock(&shared->shared_lock); 3157 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3158 mutex_unlock(&shared->shared_lock); 3159 3160 return 0; 3161 } 3162 3163 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3164 s64 start_sec, u32 start_nsec) 3165 { 3166 /* Set the start time */ 3167 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3168 lower_16_bits(start_sec)); 3169 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3170 upper_16_bits(start_sec)); 3171 3172 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3173 lower_16_bits(start_nsec)); 3174 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3175 upper_16_bits(start_nsec) & 0x3fff); 3176 } 3177 3178 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3179 { 3180 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3181 sec + LAN8814_BUFFER_TIME, 0); 3182 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3183 sec + LAN8814_BUFFER_TIME, 0); 3184 } 3185 3186 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3187 s64 time_step_ns) 3188 { 3189 u32 nano_seconds_step; 3190 u64 abs_time_step_ns; 3191 time64_t set_seconds; 3192 u32 nano_seconds; 3193 u32 remainder; 3194 s32 seconds; 3195 3196 if (time_step_ns > 15000000000LL) { 3197 /* convert to clock set */ 3198 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3199 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3200 &remainder); 3201 nano_seconds += remainder; 3202 if (nano_seconds >= 1000000000) { 3203 set_seconds++; 3204 nano_seconds -= 1000000000; 3205 } 3206 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3207 lan8814_ptp_update_target(phydev, set_seconds); 3208 return; 3209 } else if (time_step_ns < -15000000000LL) { 3210 /* convert to clock set */ 3211 time_step_ns = -time_step_ns; 3212 3213 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3214 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3215 &remainder); 3216 nano_seconds_step = remainder; 3217 if (nano_seconds < nano_seconds_step) { 3218 set_seconds--; 3219 nano_seconds += 1000000000; 3220 } 3221 nano_seconds -= nano_seconds_step; 3222 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3223 lan8814_ptp_update_target(phydev, set_seconds); 3224 return; 3225 } 3226 3227 /* do clock step */ 3228 if (time_step_ns >= 0) { 3229 abs_time_step_ns = (u64)time_step_ns; 3230 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3231 &remainder); 3232 nano_seconds = remainder; 3233 } else { 3234 abs_time_step_ns = (u64)(-time_step_ns); 3235 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3236 &remainder)); 3237 nano_seconds = remainder; 3238 if (nano_seconds > 0) { 3239 /* subtracting nano seconds is not allowed 3240 * convert to subtracting from seconds, 3241 * and adding to nanoseconds 3242 */ 3243 seconds--; 3244 nano_seconds = (1000000000 - nano_seconds); 3245 } 3246 } 3247 3248 if (nano_seconds > 0) { 3249 /* add 8 ns to cover the likely normal increment */ 3250 nano_seconds += 8; 3251 } 3252 3253 if (nano_seconds >= 1000000000) { 3254 /* carry into seconds */ 3255 seconds++; 3256 nano_seconds -= 1000000000; 3257 } 3258 3259 while (seconds) { 3260 u32 nsec; 3261 3262 if (seconds > 0) { 3263 u32 adjustment_value = (u32)seconds; 3264 u16 adjustment_value_lo, adjustment_value_hi; 3265 3266 if (adjustment_value > 0xF) 3267 adjustment_value = 0xF; 3268 3269 adjustment_value_lo = adjustment_value & 0xffff; 3270 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3271 3272 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3273 adjustment_value_lo); 3274 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3275 PTP_LTC_STEP_ADJ_DIR_ | 3276 adjustment_value_hi); 3277 seconds -= ((s32)adjustment_value); 3278 3279 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3280 set_seconds -= adjustment_value; 3281 lan8814_ptp_update_target(phydev, set_seconds); 3282 } else { 3283 u32 adjustment_value = (u32)(-seconds); 3284 u16 adjustment_value_lo, adjustment_value_hi; 3285 3286 if (adjustment_value > 0xF) 3287 adjustment_value = 0xF; 3288 3289 adjustment_value_lo = adjustment_value & 0xffff; 3290 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3291 3292 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3293 adjustment_value_lo); 3294 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3295 adjustment_value_hi); 3296 seconds += ((s32)adjustment_value); 3297 3298 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3299 set_seconds += adjustment_value; 3300 lan8814_ptp_update_target(phydev, set_seconds); 3301 } 3302 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3303 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3304 } 3305 if (nano_seconds) { 3306 u16 nano_seconds_lo; 3307 u16 nano_seconds_hi; 3308 3309 nano_seconds_lo = nano_seconds & 0xffff; 3310 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3311 3312 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3313 nano_seconds_lo); 3314 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3315 PTP_LTC_STEP_ADJ_DIR_ | 3316 nano_seconds_hi); 3317 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3318 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3319 } 3320 } 3321 3322 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3323 { 3324 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3325 ptp_clock_info); 3326 struct phy_device *phydev = shared->phydev; 3327 3328 mutex_lock(&shared->shared_lock); 3329 lan8814_ptp_clock_step(phydev, delta); 3330 mutex_unlock(&shared->shared_lock); 3331 3332 return 0; 3333 } 3334 3335 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3336 { 3337 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3338 ptp_clock_info); 3339 struct phy_device *phydev = shared->phydev; 3340 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3341 bool positive = true; 3342 u32 kszphy_rate_adj; 3343 3344 if (scaled_ppm < 0) { 3345 scaled_ppm = -scaled_ppm; 3346 positive = false; 3347 } 3348 3349 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3350 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3351 3352 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3353 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3354 3355 if (positive) 3356 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3357 3358 mutex_lock(&shared->shared_lock); 3359 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3360 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3361 mutex_unlock(&shared->shared_lock); 3362 3363 return 0; 3364 } 3365 3366 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3367 s64 period_sec, u32 period_nsec) 3368 { 3369 lanphy_write_page_reg(phydev, 4, 3370 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3371 lower_16_bits(period_sec)); 3372 lanphy_write_page_reg(phydev, 4, 3373 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3374 upper_16_bits(period_sec)); 3375 3376 lanphy_write_page_reg(phydev, 4, 3377 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3378 lower_16_bits(period_nsec)); 3379 lanphy_write_page_reg(phydev, 4, 3380 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3381 upper_16_bits(period_nsec) & 0x3fff); 3382 } 3383 3384 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3385 int pulse_width) 3386 { 3387 u16 val; 3388 3389 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3390 /* Set the pulse width of the event */ 3391 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3392 /* Make sure that the target clock will be incremented each time when 3393 * local time reaches or pass it 3394 */ 3395 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3396 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3397 /* Set the polarity high */ 3398 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3399 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3400 } 3401 3402 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3403 { 3404 u16 val; 3405 3406 /* Set target to too far in the future, effectively disabling it */ 3407 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3408 3409 /* And then reload once it recheas the target */ 3410 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3411 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3412 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3413 } 3414 3415 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3416 { 3417 u16 val; 3418 3419 /* Disable gpio alternate function, 3420 * 1: select as gpio, 3421 * 0: select alt func 3422 */ 3423 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3424 val |= LAN8814_GPIO_EN_BIT(pin); 3425 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3426 3427 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3428 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3429 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3430 3431 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3432 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3433 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3434 } 3435 3436 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3437 { 3438 int val; 3439 3440 /* Set as gpio output */ 3441 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3442 val |= LAN8814_GPIO_DIR_BIT(pin); 3443 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3444 3445 /* Enable gpio 0:for alternate function, 1:gpio */ 3446 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3447 val &= ~LAN8814_GPIO_EN_BIT(pin); 3448 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3449 3450 /* Set buffer type to push pull */ 3451 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3452 val |= LAN8814_GPIO_BUF_BIT(pin); 3453 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3454 } 3455 3456 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3457 struct ptp_clock_request *rq, int on) 3458 { 3459 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3460 ptp_clock_info); 3461 struct phy_device *phydev = shared->phydev; 3462 struct timespec64 ts_on, ts_period; 3463 s64 on_nsec, period_nsec; 3464 int pulse_width; 3465 int pin, event; 3466 3467 mutex_lock(&shared->shared_lock); 3468 event = rq->perout.index; 3469 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3470 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3471 mutex_unlock(&shared->shared_lock); 3472 return -EBUSY; 3473 } 3474 3475 if (!on) { 3476 lan8814_ptp_perout_off(phydev, pin); 3477 lan8814_ptp_disable_event(phydev, event); 3478 mutex_unlock(&shared->shared_lock); 3479 return 0; 3480 } 3481 3482 ts_on.tv_sec = rq->perout.on.sec; 3483 ts_on.tv_nsec = rq->perout.on.nsec; 3484 on_nsec = timespec64_to_ns(&ts_on); 3485 3486 ts_period.tv_sec = rq->perout.period.sec; 3487 ts_period.tv_nsec = rq->perout.period.nsec; 3488 period_nsec = timespec64_to_ns(&ts_period); 3489 3490 if (period_nsec < 200) { 3491 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3492 phydev_name(phydev)); 3493 mutex_unlock(&shared->shared_lock); 3494 return -EOPNOTSUPP; 3495 } 3496 3497 if (on_nsec >= period_nsec) { 3498 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3499 phydev_name(phydev)); 3500 mutex_unlock(&shared->shared_lock); 3501 return -EINVAL; 3502 } 3503 3504 switch (on_nsec) { 3505 case 200000000: 3506 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3507 break; 3508 case 100000000: 3509 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3510 break; 3511 case 50000000: 3512 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3513 break; 3514 case 10000000: 3515 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3516 break; 3517 case 5000000: 3518 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3519 break; 3520 case 1000000: 3521 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3522 break; 3523 case 500000: 3524 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3525 break; 3526 case 100000: 3527 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3528 break; 3529 case 50000: 3530 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3531 break; 3532 case 10000: 3533 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3534 break; 3535 case 5000: 3536 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3537 break; 3538 case 1000: 3539 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3540 break; 3541 case 500: 3542 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3543 break; 3544 case 100: 3545 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3546 break; 3547 default: 3548 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3549 phydev_name(phydev)); 3550 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3551 break; 3552 } 3553 3554 /* Configure to pulse every period */ 3555 lan8814_ptp_enable_event(phydev, event, pulse_width); 3556 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3557 rq->perout.start.nsec); 3558 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3559 rq->perout.period.nsec); 3560 lan8814_ptp_perout_on(phydev, pin); 3561 mutex_unlock(&shared->shared_lock); 3562 3563 return 0; 3564 } 3565 3566 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3567 { 3568 u16 tmp; 3569 3570 /* Set as gpio input */ 3571 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3572 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3573 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3574 3575 /* Map the pin to ltc pin 0 of the capture map registers */ 3576 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3577 tmp |= pin; 3578 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3579 3580 /* Enable capture on the edges of the ltc pin */ 3581 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3582 if (flags & PTP_RISING_EDGE) 3583 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3584 if (flags & PTP_FALLING_EDGE) 3585 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3586 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3587 3588 /* Enable interrupt top interrupt */ 3589 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3590 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3591 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3592 } 3593 3594 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3595 { 3596 u16 tmp; 3597 3598 /* Set as gpio out */ 3599 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3600 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3601 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3602 3603 /* Enable alternate, 0:for alternate function, 1:gpio */ 3604 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3605 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3606 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3607 3608 /* Clear the mapping of pin to registers 0 of the capture registers */ 3609 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3610 tmp &= ~GENMASK(3, 0); 3611 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3612 3613 /* Disable capture on both of the edges */ 3614 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3615 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3616 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3617 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3618 3619 /* Disable interrupt top interrupt */ 3620 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3621 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3622 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3623 } 3624 3625 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3626 struct ptp_clock_request *rq, int on) 3627 { 3628 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3629 ptp_clock_info); 3630 struct phy_device *phydev = shared->phydev; 3631 int pin; 3632 3633 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3634 rq->extts.index); 3635 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3636 return -EINVAL; 3637 3638 mutex_lock(&shared->shared_lock); 3639 if (on) 3640 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3641 else 3642 lan8814_ptp_extts_off(phydev, pin); 3643 3644 mutex_unlock(&shared->shared_lock); 3645 3646 return 0; 3647 } 3648 3649 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3650 struct ptp_clock_request *rq, int on) 3651 { 3652 switch (rq->type) { 3653 case PTP_CLK_REQ_PEROUT: 3654 return lan8814_ptp_perout(ptpci, rq, on); 3655 case PTP_CLK_REQ_EXTTS: 3656 return lan8814_ptp_extts(ptpci, rq, on); 3657 default: 3658 return -EINVAL; 3659 } 3660 } 3661 3662 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3663 enum ptp_pin_function func, unsigned int chan) 3664 { 3665 switch (func) { 3666 case PTP_PF_NONE: 3667 case PTP_PF_PEROUT: 3668 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3669 * there is only chan 0 (event A) and for pin 1 there is only 3670 * chan 1 (event B) 3671 */ 3672 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3673 return -1; 3674 break; 3675 case PTP_PF_EXTTS: 3676 if (pin != LAN8814_PTP_EXTTS_NUM) 3677 return -1; 3678 break; 3679 default: 3680 return -1; 3681 } 3682 3683 return 0; 3684 } 3685 3686 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3687 { 3688 struct ptp_header *ptp_header; 3689 u32 type; 3690 3691 type = ptp_classify_raw(skb); 3692 ptp_header = ptp_parse_header(skb, type); 3693 3694 if (!ptp_header) 3695 return false; 3696 3697 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3698 return true; 3699 } 3700 3701 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3702 u32 seconds, u32 nsec, u16 seq_id) 3703 { 3704 struct skb_shared_hwtstamps shhwtstamps; 3705 struct sk_buff *skb, *skb_tmp; 3706 unsigned long flags; 3707 bool ret = false; 3708 u16 skb_sig; 3709 3710 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3711 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3712 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3713 continue; 3714 3715 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3716 continue; 3717 3718 __skb_unlink(skb, &ptp_priv->tx_queue); 3719 ret = true; 3720 break; 3721 } 3722 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3723 3724 if (ret) { 3725 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3726 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3727 skb_complete_tx_timestamp(skb, &shhwtstamps); 3728 } 3729 } 3730 3731 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3732 { 3733 struct phy_device *phydev = ptp_priv->phydev; 3734 u32 seconds, nsec; 3735 u16 seq_id; 3736 3737 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3738 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3739 } 3740 3741 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3742 { 3743 struct phy_device *phydev = ptp_priv->phydev; 3744 u32 reg; 3745 3746 do { 3747 lan8814_dequeue_tx_skb(ptp_priv); 3748 3749 /* If other timestamps are available in the FIFO, 3750 * process them. 3751 */ 3752 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3753 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3754 } 3755 3756 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3757 struct lan8814_ptp_rx_ts *rx_ts) 3758 { 3759 struct skb_shared_hwtstamps *shhwtstamps; 3760 struct sk_buff *skb, *skb_tmp; 3761 unsigned long flags; 3762 bool ret = false; 3763 u16 skb_sig; 3764 3765 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3766 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3767 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3768 continue; 3769 3770 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3771 continue; 3772 3773 __skb_unlink(skb, &ptp_priv->rx_queue); 3774 3775 ret = true; 3776 break; 3777 } 3778 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3779 3780 if (ret) { 3781 shhwtstamps = skb_hwtstamps(skb); 3782 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3783 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3784 netif_rx(skb); 3785 } 3786 3787 return ret; 3788 } 3789 3790 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3791 struct lan8814_ptp_rx_ts *rx_ts) 3792 { 3793 unsigned long flags; 3794 3795 /* If we failed to match the skb add it to the queue for when 3796 * the frame will come 3797 */ 3798 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3799 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3800 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3801 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3802 } else { 3803 kfree(rx_ts); 3804 } 3805 } 3806 3807 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3808 { 3809 struct phy_device *phydev = ptp_priv->phydev; 3810 struct lan8814_ptp_rx_ts *rx_ts; 3811 u32 reg; 3812 3813 do { 3814 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3815 if (!rx_ts) 3816 return; 3817 3818 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3819 &rx_ts->seq_id); 3820 lan8814_match_rx_ts(ptp_priv, rx_ts); 3821 3822 /* If other timestamps are available in the FIFO, 3823 * process them. 3824 */ 3825 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3826 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3827 } 3828 3829 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3830 { 3831 struct kszphy_priv *priv = phydev->priv; 3832 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3833 3834 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3835 lan8814_get_tx_ts(ptp_priv); 3836 3837 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3838 lan8814_get_rx_ts(ptp_priv); 3839 3840 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3841 lan8814_flush_fifo(phydev, true); 3842 skb_queue_purge(&ptp_priv->tx_queue); 3843 } 3844 3845 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3846 lan8814_flush_fifo(phydev, false); 3847 skb_queue_purge(&ptp_priv->rx_queue); 3848 } 3849 } 3850 3851 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3852 { 3853 struct phy_device *phydev = shared->phydev; 3854 struct ptp_clock_event ptp_event = {0}; 3855 unsigned long nsec; 3856 s64 sec; 3857 u16 tmp; 3858 3859 /* This is 0 because whatever was the input pin it was mapped it to 3860 * ltc gpio pin 0 3861 */ 3862 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3863 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3864 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3865 3866 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3867 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3868 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3869 return -1; 3870 3871 if (tmp & BIT(0)) { 3872 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3873 sec <<= 16; 3874 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3875 3876 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3877 nsec <<= 16; 3878 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3879 } else { 3880 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3881 sec <<= 16; 3882 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3883 3884 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3885 nsec <<= 16; 3886 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3887 } 3888 3889 ptp_event.index = 0; 3890 ptp_event.timestamp = ktime_set(sec, nsec); 3891 ptp_event.type = PTP_CLOCK_EXTTS; 3892 ptp_clock_event(shared->ptp_clock, &ptp_event); 3893 3894 return 0; 3895 } 3896 3897 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3898 { 3899 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3900 int ret; 3901 3902 mutex_lock(&shared->shared_lock); 3903 ret = lan8814_gpio_process_cap(shared); 3904 mutex_unlock(&shared->shared_lock); 3905 3906 return ret; 3907 } 3908 3909 static int lan8804_config_init(struct phy_device *phydev) 3910 { 3911 int val; 3912 3913 /* MDI-X setting for swap A,B transmit */ 3914 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3915 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3916 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3917 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3918 3919 /* Make sure that the PHY will not stop generating the clock when the 3920 * link partner goes down 3921 */ 3922 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3923 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3924 3925 return 0; 3926 } 3927 3928 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3929 { 3930 int status; 3931 3932 status = phy_read(phydev, LAN8814_INTS); 3933 if (status < 0) { 3934 phy_error(phydev); 3935 return IRQ_NONE; 3936 } 3937 3938 if (status > 0) 3939 phy_trigger_machine(phydev); 3940 3941 return IRQ_HANDLED; 3942 } 3943 3944 #define LAN8804_OUTPUT_CONTROL 25 3945 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3946 #define LAN8804_CONTROL 31 3947 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3948 3949 static int lan8804_config_intr(struct phy_device *phydev) 3950 { 3951 int err; 3952 3953 /* This is an internal PHY of lan966x and is not possible to change the 3954 * polarity on the GIC found in lan966x, therefore change the polarity 3955 * of the interrupt in the PHY from being active low instead of active 3956 * high. 3957 */ 3958 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3959 3960 /* By default interrupt buffer is open-drain in which case the interrupt 3961 * can be active only low. Therefore change the interrupt buffer to be 3962 * push-pull to be able to change interrupt polarity 3963 */ 3964 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3965 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3966 3967 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3968 err = phy_read(phydev, LAN8814_INTS); 3969 if (err < 0) 3970 return err; 3971 3972 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3973 if (err) 3974 return err; 3975 } else { 3976 err = phy_write(phydev, LAN8814_INTC, 0); 3977 if (err) 3978 return err; 3979 3980 err = phy_read(phydev, LAN8814_INTS); 3981 if (err < 0) 3982 return err; 3983 } 3984 3985 return 0; 3986 } 3987 3988 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3989 { 3990 int ret = IRQ_NONE; 3991 int irq_status; 3992 3993 irq_status = phy_read(phydev, LAN8814_INTS); 3994 if (irq_status < 0) { 3995 phy_error(phydev); 3996 return IRQ_NONE; 3997 } 3998 3999 if (irq_status & LAN8814_INT_LINK) { 4000 phy_trigger_machine(phydev); 4001 ret = IRQ_HANDLED; 4002 } 4003 4004 while (true) { 4005 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 4006 if (!irq_status) 4007 break; 4008 4009 lan8814_handle_ptp_interrupt(phydev, irq_status); 4010 ret = IRQ_HANDLED; 4011 } 4012 4013 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4014 ret = IRQ_HANDLED; 4015 4016 return ret; 4017 } 4018 4019 static int lan8814_ack_interrupt(struct phy_device *phydev) 4020 { 4021 /* bit[12..0] int status, which is a read and clear register. */ 4022 int rc; 4023 4024 rc = phy_read(phydev, LAN8814_INTS); 4025 4026 return (rc < 0) ? rc : 0; 4027 } 4028 4029 static int lan8814_config_intr(struct phy_device *phydev) 4030 { 4031 int err; 4032 4033 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 4034 LAN8814_INTR_CTRL_REG_POLARITY | 4035 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4036 4037 /* enable / disable interrupts */ 4038 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4039 err = lan8814_ack_interrupt(phydev); 4040 if (err) 4041 return err; 4042 4043 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4044 } else { 4045 err = phy_write(phydev, LAN8814_INTC, 0); 4046 if (err) 4047 return err; 4048 4049 err = lan8814_ack_interrupt(phydev); 4050 } 4051 4052 return err; 4053 } 4054 4055 static void lan8814_ptp_init(struct phy_device *phydev) 4056 { 4057 struct kszphy_priv *priv = phydev->priv; 4058 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4059 u32 temp; 4060 4061 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4062 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4063 return; 4064 4065 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 4066 4067 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 4068 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 4069 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 4070 4071 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 4072 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 4073 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 4074 4075 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 4076 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 4077 4078 /* Removing default registers configs related to L2 and IP */ 4079 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 4080 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 4081 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 4082 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 4083 4084 /* Disable checking for minorVersionPTP field */ 4085 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 4086 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4087 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 4088 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4089 4090 skb_queue_head_init(&ptp_priv->tx_queue); 4091 skb_queue_head_init(&ptp_priv->rx_queue); 4092 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4093 spin_lock_init(&ptp_priv->rx_ts_lock); 4094 4095 ptp_priv->phydev = phydev; 4096 4097 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4098 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4099 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4100 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4101 4102 phydev->mii_ts = &ptp_priv->mii_ts; 4103 4104 /* Timestamp selected by default to keep legacy API */ 4105 phydev->default_timestamp = true; 4106 } 4107 4108 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4109 { 4110 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4111 4112 /* Initialise shared lock for clock*/ 4113 mutex_init(&shared->shared_lock); 4114 4115 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4116 LAN8814_PTP_GPIO_NUM, 4117 sizeof(*shared->pin_config), 4118 GFP_KERNEL); 4119 if (!shared->pin_config) 4120 return -ENOMEM; 4121 4122 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 4123 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4124 4125 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4126 snprintf(ptp_pin->name, 4127 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 4128 ptp_pin->index = i; 4129 ptp_pin->func = PTP_PF_NONE; 4130 } 4131 4132 shared->ptp_clock_info.owner = THIS_MODULE; 4133 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4134 shared->ptp_clock_info.max_adj = 31249999; 4135 shared->ptp_clock_info.n_alarm = 0; 4136 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4137 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 4138 shared->ptp_clock_info.pps = 0; 4139 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4140 PTP_FALLING_EDGE | 4141 PTP_STRICT_FLAGS; 4142 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4143 shared->ptp_clock_info.pin_config = shared->pin_config; 4144 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4145 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4146 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4147 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4148 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4149 shared->ptp_clock_info.getcrosststamp = NULL; 4150 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4151 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4152 4153 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4154 &phydev->mdio.dev); 4155 if (IS_ERR(shared->ptp_clock)) { 4156 phydev_err(phydev, "ptp_clock_register failed %lu\n", 4157 PTR_ERR(shared->ptp_clock)); 4158 return -EINVAL; 4159 } 4160 4161 /* Check if PHC support is missing at the configuration level */ 4162 if (!shared->ptp_clock) 4163 return 0; 4164 4165 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4166 4167 shared->phydev = phydev; 4168 4169 /* The EP.4 is shared between all the PHYs in the package and also it 4170 * can be accessed by any of the PHYs 4171 */ 4172 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 4173 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 4174 PTP_OPERATING_MODE_STANDALONE_); 4175 4176 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4177 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 4178 4179 return 0; 4180 } 4181 4182 static void lan8814_setup_led(struct phy_device *phydev, int val) 4183 { 4184 int temp; 4185 4186 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 4187 4188 if (val) 4189 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4190 else 4191 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4192 4193 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 4194 } 4195 4196 static int lan8814_config_init(struct phy_device *phydev) 4197 { 4198 struct kszphy_priv *lan8814 = phydev->priv; 4199 int val; 4200 4201 /* Reset the PHY */ 4202 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 4203 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 4204 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 4205 4206 /* Disable ANEG with QSGMII PCS Host side */ 4207 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 4208 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 4209 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 4210 4211 /* MDI-X setting for swap A,B transmit */ 4212 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 4213 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 4214 val |= LAN8814_ALIGN_TX_A_B_SWAP; 4215 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 4216 4217 if (lan8814->led_mode >= 0) 4218 lan8814_setup_led(phydev, lan8814->led_mode); 4219 4220 return 0; 4221 } 4222 4223 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4224 * function called in suspend. Because the GPIO line can be shared, so if one of 4225 * the phys goes back in coma mode, then all the other PHYs will go, which is 4226 * wrong. 4227 */ 4228 static int lan8814_release_coma_mode(struct phy_device *phydev) 4229 { 4230 struct gpio_desc *gpiod; 4231 4232 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4233 GPIOD_OUT_HIGH_OPEN_DRAIN | 4234 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4235 if (IS_ERR(gpiod)) 4236 return PTR_ERR(gpiod); 4237 4238 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4239 gpiod_set_value_cansleep(gpiod, 0); 4240 4241 return 0; 4242 } 4243 4244 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4245 { 4246 u16 val; 4247 4248 /* It was noticed that when traffic is passing through the PHY and the 4249 * cable is removed then the LED was still one even though there is no 4250 * link 4251 */ 4252 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4253 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4254 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4255 } 4256 4257 static void lan8814_update_meas_time(struct phy_device *phydev) 4258 { 4259 u16 val; 4260 4261 /* By setting the measure time to a value of 0xb this will allow cables 4262 * longer than 100m to be used. This configuration can be used 4263 * regardless of the mode of operation of the PHY 4264 */ 4265 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4266 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4267 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4268 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4269 } 4270 4271 static int lan8814_probe(struct phy_device *phydev) 4272 { 4273 const struct kszphy_type *type = phydev->drv->driver_data; 4274 struct kszphy_priv *priv; 4275 u16 addr; 4276 int err; 4277 4278 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4279 if (!priv) 4280 return -ENOMEM; 4281 4282 phydev->priv = priv; 4283 4284 priv->type = type; 4285 4286 kszphy_parse_led_mode(phydev); 4287 4288 /* Strap-in value for PHY address, below register read gives starting 4289 * phy address value 4290 */ 4291 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4292 devm_phy_package_join(&phydev->mdio.dev, phydev, 4293 addr, sizeof(struct lan8814_shared_priv)); 4294 4295 if (phy_package_init_once(phydev)) { 4296 err = lan8814_release_coma_mode(phydev); 4297 if (err) 4298 return err; 4299 4300 err = lan8814_ptp_probe_once(phydev); 4301 if (err) 4302 return err; 4303 } 4304 4305 lan8814_ptp_init(phydev); 4306 4307 /* Errata workarounds */ 4308 lan8814_clear_2psp_bit(phydev); 4309 lan8814_update_meas_time(phydev); 4310 4311 return 0; 4312 } 4313 4314 #define LAN8841_MMD_TIMER_REG 0 4315 #define LAN8841_MMD0_REGISTER_17 17 4316 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4317 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4318 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4319 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4320 #define LAN8841_MMD_ANALOG_REG 28 4321 #define LAN8841_ANALOG_CONTROL_1 1 4322 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4323 #define LAN8841_ANALOG_CONTROL_10 13 4324 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4325 #define LAN8841_ANALOG_CONTROL_11 14 4326 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4327 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4328 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4329 #define LAN8841_BTRX_POWER_DOWN 70 4330 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4331 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4332 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4333 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4334 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4335 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4336 #define LAN8841_ADC_CHANNEL_MASK 198 4337 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4338 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4339 #define LAN8841_PTP_RX_VERSION 374 4340 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4341 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4342 #define LAN8841_PTP_TX_VERSION 438 4343 #define LAN8841_PTP_CMD_CTL 256 4344 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4345 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4346 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4347 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4348 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4349 #define LAN8841_PTP_RX_MODE 381 4350 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4351 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4352 4353 static int lan8841_config_init(struct phy_device *phydev) 4354 { 4355 int ret; 4356 4357 ret = ksz9131_config_init(phydev); 4358 if (ret) 4359 return ret; 4360 4361 /* Initialize the HW by resetting everything */ 4362 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4363 LAN8841_PTP_CMD_CTL, 4364 LAN8841_PTP_CMD_CTL_PTP_RESET, 4365 LAN8841_PTP_CMD_CTL_PTP_RESET); 4366 4367 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4368 LAN8841_PTP_CMD_CTL, 4369 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4370 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4371 4372 /* Don't process any frames */ 4373 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4374 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4375 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4376 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4377 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4378 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4379 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4380 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4381 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4382 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4383 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4384 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4385 4386 /* Disable checking for minorVersionPTP field */ 4387 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4388 LAN8841_PTP_RX_VERSION, 0xff00); 4389 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4390 LAN8841_PTP_TX_VERSION, 0xff00); 4391 4392 /* 100BT Clause 40 improvenent errata */ 4393 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4394 LAN8841_ANALOG_CONTROL_1, 4395 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4396 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4397 LAN8841_ANALOG_CONTROL_10, 4398 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4399 4400 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4401 * Magnetics 4402 */ 4403 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4404 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4405 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4406 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4407 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4408 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4409 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4410 LAN8841_BTRX_POWER_DOWN, 4411 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4412 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4413 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4414 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4415 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4416 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4417 } 4418 4419 /* LDO Adjustment errata */ 4420 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4421 LAN8841_ANALOG_CONTROL_11, 4422 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4423 4424 /* 100BT RGMII latency tuning errata */ 4425 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4426 LAN8841_ADC_CHANNEL_MASK, 0x0); 4427 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4428 LAN8841_MMD0_REGISTER_17, 4429 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4430 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4431 4432 return 0; 4433 } 4434 4435 #define LAN8841_OUTPUT_CTRL 25 4436 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4437 #define LAN8841_INT_PTP BIT(9) 4438 4439 static int lan8841_config_intr(struct phy_device *phydev) 4440 { 4441 int err; 4442 4443 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4444 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4445 4446 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4447 err = phy_read(phydev, LAN8814_INTS); 4448 if (err < 0) 4449 return err; 4450 4451 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4452 * even if it PTP is not enabled. Because the underneath blocks 4453 * will not enable the PTP so we will never get the PTP 4454 * interrupt. 4455 */ 4456 err = phy_write(phydev, LAN8814_INTC, 4457 LAN8814_INT_LINK | LAN8841_INT_PTP); 4458 } else { 4459 err = phy_write(phydev, LAN8814_INTC, 0); 4460 if (err) 4461 return err; 4462 4463 err = phy_read(phydev, LAN8814_INTS); 4464 if (err < 0) 4465 return err; 4466 4467 /* Getting a positive value doesn't mean that is an error, it 4468 * just indicates what was the status. Therefore make sure to 4469 * clear the value and say that there is no error. 4470 */ 4471 err = 0; 4472 } 4473 4474 return err; 4475 } 4476 4477 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4478 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4479 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4480 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4481 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4482 #define LAN8841_PTP_TX_MSG_HEADER2 455 4483 4484 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4485 u32 *sec, u32 *nsec, u16 *seq) 4486 { 4487 struct phy_device *phydev = ptp_priv->phydev; 4488 4489 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4490 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4491 return false; 4492 4493 *nsec = ((*nsec & 0x3fff) << 16); 4494 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4495 4496 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4497 *sec = *sec << 16; 4498 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4499 4500 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4501 4502 return true; 4503 } 4504 4505 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4506 { 4507 u32 sec, nsec; 4508 u16 seq; 4509 4510 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4511 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4512 } 4513 4514 #define LAN8841_PTP_INT_STS 259 4515 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4516 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4517 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4518 4519 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4520 { 4521 struct phy_device *phydev = ptp_priv->phydev; 4522 int i; 4523 4524 for (i = 0; i < FIFO_SIZE; ++i) 4525 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4526 4527 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4528 } 4529 4530 #define LAN8841_PTP_GPIO_CAP_STS 506 4531 #define LAN8841_PTP_GPIO_SEL 327 4532 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4533 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4534 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4535 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4536 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4537 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4538 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4539 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4540 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4541 4542 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4543 { 4544 struct phy_device *phydev = ptp_priv->phydev; 4545 struct ptp_clock_event ptp_event = {0}; 4546 int pin, ret, tmp; 4547 s32 sec, nsec; 4548 4549 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4550 if (pin == -1) 4551 return; 4552 4553 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4554 if (tmp < 0) 4555 return; 4556 4557 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4558 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4559 if (ret) 4560 return; 4561 4562 mutex_lock(&ptp_priv->ptp_lock); 4563 if (tmp & BIT(pin)) { 4564 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4565 sec <<= 16; 4566 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4567 4568 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4569 nsec <<= 16; 4570 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4571 } else { 4572 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4573 sec <<= 16; 4574 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4575 4576 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4577 nsec <<= 16; 4578 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4579 } 4580 mutex_unlock(&ptp_priv->ptp_lock); 4581 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4582 if (ret) 4583 return; 4584 4585 ptp_event.index = 0; 4586 ptp_event.timestamp = ktime_set(sec, nsec); 4587 ptp_event.type = PTP_CLOCK_EXTTS; 4588 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4589 } 4590 4591 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4592 { 4593 struct kszphy_priv *priv = phydev->priv; 4594 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4595 u16 status; 4596 4597 do { 4598 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4599 4600 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4601 lan8841_ptp_process_tx_ts(ptp_priv); 4602 4603 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4604 lan8841_gpio_process_cap(ptp_priv); 4605 4606 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4607 lan8841_ptp_flush_fifo(ptp_priv); 4608 skb_queue_purge(&ptp_priv->tx_queue); 4609 } 4610 4611 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4612 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4613 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4614 } 4615 4616 #define LAN8841_INTS_PTP BIT(9) 4617 4618 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4619 { 4620 irqreturn_t ret = IRQ_NONE; 4621 int irq_status; 4622 4623 irq_status = phy_read(phydev, LAN8814_INTS); 4624 if (irq_status < 0) { 4625 phy_error(phydev); 4626 return IRQ_NONE; 4627 } 4628 4629 if (irq_status & LAN8814_INT_LINK) { 4630 phy_trigger_machine(phydev); 4631 ret = IRQ_HANDLED; 4632 } 4633 4634 if (irq_status & LAN8841_INTS_PTP) { 4635 lan8841_handle_ptp_interrupt(phydev); 4636 ret = IRQ_HANDLED; 4637 } 4638 4639 return ret; 4640 } 4641 4642 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4643 struct kernel_ethtool_ts_info *info) 4644 { 4645 struct kszphy_ptp_priv *ptp_priv; 4646 4647 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4648 4649 info->phc_index = ptp_priv->ptp_clock ? 4650 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4651 if (info->phc_index == -1) 4652 return 0; 4653 4654 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4655 SOF_TIMESTAMPING_RX_HARDWARE | 4656 SOF_TIMESTAMPING_RAW_HARDWARE; 4657 4658 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4659 (1 << HWTSTAMP_TX_ON) | 4660 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4661 4662 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4663 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4664 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4665 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4666 4667 return 0; 4668 } 4669 4670 #define LAN8841_PTP_INT_EN 260 4671 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4672 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4673 4674 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4675 bool enable) 4676 { 4677 struct phy_device *phydev = ptp_priv->phydev; 4678 4679 if (enable) { 4680 /* Enable interrupts on the TX side */ 4681 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4682 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4683 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4684 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4685 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4686 4687 /* Enable the modification of the frame on RX side, 4688 * this will add the ns and 2 bits of sec in the reserved field 4689 * of the PTP header 4690 */ 4691 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4692 LAN8841_PTP_RX_MODE, 4693 LAN8841_PTP_INSERT_TS_EN | 4694 LAN8841_PTP_INSERT_TS_32BIT, 4695 LAN8841_PTP_INSERT_TS_EN | 4696 LAN8841_PTP_INSERT_TS_32BIT); 4697 4698 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4699 } else { 4700 /* Disable interrupts on the TX side */ 4701 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4702 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4703 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4704 4705 /* Disable modification of the RX frames */ 4706 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4707 LAN8841_PTP_RX_MODE, 4708 LAN8841_PTP_INSERT_TS_EN | 4709 LAN8841_PTP_INSERT_TS_32BIT, 0); 4710 4711 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4712 } 4713 } 4714 4715 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4716 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4717 #define LAN8841_PTP_TX_MOD 445 4718 4719 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4720 struct kernel_hwtstamp_config *config, 4721 struct netlink_ext_ack *extack) 4722 { 4723 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4724 struct phy_device *phydev = ptp_priv->phydev; 4725 int txcfg = 0, rxcfg = 0; 4726 int pkt_ts_enable; 4727 4728 ptp_priv->hwts_tx_type = config->tx_type; 4729 ptp_priv->rx_filter = config->rx_filter; 4730 4731 switch (config->rx_filter) { 4732 case HWTSTAMP_FILTER_NONE: 4733 ptp_priv->layer = 0; 4734 ptp_priv->version = 0; 4735 break; 4736 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4737 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4738 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4739 ptp_priv->layer = PTP_CLASS_L4; 4740 ptp_priv->version = PTP_CLASS_V2; 4741 break; 4742 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4743 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4744 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4745 ptp_priv->layer = PTP_CLASS_L2; 4746 ptp_priv->version = PTP_CLASS_V2; 4747 break; 4748 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4749 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4751 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4752 ptp_priv->version = PTP_CLASS_V2; 4753 break; 4754 default: 4755 return -ERANGE; 4756 } 4757 4758 /* Setup parsing of the frames and enable the timestamping for ptp 4759 * frames 4760 */ 4761 if (ptp_priv->layer & PTP_CLASS_L2) { 4762 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4763 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4764 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4765 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4766 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4767 } 4768 4769 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4770 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4771 4772 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4773 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4774 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4775 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4776 4777 /* Enable / disable of the TX timestamp in the SYNC frames */ 4778 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4779 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4780 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4781 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4782 4783 /* Now enable/disable the timestamping */ 4784 lan8841_ptp_enable_processing(ptp_priv, 4785 config->rx_filter != HWTSTAMP_FILTER_NONE); 4786 4787 skb_queue_purge(&ptp_priv->tx_queue); 4788 4789 lan8841_ptp_flush_fifo(ptp_priv); 4790 4791 return 0; 4792 } 4793 4794 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4795 struct sk_buff *skb, int type) 4796 { 4797 struct kszphy_ptp_priv *ptp_priv = 4798 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4799 struct ptp_header *header = ptp_parse_header(skb, type); 4800 struct skb_shared_hwtstamps *shhwtstamps; 4801 struct timespec64 ts; 4802 unsigned long flags; 4803 u32 ts_header; 4804 4805 if (!header) 4806 return false; 4807 4808 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4809 type == PTP_CLASS_NONE) 4810 return false; 4811 4812 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4813 return false; 4814 4815 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4816 ts.tv_sec = ptp_priv->seconds; 4817 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4818 ts_header = __be32_to_cpu(header->reserved2); 4819 4820 shhwtstamps = skb_hwtstamps(skb); 4821 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4822 4823 /* Check for any wrap arounds for the second part */ 4824 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4825 ts.tv_sec -= GENMASK(1, 0) + 1; 4826 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4827 ts.tv_sec += 1; 4828 4829 shhwtstamps->hwtstamp = 4830 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4831 ts_header & GENMASK(29, 0)); 4832 header->reserved2 = 0; 4833 4834 netif_rx(skb); 4835 4836 return true; 4837 } 4838 4839 #define LAN8841_EVENT_A 0 4840 #define LAN8841_EVENT_B 1 4841 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4842 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4843 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4844 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4845 4846 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4847 s64 sec, u32 nsec) 4848 { 4849 struct phy_device *phydev = ptp_priv->phydev; 4850 int ret; 4851 4852 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4853 upper_16_bits(sec)); 4854 if (ret) 4855 return ret; 4856 4857 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4858 lower_16_bits(sec)); 4859 if (ret) 4860 return ret; 4861 4862 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4863 upper_16_bits(nsec)); 4864 if (ret) 4865 return ret; 4866 4867 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4868 lower_16_bits(nsec)); 4869 } 4870 4871 #define LAN8841_BUFFER_TIME 2 4872 4873 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4874 const struct timespec64 *ts) 4875 { 4876 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4877 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4878 } 4879 4880 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4881 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4882 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4883 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4884 4885 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4886 s64 sec, u32 nsec) 4887 { 4888 struct phy_device *phydev = ptp_priv->phydev; 4889 int ret; 4890 4891 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4892 upper_16_bits(sec)); 4893 if (ret) 4894 return ret; 4895 4896 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4897 lower_16_bits(sec)); 4898 if (ret) 4899 return ret; 4900 4901 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4902 upper_16_bits(nsec)); 4903 if (ret) 4904 return ret; 4905 4906 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4907 lower_16_bits(nsec)); 4908 } 4909 4910 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4911 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4912 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4913 #define LAN8841_PTP_LTC_SET_NS_HI 265 4914 #define LAN8841_PTP_LTC_SET_NS_LO 266 4915 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4916 4917 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4918 const struct timespec64 *ts) 4919 { 4920 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4921 ptp_clock_info); 4922 struct phy_device *phydev = ptp_priv->phydev; 4923 unsigned long flags; 4924 int ret; 4925 4926 /* Set the value to be stored */ 4927 mutex_lock(&ptp_priv->ptp_lock); 4928 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4929 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4930 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4931 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4932 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4933 4934 /* Set the command to load the LTC */ 4935 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4936 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4937 ret = lan8841_ptp_update_target(ptp_priv, ts); 4938 mutex_unlock(&ptp_priv->ptp_lock); 4939 4940 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4941 ptp_priv->seconds = ts->tv_sec; 4942 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4943 4944 return ret; 4945 } 4946 4947 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4948 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4949 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4950 #define LAN8841_PTP_LTC_RD_NS_HI 361 4951 #define LAN8841_PTP_LTC_RD_NS_LO 362 4952 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4953 4954 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4955 struct timespec64 *ts) 4956 { 4957 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4958 ptp_clock_info); 4959 struct phy_device *phydev = ptp_priv->phydev; 4960 time64_t s; 4961 s64 ns; 4962 4963 mutex_lock(&ptp_priv->ptp_lock); 4964 /* Issue the command to read the LTC */ 4965 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4966 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4967 4968 /* Read the LTC */ 4969 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4970 s <<= 16; 4971 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4972 s <<= 16; 4973 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4974 4975 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4976 ns <<= 16; 4977 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4978 mutex_unlock(&ptp_priv->ptp_lock); 4979 4980 set_normalized_timespec64(ts, s, ns); 4981 return 0; 4982 } 4983 4984 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4985 struct timespec64 *ts) 4986 { 4987 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4988 ptp_clock_info); 4989 struct phy_device *phydev = ptp_priv->phydev; 4990 time64_t s; 4991 4992 mutex_lock(&ptp_priv->ptp_lock); 4993 /* Issue the command to read the LTC */ 4994 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4995 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4996 4997 /* Read the LTC */ 4998 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4999 s <<= 16; 5000 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5001 s <<= 16; 5002 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5003 mutex_unlock(&ptp_priv->ptp_lock); 5004 5005 set_normalized_timespec64(ts, s, 0); 5006 } 5007 5008 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5009 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5010 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5011 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5012 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5013 5014 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5015 { 5016 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5017 ptp_clock_info); 5018 struct phy_device *phydev = ptp_priv->phydev; 5019 struct timespec64 ts; 5020 bool add = true; 5021 u32 nsec; 5022 s32 sec; 5023 int ret; 5024 5025 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5026 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5027 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5028 * increment so the value can be bigger than 15 sec. Therefore limit the 5029 * possible adjustments so we will not have these corner cases 5030 */ 5031 if (delta > 10000000000LL || delta < -10000000000LL) { 5032 /* The timeadjustment is too big, so fall back using set time */ 5033 u64 now; 5034 5035 ptp->gettime64(ptp, &ts); 5036 5037 now = ktime_to_ns(timespec64_to_ktime(ts)); 5038 ts = ns_to_timespec64(now + delta); 5039 5040 ptp->settime64(ptp, &ts); 5041 return 0; 5042 } 5043 5044 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5045 if (delta < 0 && nsec != 0) { 5046 /* It is not allowed to adjust low the nsec part, therefore 5047 * subtract more from second part and add to nanosecond such 5048 * that would roll over, so the second part will increase 5049 */ 5050 sec--; 5051 nsec = NSEC_PER_SEC - nsec; 5052 } 5053 5054 /* Calculate the adjustments and the direction */ 5055 if (delta < 0) 5056 add = false; 5057 5058 if (nsec > 0) 5059 /* add 8 ns to cover the likely normal increment */ 5060 nsec += 8; 5061 5062 if (nsec >= NSEC_PER_SEC) { 5063 /* carry into seconds */ 5064 sec++; 5065 nsec -= NSEC_PER_SEC; 5066 } 5067 5068 mutex_lock(&ptp_priv->ptp_lock); 5069 if (sec) { 5070 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5071 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5072 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5073 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5074 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5075 } 5076 5077 if (nsec) { 5078 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5079 nsec & 0xffff); 5080 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5081 (nsec >> 16) & 0x3fff); 5082 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5083 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5084 } 5085 mutex_unlock(&ptp_priv->ptp_lock); 5086 5087 /* Update the target clock */ 5088 ptp->gettime64(ptp, &ts); 5089 mutex_lock(&ptp_priv->ptp_lock); 5090 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5091 mutex_unlock(&ptp_priv->ptp_lock); 5092 5093 return ret; 5094 } 5095 5096 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5097 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5098 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5099 5100 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5101 { 5102 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5103 ptp_clock_info); 5104 struct phy_device *phydev = ptp_priv->phydev; 5105 bool faster = true; 5106 u32 rate; 5107 5108 if (!scaled_ppm) 5109 return 0; 5110 5111 if (scaled_ppm < 0) { 5112 scaled_ppm = -scaled_ppm; 5113 faster = false; 5114 } 5115 5116 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5117 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5118 5119 mutex_lock(&ptp_priv->ptp_lock); 5120 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5121 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5122 : upper_16_bits(rate) & 0x3fff); 5123 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5124 mutex_unlock(&ptp_priv->ptp_lock); 5125 5126 return 0; 5127 } 5128 5129 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5130 enum ptp_pin_function func, unsigned int chan) 5131 { 5132 switch (func) { 5133 case PTP_PF_NONE: 5134 case PTP_PF_PEROUT: 5135 case PTP_PF_EXTTS: 5136 break; 5137 default: 5138 return -1; 5139 } 5140 5141 return 0; 5142 } 5143 5144 #define LAN8841_PTP_GPIO_NUM 10 5145 #define LAN8841_GPIO_EN 128 5146 #define LAN8841_GPIO_DIR 129 5147 #define LAN8841_GPIO_BUF 130 5148 5149 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5150 { 5151 struct phy_device *phydev = ptp_priv->phydev; 5152 int ret; 5153 5154 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5155 if (ret) 5156 return ret; 5157 5158 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5159 if (ret) 5160 return ret; 5161 5162 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5163 } 5164 5165 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5166 { 5167 struct phy_device *phydev = ptp_priv->phydev; 5168 int ret; 5169 5170 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5171 if (ret) 5172 return ret; 5173 5174 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5175 if (ret) 5176 return ret; 5177 5178 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5179 } 5180 5181 #define LAN8841_GPIO_DATA_SEL1 131 5182 #define LAN8841_GPIO_DATA_SEL2 132 5183 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5184 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5185 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5186 #define LAN8841_PTP_GENERAL_CONFIG 257 5187 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5188 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5189 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5190 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5191 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5192 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5193 5194 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5195 u8 event) 5196 { 5197 struct phy_device *phydev = ptp_priv->phydev; 5198 u16 tmp; 5199 int ret; 5200 5201 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5202 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5203 * depending on the pin, it requires to read a different register 5204 */ 5205 if (pin < 5) { 5206 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5207 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5208 } else { 5209 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5210 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5211 } 5212 if (ret) 5213 return ret; 5214 5215 /* Disable the event */ 5216 if (event == LAN8841_EVENT_A) 5217 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5218 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5219 else 5220 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5221 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5222 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5223 } 5224 5225 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5226 u8 event, int pulse_width) 5227 { 5228 struct phy_device *phydev = ptp_priv->phydev; 5229 u16 tmp; 5230 int ret; 5231 5232 /* Enable the event */ 5233 if (event == LAN8841_EVENT_A) 5234 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5235 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5236 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5237 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5238 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5239 else 5240 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5241 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5242 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5243 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5244 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5245 if (ret) 5246 return ret; 5247 5248 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5249 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5250 * depending on the pin, it requires to read a different register 5251 */ 5252 if (event == LAN8841_EVENT_A) 5253 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5254 else 5255 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5256 5257 if (pin < 5) 5258 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5259 tmp << (3 * pin)); 5260 else 5261 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5262 tmp << (3 * (pin - 5))); 5263 5264 return ret; 5265 } 5266 5267 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5268 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5270 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5271 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5272 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5273 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5274 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5275 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5276 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5277 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5278 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5279 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5280 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5281 5282 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5283 struct ptp_clock_request *rq, int on) 5284 { 5285 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5286 ptp_clock_info); 5287 struct phy_device *phydev = ptp_priv->phydev; 5288 struct timespec64 ts_on, ts_period; 5289 s64 on_nsec, period_nsec; 5290 int pulse_width; 5291 int pin; 5292 int ret; 5293 5294 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5295 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5296 return -EINVAL; 5297 5298 if (!on) { 5299 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5300 if (ret) 5301 return ret; 5302 5303 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5304 } 5305 5306 ts_on.tv_sec = rq->perout.on.sec; 5307 ts_on.tv_nsec = rq->perout.on.nsec; 5308 on_nsec = timespec64_to_ns(&ts_on); 5309 5310 ts_period.tv_sec = rq->perout.period.sec; 5311 ts_period.tv_nsec = rq->perout.period.nsec; 5312 period_nsec = timespec64_to_ns(&ts_period); 5313 5314 if (period_nsec < 200) { 5315 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5316 phydev_name(phydev)); 5317 return -EOPNOTSUPP; 5318 } 5319 5320 if (on_nsec >= period_nsec) { 5321 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5322 phydev_name(phydev)); 5323 return -EINVAL; 5324 } 5325 5326 switch (on_nsec) { 5327 case 200000000: 5328 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5329 break; 5330 case 100000000: 5331 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5332 break; 5333 case 50000000: 5334 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5335 break; 5336 case 10000000: 5337 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5338 break; 5339 case 5000000: 5340 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5341 break; 5342 case 1000000: 5343 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5344 break; 5345 case 500000: 5346 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5347 break; 5348 case 100000: 5349 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5350 break; 5351 case 50000: 5352 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5353 break; 5354 case 10000: 5355 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5356 break; 5357 case 5000: 5358 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5359 break; 5360 case 1000: 5361 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5362 break; 5363 case 500: 5364 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5365 break; 5366 case 100: 5367 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5368 break; 5369 default: 5370 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5371 phydev_name(phydev)); 5372 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5373 break; 5374 } 5375 5376 mutex_lock(&ptp_priv->ptp_lock); 5377 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5378 rq->perout.start.nsec); 5379 mutex_unlock(&ptp_priv->ptp_lock); 5380 if (ret) 5381 return ret; 5382 5383 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5384 rq->perout.period.nsec); 5385 if (ret) 5386 return ret; 5387 5388 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5389 pulse_width); 5390 if (ret) 5391 return ret; 5392 5393 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5394 if (ret) 5395 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5396 5397 return ret; 5398 } 5399 5400 #define LAN8841_PTP_GPIO_CAP_EN 496 5401 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5402 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5403 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5404 5405 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5406 u32 flags) 5407 { 5408 struct phy_device *phydev = ptp_priv->phydev; 5409 u16 tmp = 0; 5410 int ret; 5411 5412 /* Set GPIO to be intput */ 5413 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5414 if (ret) 5415 return ret; 5416 5417 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5418 if (ret) 5419 return ret; 5420 5421 /* Enable capture on the edges of the pin */ 5422 if (flags & PTP_RISING_EDGE) 5423 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5424 if (flags & PTP_FALLING_EDGE) 5425 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5426 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5427 if (ret) 5428 return ret; 5429 5430 /* Enable interrupt */ 5431 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5432 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5433 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5434 } 5435 5436 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5437 { 5438 struct phy_device *phydev = ptp_priv->phydev; 5439 int ret; 5440 5441 /* Set GPIO to be output */ 5442 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5443 if (ret) 5444 return ret; 5445 5446 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5447 if (ret) 5448 return ret; 5449 5450 /* Disable capture on both of the edges */ 5451 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5452 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5453 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5454 0); 5455 if (ret) 5456 return ret; 5457 5458 /* Disable interrupt */ 5459 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5460 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5461 0); 5462 } 5463 5464 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5465 struct ptp_clock_request *rq, int on) 5466 { 5467 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5468 ptp_clock_info); 5469 int pin; 5470 int ret; 5471 5472 /* Reject requests with unsupported flags */ 5473 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5474 PTP_EXTTS_EDGES | 5475 PTP_STRICT_FLAGS)) 5476 return -EOPNOTSUPP; 5477 5478 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5479 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5480 return -EINVAL; 5481 5482 mutex_lock(&ptp_priv->ptp_lock); 5483 if (on) 5484 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5485 else 5486 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5487 mutex_unlock(&ptp_priv->ptp_lock); 5488 5489 return ret; 5490 } 5491 5492 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5493 struct ptp_clock_request *rq, int on) 5494 { 5495 switch (rq->type) { 5496 case PTP_CLK_REQ_EXTTS: 5497 return lan8841_ptp_extts(ptp, rq, on); 5498 case PTP_CLK_REQ_PEROUT: 5499 return lan8841_ptp_perout(ptp, rq, on); 5500 default: 5501 return -EOPNOTSUPP; 5502 } 5503 5504 return 0; 5505 } 5506 5507 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5508 { 5509 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5510 ptp_clock_info); 5511 struct timespec64 ts; 5512 unsigned long flags; 5513 5514 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5515 5516 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5517 ptp_priv->seconds = ts.tv_sec; 5518 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5519 5520 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5521 } 5522 5523 static struct ptp_clock_info lan8841_ptp_clock_info = { 5524 .owner = THIS_MODULE, 5525 .name = "lan8841 ptp", 5526 .max_adj = 31249999, 5527 .gettime64 = lan8841_ptp_gettime64, 5528 .settime64 = lan8841_ptp_settime64, 5529 .adjtime = lan8841_ptp_adjtime, 5530 .adjfine = lan8841_ptp_adjfine, 5531 .verify = lan8841_ptp_verify, 5532 .enable = lan8841_ptp_enable, 5533 .do_aux_work = lan8841_ptp_do_aux_work, 5534 .n_per_out = LAN8841_PTP_GPIO_NUM, 5535 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5536 .n_pins = LAN8841_PTP_GPIO_NUM, 5537 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5538 }; 5539 5540 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5541 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5542 5543 static int lan8841_probe(struct phy_device *phydev) 5544 { 5545 struct kszphy_ptp_priv *ptp_priv; 5546 struct kszphy_priv *priv; 5547 int err; 5548 5549 err = kszphy_probe(phydev); 5550 if (err) 5551 return err; 5552 5553 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5554 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5555 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5556 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5557 5558 /* Register the clock */ 5559 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5560 return 0; 5561 5562 priv = phydev->priv; 5563 ptp_priv = &priv->ptp_priv; 5564 5565 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5566 LAN8841_PTP_GPIO_NUM, 5567 sizeof(*ptp_priv->pin_config), 5568 GFP_KERNEL); 5569 if (!ptp_priv->pin_config) 5570 return -ENOMEM; 5571 5572 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5573 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5574 5575 snprintf(p->name, sizeof(p->name), "pin%d", i); 5576 p->index = i; 5577 p->func = PTP_PF_NONE; 5578 } 5579 5580 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5581 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5582 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5583 &phydev->mdio.dev); 5584 if (IS_ERR(ptp_priv->ptp_clock)) { 5585 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5586 PTR_ERR(ptp_priv->ptp_clock)); 5587 return -EINVAL; 5588 } 5589 5590 if (!ptp_priv->ptp_clock) 5591 return 0; 5592 5593 /* Initialize the SW */ 5594 skb_queue_head_init(&ptp_priv->tx_queue); 5595 ptp_priv->phydev = phydev; 5596 mutex_init(&ptp_priv->ptp_lock); 5597 spin_lock_init(&ptp_priv->seconds_lock); 5598 5599 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5600 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5601 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5602 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5603 5604 phydev->mii_ts = &ptp_priv->mii_ts; 5605 5606 /* Timestamp selected by default to keep legacy API */ 5607 phydev->default_timestamp = true; 5608 5609 return 0; 5610 } 5611 5612 static int lan8804_resume(struct phy_device *phydev) 5613 { 5614 return kszphy_resume(phydev); 5615 } 5616 5617 static int lan8804_suspend(struct phy_device *phydev) 5618 { 5619 return kszphy_generic_suspend(phydev); 5620 } 5621 5622 static int lan8841_resume(struct phy_device *phydev) 5623 { 5624 return kszphy_generic_resume(phydev); 5625 } 5626 5627 static int lan8841_suspend(struct phy_device *phydev) 5628 { 5629 struct kszphy_priv *priv = phydev->priv; 5630 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5631 5632 if (ptp_priv->ptp_clock) 5633 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5634 5635 return kszphy_generic_suspend(phydev); 5636 } 5637 5638 static int ksz9131_resume(struct phy_device *phydev) 5639 { 5640 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5641 ksz9131_config_rgmii_delay(phydev); 5642 5643 return kszphy_resume(phydev); 5644 } 5645 5646 static struct phy_driver ksphy_driver[] = { 5647 { 5648 .phy_id = PHY_ID_KS8737, 5649 .phy_id_mask = MICREL_PHY_ID_MASK, 5650 .name = "Micrel KS8737", 5651 /* PHY_BASIC_FEATURES */ 5652 .driver_data = &ks8737_type, 5653 .probe = kszphy_probe, 5654 .config_init = kszphy_config_init, 5655 .config_intr = kszphy_config_intr, 5656 .handle_interrupt = kszphy_handle_interrupt, 5657 .suspend = kszphy_suspend, 5658 .resume = kszphy_resume, 5659 }, { 5660 .phy_id = PHY_ID_KSZ8021, 5661 .phy_id_mask = 0x00ffffff, 5662 .name = "Micrel KSZ8021 or KSZ8031", 5663 /* PHY_BASIC_FEATURES */ 5664 .driver_data = &ksz8021_type, 5665 .probe = kszphy_probe, 5666 .config_init = kszphy_config_init, 5667 .config_intr = kszphy_config_intr, 5668 .handle_interrupt = kszphy_handle_interrupt, 5669 .get_sset_count = kszphy_get_sset_count, 5670 .get_strings = kszphy_get_strings, 5671 .get_stats = kszphy_get_stats, 5672 .suspend = kszphy_suspend, 5673 .resume = kszphy_resume, 5674 }, { 5675 .phy_id = PHY_ID_KSZ8031, 5676 .phy_id_mask = 0x00ffffff, 5677 .name = "Micrel KSZ8031", 5678 /* PHY_BASIC_FEATURES */ 5679 .driver_data = &ksz8021_type, 5680 .probe = kszphy_probe, 5681 .config_init = kszphy_config_init, 5682 .config_intr = kszphy_config_intr, 5683 .handle_interrupt = kszphy_handle_interrupt, 5684 .get_sset_count = kszphy_get_sset_count, 5685 .get_strings = kszphy_get_strings, 5686 .get_stats = kszphy_get_stats, 5687 .suspend = kszphy_suspend, 5688 .resume = kszphy_resume, 5689 }, { 5690 .phy_id = PHY_ID_KSZ8041, 5691 .phy_id_mask = MICREL_PHY_ID_MASK, 5692 .name = "Micrel KSZ8041", 5693 /* PHY_BASIC_FEATURES */ 5694 .driver_data = &ksz8041_type, 5695 .probe = kszphy_probe, 5696 .config_init = ksz8041_config_init, 5697 .config_aneg = ksz8041_config_aneg, 5698 .config_intr = kszphy_config_intr, 5699 .handle_interrupt = kszphy_handle_interrupt, 5700 .get_sset_count = kszphy_get_sset_count, 5701 .get_strings = kszphy_get_strings, 5702 .get_stats = kszphy_get_stats, 5703 .suspend = ksz8041_suspend, 5704 .resume = ksz8041_resume, 5705 }, { 5706 .phy_id = PHY_ID_KSZ8041RNLI, 5707 .phy_id_mask = MICREL_PHY_ID_MASK, 5708 .name = "Micrel KSZ8041RNLI", 5709 /* PHY_BASIC_FEATURES */ 5710 .driver_data = &ksz8041_type, 5711 .probe = kszphy_probe, 5712 .config_init = kszphy_config_init, 5713 .config_intr = kszphy_config_intr, 5714 .handle_interrupt = kszphy_handle_interrupt, 5715 .get_sset_count = kszphy_get_sset_count, 5716 .get_strings = kszphy_get_strings, 5717 .get_stats = kszphy_get_stats, 5718 .suspend = kszphy_suspend, 5719 .resume = kszphy_resume, 5720 }, { 5721 .name = "Micrel KSZ8051", 5722 /* PHY_BASIC_FEATURES */ 5723 .driver_data = &ksz8051_type, 5724 .probe = kszphy_probe, 5725 .config_init = kszphy_config_init, 5726 .config_intr = kszphy_config_intr, 5727 .handle_interrupt = kszphy_handle_interrupt, 5728 .get_sset_count = kszphy_get_sset_count, 5729 .get_strings = kszphy_get_strings, 5730 .get_stats = kszphy_get_stats, 5731 .match_phy_device = ksz8051_match_phy_device, 5732 .suspend = kszphy_suspend, 5733 .resume = kszphy_resume, 5734 }, { 5735 .phy_id = PHY_ID_KSZ8001, 5736 .name = "Micrel KSZ8001 or KS8721", 5737 .phy_id_mask = 0x00fffffc, 5738 /* PHY_BASIC_FEATURES */ 5739 .driver_data = &ksz8041_type, 5740 .probe = kszphy_probe, 5741 .config_init = kszphy_config_init, 5742 .config_intr = kszphy_config_intr, 5743 .handle_interrupt = kszphy_handle_interrupt, 5744 .get_sset_count = kszphy_get_sset_count, 5745 .get_strings = kszphy_get_strings, 5746 .get_stats = kszphy_get_stats, 5747 .suspend = kszphy_suspend, 5748 .resume = kszphy_resume, 5749 }, { 5750 .phy_id = PHY_ID_KSZ8081, 5751 .name = "Micrel KSZ8081 or KSZ8091", 5752 .phy_id_mask = MICREL_PHY_ID_MASK, 5753 .flags = PHY_POLL_CABLE_TEST, 5754 /* PHY_BASIC_FEATURES */ 5755 .driver_data = &ksz8081_type, 5756 .probe = kszphy_probe, 5757 .config_init = ksz8081_config_init, 5758 .soft_reset = genphy_soft_reset, 5759 .config_aneg = ksz8081_config_aneg, 5760 .read_status = ksz8081_read_status, 5761 .config_intr = kszphy_config_intr, 5762 .handle_interrupt = kszphy_handle_interrupt, 5763 .get_sset_count = kszphy_get_sset_count, 5764 .get_strings = kszphy_get_strings, 5765 .get_stats = kszphy_get_stats, 5766 .suspend = kszphy_suspend, 5767 .resume = kszphy_resume, 5768 .cable_test_start = ksz886x_cable_test_start, 5769 .cable_test_get_status = ksz886x_cable_test_get_status, 5770 }, { 5771 .phy_id = PHY_ID_KSZ8061, 5772 .name = "Micrel KSZ8061", 5773 .phy_id_mask = MICREL_PHY_ID_MASK, 5774 /* PHY_BASIC_FEATURES */ 5775 .probe = kszphy_probe, 5776 .config_init = ksz8061_config_init, 5777 .soft_reset = genphy_soft_reset, 5778 .config_intr = kszphy_config_intr, 5779 .handle_interrupt = kszphy_handle_interrupt, 5780 .suspend = ksz8061_suspend, 5781 .resume = ksz8061_resume, 5782 }, { 5783 .phy_id = PHY_ID_KSZ9021, 5784 .phy_id_mask = 0x000ffffe, 5785 .name = "Micrel KSZ9021 Gigabit PHY", 5786 /* PHY_GBIT_FEATURES */ 5787 .driver_data = &ksz9021_type, 5788 .probe = kszphy_probe, 5789 .get_features = ksz9031_get_features, 5790 .config_init = ksz9021_config_init, 5791 .config_intr = kszphy_config_intr, 5792 .handle_interrupt = kszphy_handle_interrupt, 5793 .get_sset_count = kszphy_get_sset_count, 5794 .get_strings = kszphy_get_strings, 5795 .get_stats = kszphy_get_stats, 5796 .suspend = kszphy_suspend, 5797 .resume = kszphy_resume, 5798 .read_mmd = genphy_read_mmd_unsupported, 5799 .write_mmd = genphy_write_mmd_unsupported, 5800 }, { 5801 .phy_id = PHY_ID_KSZ9031, 5802 .phy_id_mask = MICREL_PHY_ID_MASK, 5803 .name = "Micrel KSZ9031 Gigabit PHY", 5804 .flags = PHY_POLL_CABLE_TEST, 5805 .driver_data = &ksz9021_type, 5806 .probe = kszphy_probe, 5807 .get_features = ksz9031_get_features, 5808 .config_init = ksz9031_config_init, 5809 .soft_reset = genphy_soft_reset, 5810 .read_status = ksz9031_read_status, 5811 .config_intr = kszphy_config_intr, 5812 .handle_interrupt = kszphy_handle_interrupt, 5813 .get_sset_count = kszphy_get_sset_count, 5814 .get_strings = kszphy_get_strings, 5815 .get_stats = kszphy_get_stats, 5816 .suspend = kszphy_suspend, 5817 .resume = kszphy_resume, 5818 .cable_test_start = ksz9x31_cable_test_start, 5819 .cable_test_get_status = ksz9x31_cable_test_get_status, 5820 .set_loopback = ksz9031_set_loopback, 5821 }, { 5822 .phy_id = PHY_ID_LAN8814, 5823 .phy_id_mask = MICREL_PHY_ID_MASK, 5824 .name = "Microchip INDY Gigabit Quad PHY", 5825 .flags = PHY_POLL_CABLE_TEST, 5826 .config_init = lan8814_config_init, 5827 .driver_data = &lan8814_type, 5828 .probe = lan8814_probe, 5829 .soft_reset = genphy_soft_reset, 5830 .read_status = ksz9031_read_status, 5831 .get_sset_count = kszphy_get_sset_count, 5832 .get_strings = kszphy_get_strings, 5833 .get_stats = kszphy_get_stats, 5834 .suspend = genphy_suspend, 5835 .resume = kszphy_resume, 5836 .config_intr = lan8814_config_intr, 5837 .handle_interrupt = lan8814_handle_interrupt, 5838 .cable_test_start = lan8814_cable_test_start, 5839 .cable_test_get_status = ksz886x_cable_test_get_status, 5840 }, { 5841 .phy_id = PHY_ID_LAN8804, 5842 .phy_id_mask = MICREL_PHY_ID_MASK, 5843 .name = "Microchip LAN966X Gigabit PHY", 5844 .config_init = lan8804_config_init, 5845 .driver_data = &ksz9021_type, 5846 .probe = kszphy_probe, 5847 .soft_reset = genphy_soft_reset, 5848 .read_status = ksz9031_read_status, 5849 .get_sset_count = kszphy_get_sset_count, 5850 .get_strings = kszphy_get_strings, 5851 .get_stats = kszphy_get_stats, 5852 .suspend = lan8804_suspend, 5853 .resume = lan8804_resume, 5854 .config_intr = lan8804_config_intr, 5855 .handle_interrupt = lan8804_handle_interrupt, 5856 }, { 5857 .phy_id = PHY_ID_LAN8841, 5858 .phy_id_mask = MICREL_PHY_ID_MASK, 5859 .name = "Microchip LAN8841 Gigabit PHY", 5860 .flags = PHY_POLL_CABLE_TEST, 5861 .driver_data = &lan8841_type, 5862 .config_init = lan8841_config_init, 5863 .probe = lan8841_probe, 5864 .soft_reset = genphy_soft_reset, 5865 .config_intr = lan8841_config_intr, 5866 .handle_interrupt = lan8841_handle_interrupt, 5867 .get_sset_count = kszphy_get_sset_count, 5868 .get_strings = kszphy_get_strings, 5869 .get_stats = kszphy_get_stats, 5870 .suspend = lan8841_suspend, 5871 .resume = lan8841_resume, 5872 .cable_test_start = lan8814_cable_test_start, 5873 .cable_test_get_status = ksz886x_cable_test_get_status, 5874 }, { 5875 .phy_id = PHY_ID_KSZ9131, 5876 .phy_id_mask = MICREL_PHY_ID_MASK, 5877 .name = "Microchip KSZ9131 Gigabit PHY", 5878 /* PHY_GBIT_FEATURES */ 5879 .flags = PHY_POLL_CABLE_TEST, 5880 .driver_data = &ksz9131_type, 5881 .probe = kszphy_probe, 5882 .soft_reset = genphy_soft_reset, 5883 .config_init = ksz9131_config_init, 5884 .config_intr = kszphy_config_intr, 5885 .config_aneg = ksz9131_config_aneg, 5886 .read_status = ksz9131_read_status, 5887 .handle_interrupt = kszphy_handle_interrupt, 5888 .get_sset_count = kszphy_get_sset_count, 5889 .get_strings = kszphy_get_strings, 5890 .get_stats = kszphy_get_stats, 5891 .suspend = kszphy_suspend, 5892 .resume = ksz9131_resume, 5893 .cable_test_start = ksz9x31_cable_test_start, 5894 .cable_test_get_status = ksz9x31_cable_test_get_status, 5895 .get_features = ksz9477_get_features, 5896 }, { 5897 .phy_id = PHY_ID_KSZ8873MLL, 5898 .phy_id_mask = MICREL_PHY_ID_MASK, 5899 .name = "Micrel KSZ8873MLL Switch", 5900 /* PHY_BASIC_FEATURES */ 5901 .config_init = kszphy_config_init, 5902 .config_aneg = ksz8873mll_config_aneg, 5903 .read_status = ksz8873mll_read_status, 5904 .suspend = genphy_suspend, 5905 .resume = genphy_resume, 5906 }, { 5907 .phy_id = PHY_ID_KSZ886X, 5908 .phy_id_mask = MICREL_PHY_ID_MASK, 5909 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5910 .driver_data = &ksz886x_type, 5911 /* PHY_BASIC_FEATURES */ 5912 .flags = PHY_POLL_CABLE_TEST, 5913 .config_init = kszphy_config_init, 5914 .config_aneg = ksz886x_config_aneg, 5915 .read_status = ksz886x_read_status, 5916 .suspend = genphy_suspend, 5917 .resume = genphy_resume, 5918 .cable_test_start = ksz886x_cable_test_start, 5919 .cable_test_get_status = ksz886x_cable_test_get_status, 5920 }, { 5921 .name = "Micrel KSZ87XX Switch", 5922 /* PHY_BASIC_FEATURES */ 5923 .config_init = kszphy_config_init, 5924 .match_phy_device = ksz8795_match_phy_device, 5925 .suspend = genphy_suspend, 5926 .resume = genphy_resume, 5927 }, { 5928 .phy_id = PHY_ID_KSZ9477, 5929 .phy_id_mask = MICREL_PHY_ID_MASK, 5930 .name = "Microchip KSZ9477", 5931 .probe = kszphy_probe, 5932 /* PHY_GBIT_FEATURES */ 5933 .config_init = ksz9477_config_init, 5934 .config_intr = kszphy_config_intr, 5935 .config_aneg = ksz9477_config_aneg, 5936 .read_status = ksz9477_read_status, 5937 .handle_interrupt = kszphy_handle_interrupt, 5938 .suspend = genphy_suspend, 5939 .resume = ksz9477_resume, 5940 .get_phy_stats = kszphy_get_phy_stats, 5941 .update_stats = kszphy_update_stats, 5942 .cable_test_start = ksz9x31_cable_test_start, 5943 .cable_test_get_status = ksz9x31_cable_test_get_status, 5944 .get_sqi = kszphy_get_sqi, 5945 .get_sqi_max = kszphy_get_sqi_max, 5946 } }; 5947 5948 module_phy_driver(ksphy_driver); 5949 5950 MODULE_DESCRIPTION("Micrel PHY driver"); 5951 MODULE_AUTHOR("David J. Choi"); 5952 MODULE_LICENSE("GPL"); 5953 5954 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5955 { PHY_ID_KSZ9021, 0x000ffffe }, 5956 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5957 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5958 { PHY_ID_KSZ8001, 0x00fffffc }, 5959 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5960 { PHY_ID_KSZ8021, 0x00ffffff }, 5961 { PHY_ID_KSZ8031, 0x00ffffff }, 5962 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5963 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5964 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5965 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5966 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5967 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5968 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5969 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5970 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5971 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5972 { } 5973 }; 5974 5975 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5976