xref: /linux/drivers/net/phy/micrel.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 /* Represents 1ppm adjustment in 2^32 format with
124  * each nsec contains 8 clock cycles.
125  * The value is calculated as following: (1/1000000)/((2^-32)/8)
126  */
127 #define LAN8841_1PPM_FORMAT			34360
128 
129 #define PTP_RX_VERSION				0x0248
130 #define PTP_TX_VERSION				0x0288
131 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
132 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
133 
134 #define PTP_RX_MOD				0x024F
135 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
136 #define PTP_RX_TIMESTAMP_EN			0x024D
137 #define PTP_TX_TIMESTAMP_EN			0x028D
138 
139 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
140 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
141 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
142 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
143 
144 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
145 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
146 
147 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
148 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
149 #define LTC_HARD_RESET				0x023F
150 #define LTC_HARD_RESET_				BIT(0)
151 
152 #define TSU_HARD_RESET				0x02C1
153 #define TSU_HARD_RESET_				BIT(0)
154 
155 #define PTP_CMD_CTL				0x0200
156 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
157 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
158 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
159 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
160 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
161 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
162 
163 #define PTP_CLOCK_SET_SEC_HI			0x0205
164 #define PTP_CLOCK_SET_SEC_MID			0x0206
165 #define PTP_CLOCK_SET_SEC_LO			0x0207
166 #define PTP_CLOCK_SET_NS_HI			0x0208
167 #define PTP_CLOCK_SET_NS_LO			0x0209
168 
169 #define PTP_CLOCK_READ_SEC_HI			0x0229
170 #define PTP_CLOCK_READ_SEC_MID			0x022A
171 #define PTP_CLOCK_READ_SEC_LO			0x022B
172 #define PTP_CLOCK_READ_NS_HI			0x022C
173 #define PTP_CLOCK_READ_NS_LO			0x022D
174 
175 #define PTP_OPERATING_MODE			0x0241
176 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
177 
178 #define PTP_TX_MOD				0x028F
179 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
180 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
181 
182 #define PTP_RX_PARSE_CONFIG			0x0242
183 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
184 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
185 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
186 
187 #define PTP_TX_PARSE_CONFIG			0x0282
188 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
189 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
190 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
191 
192 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
193 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
194 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
195 
196 #define PTP_LTC_STEP_ADJ_HI			0x0212
197 #define PTP_LTC_STEP_ADJ_LO			0x0213
198 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
199 
200 #define LAN8814_INTR_STS_REG			0x0033
201 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
202 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
203 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
204 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
205 
206 #define PTP_CAP_INFO				0x022A
207 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
208 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
209 
210 #define PTP_TX_EGRESS_SEC_HI			0x0296
211 #define PTP_TX_EGRESS_SEC_LO			0x0297
212 #define PTP_TX_EGRESS_NS_HI			0x0294
213 #define PTP_TX_EGRESS_NS_LO			0x0295
214 #define PTP_TX_MSG_HEADER2			0x0299
215 
216 #define PTP_RX_INGRESS_SEC_HI			0x0256
217 #define PTP_RX_INGRESS_SEC_LO			0x0257
218 #define PTP_RX_INGRESS_NS_HI			0x0254
219 #define PTP_RX_INGRESS_NS_LO			0x0255
220 #define PTP_RX_MSG_HEADER2			0x0259
221 
222 #define PTP_TSU_INT_EN				0x0200
223 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
224 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
225 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
226 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
227 
228 #define PTP_TSU_INT_STS				0x0201
229 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
230 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
231 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
232 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
233 
234 #define LAN8814_LED_CTRL_1			0x0
235 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
236 
237 /* PHY Control 1 */
238 #define MII_KSZPHY_CTRL_1			0x1e
239 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
240 
241 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
242 #define MII_KSZPHY_CTRL_2			0x1f
243 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
244 /* bitmap of PHY register to set interrupt mode */
245 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
246 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
247 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
248 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
249 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
250 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
251 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
252 
253 /* Write/read to/from extended registers */
254 #define MII_KSZPHY_EXTREG			0x0b
255 #define KSZPHY_EXTREG_WRITE			0x8000
256 
257 #define MII_KSZPHY_EXTREG_WRITE			0x0c
258 #define MII_KSZPHY_EXTREG_READ			0x0d
259 
260 /* Extended registers */
261 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
262 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
263 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
264 
265 #define PS_TO_REG				200
266 #define FIFO_SIZE				8
267 
268 /* Delay used to get the second part from the LTC */
269 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
270 
271 struct kszphy_hw_stat {
272 	const char *string;
273 	u8 reg;
274 	u8 bits;
275 };
276 
277 static struct kszphy_hw_stat kszphy_hw_stats[] = {
278 	{ "phy_receive_errors", 21, 16},
279 	{ "phy_idle_errors", 10, 8 },
280 };
281 
282 struct kszphy_type {
283 	u32 led_mode_reg;
284 	u16 interrupt_level_mask;
285 	u16 cable_diag_reg;
286 	unsigned long pair_mask;
287 	u16 disable_dll_tx_bit;
288 	u16 disable_dll_rx_bit;
289 	u16 disable_dll_mask;
290 	bool has_broadcast_disable;
291 	bool has_nand_tree_disable;
292 	bool has_rmii_ref_clk_sel;
293 };
294 
295 /* Shared structure between the PHYs of the same package. */
296 struct lan8814_shared_priv {
297 	struct phy_device *phydev;
298 	struct ptp_clock *ptp_clock;
299 	struct ptp_clock_info ptp_clock_info;
300 
301 	/* Reference counter to how many ports in the package are enabling the
302 	 * timestamping
303 	 */
304 	u8 ref;
305 
306 	/* Lock for ptp_clock and ref */
307 	struct mutex shared_lock;
308 };
309 
310 struct lan8814_ptp_rx_ts {
311 	struct list_head list;
312 	u32 seconds;
313 	u32 nsec;
314 	u16 seq_id;
315 };
316 
317 struct kszphy_ptp_priv {
318 	struct mii_timestamper mii_ts;
319 	struct phy_device *phydev;
320 
321 	struct sk_buff_head tx_queue;
322 	struct sk_buff_head rx_queue;
323 
324 	struct list_head rx_ts_list;
325 	/* Lock for Rx ts fifo */
326 	spinlock_t rx_ts_lock;
327 
328 	int hwts_tx_type;
329 	enum hwtstamp_rx_filters rx_filter;
330 	int layer;
331 	int version;
332 
333 	struct ptp_clock *ptp_clock;
334 	struct ptp_clock_info ptp_clock_info;
335 	/* Lock for ptp_clock */
336 	struct mutex ptp_lock;
337 	struct ptp_pin_desc *pin_config;
338 
339 	s64 seconds;
340 	/* Lock for accessing seconds */
341 	spinlock_t seconds_lock;
342 };
343 
344 struct kszphy_priv {
345 	struct kszphy_ptp_priv ptp_priv;
346 	const struct kszphy_type *type;
347 	int led_mode;
348 	u16 vct_ctrl1000;
349 	bool rmii_ref_clk_sel;
350 	bool rmii_ref_clk_sel_val;
351 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
352 };
353 
354 static const struct kszphy_type lan8814_type = {
355 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
356 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
357 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
358 };
359 
360 static const struct kszphy_type ksz886x_type = {
361 	.cable_diag_reg		= KSZ8081_LMD,
362 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
363 };
364 
365 static const struct kszphy_type ksz8021_type = {
366 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
367 	.has_broadcast_disable	= true,
368 	.has_nand_tree_disable	= true,
369 	.has_rmii_ref_clk_sel	= true,
370 };
371 
372 static const struct kszphy_type ksz8041_type = {
373 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
374 };
375 
376 static const struct kszphy_type ksz8051_type = {
377 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
378 	.has_nand_tree_disable	= true,
379 };
380 
381 static const struct kszphy_type ksz8081_type = {
382 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
383 	.has_broadcast_disable	= true,
384 	.has_nand_tree_disable	= true,
385 	.has_rmii_ref_clk_sel	= true,
386 };
387 
388 static const struct kszphy_type ks8737_type = {
389 	.interrupt_level_mask	= BIT(14),
390 };
391 
392 static const struct kszphy_type ksz9021_type = {
393 	.interrupt_level_mask	= BIT(14),
394 };
395 
396 static const struct kszphy_type ksz9131_type = {
397 	.interrupt_level_mask	= BIT(14),
398 	.disable_dll_tx_bit	= BIT(12),
399 	.disable_dll_rx_bit	= BIT(12),
400 	.disable_dll_mask	= BIT_MASK(12),
401 };
402 
403 static const struct kszphy_type lan8841_type = {
404 	.disable_dll_tx_bit	= BIT(14),
405 	.disable_dll_rx_bit	= BIT(14),
406 	.disable_dll_mask	= BIT_MASK(14),
407 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
408 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
409 };
410 
411 static int kszphy_extended_write(struct phy_device *phydev,
412 				u32 regnum, u16 val)
413 {
414 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
415 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
416 }
417 
418 static int kszphy_extended_read(struct phy_device *phydev,
419 				u32 regnum)
420 {
421 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
422 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
423 }
424 
425 static int kszphy_ack_interrupt(struct phy_device *phydev)
426 {
427 	/* bit[7..0] int status, which is a read and clear register. */
428 	int rc;
429 
430 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
431 
432 	return (rc < 0) ? rc : 0;
433 }
434 
435 static int kszphy_config_intr(struct phy_device *phydev)
436 {
437 	const struct kszphy_type *type = phydev->drv->driver_data;
438 	int temp, err;
439 	u16 mask;
440 
441 	if (type && type->interrupt_level_mask)
442 		mask = type->interrupt_level_mask;
443 	else
444 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
445 
446 	/* set the interrupt pin active low */
447 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
448 	if (temp < 0)
449 		return temp;
450 	temp &= ~mask;
451 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
452 
453 	/* enable / disable interrupts */
454 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
455 		err = kszphy_ack_interrupt(phydev);
456 		if (err)
457 			return err;
458 
459 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
460 	} else {
461 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
462 		if (err)
463 			return err;
464 
465 		err = kszphy_ack_interrupt(phydev);
466 	}
467 
468 	return err;
469 }
470 
471 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
472 {
473 	int irq_status;
474 
475 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
476 	if (irq_status < 0) {
477 		phy_error(phydev);
478 		return IRQ_NONE;
479 	}
480 
481 	if (!(irq_status & KSZPHY_INTCS_STATUS))
482 		return IRQ_NONE;
483 
484 	phy_trigger_machine(phydev);
485 
486 	return IRQ_HANDLED;
487 }
488 
489 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
490 {
491 	int ctrl;
492 
493 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
494 	if (ctrl < 0)
495 		return ctrl;
496 
497 	if (val)
498 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
499 	else
500 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
501 
502 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
503 }
504 
505 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
506 {
507 	int rc, temp, shift;
508 
509 	switch (reg) {
510 	case MII_KSZPHY_CTRL_1:
511 		shift = 14;
512 		break;
513 	case MII_KSZPHY_CTRL_2:
514 		shift = 4;
515 		break;
516 	default:
517 		return -EINVAL;
518 	}
519 
520 	temp = phy_read(phydev, reg);
521 	if (temp < 0) {
522 		rc = temp;
523 		goto out;
524 	}
525 
526 	temp &= ~(3 << shift);
527 	temp |= val << shift;
528 	rc = phy_write(phydev, reg, temp);
529 out:
530 	if (rc < 0)
531 		phydev_err(phydev, "failed to set led mode\n");
532 
533 	return rc;
534 }
535 
536 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
537  * unique (non-broadcast) address on a shared bus.
538  */
539 static int kszphy_broadcast_disable(struct phy_device *phydev)
540 {
541 	int ret;
542 
543 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
544 	if (ret < 0)
545 		goto out;
546 
547 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
548 out:
549 	if (ret)
550 		phydev_err(phydev, "failed to disable broadcast address\n");
551 
552 	return ret;
553 }
554 
555 static int kszphy_nand_tree_disable(struct phy_device *phydev)
556 {
557 	int ret;
558 
559 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
560 	if (ret < 0)
561 		goto out;
562 
563 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
564 		return 0;
565 
566 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
567 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
568 out:
569 	if (ret)
570 		phydev_err(phydev, "failed to disable NAND tree mode\n");
571 
572 	return ret;
573 }
574 
575 /* Some config bits need to be set again on resume, handle them here. */
576 static int kszphy_config_reset(struct phy_device *phydev)
577 {
578 	struct kszphy_priv *priv = phydev->priv;
579 	int ret;
580 
581 	if (priv->rmii_ref_clk_sel) {
582 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
583 		if (ret) {
584 			phydev_err(phydev,
585 				   "failed to set rmii reference clock\n");
586 			return ret;
587 		}
588 	}
589 
590 	if (priv->type && priv->led_mode >= 0)
591 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
592 
593 	return 0;
594 }
595 
596 static int kszphy_config_init(struct phy_device *phydev)
597 {
598 	struct kszphy_priv *priv = phydev->priv;
599 	const struct kszphy_type *type;
600 
601 	if (!priv)
602 		return 0;
603 
604 	type = priv->type;
605 
606 	if (type && type->has_broadcast_disable)
607 		kszphy_broadcast_disable(phydev);
608 
609 	if (type && type->has_nand_tree_disable)
610 		kszphy_nand_tree_disable(phydev);
611 
612 	return kszphy_config_reset(phydev);
613 }
614 
615 static int ksz8041_fiber_mode(struct phy_device *phydev)
616 {
617 	struct device_node *of_node = phydev->mdio.dev.of_node;
618 
619 	return of_property_read_bool(of_node, "micrel,fiber-mode");
620 }
621 
622 static int ksz8041_config_init(struct phy_device *phydev)
623 {
624 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
625 
626 	/* Limit supported and advertised modes in fiber mode */
627 	if (ksz8041_fiber_mode(phydev)) {
628 		phydev->dev_flags |= MICREL_PHY_FXEN;
629 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
630 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
631 
632 		linkmode_and(phydev->supported, phydev->supported, mask);
633 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
634 				 phydev->supported);
635 		linkmode_and(phydev->advertising, phydev->advertising, mask);
636 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
637 				 phydev->advertising);
638 		phydev->autoneg = AUTONEG_DISABLE;
639 	}
640 
641 	return kszphy_config_init(phydev);
642 }
643 
644 static int ksz8041_config_aneg(struct phy_device *phydev)
645 {
646 	/* Skip auto-negotiation in fiber mode */
647 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
648 		phydev->speed = SPEED_100;
649 		return 0;
650 	}
651 
652 	return genphy_config_aneg(phydev);
653 }
654 
655 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
656 					    const bool ksz_8051)
657 {
658 	int ret;
659 
660 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
661 		return 0;
662 
663 	ret = phy_read(phydev, MII_BMSR);
664 	if (ret < 0)
665 		return ret;
666 
667 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
668 	 * exact PHY ID. However, they can be told apart by the extended
669 	 * capability registers presence. The KSZ8051 PHY has them while
670 	 * the switch does not.
671 	 */
672 	ret &= BMSR_ERCAP;
673 	if (ksz_8051)
674 		return ret;
675 	else
676 		return !ret;
677 }
678 
679 static int ksz8051_match_phy_device(struct phy_device *phydev)
680 {
681 	return ksz8051_ksz8795_match_phy_device(phydev, true);
682 }
683 
684 static int ksz8081_config_init(struct phy_device *phydev)
685 {
686 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
687 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
688 	 * pull-down is missing, the factory test mode should be cleared by
689 	 * manually writing a 0.
690 	 */
691 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
692 
693 	return kszphy_config_init(phydev);
694 }
695 
696 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
697 {
698 	u16 val;
699 
700 	switch (ctrl) {
701 	case ETH_TP_MDI:
702 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
703 		break;
704 	case ETH_TP_MDI_X:
705 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
706 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
707 		break;
708 	case ETH_TP_MDI_AUTO:
709 		val = 0;
710 		break;
711 	default:
712 		return 0;
713 	}
714 
715 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
716 			  KSZ8081_CTRL2_HP_MDIX |
717 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
718 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
719 			  KSZ8081_CTRL2_HP_MDIX | val);
720 }
721 
722 static int ksz8081_config_aneg(struct phy_device *phydev)
723 {
724 	int ret;
725 
726 	ret = genphy_config_aneg(phydev);
727 	if (ret)
728 		return ret;
729 
730 	/* The MDI-X configuration is automatically changed by the PHY after
731 	 * switching from autoneg off to on. So, take MDI-X configuration under
732 	 * own control and set it after autoneg configuration was done.
733 	 */
734 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
735 }
736 
737 static int ksz8081_mdix_update(struct phy_device *phydev)
738 {
739 	int ret;
740 
741 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
742 	if (ret < 0)
743 		return ret;
744 
745 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
746 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
747 			phydev->mdix_ctrl = ETH_TP_MDI_X;
748 		else
749 			phydev->mdix_ctrl = ETH_TP_MDI;
750 	} else {
751 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
752 	}
753 
754 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
755 	if (ret < 0)
756 		return ret;
757 
758 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
759 		phydev->mdix = ETH_TP_MDI;
760 	else
761 		phydev->mdix = ETH_TP_MDI_X;
762 
763 	return 0;
764 }
765 
766 static int ksz8081_read_status(struct phy_device *phydev)
767 {
768 	int ret;
769 
770 	ret = ksz8081_mdix_update(phydev);
771 	if (ret < 0)
772 		return ret;
773 
774 	return genphy_read_status(phydev);
775 }
776 
777 static int ksz8061_config_init(struct phy_device *phydev)
778 {
779 	int ret;
780 
781 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
782 	if (ret)
783 		return ret;
784 
785 	return kszphy_config_init(phydev);
786 }
787 
788 static int ksz8795_match_phy_device(struct phy_device *phydev)
789 {
790 	return ksz8051_ksz8795_match_phy_device(phydev, false);
791 }
792 
793 static int ksz9021_load_values_from_of(struct phy_device *phydev,
794 				       const struct device_node *of_node,
795 				       u16 reg,
796 				       const char *field1, const char *field2,
797 				       const char *field3, const char *field4)
798 {
799 	int val1 = -1;
800 	int val2 = -2;
801 	int val3 = -3;
802 	int val4 = -4;
803 	int newval;
804 	int matches = 0;
805 
806 	if (!of_property_read_u32(of_node, field1, &val1))
807 		matches++;
808 
809 	if (!of_property_read_u32(of_node, field2, &val2))
810 		matches++;
811 
812 	if (!of_property_read_u32(of_node, field3, &val3))
813 		matches++;
814 
815 	if (!of_property_read_u32(of_node, field4, &val4))
816 		matches++;
817 
818 	if (!matches)
819 		return 0;
820 
821 	if (matches < 4)
822 		newval = kszphy_extended_read(phydev, reg);
823 	else
824 		newval = 0;
825 
826 	if (val1 != -1)
827 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
828 
829 	if (val2 != -2)
830 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
831 
832 	if (val3 != -3)
833 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
834 
835 	if (val4 != -4)
836 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
837 
838 	return kszphy_extended_write(phydev, reg, newval);
839 }
840 
841 static int ksz9021_config_init(struct phy_device *phydev)
842 {
843 	const struct device_node *of_node;
844 	const struct device *dev_walker;
845 
846 	/* The Micrel driver has a deprecated option to place phy OF
847 	 * properties in the MAC node. Walk up the tree of devices to
848 	 * find a device with an OF node.
849 	 */
850 	dev_walker = &phydev->mdio.dev;
851 	do {
852 		of_node = dev_walker->of_node;
853 		dev_walker = dev_walker->parent;
854 
855 	} while (!of_node && dev_walker);
856 
857 	if (of_node) {
858 		ksz9021_load_values_from_of(phydev, of_node,
859 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
860 				    "txen-skew-ps", "txc-skew-ps",
861 				    "rxdv-skew-ps", "rxc-skew-ps");
862 		ksz9021_load_values_from_of(phydev, of_node,
863 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
864 				    "rxd0-skew-ps", "rxd1-skew-ps",
865 				    "rxd2-skew-ps", "rxd3-skew-ps");
866 		ksz9021_load_values_from_of(phydev, of_node,
867 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
868 				    "txd0-skew-ps", "txd1-skew-ps",
869 				    "txd2-skew-ps", "txd3-skew-ps");
870 	}
871 	return 0;
872 }
873 
874 #define KSZ9031_PS_TO_REG		60
875 
876 /* Extended registers */
877 /* MMD Address 0x0 */
878 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
879 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
880 
881 /* MMD Address 0x2 */
882 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
883 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
884 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
885 
886 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
887 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
888 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
889 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
890 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
891 
892 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
893 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
894 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
895 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
896 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
897 
898 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
899 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
900 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
901 
902 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
903  * provide different RGMII options we need to configure delay offset
904  * for each pad relative to build in delay.
905  */
906 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
907  * 1.80ns
908  */
909 #define RX_ID				0x7
910 #define RX_CLK_ID			0x19
911 
912 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
913  * internal 1.2ns delay.
914  */
915 #define RX_ND				0xc
916 #define RX_CLK_ND			0x0
917 
918 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
919 #define TX_ID				0x0
920 #define TX_CLK_ID			0x1f
921 
922 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
923  * dealy
924  */
925 #define TX_ND				0x7
926 #define TX_CLK_ND			0xf
927 
928 /* MMD Address 0x1C */
929 #define MII_KSZ9031RN_EDPD		0x23
930 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
931 
932 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
933 				       const struct device_node *of_node,
934 				       u16 reg, size_t field_sz,
935 				       const char *field[], u8 numfields,
936 				       bool *update)
937 {
938 	int val[4] = {-1, -2, -3, -4};
939 	int matches = 0;
940 	u16 mask;
941 	u16 maxval;
942 	u16 newval;
943 	int i;
944 
945 	for (i = 0; i < numfields; i++)
946 		if (!of_property_read_u32(of_node, field[i], val + i))
947 			matches++;
948 
949 	if (!matches)
950 		return 0;
951 
952 	*update |= true;
953 
954 	if (matches < numfields)
955 		newval = phy_read_mmd(phydev, 2, reg);
956 	else
957 		newval = 0;
958 
959 	maxval = (field_sz == 4) ? 0xf : 0x1f;
960 	for (i = 0; i < numfields; i++)
961 		if (val[i] != -(i + 1)) {
962 			mask = 0xffff;
963 			mask ^= maxval << (field_sz * i);
964 			newval = (newval & mask) |
965 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
966 					<< (field_sz * i));
967 		}
968 
969 	return phy_write_mmd(phydev, 2, reg, newval);
970 }
971 
972 /* Center KSZ9031RNX FLP timing at 16ms. */
973 static int ksz9031_center_flp_timing(struct phy_device *phydev)
974 {
975 	int result;
976 
977 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
978 			       0x0006);
979 	if (result)
980 		return result;
981 
982 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
983 			       0x1A80);
984 	if (result)
985 		return result;
986 
987 	return genphy_restart_aneg(phydev);
988 }
989 
990 /* Enable energy-detect power-down mode */
991 static int ksz9031_enable_edpd(struct phy_device *phydev)
992 {
993 	int reg;
994 
995 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
996 	if (reg < 0)
997 		return reg;
998 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
999 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1000 }
1001 
1002 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1003 {
1004 	u16 rx, tx, rx_clk, tx_clk;
1005 	int ret;
1006 
1007 	switch (phydev->interface) {
1008 	case PHY_INTERFACE_MODE_RGMII:
1009 		tx = TX_ND;
1010 		tx_clk = TX_CLK_ND;
1011 		rx = RX_ND;
1012 		rx_clk = RX_CLK_ND;
1013 		break;
1014 	case PHY_INTERFACE_MODE_RGMII_ID:
1015 		tx = TX_ID;
1016 		tx_clk = TX_CLK_ID;
1017 		rx = RX_ID;
1018 		rx_clk = RX_CLK_ID;
1019 		break;
1020 	case PHY_INTERFACE_MODE_RGMII_RXID:
1021 		tx = TX_ND;
1022 		tx_clk = TX_CLK_ND;
1023 		rx = RX_ID;
1024 		rx_clk = RX_CLK_ID;
1025 		break;
1026 	case PHY_INTERFACE_MODE_RGMII_TXID:
1027 		tx = TX_ID;
1028 		tx_clk = TX_CLK_ID;
1029 		rx = RX_ND;
1030 		rx_clk = RX_CLK_ND;
1031 		break;
1032 	default:
1033 		return 0;
1034 	}
1035 
1036 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1037 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1038 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1039 	if (ret < 0)
1040 		return ret;
1041 
1042 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1043 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1044 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1045 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1046 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1047 	if (ret < 0)
1048 		return ret;
1049 
1050 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1051 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1052 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1053 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1054 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1055 	if (ret < 0)
1056 		return ret;
1057 
1058 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1059 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1060 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1061 }
1062 
1063 static int ksz9031_config_init(struct phy_device *phydev)
1064 {
1065 	const struct device_node *of_node;
1066 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1067 	static const char *rx_data_skews[4] = {
1068 		"rxd0-skew-ps", "rxd1-skew-ps",
1069 		"rxd2-skew-ps", "rxd3-skew-ps"
1070 	};
1071 	static const char *tx_data_skews[4] = {
1072 		"txd0-skew-ps", "txd1-skew-ps",
1073 		"txd2-skew-ps", "txd3-skew-ps"
1074 	};
1075 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1076 	const struct device *dev_walker;
1077 	int result;
1078 
1079 	result = ksz9031_enable_edpd(phydev);
1080 	if (result < 0)
1081 		return result;
1082 
1083 	/* The Micrel driver has a deprecated option to place phy OF
1084 	 * properties in the MAC node. Walk up the tree of devices to
1085 	 * find a device with an OF node.
1086 	 */
1087 	dev_walker = &phydev->mdio.dev;
1088 	do {
1089 		of_node = dev_walker->of_node;
1090 		dev_walker = dev_walker->parent;
1091 	} while (!of_node && dev_walker);
1092 
1093 	if (of_node) {
1094 		bool update = false;
1095 
1096 		if (phy_interface_is_rgmii(phydev)) {
1097 			result = ksz9031_config_rgmii_delay(phydev);
1098 			if (result < 0)
1099 				return result;
1100 		}
1101 
1102 		ksz9031_of_load_skew_values(phydev, of_node,
1103 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1104 				clk_skews, 2, &update);
1105 
1106 		ksz9031_of_load_skew_values(phydev, of_node,
1107 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1108 				control_skews, 2, &update);
1109 
1110 		ksz9031_of_load_skew_values(phydev, of_node,
1111 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1112 				rx_data_skews, 4, &update);
1113 
1114 		ksz9031_of_load_skew_values(phydev, of_node,
1115 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1116 				tx_data_skews, 4, &update);
1117 
1118 		if (update && !phy_interface_is_rgmii(phydev))
1119 			phydev_warn(phydev,
1120 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1121 
1122 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1123 		 * When the device links in the 1000BASE-T slave mode only,
1124 		 * the optional 125MHz reference output clock (CLK125_NDO)
1125 		 * has wide duty cycle variation.
1126 		 *
1127 		 * The optional CLK125_NDO clock does not meet the RGMII
1128 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1129 		 * cannot be used directly by the MAC side for clocking
1130 		 * applications that have setup/hold time requirements on
1131 		 * rising and falling clock edges.
1132 		 *
1133 		 * Workaround:
1134 		 * Force the phy to be the master to receive a stable clock
1135 		 * which meets the duty cycle requirement.
1136 		 */
1137 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1138 			result = phy_read(phydev, MII_CTRL1000);
1139 			if (result < 0)
1140 				goto err_force_master;
1141 
1142 			/* enable master mode, config & prefer master */
1143 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1144 			result = phy_write(phydev, MII_CTRL1000, result);
1145 			if (result < 0)
1146 				goto err_force_master;
1147 		}
1148 	}
1149 
1150 	return ksz9031_center_flp_timing(phydev);
1151 
1152 err_force_master:
1153 	phydev_err(phydev, "failed to force the phy to master mode\n");
1154 	return result;
1155 }
1156 
1157 #define KSZ9131_SKEW_5BIT_MAX	2400
1158 #define KSZ9131_SKEW_4BIT_MAX	800
1159 #define KSZ9131_OFFSET		700
1160 #define KSZ9131_STEP		100
1161 
1162 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1163 				       struct device_node *of_node,
1164 				       u16 reg, size_t field_sz,
1165 				       char *field[], u8 numfields)
1166 {
1167 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1168 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1169 	int skewval, skewmax = 0;
1170 	int matches = 0;
1171 	u16 maxval;
1172 	u16 newval;
1173 	u16 mask;
1174 	int i;
1175 
1176 	/* psec properties in dts should mean x pico seconds */
1177 	if (field_sz == 5)
1178 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1179 	else
1180 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1181 
1182 	for (i = 0; i < numfields; i++)
1183 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1184 			if (skewval < -KSZ9131_OFFSET)
1185 				skewval = -KSZ9131_OFFSET;
1186 			else if (skewval > skewmax)
1187 				skewval = skewmax;
1188 
1189 			val[i] = skewval + KSZ9131_OFFSET;
1190 			matches++;
1191 		}
1192 
1193 	if (!matches)
1194 		return 0;
1195 
1196 	if (matches < numfields)
1197 		newval = phy_read_mmd(phydev, 2, reg);
1198 	else
1199 		newval = 0;
1200 
1201 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1202 	for (i = 0; i < numfields; i++)
1203 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1204 			mask = 0xffff;
1205 			mask ^= maxval << (field_sz * i);
1206 			newval = (newval & mask) |
1207 				(((val[i] / KSZ9131_STEP) & maxval)
1208 					<< (field_sz * i));
1209 		}
1210 
1211 	return phy_write_mmd(phydev, 2, reg, newval);
1212 }
1213 
1214 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1215 #define KSZ9131RN_RXC_DLL_CTRL		76
1216 #define KSZ9131RN_TXC_DLL_CTRL		77
1217 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1218 
1219 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1220 {
1221 	const struct kszphy_type *type = phydev->drv->driver_data;
1222 	u16 rxcdll_val, txcdll_val;
1223 	int ret;
1224 
1225 	switch (phydev->interface) {
1226 	case PHY_INTERFACE_MODE_RGMII:
1227 		rxcdll_val = type->disable_dll_rx_bit;
1228 		txcdll_val = type->disable_dll_tx_bit;
1229 		break;
1230 	case PHY_INTERFACE_MODE_RGMII_ID:
1231 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1232 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1233 		break;
1234 	case PHY_INTERFACE_MODE_RGMII_RXID:
1235 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1236 		txcdll_val = type->disable_dll_tx_bit;
1237 		break;
1238 	case PHY_INTERFACE_MODE_RGMII_TXID:
1239 		rxcdll_val = type->disable_dll_rx_bit;
1240 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1241 		break;
1242 	default:
1243 		return 0;
1244 	}
1245 
1246 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1247 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1248 			     rxcdll_val);
1249 	if (ret < 0)
1250 		return ret;
1251 
1252 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1253 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1254 			      txcdll_val);
1255 }
1256 
1257 /* Silicon Errata DS80000693B
1258  *
1259  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1260  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1261  * according to the datasheet (off if there is no link).
1262  */
1263 static int ksz9131_led_errata(struct phy_device *phydev)
1264 {
1265 	int reg;
1266 
1267 	reg = phy_read_mmd(phydev, 2, 0);
1268 	if (reg < 0)
1269 		return reg;
1270 
1271 	if (!(reg & BIT(4)))
1272 		return 0;
1273 
1274 	return phy_set_bits(phydev, 0x1e, BIT(9));
1275 }
1276 
1277 static int ksz9131_config_init(struct phy_device *phydev)
1278 {
1279 	struct device_node *of_node;
1280 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1281 	char *rx_data_skews[4] = {
1282 		"rxd0-skew-psec", "rxd1-skew-psec",
1283 		"rxd2-skew-psec", "rxd3-skew-psec"
1284 	};
1285 	char *tx_data_skews[4] = {
1286 		"txd0-skew-psec", "txd1-skew-psec",
1287 		"txd2-skew-psec", "txd3-skew-psec"
1288 	};
1289 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1290 	const struct device *dev_walker;
1291 	int ret;
1292 
1293 	dev_walker = &phydev->mdio.dev;
1294 	do {
1295 		of_node = dev_walker->of_node;
1296 		dev_walker = dev_walker->parent;
1297 	} while (!of_node && dev_walker);
1298 
1299 	if (!of_node)
1300 		return 0;
1301 
1302 	if (phy_interface_is_rgmii(phydev)) {
1303 		ret = ksz9131_config_rgmii_delay(phydev);
1304 		if (ret < 0)
1305 			return ret;
1306 	}
1307 
1308 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1309 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1310 					  clk_skews, 2);
1311 	if (ret < 0)
1312 		return ret;
1313 
1314 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1315 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1316 					  control_skews, 2);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1321 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1322 					  rx_data_skews, 4);
1323 	if (ret < 0)
1324 		return ret;
1325 
1326 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1327 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1328 					  tx_data_skews, 4);
1329 	if (ret < 0)
1330 		return ret;
1331 
1332 	ret = ksz9131_led_errata(phydev);
1333 	if (ret < 0)
1334 		return ret;
1335 
1336 	return 0;
1337 }
1338 
1339 #define MII_KSZ9131_AUTO_MDIX		0x1C
1340 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1341 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1342 
1343 static int ksz9131_mdix_update(struct phy_device *phydev)
1344 {
1345 	int ret;
1346 
1347 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1348 	if (ret < 0)
1349 		return ret;
1350 
1351 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1352 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1353 			phydev->mdix_ctrl = ETH_TP_MDI;
1354 		else
1355 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1356 	} else {
1357 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1358 	}
1359 
1360 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1361 		phydev->mdix = ETH_TP_MDI;
1362 	else
1363 		phydev->mdix = ETH_TP_MDI_X;
1364 
1365 	return 0;
1366 }
1367 
1368 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1369 {
1370 	u16 val;
1371 
1372 	switch (ctrl) {
1373 	case ETH_TP_MDI:
1374 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1375 		      MII_KSZ9131_AUTO_MDI_SET;
1376 		break;
1377 	case ETH_TP_MDI_X:
1378 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1379 		break;
1380 	case ETH_TP_MDI_AUTO:
1381 		val = 0;
1382 		break;
1383 	default:
1384 		return 0;
1385 	}
1386 
1387 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1388 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1389 			  MII_KSZ9131_AUTO_MDI_SET, val);
1390 }
1391 
1392 static int ksz9131_read_status(struct phy_device *phydev)
1393 {
1394 	int ret;
1395 
1396 	ret = ksz9131_mdix_update(phydev);
1397 	if (ret < 0)
1398 		return ret;
1399 
1400 	return genphy_read_status(phydev);
1401 }
1402 
1403 static int ksz9131_config_aneg(struct phy_device *phydev)
1404 {
1405 	int ret;
1406 
1407 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1408 	if (ret)
1409 		return ret;
1410 
1411 	return genphy_config_aneg(phydev);
1412 }
1413 
1414 static int ksz9477_get_features(struct phy_device *phydev)
1415 {
1416 	int ret;
1417 
1418 	ret = genphy_read_abilities(phydev);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1423 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1424 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1425 	 * of caps.
1426 	 * KSZ8563R should have 100BaseTX/Full only.
1427 	 */
1428 	linkmode_and(phydev->supported_eee, phydev->supported,
1429 		     PHY_EEE_CAP1_FEATURES);
1430 
1431 	return 0;
1432 }
1433 
1434 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1435 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1436 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1437 static int ksz8873mll_read_status(struct phy_device *phydev)
1438 {
1439 	int regval;
1440 
1441 	/* dummy read */
1442 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1443 
1444 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1445 
1446 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1447 		phydev->duplex = DUPLEX_HALF;
1448 	else
1449 		phydev->duplex = DUPLEX_FULL;
1450 
1451 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1452 		phydev->speed = SPEED_10;
1453 	else
1454 		phydev->speed = SPEED_100;
1455 
1456 	phydev->link = 1;
1457 	phydev->pause = phydev->asym_pause = 0;
1458 
1459 	return 0;
1460 }
1461 
1462 static int ksz9031_get_features(struct phy_device *phydev)
1463 {
1464 	int ret;
1465 
1466 	ret = genphy_read_abilities(phydev);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1471 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1472 	 * link-up may fail after a link-up to link-down transition.
1473 	 *
1474 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1475 	 *
1476 	 * Workaround:
1477 	 * Do not enable the Asymmetric Pause capability bit.
1478 	 */
1479 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1480 
1481 	/* We force setting the Pause capability as the core will force the
1482 	 * Asymmetric Pause capability to 1 otherwise.
1483 	 */
1484 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1485 
1486 	return 0;
1487 }
1488 
1489 static int ksz9031_read_status(struct phy_device *phydev)
1490 {
1491 	int err;
1492 	int regval;
1493 
1494 	err = genphy_read_status(phydev);
1495 	if (err)
1496 		return err;
1497 
1498 	/* Make sure the PHY is not broken. Read idle error count,
1499 	 * and reset the PHY if it is maxed out.
1500 	 */
1501 	regval = phy_read(phydev, MII_STAT1000);
1502 	if ((regval & 0xFF) == 0xFF) {
1503 		phy_init_hw(phydev);
1504 		phydev->link = 0;
1505 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1506 			phydev->drv->config_intr(phydev);
1507 		return genphy_config_aneg(phydev);
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1514 {
1515 	struct kszphy_priv *priv = phydev->priv;
1516 	int ret;
1517 
1518 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1519 	 * Prior to running the cable diagnostics, Auto-negotiation should
1520 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1521 	 * via the Basic Control Register.
1522 	 */
1523 	ret = phy_modify(phydev, MII_BMCR,
1524 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1525 			 BMCR_ANENABLE | BMCR_SPEED100,
1526 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1527 	if (ret)
1528 		return ret;
1529 
1530 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1531 	 * The Master-Slave configuration should be set to Slave by writing
1532 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1533 	 * Register.
1534 	 */
1535 	ret = phy_read(phydev, MII_CTRL1000);
1536 	if (ret < 0)
1537 		return ret;
1538 
1539 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1540 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1541 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1542 	ret |= CTL1000_ENABLE_MASTER;
1543 
1544 	return phy_write(phydev, MII_CTRL1000, ret);
1545 }
1546 
1547 static int ksz9x31_cable_test_result_trans(u16 status)
1548 {
1549 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1550 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1551 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1552 	case KSZ9x31_LMD_VCT_ST_OPEN:
1553 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1554 	case KSZ9x31_LMD_VCT_ST_SHORT:
1555 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1556 	case KSZ9x31_LMD_VCT_ST_FAIL:
1557 		fallthrough;
1558 	default:
1559 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1560 	}
1561 }
1562 
1563 static bool ksz9x31_cable_test_failed(u16 status)
1564 {
1565 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1566 
1567 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1568 }
1569 
1570 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1571 {
1572 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1573 	case KSZ9x31_LMD_VCT_ST_OPEN:
1574 		fallthrough;
1575 	case KSZ9x31_LMD_VCT_ST_SHORT:
1576 		return true;
1577 	}
1578 	return false;
1579 }
1580 
1581 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1582 {
1583 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1584 
1585 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1586 	 *
1587 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1588 	 */
1589 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1590 		dt = clamp(dt - 22, 0, 255);
1591 
1592 	return (dt * 400) / 10;
1593 }
1594 
1595 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1596 {
1597 	int val, ret;
1598 
1599 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1600 				    !(val & KSZ9x31_LMD_VCT_EN),
1601 				    30000, 100000, true);
1602 
1603 	return ret < 0 ? ret : 0;
1604 }
1605 
1606 static int ksz9x31_cable_test_get_pair(int pair)
1607 {
1608 	static const int ethtool_pair[] = {
1609 		ETHTOOL_A_CABLE_PAIR_A,
1610 		ETHTOOL_A_CABLE_PAIR_B,
1611 		ETHTOOL_A_CABLE_PAIR_C,
1612 		ETHTOOL_A_CABLE_PAIR_D,
1613 	};
1614 
1615 	return ethtool_pair[pair];
1616 }
1617 
1618 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1619 {
1620 	int ret, val;
1621 
1622 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1623 	 * To test each individual cable pair, set the cable pair in the Cable
1624 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1625 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1626 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1627 	 * will self clear when the test is concluded.
1628 	 */
1629 	ret = phy_write(phydev, KSZ9x31_LMD,
1630 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1631 	if (ret)
1632 		return ret;
1633 
1634 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1635 	if (ret)
1636 		return ret;
1637 
1638 	val = phy_read(phydev, KSZ9x31_LMD);
1639 	if (val < 0)
1640 		return val;
1641 
1642 	if (ksz9x31_cable_test_failed(val))
1643 		return -EAGAIN;
1644 
1645 	ret = ethnl_cable_test_result(phydev,
1646 				      ksz9x31_cable_test_get_pair(pair),
1647 				      ksz9x31_cable_test_result_trans(val));
1648 	if (ret)
1649 		return ret;
1650 
1651 	if (!ksz9x31_cable_test_fault_length_valid(val))
1652 		return 0;
1653 
1654 	return ethnl_cable_test_fault_length(phydev,
1655 					     ksz9x31_cable_test_get_pair(pair),
1656 					     ksz9x31_cable_test_fault_length(phydev, val));
1657 }
1658 
1659 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1660 					 bool *finished)
1661 {
1662 	struct kszphy_priv *priv = phydev->priv;
1663 	unsigned long pair_mask = 0xf;
1664 	int retries = 20;
1665 	int pair, ret, rv;
1666 
1667 	*finished = false;
1668 
1669 	/* Try harder if link partner is active */
1670 	while (pair_mask && retries--) {
1671 		for_each_set_bit(pair, &pair_mask, 4) {
1672 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1673 			if (ret == -EAGAIN)
1674 				continue;
1675 			if (ret < 0)
1676 				return ret;
1677 			clear_bit(pair, &pair_mask);
1678 		}
1679 		/* If link partner is in autonegotiation mode it will send 2ms
1680 		 * of FLPs with at least 6ms of silence.
1681 		 * Add 2ms sleep to have better chances to hit this silence.
1682 		 */
1683 		if (pair_mask)
1684 			usleep_range(2000, 3000);
1685 	}
1686 
1687 	/* Report remaining unfinished pair result as unknown. */
1688 	for_each_set_bit(pair, &pair_mask, 4) {
1689 		ret = ethnl_cable_test_result(phydev,
1690 					      ksz9x31_cable_test_get_pair(pair),
1691 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1692 	}
1693 
1694 	*finished = true;
1695 
1696 	/* Restore cached bits from before LinkMD got started. */
1697 	rv = phy_modify(phydev, MII_CTRL1000,
1698 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1699 			priv->vct_ctrl1000);
1700 	if (rv)
1701 		return rv;
1702 
1703 	return ret;
1704 }
1705 
1706 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1707 {
1708 	return 0;
1709 }
1710 
1711 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1712 {
1713 	u16 val;
1714 
1715 	switch (ctrl) {
1716 	case ETH_TP_MDI:
1717 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1718 		break;
1719 	case ETH_TP_MDI_X:
1720 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1721 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1722 		 * sheet seems to be missing:
1723 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1724 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1725 		 */
1726 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1727 		break;
1728 	case ETH_TP_MDI_AUTO:
1729 		val = 0;
1730 		break;
1731 	default:
1732 		return 0;
1733 	}
1734 
1735 	return phy_modify(phydev, MII_BMCR,
1736 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1737 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1738 			  KSZ886X_BMCR_HP_MDIX | val);
1739 }
1740 
1741 static int ksz886x_config_aneg(struct phy_device *phydev)
1742 {
1743 	int ret;
1744 
1745 	ret = genphy_config_aneg(phydev);
1746 	if (ret)
1747 		return ret;
1748 
1749 	if (phydev->autoneg != AUTONEG_ENABLE) {
1750 		/* When autonegotation is disabled, we need to manually force
1751 		 * the link state. If we don't do this, the PHY will keep
1752 		 * sending Fast Link Pulses (FLPs) which are part of the
1753 		 * autonegotiation process. This is not desired when
1754 		 * autonegotiation is off.
1755 		 */
1756 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1757 				   KSZ886X_CTRL_FORCE_LINK);
1758 		if (ret)
1759 			return ret;
1760 	} else {
1761 		/* If we had previously forced the link state, we need to
1762 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1763 		 * will not perform autonegotiation.
1764 		 */
1765 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1766 				     KSZ886X_CTRL_FORCE_LINK);
1767 		if (ret)
1768 			return ret;
1769 	}
1770 
1771 	/* The MDI-X configuration is automatically changed by the PHY after
1772 	 * switching from autoneg off to on. So, take MDI-X configuration under
1773 	 * own control and set it after autoneg configuration was done.
1774 	 */
1775 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1776 }
1777 
1778 static int ksz886x_mdix_update(struct phy_device *phydev)
1779 {
1780 	int ret;
1781 
1782 	ret = phy_read(phydev, MII_BMCR);
1783 	if (ret < 0)
1784 		return ret;
1785 
1786 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1787 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1788 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1789 		else
1790 			phydev->mdix_ctrl = ETH_TP_MDI;
1791 	} else {
1792 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1793 	}
1794 
1795 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1796 	if (ret < 0)
1797 		return ret;
1798 
1799 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1800 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1801 		phydev->mdix = ETH_TP_MDI_X;
1802 	else
1803 		phydev->mdix = ETH_TP_MDI;
1804 
1805 	return 0;
1806 }
1807 
1808 static int ksz886x_read_status(struct phy_device *phydev)
1809 {
1810 	int ret;
1811 
1812 	ret = ksz886x_mdix_update(phydev);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	return genphy_read_status(phydev);
1817 }
1818 
1819 struct ksz9477_errata_write {
1820 	u8 dev_addr;
1821 	u8 reg_addr;
1822 	u16 val;
1823 };
1824 
1825 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1826 	 /* Register settings are needed to improve PHY receive performance */
1827 	{0x01, 0x6f, 0xdd0b},
1828 	{0x01, 0x8f, 0x6032},
1829 	{0x01, 0x9d, 0x248c},
1830 	{0x01, 0x75, 0x0060},
1831 	{0x01, 0xd3, 0x7777},
1832 	{0x1c, 0x06, 0x3008},
1833 	{0x1c, 0x08, 0x2000},
1834 
1835 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1836 	{0x1c, 0x04, 0x00d0},
1837 
1838 	/* Register settings are required to meet data sheet supply current specifications */
1839 	{0x1c, 0x13, 0x6eff},
1840 	{0x1c, 0x14, 0xe6ff},
1841 	{0x1c, 0x15, 0x6eff},
1842 	{0x1c, 0x16, 0xe6ff},
1843 	{0x1c, 0x17, 0x00ff},
1844 	{0x1c, 0x18, 0x43ff},
1845 	{0x1c, 0x19, 0xc3ff},
1846 	{0x1c, 0x1a, 0x6fff},
1847 	{0x1c, 0x1b, 0x07ff},
1848 	{0x1c, 0x1c, 0x0fff},
1849 	{0x1c, 0x1d, 0xe7ff},
1850 	{0x1c, 0x1e, 0xefff},
1851 	{0x1c, 0x20, 0xeeee},
1852 };
1853 
1854 static int ksz9477_config_init(struct phy_device *phydev)
1855 {
1856 	int err;
1857 	int i;
1858 
1859 	/* Apply PHY settings to address errata listed in
1860 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1861 	 * Silicon Errata and Data Sheet Clarification documents.
1862 	 *
1863 	 * Document notes: Before configuring the PHY MMD registers, it is
1864 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1865 	 * disabled by writing to register 0xN100-0xN101. After writing the
1866 	 * MMD registers, and after all errata workarounds that involve PHY
1867 	 * register settings, write register 0xN100-0xN101 again to enable
1868 	 * and restart auto-negotiation.
1869 	 */
1870 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1871 	if (err)
1872 		return err;
1873 
1874 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1875 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1876 
1877 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1878 		if (err)
1879 			return err;
1880 	}
1881 
1882 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1883 	 * in this switch shall be regarded as broken.
1884 	 */
1885 	if (phydev->dev_flags & MICREL_NO_EEE)
1886 		phydev->eee_broken_modes = -1;
1887 
1888 	err = genphy_restart_aneg(phydev);
1889 	if (err)
1890 		return err;
1891 
1892 	return kszphy_config_init(phydev);
1893 }
1894 
1895 static int kszphy_get_sset_count(struct phy_device *phydev)
1896 {
1897 	return ARRAY_SIZE(kszphy_hw_stats);
1898 }
1899 
1900 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1901 {
1902 	int i;
1903 
1904 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1905 		strscpy(data + i * ETH_GSTRING_LEN,
1906 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1907 	}
1908 }
1909 
1910 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1911 {
1912 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1913 	struct kszphy_priv *priv = phydev->priv;
1914 	int val;
1915 	u64 ret;
1916 
1917 	val = phy_read(phydev, stat.reg);
1918 	if (val < 0) {
1919 		ret = U64_MAX;
1920 	} else {
1921 		val = val & ((1 << stat.bits) - 1);
1922 		priv->stats[i] += val;
1923 		ret = priv->stats[i];
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 static void kszphy_get_stats(struct phy_device *phydev,
1930 			     struct ethtool_stats *stats, u64 *data)
1931 {
1932 	int i;
1933 
1934 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1935 		data[i] = kszphy_get_stat(phydev, i);
1936 }
1937 
1938 static int kszphy_suspend(struct phy_device *phydev)
1939 {
1940 	/* Disable PHY Interrupts */
1941 	if (phy_interrupt_is_valid(phydev)) {
1942 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1943 		if (phydev->drv->config_intr)
1944 			phydev->drv->config_intr(phydev);
1945 	}
1946 
1947 	return genphy_suspend(phydev);
1948 }
1949 
1950 static void kszphy_parse_led_mode(struct phy_device *phydev)
1951 {
1952 	const struct kszphy_type *type = phydev->drv->driver_data;
1953 	const struct device_node *np = phydev->mdio.dev.of_node;
1954 	struct kszphy_priv *priv = phydev->priv;
1955 	int ret;
1956 
1957 	if (type && type->led_mode_reg) {
1958 		ret = of_property_read_u32(np, "micrel,led-mode",
1959 					   &priv->led_mode);
1960 
1961 		if (ret)
1962 			priv->led_mode = -1;
1963 
1964 		if (priv->led_mode > 3) {
1965 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1966 				   priv->led_mode);
1967 			priv->led_mode = -1;
1968 		}
1969 	} else {
1970 		priv->led_mode = -1;
1971 	}
1972 }
1973 
1974 static int kszphy_resume(struct phy_device *phydev)
1975 {
1976 	int ret;
1977 
1978 	genphy_resume(phydev);
1979 
1980 	/* After switching from power-down to normal mode, an internal global
1981 	 * reset is automatically generated. Wait a minimum of 1 ms before
1982 	 * read/write access to the PHY registers.
1983 	 */
1984 	usleep_range(1000, 2000);
1985 
1986 	ret = kszphy_config_reset(phydev);
1987 	if (ret)
1988 		return ret;
1989 
1990 	/* Enable PHY Interrupts */
1991 	if (phy_interrupt_is_valid(phydev)) {
1992 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1993 		if (phydev->drv->config_intr)
1994 			phydev->drv->config_intr(phydev);
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int kszphy_probe(struct phy_device *phydev)
2001 {
2002 	const struct kszphy_type *type = phydev->drv->driver_data;
2003 	const struct device_node *np = phydev->mdio.dev.of_node;
2004 	struct kszphy_priv *priv;
2005 	struct clk *clk;
2006 
2007 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2008 	if (!priv)
2009 		return -ENOMEM;
2010 
2011 	phydev->priv = priv;
2012 
2013 	priv->type = type;
2014 
2015 	kszphy_parse_led_mode(phydev);
2016 
2017 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2018 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2019 	if (!IS_ERR_OR_NULL(clk)) {
2020 		unsigned long rate = clk_get_rate(clk);
2021 		bool rmii_ref_clk_sel_25_mhz;
2022 
2023 		if (type)
2024 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2025 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2026 				"micrel,rmii-reference-clock-select-25-mhz");
2027 
2028 		if (rate > 24500000 && rate < 25500000) {
2029 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2030 		} else if (rate > 49500000 && rate < 50500000) {
2031 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2032 		} else {
2033 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2034 				   rate);
2035 			return -EINVAL;
2036 		}
2037 	} else if (!clk) {
2038 		/* unnamed clock from the generic ethernet-phy binding */
2039 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2040 		if (IS_ERR(clk))
2041 			return PTR_ERR(clk);
2042 	}
2043 
2044 	if (ksz8041_fiber_mode(phydev))
2045 		phydev->port = PORT_FIBRE;
2046 
2047 	/* Support legacy board-file configuration */
2048 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2049 		priv->rmii_ref_clk_sel = true;
2050 		priv->rmii_ref_clk_sel_val = true;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 static int lan8814_cable_test_start(struct phy_device *phydev)
2057 {
2058 	/* If autoneg is enabled, we won't be able to test cross pair
2059 	 * short. In this case, the PHY will "detect" a link and
2060 	 * confuse the internal state machine - disable auto neg here.
2061 	 * Set the speed to 1000mbit and full duplex.
2062 	 */
2063 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2064 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2065 }
2066 
2067 static int ksz886x_cable_test_start(struct phy_device *phydev)
2068 {
2069 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2070 		return -EOPNOTSUPP;
2071 
2072 	/* If autoneg is enabled, we won't be able to test cross pair
2073 	 * short. In this case, the PHY will "detect" a link and
2074 	 * confuse the internal state machine - disable auto neg here.
2075 	 * If autoneg is disabled, we should set the speed to 10mbit.
2076 	 */
2077 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2078 }
2079 
2080 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2081 {
2082 	switch (FIELD_GET(mask, status)) {
2083 	case KSZ8081_LMD_STAT_NORMAL:
2084 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2085 	case KSZ8081_LMD_STAT_SHORT:
2086 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2087 	case KSZ8081_LMD_STAT_OPEN:
2088 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2089 	case KSZ8081_LMD_STAT_FAIL:
2090 		fallthrough;
2091 	default:
2092 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2093 	}
2094 }
2095 
2096 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2097 {
2098 	return FIELD_GET(mask, status) ==
2099 		KSZ8081_LMD_STAT_FAIL;
2100 }
2101 
2102 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2103 {
2104 	switch (FIELD_GET(mask, status)) {
2105 	case KSZ8081_LMD_STAT_OPEN:
2106 		fallthrough;
2107 	case KSZ8081_LMD_STAT_SHORT:
2108 		return true;
2109 	}
2110 	return false;
2111 }
2112 
2113 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2114 							   u16 status, u16 data_mask)
2115 {
2116 	int dt;
2117 
2118 	/* According to the data sheet the distance to the fault is
2119 	 * DELTA_TIME * 0.4 meters for ksz phys.
2120 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2121 	 */
2122 	dt = FIELD_GET(data_mask, status);
2123 
2124 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2125 		return ((dt - 22) * 800) / 10;
2126 	else
2127 		return (dt * 400) / 10;
2128 }
2129 
2130 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2131 {
2132 	const struct kszphy_type *type = phydev->drv->driver_data;
2133 	int val, ret;
2134 
2135 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2136 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2137 				    30000, 100000, true);
2138 
2139 	return ret < 0 ? ret : 0;
2140 }
2141 
2142 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2143 {
2144 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2145 					    ETHTOOL_A_CABLE_PAIR_B,
2146 					    ETHTOOL_A_CABLE_PAIR_C,
2147 					    ETHTOOL_A_CABLE_PAIR_D,
2148 					  };
2149 	u32 fault_length;
2150 	int ret;
2151 	int val;
2152 
2153 	val = KSZ8081_LMD_ENABLE_TEST;
2154 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2155 
2156 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2157 	if (ret < 0)
2158 		return ret;
2159 
2160 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2161 	if (ret)
2162 		return ret;
2163 
2164 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2165 	if (val < 0)
2166 		return val;
2167 
2168 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2169 		return -EAGAIN;
2170 
2171 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2172 				      ksz886x_cable_test_result_trans(val,
2173 								      LAN8814_CABLE_DIAG_STAT_MASK
2174 								      ));
2175 	if (ret)
2176 		return ret;
2177 
2178 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2179 		return 0;
2180 
2181 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2182 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2183 
2184 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2185 }
2186 
2187 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2188 {
2189 	static const int ethtool_pair[] = {
2190 		ETHTOOL_A_CABLE_PAIR_A,
2191 		ETHTOOL_A_CABLE_PAIR_B,
2192 	};
2193 	int ret, val, mdix;
2194 	u32 fault_length;
2195 
2196 	/* There is no way to choice the pair, like we do one ksz9031.
2197 	 * We can workaround this limitation by using the MDI-X functionality.
2198 	 */
2199 	if (pair == 0)
2200 		mdix = ETH_TP_MDI;
2201 	else
2202 		mdix = ETH_TP_MDI_X;
2203 
2204 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2205 	case PHY_ID_KSZ8081:
2206 		ret = ksz8081_config_mdix(phydev, mdix);
2207 		break;
2208 	case PHY_ID_KSZ886X:
2209 		ret = ksz886x_config_mdix(phydev, mdix);
2210 		break;
2211 	default:
2212 		ret = -ENODEV;
2213 	}
2214 
2215 	if (ret)
2216 		return ret;
2217 
2218 	/* Now we are ready to fire. This command will send a 100ns pulse
2219 	 * to the pair.
2220 	 */
2221 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2222 	if (ret)
2223 		return ret;
2224 
2225 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2226 	if (ret)
2227 		return ret;
2228 
2229 	val = phy_read(phydev, KSZ8081_LMD);
2230 	if (val < 0)
2231 		return val;
2232 
2233 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2234 		return -EAGAIN;
2235 
2236 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2237 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2238 	if (ret)
2239 		return ret;
2240 
2241 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2242 		return 0;
2243 
2244 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2245 
2246 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2247 }
2248 
2249 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2250 					 bool *finished)
2251 {
2252 	const struct kszphy_type *type = phydev->drv->driver_data;
2253 	unsigned long pair_mask = type->pair_mask;
2254 	int retries = 20;
2255 	int ret = 0;
2256 	int pair;
2257 
2258 	*finished = false;
2259 
2260 	/* Try harder if link partner is active */
2261 	while (pair_mask && retries--) {
2262 		for_each_set_bit(pair, &pair_mask, 4) {
2263 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2264 				ret = lan8814_cable_test_one_pair(phydev, pair);
2265 			else
2266 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2267 			if (ret == -EAGAIN)
2268 				continue;
2269 			if (ret < 0)
2270 				return ret;
2271 			clear_bit(pair, &pair_mask);
2272 		}
2273 		/* If link partner is in autonegotiation mode it will send 2ms
2274 		 * of FLPs with at least 6ms of silence.
2275 		 * Add 2ms sleep to have better chances to hit this silence.
2276 		 */
2277 		if (pair_mask)
2278 			msleep(2);
2279 	}
2280 
2281 	*finished = true;
2282 
2283 	return ret;
2284 }
2285 
2286 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2287 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2288 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2289 
2290 #define LAN8814_QSGMII_SOFT_RESET			0x43
2291 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2292 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2293 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2294 #define LAN8814_ALIGN_SWAP				0x4a
2295 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2296 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2297 
2298 #define LAN8804_ALIGN_SWAP				0x4a
2299 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2300 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2301 #define LAN8814_CLOCK_MANAGEMENT			0xd
2302 #define LAN8814_LINK_QUALITY				0x8e
2303 
2304 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2305 {
2306 	int data;
2307 
2308 	phy_lock_mdio_bus(phydev);
2309 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2310 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2311 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2312 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2313 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2314 	phy_unlock_mdio_bus(phydev);
2315 
2316 	return data;
2317 }
2318 
2319 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2320 				 u16 val)
2321 {
2322 	phy_lock_mdio_bus(phydev);
2323 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2324 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2325 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2326 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2327 
2328 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2329 	if (val != 0)
2330 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2331 			   val);
2332 	phy_unlock_mdio_bus(phydev);
2333 	return val;
2334 }
2335 
2336 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2337 {
2338 	u16 val = 0;
2339 
2340 	if (enable)
2341 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2342 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2343 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2344 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2345 
2346 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2347 }
2348 
2349 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2350 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2351 {
2352 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2353 	*seconds = (*seconds << 16) |
2354 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2355 
2356 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2357 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2358 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2359 
2360 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2361 }
2362 
2363 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2364 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2365 {
2366 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2367 	*seconds = *seconds << 16 |
2368 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2369 
2370 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2371 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2372 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2373 
2374 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2375 }
2376 
2377 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2378 {
2379 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2380 	struct phy_device *phydev = ptp_priv->phydev;
2381 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2382 
2383 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2384 				SOF_TIMESTAMPING_RX_HARDWARE |
2385 				SOF_TIMESTAMPING_RAW_HARDWARE;
2386 
2387 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2388 
2389 	info->tx_types =
2390 		(1 << HWTSTAMP_TX_OFF) |
2391 		(1 << HWTSTAMP_TX_ON) |
2392 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2393 
2394 	info->rx_filters =
2395 		(1 << HWTSTAMP_FILTER_NONE) |
2396 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2397 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2398 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2399 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2400 
2401 	return 0;
2402 }
2403 
2404 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2405 {
2406 	int i;
2407 
2408 	for (i = 0; i < FIFO_SIZE; ++i)
2409 		lanphy_read_page_reg(phydev, 5,
2410 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2411 
2412 	/* Read to clear overflow status bit */
2413 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2414 }
2415 
2416 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2417 			    struct kernel_hwtstamp_config *config,
2418 			    struct netlink_ext_ack *extack)
2419 {
2420 	struct kszphy_ptp_priv *ptp_priv =
2421 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2422 	struct phy_device *phydev = ptp_priv->phydev;
2423 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2424 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2425 	int txcfg = 0, rxcfg = 0;
2426 	int pkt_ts_enable;
2427 
2428 	ptp_priv->hwts_tx_type = config->tx_type;
2429 	ptp_priv->rx_filter = config->rx_filter;
2430 
2431 	switch (config->rx_filter) {
2432 	case HWTSTAMP_FILTER_NONE:
2433 		ptp_priv->layer = 0;
2434 		ptp_priv->version = 0;
2435 		break;
2436 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2437 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2438 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2439 		ptp_priv->layer = PTP_CLASS_L4;
2440 		ptp_priv->version = PTP_CLASS_V2;
2441 		break;
2442 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2443 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2444 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2445 		ptp_priv->layer = PTP_CLASS_L2;
2446 		ptp_priv->version = PTP_CLASS_V2;
2447 		break;
2448 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2449 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2450 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2451 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2452 		ptp_priv->version = PTP_CLASS_V2;
2453 		break;
2454 	default:
2455 		return -ERANGE;
2456 	}
2457 
2458 	if (ptp_priv->layer & PTP_CLASS_L2) {
2459 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2460 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2461 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2462 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2463 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2464 	}
2465 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2466 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2467 
2468 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2469 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2470 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2471 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2472 
2473 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2474 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2475 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2476 
2477 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2478 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2479 	else
2480 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2481 
2482 	mutex_lock(&shared->shared_lock);
2483 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2484 		shared->ref++;
2485 	else
2486 		shared->ref--;
2487 
2488 	if (shared->ref)
2489 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2490 				      PTP_CMD_CTL_PTP_ENABLE_);
2491 	else
2492 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2493 				      PTP_CMD_CTL_PTP_DISABLE_);
2494 	mutex_unlock(&shared->shared_lock);
2495 
2496 	/* In case of multiple starts and stops, these needs to be cleared */
2497 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2498 		list_del(&rx_ts->list);
2499 		kfree(rx_ts);
2500 	}
2501 	skb_queue_purge(&ptp_priv->rx_queue);
2502 	skb_queue_purge(&ptp_priv->tx_queue);
2503 
2504 	lan8814_flush_fifo(ptp_priv->phydev, false);
2505 	lan8814_flush_fifo(ptp_priv->phydev, true);
2506 
2507 	return 0;
2508 }
2509 
2510 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2511 			     struct sk_buff *skb, int type)
2512 {
2513 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2514 
2515 	switch (ptp_priv->hwts_tx_type) {
2516 	case HWTSTAMP_TX_ONESTEP_SYNC:
2517 		if (ptp_msg_is_sync(skb, type)) {
2518 			kfree_skb(skb);
2519 			return;
2520 		}
2521 		fallthrough;
2522 	case HWTSTAMP_TX_ON:
2523 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2524 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2525 		break;
2526 	case HWTSTAMP_TX_OFF:
2527 	default:
2528 		kfree_skb(skb);
2529 		break;
2530 	}
2531 }
2532 
2533 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2534 {
2535 	struct ptp_header *ptp_header;
2536 	u32 type;
2537 
2538 	skb_push(skb, ETH_HLEN);
2539 	type = ptp_classify_raw(skb);
2540 	ptp_header = ptp_parse_header(skb, type);
2541 	skb_pull_inline(skb, ETH_HLEN);
2542 
2543 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2544 }
2545 
2546 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2547 				 struct sk_buff *skb)
2548 {
2549 	struct skb_shared_hwtstamps *shhwtstamps;
2550 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2551 	unsigned long flags;
2552 	bool ret = false;
2553 	u16 skb_sig;
2554 
2555 	lan8814_get_sig_rx(skb, &skb_sig);
2556 
2557 	/* Iterate over all RX timestamps and match it with the received skbs */
2558 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2559 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2560 		/* Check if we found the signature we were looking for. */
2561 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2562 			continue;
2563 
2564 		shhwtstamps = skb_hwtstamps(skb);
2565 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2566 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2567 						  rx_ts->nsec);
2568 		list_del(&rx_ts->list);
2569 		kfree(rx_ts);
2570 
2571 		ret = true;
2572 		break;
2573 	}
2574 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2575 
2576 	if (ret)
2577 		netif_rx(skb);
2578 	return ret;
2579 }
2580 
2581 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2582 {
2583 	struct kszphy_ptp_priv *ptp_priv =
2584 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2585 
2586 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2587 	    type == PTP_CLASS_NONE)
2588 		return false;
2589 
2590 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2591 		return false;
2592 
2593 	/* If we failed to match then add it to the queue for when the timestamp
2594 	 * will come
2595 	 */
2596 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2597 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2598 
2599 	return true;
2600 }
2601 
2602 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2603 				  time64_t sec, u32 nsec)
2604 {
2605 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2606 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2607 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2608 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2609 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2610 
2611 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2612 }
2613 
2614 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2615 				  time64_t *sec, u32 *nsec)
2616 {
2617 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2618 
2619 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2620 	*sec <<= 16;
2621 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2622 	*sec <<= 16;
2623 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2624 
2625 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2626 	*nsec <<= 16;
2627 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2628 }
2629 
2630 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2631 				   struct timespec64 *ts)
2632 {
2633 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2634 							  ptp_clock_info);
2635 	struct phy_device *phydev = shared->phydev;
2636 	u32 nano_seconds;
2637 	time64_t seconds;
2638 
2639 	mutex_lock(&shared->shared_lock);
2640 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2641 	mutex_unlock(&shared->shared_lock);
2642 	ts->tv_sec = seconds;
2643 	ts->tv_nsec = nano_seconds;
2644 
2645 	return 0;
2646 }
2647 
2648 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2649 				   const struct timespec64 *ts)
2650 {
2651 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2652 							  ptp_clock_info);
2653 	struct phy_device *phydev = shared->phydev;
2654 
2655 	mutex_lock(&shared->shared_lock);
2656 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2657 	mutex_unlock(&shared->shared_lock);
2658 
2659 	return 0;
2660 }
2661 
2662 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2663 				   s64 time_step_ns)
2664 {
2665 	u32 nano_seconds_step;
2666 	u64 abs_time_step_ns;
2667 	time64_t set_seconds;
2668 	u32 nano_seconds;
2669 	u32 remainder;
2670 	s32 seconds;
2671 
2672 	if (time_step_ns >  15000000000LL) {
2673 		/* convert to clock set */
2674 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2675 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2676 					   &remainder);
2677 		nano_seconds += remainder;
2678 		if (nano_seconds >= 1000000000) {
2679 			set_seconds++;
2680 			nano_seconds -= 1000000000;
2681 		}
2682 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2683 		return;
2684 	} else if (time_step_ns < -15000000000LL) {
2685 		/* convert to clock set */
2686 		time_step_ns = -time_step_ns;
2687 
2688 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2689 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2690 					   &remainder);
2691 		nano_seconds_step = remainder;
2692 		if (nano_seconds < nano_seconds_step) {
2693 			set_seconds--;
2694 			nano_seconds += 1000000000;
2695 		}
2696 		nano_seconds -= nano_seconds_step;
2697 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2698 		return;
2699 	}
2700 
2701 	/* do clock step */
2702 	if (time_step_ns >= 0) {
2703 		abs_time_step_ns = (u64)time_step_ns;
2704 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2705 					   &remainder);
2706 		nano_seconds = remainder;
2707 	} else {
2708 		abs_time_step_ns = (u64)(-time_step_ns);
2709 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2710 			    &remainder));
2711 		nano_seconds = remainder;
2712 		if (nano_seconds > 0) {
2713 			/* subtracting nano seconds is not allowed
2714 			 * convert to subtracting from seconds,
2715 			 * and adding to nanoseconds
2716 			 */
2717 			seconds--;
2718 			nano_seconds = (1000000000 - nano_seconds);
2719 		}
2720 	}
2721 
2722 	if (nano_seconds > 0) {
2723 		/* add 8 ns to cover the likely normal increment */
2724 		nano_seconds += 8;
2725 	}
2726 
2727 	if (nano_seconds >= 1000000000) {
2728 		/* carry into seconds */
2729 		seconds++;
2730 		nano_seconds -= 1000000000;
2731 	}
2732 
2733 	while (seconds) {
2734 		if (seconds > 0) {
2735 			u32 adjustment_value = (u32)seconds;
2736 			u16 adjustment_value_lo, adjustment_value_hi;
2737 
2738 			if (adjustment_value > 0xF)
2739 				adjustment_value = 0xF;
2740 
2741 			adjustment_value_lo = adjustment_value & 0xffff;
2742 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2743 
2744 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2745 					      adjustment_value_lo);
2746 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2747 					      PTP_LTC_STEP_ADJ_DIR_ |
2748 					      adjustment_value_hi);
2749 			seconds -= ((s32)adjustment_value);
2750 		} else {
2751 			u32 adjustment_value = (u32)(-seconds);
2752 			u16 adjustment_value_lo, adjustment_value_hi;
2753 
2754 			if (adjustment_value > 0xF)
2755 				adjustment_value = 0xF;
2756 
2757 			adjustment_value_lo = adjustment_value & 0xffff;
2758 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2759 
2760 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2761 					      adjustment_value_lo);
2762 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2763 					      adjustment_value_hi);
2764 			seconds += ((s32)adjustment_value);
2765 		}
2766 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2767 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2768 	}
2769 	if (nano_seconds) {
2770 		u16 nano_seconds_lo;
2771 		u16 nano_seconds_hi;
2772 
2773 		nano_seconds_lo = nano_seconds & 0xffff;
2774 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2775 
2776 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2777 				      nano_seconds_lo);
2778 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2779 				      PTP_LTC_STEP_ADJ_DIR_ |
2780 				      nano_seconds_hi);
2781 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2782 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2783 	}
2784 }
2785 
2786 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2787 {
2788 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2789 							  ptp_clock_info);
2790 	struct phy_device *phydev = shared->phydev;
2791 
2792 	mutex_lock(&shared->shared_lock);
2793 	lan8814_ptp_clock_step(phydev, delta);
2794 	mutex_unlock(&shared->shared_lock);
2795 
2796 	return 0;
2797 }
2798 
2799 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2800 {
2801 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2802 							  ptp_clock_info);
2803 	struct phy_device *phydev = shared->phydev;
2804 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2805 	bool positive = true;
2806 	u32 kszphy_rate_adj;
2807 
2808 	if (scaled_ppm < 0) {
2809 		scaled_ppm = -scaled_ppm;
2810 		positive = false;
2811 	}
2812 
2813 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2814 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2815 
2816 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2817 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2818 
2819 	if (positive)
2820 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2821 
2822 	mutex_lock(&shared->shared_lock);
2823 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2824 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2825 	mutex_unlock(&shared->shared_lock);
2826 
2827 	return 0;
2828 }
2829 
2830 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2831 {
2832 	struct ptp_header *ptp_header;
2833 	u32 type;
2834 
2835 	type = ptp_classify_raw(skb);
2836 	ptp_header = ptp_parse_header(skb, type);
2837 
2838 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2839 }
2840 
2841 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2842 				 u32 seconds, u32 nsec, u16 seq_id)
2843 {
2844 	struct skb_shared_hwtstamps shhwtstamps;
2845 	struct sk_buff *skb, *skb_tmp;
2846 	unsigned long flags;
2847 	bool ret = false;
2848 	u16 skb_sig;
2849 
2850 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2851 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2852 		lan8814_get_sig_tx(skb, &skb_sig);
2853 
2854 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2855 			continue;
2856 
2857 		__skb_unlink(skb, &ptp_priv->tx_queue);
2858 		ret = true;
2859 		break;
2860 	}
2861 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2862 
2863 	if (ret) {
2864 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2865 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2866 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2867 	}
2868 }
2869 
2870 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2871 {
2872 	struct phy_device *phydev = ptp_priv->phydev;
2873 	u32 seconds, nsec;
2874 	u16 seq_id;
2875 
2876 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2877 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2878 }
2879 
2880 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2881 {
2882 	struct phy_device *phydev = ptp_priv->phydev;
2883 	u32 reg;
2884 
2885 	do {
2886 		lan8814_dequeue_tx_skb(ptp_priv);
2887 
2888 		/* If other timestamps are available in the FIFO,
2889 		 * process them.
2890 		 */
2891 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2892 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2893 }
2894 
2895 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2896 			      struct lan8814_ptp_rx_ts *rx_ts)
2897 {
2898 	struct skb_shared_hwtstamps *shhwtstamps;
2899 	struct sk_buff *skb, *skb_tmp;
2900 	unsigned long flags;
2901 	bool ret = false;
2902 	u16 skb_sig;
2903 
2904 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2905 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2906 		lan8814_get_sig_rx(skb, &skb_sig);
2907 
2908 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2909 			continue;
2910 
2911 		__skb_unlink(skb, &ptp_priv->rx_queue);
2912 
2913 		ret = true;
2914 		break;
2915 	}
2916 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2917 
2918 	if (ret) {
2919 		shhwtstamps = skb_hwtstamps(skb);
2920 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2921 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2922 		netif_rx(skb);
2923 	}
2924 
2925 	return ret;
2926 }
2927 
2928 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2929 				struct lan8814_ptp_rx_ts *rx_ts)
2930 {
2931 	unsigned long flags;
2932 
2933 	/* If we failed to match the skb add it to the queue for when
2934 	 * the frame will come
2935 	 */
2936 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2937 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2938 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2939 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2940 	} else {
2941 		kfree(rx_ts);
2942 	}
2943 }
2944 
2945 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2946 {
2947 	struct phy_device *phydev = ptp_priv->phydev;
2948 	struct lan8814_ptp_rx_ts *rx_ts;
2949 	u32 reg;
2950 
2951 	do {
2952 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2953 		if (!rx_ts)
2954 			return;
2955 
2956 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2957 				      &rx_ts->seq_id);
2958 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2959 
2960 		/* If other timestamps are available in the FIFO,
2961 		 * process them.
2962 		 */
2963 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2964 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2965 }
2966 
2967 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2968 {
2969 	struct kszphy_priv *priv = phydev->priv;
2970 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2971 
2972 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2973 		lan8814_get_tx_ts(ptp_priv);
2974 
2975 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2976 		lan8814_get_rx_ts(ptp_priv);
2977 
2978 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2979 		lan8814_flush_fifo(phydev, true);
2980 		skb_queue_purge(&ptp_priv->tx_queue);
2981 	}
2982 
2983 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2984 		lan8814_flush_fifo(phydev, false);
2985 		skb_queue_purge(&ptp_priv->rx_queue);
2986 	}
2987 }
2988 
2989 static int lan8804_config_init(struct phy_device *phydev)
2990 {
2991 	int val;
2992 
2993 	/* MDI-X setting for swap A,B transmit */
2994 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2995 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2996 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2997 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2998 
2999 	/* Make sure that the PHY will not stop generating the clock when the
3000 	 * link partner goes down
3001 	 */
3002 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3003 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3004 
3005 	return 0;
3006 }
3007 
3008 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3009 {
3010 	int status;
3011 
3012 	status = phy_read(phydev, LAN8814_INTS);
3013 	if (status < 0) {
3014 		phy_error(phydev);
3015 		return IRQ_NONE;
3016 	}
3017 
3018 	if (status > 0)
3019 		phy_trigger_machine(phydev);
3020 
3021 	return IRQ_HANDLED;
3022 }
3023 
3024 #define LAN8804_OUTPUT_CONTROL			25
3025 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3026 #define LAN8804_CONTROL				31
3027 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3028 
3029 static int lan8804_config_intr(struct phy_device *phydev)
3030 {
3031 	int err;
3032 
3033 	/* This is an internal PHY of lan966x and is not possible to change the
3034 	 * polarity on the GIC found in lan966x, therefore change the polarity
3035 	 * of the interrupt in the PHY from being active low instead of active
3036 	 * high.
3037 	 */
3038 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3039 
3040 	/* By default interrupt buffer is open-drain in which case the interrupt
3041 	 * can be active only low. Therefore change the interrupt buffer to be
3042 	 * push-pull to be able to change interrupt polarity
3043 	 */
3044 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3045 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3046 
3047 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3048 		err = phy_read(phydev, LAN8814_INTS);
3049 		if (err < 0)
3050 			return err;
3051 
3052 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3053 		if (err)
3054 			return err;
3055 	} else {
3056 		err = phy_write(phydev, LAN8814_INTC, 0);
3057 		if (err)
3058 			return err;
3059 
3060 		err = phy_read(phydev, LAN8814_INTS);
3061 		if (err < 0)
3062 			return err;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3069 {
3070 	int ret = IRQ_NONE;
3071 	int irq_status;
3072 
3073 	irq_status = phy_read(phydev, LAN8814_INTS);
3074 	if (irq_status < 0) {
3075 		phy_error(phydev);
3076 		return IRQ_NONE;
3077 	}
3078 
3079 	if (irq_status & LAN8814_INT_LINK) {
3080 		phy_trigger_machine(phydev);
3081 		ret = IRQ_HANDLED;
3082 	}
3083 
3084 	while (true) {
3085 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3086 		if (!irq_status)
3087 			break;
3088 
3089 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3090 		ret = IRQ_HANDLED;
3091 	}
3092 
3093 	return ret;
3094 }
3095 
3096 static int lan8814_ack_interrupt(struct phy_device *phydev)
3097 {
3098 	/* bit[12..0] int status, which is a read and clear register. */
3099 	int rc;
3100 
3101 	rc = phy_read(phydev, LAN8814_INTS);
3102 
3103 	return (rc < 0) ? rc : 0;
3104 }
3105 
3106 static int lan8814_config_intr(struct phy_device *phydev)
3107 {
3108 	int err;
3109 
3110 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3111 			      LAN8814_INTR_CTRL_REG_POLARITY |
3112 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3113 
3114 	/* enable / disable interrupts */
3115 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3116 		err = lan8814_ack_interrupt(phydev);
3117 		if (err)
3118 			return err;
3119 
3120 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3121 	} else {
3122 		err = phy_write(phydev, LAN8814_INTC, 0);
3123 		if (err)
3124 			return err;
3125 
3126 		err = lan8814_ack_interrupt(phydev);
3127 	}
3128 
3129 	return err;
3130 }
3131 
3132 static void lan8814_ptp_init(struct phy_device *phydev)
3133 {
3134 	struct kszphy_priv *priv = phydev->priv;
3135 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3136 	u32 temp;
3137 
3138 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3139 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3140 		return;
3141 
3142 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3143 
3144 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3145 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3146 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3147 
3148 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3149 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3150 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3151 
3152 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3153 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3154 
3155 	/* Removing default registers configs related to L2 and IP */
3156 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3157 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3158 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3159 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3160 
3161 	/* Disable checking for minorVersionPTP field */
3162 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3163 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3164 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3165 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3166 
3167 	skb_queue_head_init(&ptp_priv->tx_queue);
3168 	skb_queue_head_init(&ptp_priv->rx_queue);
3169 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3170 	spin_lock_init(&ptp_priv->rx_ts_lock);
3171 
3172 	ptp_priv->phydev = phydev;
3173 
3174 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3175 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3176 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3177 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3178 
3179 	phydev->mii_ts = &ptp_priv->mii_ts;
3180 }
3181 
3182 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3183 {
3184 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3185 
3186 	/* Initialise shared lock for clock*/
3187 	mutex_init(&shared->shared_lock);
3188 
3189 	shared->ptp_clock_info.owner = THIS_MODULE;
3190 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3191 	shared->ptp_clock_info.max_adj = 31249999;
3192 	shared->ptp_clock_info.n_alarm = 0;
3193 	shared->ptp_clock_info.n_ext_ts = 0;
3194 	shared->ptp_clock_info.n_pins = 0;
3195 	shared->ptp_clock_info.pps = 0;
3196 	shared->ptp_clock_info.pin_config = NULL;
3197 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3198 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3199 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3200 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3201 	shared->ptp_clock_info.getcrosststamp = NULL;
3202 
3203 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3204 					       &phydev->mdio.dev);
3205 	if (IS_ERR(shared->ptp_clock)) {
3206 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3207 			   PTR_ERR(shared->ptp_clock));
3208 		return -EINVAL;
3209 	}
3210 
3211 	/* Check if PHC support is missing at the configuration level */
3212 	if (!shared->ptp_clock)
3213 		return 0;
3214 
3215 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3216 
3217 	shared->phydev = phydev;
3218 
3219 	/* The EP.4 is shared between all the PHYs in the package and also it
3220 	 * can be accessed by any of the PHYs
3221 	 */
3222 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3223 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3224 			      PTP_OPERATING_MODE_STANDALONE_);
3225 
3226 	return 0;
3227 }
3228 
3229 static void lan8814_setup_led(struct phy_device *phydev, int val)
3230 {
3231 	int temp;
3232 
3233 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3234 
3235 	if (val)
3236 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3237 	else
3238 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3239 
3240 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3241 }
3242 
3243 static int lan8814_config_init(struct phy_device *phydev)
3244 {
3245 	struct kszphy_priv *lan8814 = phydev->priv;
3246 	int val;
3247 
3248 	/* Reset the PHY */
3249 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3250 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3251 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3252 
3253 	/* Disable ANEG with QSGMII PCS Host side */
3254 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3255 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3256 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3257 
3258 	/* MDI-X setting for swap A,B transmit */
3259 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3260 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3261 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3262 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3263 
3264 	if (lan8814->led_mode >= 0)
3265 		lan8814_setup_led(phydev, lan8814->led_mode);
3266 
3267 	return 0;
3268 }
3269 
3270 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3271  * function called in suspend. Because the GPIO line can be shared, so if one of
3272  * the phys goes back in coma mode, then all the other PHYs will go, which is
3273  * wrong.
3274  */
3275 static int lan8814_release_coma_mode(struct phy_device *phydev)
3276 {
3277 	struct gpio_desc *gpiod;
3278 
3279 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3280 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3281 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3282 	if (IS_ERR(gpiod))
3283 		return PTR_ERR(gpiod);
3284 
3285 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3286 	gpiod_set_value_cansleep(gpiod, 0);
3287 
3288 	return 0;
3289 }
3290 
3291 static int lan8814_probe(struct phy_device *phydev)
3292 {
3293 	const struct kszphy_type *type = phydev->drv->driver_data;
3294 	struct kszphy_priv *priv;
3295 	u16 addr;
3296 	int err;
3297 
3298 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3299 	if (!priv)
3300 		return -ENOMEM;
3301 
3302 	phydev->priv = priv;
3303 
3304 	priv->type = type;
3305 
3306 	kszphy_parse_led_mode(phydev);
3307 
3308 	/* Strap-in value for PHY address, below register read gives starting
3309 	 * phy address value
3310 	 */
3311 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3312 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3313 			      addr, sizeof(struct lan8814_shared_priv));
3314 
3315 	if (phy_package_init_once(phydev)) {
3316 		err = lan8814_release_coma_mode(phydev);
3317 		if (err)
3318 			return err;
3319 
3320 		err = lan8814_ptp_probe_once(phydev);
3321 		if (err)
3322 			return err;
3323 	}
3324 
3325 	lan8814_ptp_init(phydev);
3326 
3327 	return 0;
3328 }
3329 
3330 #define LAN8841_MMD_TIMER_REG			0
3331 #define LAN8841_MMD0_REGISTER_17		17
3332 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3333 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3334 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3335 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3336 #define LAN8841_MMD_ANALOG_REG			28
3337 #define LAN8841_ANALOG_CONTROL_1		1
3338 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3339 #define LAN8841_ANALOG_CONTROL_10		13
3340 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3341 #define LAN8841_ANALOG_CONTROL_11		14
3342 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3343 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3344 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3345 #define LAN8841_BTRX_POWER_DOWN			70
3346 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3347 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3348 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3349 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3350 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3351 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3352 #define LAN8841_ADC_CHANNEL_MASK		198
3353 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3354 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3355 #define LAN8841_PTP_RX_VERSION			374
3356 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3357 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3358 #define LAN8841_PTP_TX_VERSION			438
3359 #define LAN8841_PTP_CMD_CTL			256
3360 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3361 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3362 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3363 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3364 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3365 #define LAN8841_PTP_RX_MODE			381
3366 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3367 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3368 
3369 static int lan8841_config_init(struct phy_device *phydev)
3370 {
3371 	int ret;
3372 
3373 	ret = ksz9131_config_init(phydev);
3374 	if (ret)
3375 		return ret;
3376 
3377 	/* Initialize the HW by resetting everything */
3378 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3379 		       LAN8841_PTP_CMD_CTL,
3380 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3381 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3382 
3383 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3384 		       LAN8841_PTP_CMD_CTL,
3385 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3386 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3387 
3388 	/* Don't process any frames */
3389 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3390 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3391 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3392 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3393 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3394 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3395 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3396 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3397 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3398 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3399 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3400 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3401 
3402 	/* Disable checking for minorVersionPTP field */
3403 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3404 		      LAN8841_PTP_RX_VERSION, 0xff00);
3405 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3406 		      LAN8841_PTP_TX_VERSION, 0xff00);
3407 
3408 	/* 100BT Clause 40 improvenent errata */
3409 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3410 		      LAN8841_ANALOG_CONTROL_1,
3411 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3412 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3413 		      LAN8841_ANALOG_CONTROL_10,
3414 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3415 
3416 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3417 	 * Magnetics
3418 	 */
3419 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3420 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3421 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3422 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3423 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3424 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3425 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3426 			      LAN8841_BTRX_POWER_DOWN,
3427 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3428 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3429 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3430 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3431 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3432 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3433 	}
3434 
3435 	/* LDO Adjustment errata */
3436 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3437 		      LAN8841_ANALOG_CONTROL_11,
3438 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3439 
3440 	/* 100BT RGMII latency tuning errata */
3441 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3442 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3443 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3444 		      LAN8841_MMD0_REGISTER_17,
3445 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3446 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3447 
3448 	return 0;
3449 }
3450 
3451 #define LAN8841_OUTPUT_CTRL			25
3452 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3453 #define LAN8841_INT_PTP				BIT(9)
3454 
3455 static int lan8841_config_intr(struct phy_device *phydev)
3456 {
3457 	int err;
3458 
3459 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3460 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3461 
3462 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3463 		err = phy_read(phydev, LAN8814_INTS);
3464 		if (err)
3465 			return err;
3466 
3467 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3468 		 * even if it PTP is not enabled. Because the underneath blocks
3469 		 * will not enable the PTP so we will never get the PTP
3470 		 * interrupt.
3471 		 */
3472 		err = phy_write(phydev, LAN8814_INTC,
3473 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3474 	} else {
3475 		err = phy_write(phydev, LAN8814_INTC, 0);
3476 		if (err)
3477 			return err;
3478 
3479 		err = phy_read(phydev, LAN8814_INTS);
3480 	}
3481 
3482 	return err;
3483 }
3484 
3485 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3486 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3487 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3488 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3489 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3490 #define LAN8841_PTP_TX_MSG_HEADER2			455
3491 
3492 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3493 				  u32 *sec, u32 *nsec, u16 *seq)
3494 {
3495 	struct phy_device *phydev = ptp_priv->phydev;
3496 
3497 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3498 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3499 		return false;
3500 
3501 	*nsec = ((*nsec & 0x3fff) << 16);
3502 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3503 
3504 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3505 	*sec = *sec << 16;
3506 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3507 
3508 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3509 
3510 	return true;
3511 }
3512 
3513 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3514 {
3515 	u32 sec, nsec;
3516 	u16 seq;
3517 
3518 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3519 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3520 }
3521 
3522 #define LAN8841_PTP_INT_STS			259
3523 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3524 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3525 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3526 
3527 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3528 {
3529 	struct phy_device *phydev = ptp_priv->phydev;
3530 	int i;
3531 
3532 	for (i = 0; i < FIFO_SIZE; ++i)
3533 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3534 
3535 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3536 }
3537 
3538 #define LAN8841_PTP_GPIO_CAP_STS			506
3539 #define LAN8841_PTP_GPIO_SEL				327
3540 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3541 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3542 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3543 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3544 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3545 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3546 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3547 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3548 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3549 
3550 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3551 {
3552 	struct phy_device *phydev = ptp_priv->phydev;
3553 	struct ptp_clock_event ptp_event = {0};
3554 	int pin, ret, tmp;
3555 	s32 sec, nsec;
3556 
3557 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3558 	if (pin == -1)
3559 		return;
3560 
3561 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3562 	if (tmp < 0)
3563 		return;
3564 
3565 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3566 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3567 	if (ret)
3568 		return;
3569 
3570 	mutex_lock(&ptp_priv->ptp_lock);
3571 	if (tmp & BIT(pin)) {
3572 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3573 		sec <<= 16;
3574 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3575 
3576 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3577 		nsec <<= 16;
3578 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3579 	} else {
3580 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3581 		sec <<= 16;
3582 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3583 
3584 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3585 		nsec <<= 16;
3586 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3587 	}
3588 	mutex_unlock(&ptp_priv->ptp_lock);
3589 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3590 	if (ret)
3591 		return;
3592 
3593 	ptp_event.index = 0;
3594 	ptp_event.timestamp = ktime_set(sec, nsec);
3595 	ptp_event.type = PTP_CLOCK_EXTTS;
3596 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3597 }
3598 
3599 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3600 {
3601 	struct kszphy_priv *priv = phydev->priv;
3602 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3603 	u16 status;
3604 
3605 	do {
3606 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3607 
3608 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3609 			lan8841_ptp_process_tx_ts(ptp_priv);
3610 
3611 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3612 			lan8841_gpio_process_cap(ptp_priv);
3613 
3614 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3615 			lan8841_ptp_flush_fifo(ptp_priv);
3616 			skb_queue_purge(&ptp_priv->tx_queue);
3617 		}
3618 
3619 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3620 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3621 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3622 }
3623 
3624 #define LAN8841_INTS_PTP		BIT(9)
3625 
3626 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3627 {
3628 	irqreturn_t ret = IRQ_NONE;
3629 	int irq_status;
3630 
3631 	irq_status = phy_read(phydev, LAN8814_INTS);
3632 	if (irq_status < 0) {
3633 		phy_error(phydev);
3634 		return IRQ_NONE;
3635 	}
3636 
3637 	if (irq_status & LAN8814_INT_LINK) {
3638 		phy_trigger_machine(phydev);
3639 		ret = IRQ_HANDLED;
3640 	}
3641 
3642 	if (irq_status & LAN8841_INTS_PTP) {
3643 		lan8841_handle_ptp_interrupt(phydev);
3644 		ret = IRQ_HANDLED;
3645 	}
3646 
3647 	return ret;
3648 }
3649 
3650 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3651 			   struct ethtool_ts_info *info)
3652 {
3653 	struct kszphy_ptp_priv *ptp_priv;
3654 
3655 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3656 
3657 	info->phc_index = ptp_priv->ptp_clock ?
3658 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3659 	if (info->phc_index == -1)
3660 		return 0;
3661 
3662 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3663 				SOF_TIMESTAMPING_RX_HARDWARE |
3664 				SOF_TIMESTAMPING_RAW_HARDWARE;
3665 
3666 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3667 			 (1 << HWTSTAMP_TX_ON) |
3668 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3669 
3670 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3671 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3672 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3673 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3674 
3675 	return 0;
3676 }
3677 
3678 #define LAN8841_PTP_INT_EN			260
3679 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3680 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3681 
3682 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3683 					  bool enable)
3684 {
3685 	struct phy_device *phydev = ptp_priv->phydev;
3686 
3687 	if (enable) {
3688 		/* Enable interrupts on the TX side */
3689 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3690 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3691 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3692 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3693 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3694 
3695 		/* Enable the modification of the frame on RX side,
3696 		 * this will add the ns and 2 bits of sec in the reserved field
3697 		 * of the PTP header
3698 		 */
3699 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3700 			       LAN8841_PTP_RX_MODE,
3701 			       LAN8841_PTP_INSERT_TS_EN |
3702 			       LAN8841_PTP_INSERT_TS_32BIT,
3703 			       LAN8841_PTP_INSERT_TS_EN |
3704 			       LAN8841_PTP_INSERT_TS_32BIT);
3705 
3706 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3707 	} else {
3708 		/* Disable interrupts on the TX side */
3709 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3710 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3711 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3712 
3713 		/* Disable modification of the RX frames */
3714 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3715 			       LAN8841_PTP_RX_MODE,
3716 			       LAN8841_PTP_INSERT_TS_EN |
3717 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3718 
3719 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3720 	}
3721 }
3722 
3723 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3724 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3725 #define LAN8841_PTP_TX_MOD			445
3726 
3727 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
3728 			    struct kernel_hwtstamp_config *config,
3729 			    struct netlink_ext_ack *extack)
3730 {
3731 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3732 	struct phy_device *phydev = ptp_priv->phydev;
3733 	int txcfg = 0, rxcfg = 0;
3734 	int pkt_ts_enable;
3735 
3736 	ptp_priv->hwts_tx_type = config->tx_type;
3737 	ptp_priv->rx_filter = config->rx_filter;
3738 
3739 	switch (config->rx_filter) {
3740 	case HWTSTAMP_FILTER_NONE:
3741 		ptp_priv->layer = 0;
3742 		ptp_priv->version = 0;
3743 		break;
3744 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3745 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3746 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3747 		ptp_priv->layer = PTP_CLASS_L4;
3748 		ptp_priv->version = PTP_CLASS_V2;
3749 		break;
3750 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3751 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3752 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3753 		ptp_priv->layer = PTP_CLASS_L2;
3754 		ptp_priv->version = PTP_CLASS_V2;
3755 		break;
3756 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3757 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3758 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3759 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3760 		ptp_priv->version = PTP_CLASS_V2;
3761 		break;
3762 	default:
3763 		return -ERANGE;
3764 	}
3765 
3766 	/* Setup parsing of the frames and enable the timestamping for ptp
3767 	 * frames
3768 	 */
3769 	if (ptp_priv->layer & PTP_CLASS_L2) {
3770 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3771 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3772 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3773 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3774 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3775 	}
3776 
3777 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3778 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3779 
3780 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3781 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3782 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3783 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3784 
3785 	/* Enable / disable of the TX timestamp in the SYNC frames */
3786 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3787 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3788 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3789 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3790 
3791 	/* Now enable/disable the timestamping */
3792 	lan8841_ptp_enable_processing(ptp_priv,
3793 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
3794 
3795 	skb_queue_purge(&ptp_priv->tx_queue);
3796 
3797 	lan8841_ptp_flush_fifo(ptp_priv);
3798 
3799 	return 0;
3800 }
3801 
3802 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3803 			     struct sk_buff *skb, int type)
3804 {
3805 	struct kszphy_ptp_priv *ptp_priv =
3806 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3807 	struct ptp_header *header = ptp_parse_header(skb, type);
3808 	struct skb_shared_hwtstamps *shhwtstamps;
3809 	struct timespec64 ts;
3810 	unsigned long flags;
3811 	u32 ts_header;
3812 
3813 	if (!header)
3814 		return false;
3815 
3816 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3817 	    type == PTP_CLASS_NONE)
3818 		return false;
3819 
3820 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3821 		return false;
3822 
3823 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3824 	ts.tv_sec = ptp_priv->seconds;
3825 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3826 	ts_header = __be32_to_cpu(header->reserved2);
3827 
3828 	shhwtstamps = skb_hwtstamps(skb);
3829 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3830 
3831 	/* Check for any wrap arounds for the second part */
3832 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3833 		ts.tv_sec -= GENMASK(1, 0) + 1;
3834 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3835 		ts.tv_sec += 1;
3836 
3837 	shhwtstamps->hwtstamp =
3838 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3839 			  ts_header & GENMASK(29, 0));
3840 	header->reserved2 = 0;
3841 
3842 	netif_rx(skb);
3843 
3844 	return true;
3845 }
3846 
3847 #define LAN8841_EVENT_A		0
3848 #define LAN8841_EVENT_B		1
3849 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3850 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3851 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3852 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3853 
3854 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3855 				  s64 sec, u32 nsec)
3856 {
3857 	struct phy_device *phydev = ptp_priv->phydev;
3858 	int ret;
3859 
3860 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3861 			    upper_16_bits(sec));
3862 	if (ret)
3863 		return ret;
3864 
3865 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3866 			    lower_16_bits(sec));
3867 	if (ret)
3868 		return ret;
3869 
3870 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3871 			    upper_16_bits(nsec));
3872 	if (ret)
3873 		return ret;
3874 
3875 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3876 			    lower_16_bits(nsec));
3877 }
3878 
3879 #define LAN8841_BUFFER_TIME	2
3880 
3881 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3882 				     const struct timespec64 *ts)
3883 {
3884 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3885 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3886 }
3887 
3888 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3889 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3890 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3891 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3892 
3893 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3894 				  s64 sec, u32 nsec)
3895 {
3896 	struct phy_device *phydev = ptp_priv->phydev;
3897 	int ret;
3898 
3899 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3900 			    upper_16_bits(sec));
3901 	if (ret)
3902 		return ret;
3903 
3904 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3905 			    lower_16_bits(sec));
3906 	if (ret)
3907 		return ret;
3908 
3909 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3910 			    upper_16_bits(nsec));
3911 	if (ret)
3912 		return ret;
3913 
3914 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3915 			     lower_16_bits(nsec));
3916 }
3917 
3918 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3919 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3920 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3921 #define LAN8841_PTP_LTC_SET_NS_HI	265
3922 #define LAN8841_PTP_LTC_SET_NS_LO	266
3923 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3924 
3925 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3926 				 const struct timespec64 *ts)
3927 {
3928 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3929 							ptp_clock_info);
3930 	struct phy_device *phydev = ptp_priv->phydev;
3931 	unsigned long flags;
3932 	int ret;
3933 
3934 	/* Set the value to be stored */
3935 	mutex_lock(&ptp_priv->ptp_lock);
3936 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3937 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3938 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3939 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3940 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3941 
3942 	/* Set the command to load the LTC */
3943 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3944 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3945 	ret = lan8841_ptp_update_target(ptp_priv, ts);
3946 	mutex_unlock(&ptp_priv->ptp_lock);
3947 
3948 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3949 	ptp_priv->seconds = ts->tv_sec;
3950 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3951 
3952 	return ret;
3953 }
3954 
3955 #define LAN8841_PTP_LTC_RD_SEC_HI	358
3956 #define LAN8841_PTP_LTC_RD_SEC_MID	359
3957 #define LAN8841_PTP_LTC_RD_SEC_LO	360
3958 #define LAN8841_PTP_LTC_RD_NS_HI	361
3959 #define LAN8841_PTP_LTC_RD_NS_LO	362
3960 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3961 
3962 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3963 				 struct timespec64 *ts)
3964 {
3965 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3966 							ptp_clock_info);
3967 	struct phy_device *phydev = ptp_priv->phydev;
3968 	time64_t s;
3969 	s64 ns;
3970 
3971 	mutex_lock(&ptp_priv->ptp_lock);
3972 	/* Issue the command to read the LTC */
3973 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3974 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3975 
3976 	/* Read the LTC */
3977 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3978 	s <<= 16;
3979 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3980 	s <<= 16;
3981 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3982 
3983 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3984 	ns <<= 16;
3985 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3986 	mutex_unlock(&ptp_priv->ptp_lock);
3987 
3988 	set_normalized_timespec64(ts, s, ns);
3989 	return 0;
3990 }
3991 
3992 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
3993 				   struct timespec64 *ts)
3994 {
3995 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3996 							ptp_clock_info);
3997 	struct phy_device *phydev = ptp_priv->phydev;
3998 	time64_t s;
3999 
4000 	mutex_lock(&ptp_priv->ptp_lock);
4001 	/* Issue the command to read the LTC */
4002 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4003 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4004 
4005 	/* Read the LTC */
4006 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4007 	s <<= 16;
4008 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4009 	s <<= 16;
4010 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4011 	mutex_unlock(&ptp_priv->ptp_lock);
4012 
4013 	set_normalized_timespec64(ts, s, 0);
4014 }
4015 
4016 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4017 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4018 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4019 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4020 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4021 
4022 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4023 {
4024 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4025 							ptp_clock_info);
4026 	struct phy_device *phydev = ptp_priv->phydev;
4027 	struct timespec64 ts;
4028 	bool add = true;
4029 	u32 nsec;
4030 	s32 sec;
4031 	int ret;
4032 
4033 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4034 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4035 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4036 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4037 	 * possible adjustments so we will not have these corner cases
4038 	 */
4039 	if (delta > 10000000000LL || delta < -10000000000LL) {
4040 		/* The timeadjustment is too big, so fall back using set time */
4041 		u64 now;
4042 
4043 		ptp->gettime64(ptp, &ts);
4044 
4045 		now = ktime_to_ns(timespec64_to_ktime(ts));
4046 		ts = ns_to_timespec64(now + delta);
4047 
4048 		ptp->settime64(ptp, &ts);
4049 		return 0;
4050 	}
4051 
4052 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4053 	if (delta < 0 && nsec != 0) {
4054 		/* It is not allowed to adjust low the nsec part, therefore
4055 		 * subtract more from second part and add to nanosecond such
4056 		 * that would roll over, so the second part will increase
4057 		 */
4058 		sec--;
4059 		nsec = NSEC_PER_SEC - nsec;
4060 	}
4061 
4062 	/* Calculate the adjustments and the direction */
4063 	if (delta < 0)
4064 		add = false;
4065 
4066 	if (nsec > 0)
4067 		/* add 8 ns to cover the likely normal increment */
4068 		nsec += 8;
4069 
4070 	if (nsec >= NSEC_PER_SEC) {
4071 		/* carry into seconds */
4072 		sec++;
4073 		nsec -= NSEC_PER_SEC;
4074 	}
4075 
4076 	mutex_lock(&ptp_priv->ptp_lock);
4077 	if (sec) {
4078 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4079 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4080 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4081 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4082 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4083 	}
4084 
4085 	if (nsec) {
4086 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4087 			      nsec & 0xffff);
4088 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4089 			      (nsec >> 16) & 0x3fff);
4090 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4091 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4092 	}
4093 	mutex_unlock(&ptp_priv->ptp_lock);
4094 
4095 	/* Update the target clock */
4096 	ptp->gettime64(ptp, &ts);
4097 	mutex_lock(&ptp_priv->ptp_lock);
4098 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4099 	mutex_unlock(&ptp_priv->ptp_lock);
4100 
4101 	return ret;
4102 }
4103 
4104 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4105 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4106 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4107 
4108 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4109 {
4110 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4111 							ptp_clock_info);
4112 	struct phy_device *phydev = ptp_priv->phydev;
4113 	bool faster = true;
4114 	u32 rate;
4115 
4116 	if (!scaled_ppm)
4117 		return 0;
4118 
4119 	if (scaled_ppm < 0) {
4120 		scaled_ppm = -scaled_ppm;
4121 		faster = false;
4122 	}
4123 
4124 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4125 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4126 
4127 	mutex_lock(&ptp_priv->ptp_lock);
4128 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4129 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4130 			     : upper_16_bits(rate) & 0x3fff);
4131 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4132 	mutex_unlock(&ptp_priv->ptp_lock);
4133 
4134 	return 0;
4135 }
4136 
4137 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4138 			      enum ptp_pin_function func, unsigned int chan)
4139 {
4140 	switch (func) {
4141 	case PTP_PF_NONE:
4142 	case PTP_PF_PEROUT:
4143 	case PTP_PF_EXTTS:
4144 		break;
4145 	default:
4146 		return -1;
4147 	}
4148 
4149 	return 0;
4150 }
4151 
4152 #define LAN8841_PTP_GPIO_NUM	10
4153 #define LAN8841_GPIO_EN		128
4154 #define LAN8841_GPIO_DIR	129
4155 #define LAN8841_GPIO_BUF	130
4156 
4157 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4158 {
4159 	struct phy_device *phydev = ptp_priv->phydev;
4160 	int ret;
4161 
4162 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4163 	if (ret)
4164 		return ret;
4165 
4166 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4167 	if (ret)
4168 		return ret;
4169 
4170 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4171 }
4172 
4173 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4174 {
4175 	struct phy_device *phydev = ptp_priv->phydev;
4176 	int ret;
4177 
4178 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4179 	if (ret)
4180 		return ret;
4181 
4182 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4183 	if (ret)
4184 		return ret;
4185 
4186 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4187 }
4188 
4189 #define LAN8841_GPIO_DATA_SEL1				131
4190 #define LAN8841_GPIO_DATA_SEL2				132
4191 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4192 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4193 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4194 #define LAN8841_PTP_GENERAL_CONFIG			257
4195 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4196 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4197 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4198 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4199 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4200 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4201 
4202 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4203 				    u8 event)
4204 {
4205 	struct phy_device *phydev = ptp_priv->phydev;
4206 	u16 tmp;
4207 	int ret;
4208 
4209 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4210 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4211 	 * depending on the pin, it requires to read a different register
4212 	 */
4213 	if (pin < 5) {
4214 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4215 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4216 	} else {
4217 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4218 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4219 	}
4220 	if (ret)
4221 		return ret;
4222 
4223 	/* Disable the event */
4224 	if (event == LAN8841_EVENT_A)
4225 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4226 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4227 	else
4228 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4229 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4230 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4231 }
4232 
4233 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4234 				    u8 event, int pulse_width)
4235 {
4236 	struct phy_device *phydev = ptp_priv->phydev;
4237 	u16 tmp;
4238 	int ret;
4239 
4240 	/* Enable the event */
4241 	if (event == LAN8841_EVENT_A)
4242 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4243 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4244 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4245 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4246 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4247 	else
4248 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4249 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4250 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4251 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4252 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4253 	if (ret)
4254 		return ret;
4255 
4256 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4257 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4258 	 * depending on the pin, it requires to read a different register
4259 	 */
4260 	if (event == LAN8841_EVENT_A)
4261 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4262 	else
4263 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4264 
4265 	if (pin < 5)
4266 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4267 				       tmp << (3 * pin));
4268 	else
4269 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4270 				       tmp << (3 * (pin - 5)));
4271 
4272 	return ret;
4273 }
4274 
4275 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4276 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4277 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4278 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4279 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4280 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4281 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4282 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4283 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4284 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4285 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4286 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4287 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4288 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4289 
4290 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4291 			      struct ptp_clock_request *rq, int on)
4292 {
4293 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4294 							ptp_clock_info);
4295 	struct phy_device *phydev = ptp_priv->phydev;
4296 	struct timespec64 ts_on, ts_period;
4297 	s64 on_nsec, period_nsec;
4298 	int pulse_width;
4299 	int pin;
4300 	int ret;
4301 
4302 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4303 		return -EOPNOTSUPP;
4304 
4305 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4306 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4307 		return -EINVAL;
4308 
4309 	if (!on) {
4310 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4311 		if (ret)
4312 			return ret;
4313 
4314 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4315 	}
4316 
4317 	ts_on.tv_sec = rq->perout.on.sec;
4318 	ts_on.tv_nsec = rq->perout.on.nsec;
4319 	on_nsec = timespec64_to_ns(&ts_on);
4320 
4321 	ts_period.tv_sec = rq->perout.period.sec;
4322 	ts_period.tv_nsec = rq->perout.period.nsec;
4323 	period_nsec = timespec64_to_ns(&ts_period);
4324 
4325 	if (period_nsec < 200) {
4326 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4327 				    phydev_name(phydev));
4328 		return -EOPNOTSUPP;
4329 	}
4330 
4331 	if (on_nsec >= period_nsec) {
4332 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4333 				    phydev_name(phydev));
4334 		return -EINVAL;
4335 	}
4336 
4337 	switch (on_nsec) {
4338 	case 200000000:
4339 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4340 		break;
4341 	case 100000000:
4342 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4343 		break;
4344 	case 50000000:
4345 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4346 		break;
4347 	case 10000000:
4348 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4349 		break;
4350 	case 5000000:
4351 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4352 		break;
4353 	case 1000000:
4354 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4355 		break;
4356 	case 500000:
4357 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4358 		break;
4359 	case 100000:
4360 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4361 		break;
4362 	case 50000:
4363 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4364 		break;
4365 	case 10000:
4366 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4367 		break;
4368 	case 5000:
4369 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4370 		break;
4371 	case 1000:
4372 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4373 		break;
4374 	case 500:
4375 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4376 		break;
4377 	case 100:
4378 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4379 		break;
4380 	default:
4381 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4382 				    phydev_name(phydev));
4383 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4384 		break;
4385 	}
4386 
4387 	mutex_lock(&ptp_priv->ptp_lock);
4388 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4389 				     rq->perout.start.nsec);
4390 	mutex_unlock(&ptp_priv->ptp_lock);
4391 	if (ret)
4392 		return ret;
4393 
4394 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4395 				     rq->perout.period.nsec);
4396 	if (ret)
4397 		return ret;
4398 
4399 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4400 				       pulse_width);
4401 	if (ret)
4402 		return ret;
4403 
4404 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4405 	if (ret)
4406 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4407 
4408 	return ret;
4409 }
4410 
4411 #define LAN8841_PTP_GPIO_CAP_EN			496
4412 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4413 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4414 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4415 
4416 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4417 				u32 flags)
4418 {
4419 	struct phy_device *phydev = ptp_priv->phydev;
4420 	u16 tmp = 0;
4421 	int ret;
4422 
4423 	/* Set GPIO to be intput */
4424 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4425 	if (ret)
4426 		return ret;
4427 
4428 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4429 	if (ret)
4430 		return ret;
4431 
4432 	/* Enable capture on the edges of the pin */
4433 	if (flags & PTP_RISING_EDGE)
4434 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4435 	if (flags & PTP_FALLING_EDGE)
4436 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4437 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4438 	if (ret)
4439 		return ret;
4440 
4441 	/* Enable interrupt */
4442 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4443 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4444 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4445 }
4446 
4447 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4448 {
4449 	struct phy_device *phydev = ptp_priv->phydev;
4450 	int ret;
4451 
4452 	/* Set GPIO to be output */
4453 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4454 	if (ret)
4455 		return ret;
4456 
4457 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4458 	if (ret)
4459 		return ret;
4460 
4461 	/* Disable capture on both of the edges */
4462 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4463 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4464 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4465 			     0);
4466 	if (ret)
4467 		return ret;
4468 
4469 	/* Disable interrupt */
4470 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4471 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4472 			      0);
4473 }
4474 
4475 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4476 			     struct ptp_clock_request *rq, int on)
4477 {
4478 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4479 							ptp_clock_info);
4480 	int pin;
4481 	int ret;
4482 
4483 	/* Reject requests with unsupported flags */
4484 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4485 				PTP_EXTTS_EDGES |
4486 				PTP_STRICT_FLAGS))
4487 		return -EOPNOTSUPP;
4488 
4489 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4490 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4491 		return -EINVAL;
4492 
4493 	mutex_lock(&ptp_priv->ptp_lock);
4494 	if (on)
4495 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4496 	else
4497 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4498 	mutex_unlock(&ptp_priv->ptp_lock);
4499 
4500 	return ret;
4501 }
4502 
4503 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4504 			      struct ptp_clock_request *rq, int on)
4505 {
4506 	switch (rq->type) {
4507 	case PTP_CLK_REQ_EXTTS:
4508 		return lan8841_ptp_extts(ptp, rq, on);
4509 	case PTP_CLK_REQ_PEROUT:
4510 		return lan8841_ptp_perout(ptp, rq, on);
4511 	default:
4512 		return -EOPNOTSUPP;
4513 	}
4514 
4515 	return 0;
4516 }
4517 
4518 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4519 {
4520 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4521 							ptp_clock_info);
4522 	struct timespec64 ts;
4523 	unsigned long flags;
4524 
4525 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4526 
4527 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4528 	ptp_priv->seconds = ts.tv_sec;
4529 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4530 
4531 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4532 }
4533 
4534 static struct ptp_clock_info lan8841_ptp_clock_info = {
4535 	.owner		= THIS_MODULE,
4536 	.name		= "lan8841 ptp",
4537 	.max_adj	= 31249999,
4538 	.gettime64	= lan8841_ptp_gettime64,
4539 	.settime64	= lan8841_ptp_settime64,
4540 	.adjtime	= lan8841_ptp_adjtime,
4541 	.adjfine	= lan8841_ptp_adjfine,
4542 	.verify         = lan8841_ptp_verify,
4543 	.enable         = lan8841_ptp_enable,
4544 	.do_aux_work	= lan8841_ptp_do_aux_work,
4545 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4546 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4547 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4548 };
4549 
4550 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4551 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4552 
4553 static int lan8841_probe(struct phy_device *phydev)
4554 {
4555 	struct kszphy_ptp_priv *ptp_priv;
4556 	struct kszphy_priv *priv;
4557 	int err;
4558 
4559 	err = kszphy_probe(phydev);
4560 	if (err)
4561 		return err;
4562 
4563 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4564 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4565 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4566 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4567 
4568 	/* Register the clock */
4569 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4570 		return 0;
4571 
4572 	priv = phydev->priv;
4573 	ptp_priv = &priv->ptp_priv;
4574 
4575 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4576 					    LAN8841_PTP_GPIO_NUM,
4577 					    sizeof(*ptp_priv->pin_config),
4578 					    GFP_KERNEL);
4579 	if (!ptp_priv->pin_config)
4580 		return -ENOMEM;
4581 
4582 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4583 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4584 
4585 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4586 		p->index = i;
4587 		p->func = PTP_PF_NONE;
4588 	}
4589 
4590 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4591 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4592 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4593 						 &phydev->mdio.dev);
4594 	if (IS_ERR(ptp_priv->ptp_clock)) {
4595 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4596 			   PTR_ERR(ptp_priv->ptp_clock));
4597 		return -EINVAL;
4598 	}
4599 
4600 	if (!ptp_priv->ptp_clock)
4601 		return 0;
4602 
4603 	/* Initialize the SW */
4604 	skb_queue_head_init(&ptp_priv->tx_queue);
4605 	ptp_priv->phydev = phydev;
4606 	mutex_init(&ptp_priv->ptp_lock);
4607 	spin_lock_init(&ptp_priv->seconds_lock);
4608 
4609 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4610 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4611 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4612 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4613 
4614 	phydev->mii_ts = &ptp_priv->mii_ts;
4615 
4616 	return 0;
4617 }
4618 
4619 static int lan8841_suspend(struct phy_device *phydev)
4620 {
4621 	struct kszphy_priv *priv = phydev->priv;
4622 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4623 
4624 	ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4625 
4626 	return genphy_suspend(phydev);
4627 }
4628 
4629 static struct phy_driver ksphy_driver[] = {
4630 {
4631 	.phy_id		= PHY_ID_KS8737,
4632 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4633 	.name		= "Micrel KS8737",
4634 	/* PHY_BASIC_FEATURES */
4635 	.driver_data	= &ks8737_type,
4636 	.probe		= kszphy_probe,
4637 	.config_init	= kszphy_config_init,
4638 	.config_intr	= kszphy_config_intr,
4639 	.handle_interrupt = kszphy_handle_interrupt,
4640 	.suspend	= kszphy_suspend,
4641 	.resume		= kszphy_resume,
4642 }, {
4643 	.phy_id		= PHY_ID_KSZ8021,
4644 	.phy_id_mask	= 0x00ffffff,
4645 	.name		= "Micrel KSZ8021 or KSZ8031",
4646 	/* PHY_BASIC_FEATURES */
4647 	.driver_data	= &ksz8021_type,
4648 	.probe		= kszphy_probe,
4649 	.config_init	= kszphy_config_init,
4650 	.config_intr	= kszphy_config_intr,
4651 	.handle_interrupt = kszphy_handle_interrupt,
4652 	.get_sset_count = kszphy_get_sset_count,
4653 	.get_strings	= kszphy_get_strings,
4654 	.get_stats	= kszphy_get_stats,
4655 	.suspend	= kszphy_suspend,
4656 	.resume		= kszphy_resume,
4657 }, {
4658 	.phy_id		= PHY_ID_KSZ8031,
4659 	.phy_id_mask	= 0x00ffffff,
4660 	.name		= "Micrel KSZ8031",
4661 	/* PHY_BASIC_FEATURES */
4662 	.driver_data	= &ksz8021_type,
4663 	.probe		= kszphy_probe,
4664 	.config_init	= kszphy_config_init,
4665 	.config_intr	= kszphy_config_intr,
4666 	.handle_interrupt = kszphy_handle_interrupt,
4667 	.get_sset_count = kszphy_get_sset_count,
4668 	.get_strings	= kszphy_get_strings,
4669 	.get_stats	= kszphy_get_stats,
4670 	.suspend	= kszphy_suspend,
4671 	.resume		= kszphy_resume,
4672 }, {
4673 	.phy_id		= PHY_ID_KSZ8041,
4674 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4675 	.name		= "Micrel KSZ8041",
4676 	/* PHY_BASIC_FEATURES */
4677 	.driver_data	= &ksz8041_type,
4678 	.probe		= kszphy_probe,
4679 	.config_init	= ksz8041_config_init,
4680 	.config_aneg	= ksz8041_config_aneg,
4681 	.config_intr	= kszphy_config_intr,
4682 	.handle_interrupt = kszphy_handle_interrupt,
4683 	.get_sset_count = kszphy_get_sset_count,
4684 	.get_strings	= kszphy_get_strings,
4685 	.get_stats	= kszphy_get_stats,
4686 	/* No suspend/resume callbacks because of errata DS80000700A,
4687 	 * receiver error following software power down.
4688 	 */
4689 }, {
4690 	.phy_id		= PHY_ID_KSZ8041RNLI,
4691 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4692 	.name		= "Micrel KSZ8041RNLI",
4693 	/* PHY_BASIC_FEATURES */
4694 	.driver_data	= &ksz8041_type,
4695 	.probe		= kszphy_probe,
4696 	.config_init	= kszphy_config_init,
4697 	.config_intr	= kszphy_config_intr,
4698 	.handle_interrupt = kszphy_handle_interrupt,
4699 	.get_sset_count = kszphy_get_sset_count,
4700 	.get_strings	= kszphy_get_strings,
4701 	.get_stats	= kszphy_get_stats,
4702 	.suspend	= kszphy_suspend,
4703 	.resume		= kszphy_resume,
4704 }, {
4705 	.name		= "Micrel KSZ8051",
4706 	/* PHY_BASIC_FEATURES */
4707 	.driver_data	= &ksz8051_type,
4708 	.probe		= kszphy_probe,
4709 	.config_init	= kszphy_config_init,
4710 	.config_intr	= kszphy_config_intr,
4711 	.handle_interrupt = kszphy_handle_interrupt,
4712 	.get_sset_count = kszphy_get_sset_count,
4713 	.get_strings	= kszphy_get_strings,
4714 	.get_stats	= kszphy_get_stats,
4715 	.match_phy_device = ksz8051_match_phy_device,
4716 	.suspend	= kszphy_suspend,
4717 	.resume		= kszphy_resume,
4718 }, {
4719 	.phy_id		= PHY_ID_KSZ8001,
4720 	.name		= "Micrel KSZ8001 or KS8721",
4721 	.phy_id_mask	= 0x00fffffc,
4722 	/* PHY_BASIC_FEATURES */
4723 	.driver_data	= &ksz8041_type,
4724 	.probe		= kszphy_probe,
4725 	.config_init	= kszphy_config_init,
4726 	.config_intr	= kszphy_config_intr,
4727 	.handle_interrupt = kszphy_handle_interrupt,
4728 	.get_sset_count = kszphy_get_sset_count,
4729 	.get_strings	= kszphy_get_strings,
4730 	.get_stats	= kszphy_get_stats,
4731 	.suspend	= kszphy_suspend,
4732 	.resume		= kszphy_resume,
4733 }, {
4734 	.phy_id		= PHY_ID_KSZ8081,
4735 	.name		= "Micrel KSZ8081 or KSZ8091",
4736 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4737 	.flags		= PHY_POLL_CABLE_TEST,
4738 	/* PHY_BASIC_FEATURES */
4739 	.driver_data	= &ksz8081_type,
4740 	.probe		= kszphy_probe,
4741 	.config_init	= ksz8081_config_init,
4742 	.soft_reset	= genphy_soft_reset,
4743 	.config_aneg	= ksz8081_config_aneg,
4744 	.read_status	= ksz8081_read_status,
4745 	.config_intr	= kszphy_config_intr,
4746 	.handle_interrupt = kszphy_handle_interrupt,
4747 	.get_sset_count = kszphy_get_sset_count,
4748 	.get_strings	= kszphy_get_strings,
4749 	.get_stats	= kszphy_get_stats,
4750 	.suspend	= kszphy_suspend,
4751 	.resume		= kszphy_resume,
4752 	.cable_test_start	= ksz886x_cable_test_start,
4753 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4754 }, {
4755 	.phy_id		= PHY_ID_KSZ8061,
4756 	.name		= "Micrel KSZ8061",
4757 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4758 	/* PHY_BASIC_FEATURES */
4759 	.probe		= kszphy_probe,
4760 	.config_init	= ksz8061_config_init,
4761 	.config_intr	= kszphy_config_intr,
4762 	.handle_interrupt = kszphy_handle_interrupt,
4763 	.suspend	= kszphy_suspend,
4764 	.resume		= kszphy_resume,
4765 }, {
4766 	.phy_id		= PHY_ID_KSZ9021,
4767 	.phy_id_mask	= 0x000ffffe,
4768 	.name		= "Micrel KSZ9021 Gigabit PHY",
4769 	/* PHY_GBIT_FEATURES */
4770 	.driver_data	= &ksz9021_type,
4771 	.probe		= kszphy_probe,
4772 	.get_features	= ksz9031_get_features,
4773 	.config_init	= ksz9021_config_init,
4774 	.config_intr	= kszphy_config_intr,
4775 	.handle_interrupt = kszphy_handle_interrupt,
4776 	.get_sset_count = kszphy_get_sset_count,
4777 	.get_strings	= kszphy_get_strings,
4778 	.get_stats	= kszphy_get_stats,
4779 	.suspend	= kszphy_suspend,
4780 	.resume		= kszphy_resume,
4781 	.read_mmd	= genphy_read_mmd_unsupported,
4782 	.write_mmd	= genphy_write_mmd_unsupported,
4783 }, {
4784 	.phy_id		= PHY_ID_KSZ9031,
4785 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4786 	.name		= "Micrel KSZ9031 Gigabit PHY",
4787 	.flags		= PHY_POLL_CABLE_TEST,
4788 	.driver_data	= &ksz9021_type,
4789 	.probe		= kszphy_probe,
4790 	.get_features	= ksz9031_get_features,
4791 	.config_init	= ksz9031_config_init,
4792 	.soft_reset	= genphy_soft_reset,
4793 	.read_status	= ksz9031_read_status,
4794 	.config_intr	= kszphy_config_intr,
4795 	.handle_interrupt = kszphy_handle_interrupt,
4796 	.get_sset_count = kszphy_get_sset_count,
4797 	.get_strings	= kszphy_get_strings,
4798 	.get_stats	= kszphy_get_stats,
4799 	.suspend	= kszphy_suspend,
4800 	.resume		= kszphy_resume,
4801 	.cable_test_start	= ksz9x31_cable_test_start,
4802 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4803 }, {
4804 	.phy_id		= PHY_ID_LAN8814,
4805 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4806 	.name		= "Microchip INDY Gigabit Quad PHY",
4807 	.flags          = PHY_POLL_CABLE_TEST,
4808 	.config_init	= lan8814_config_init,
4809 	.driver_data	= &lan8814_type,
4810 	.probe		= lan8814_probe,
4811 	.soft_reset	= genphy_soft_reset,
4812 	.read_status	= ksz9031_read_status,
4813 	.get_sset_count	= kszphy_get_sset_count,
4814 	.get_strings	= kszphy_get_strings,
4815 	.get_stats	= kszphy_get_stats,
4816 	.suspend	= genphy_suspend,
4817 	.resume		= kszphy_resume,
4818 	.config_intr	= lan8814_config_intr,
4819 	.handle_interrupt = lan8814_handle_interrupt,
4820 	.cable_test_start	= lan8814_cable_test_start,
4821 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4822 }, {
4823 	.phy_id		= PHY_ID_LAN8804,
4824 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4825 	.name		= "Microchip LAN966X Gigabit PHY",
4826 	.config_init	= lan8804_config_init,
4827 	.driver_data	= &ksz9021_type,
4828 	.probe		= kszphy_probe,
4829 	.soft_reset	= genphy_soft_reset,
4830 	.read_status	= ksz9031_read_status,
4831 	.get_sset_count	= kszphy_get_sset_count,
4832 	.get_strings	= kszphy_get_strings,
4833 	.get_stats	= kszphy_get_stats,
4834 	.suspend	= genphy_suspend,
4835 	.resume		= kszphy_resume,
4836 	.config_intr	= lan8804_config_intr,
4837 	.handle_interrupt = lan8804_handle_interrupt,
4838 }, {
4839 	.phy_id		= PHY_ID_LAN8841,
4840 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4841 	.name		= "Microchip LAN8841 Gigabit PHY",
4842 	.flags		= PHY_POLL_CABLE_TEST,
4843 	.driver_data	= &lan8841_type,
4844 	.config_init	= lan8841_config_init,
4845 	.probe		= lan8841_probe,
4846 	.soft_reset	= genphy_soft_reset,
4847 	.config_intr	= lan8841_config_intr,
4848 	.handle_interrupt = lan8841_handle_interrupt,
4849 	.get_sset_count = kszphy_get_sset_count,
4850 	.get_strings	= kszphy_get_strings,
4851 	.get_stats	= kszphy_get_stats,
4852 	.suspend	= lan8841_suspend,
4853 	.resume		= genphy_resume,
4854 	.cable_test_start	= lan8814_cable_test_start,
4855 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4856 }, {
4857 	.phy_id		= PHY_ID_KSZ9131,
4858 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4859 	.name		= "Microchip KSZ9131 Gigabit PHY",
4860 	/* PHY_GBIT_FEATURES */
4861 	.flags		= PHY_POLL_CABLE_TEST,
4862 	.driver_data	= &ksz9131_type,
4863 	.probe		= kszphy_probe,
4864 	.soft_reset	= genphy_soft_reset,
4865 	.config_init	= ksz9131_config_init,
4866 	.config_intr	= kszphy_config_intr,
4867 	.config_aneg	= ksz9131_config_aneg,
4868 	.read_status	= ksz9131_read_status,
4869 	.handle_interrupt = kszphy_handle_interrupt,
4870 	.get_sset_count = kszphy_get_sset_count,
4871 	.get_strings	= kszphy_get_strings,
4872 	.get_stats	= kszphy_get_stats,
4873 	.suspend	= kszphy_suspend,
4874 	.resume		= kszphy_resume,
4875 	.cable_test_start	= ksz9x31_cable_test_start,
4876 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4877 	.get_features	= ksz9477_get_features,
4878 }, {
4879 	.phy_id		= PHY_ID_KSZ8873MLL,
4880 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4881 	.name		= "Micrel KSZ8873MLL Switch",
4882 	/* PHY_BASIC_FEATURES */
4883 	.config_init	= kszphy_config_init,
4884 	.config_aneg	= ksz8873mll_config_aneg,
4885 	.read_status	= ksz8873mll_read_status,
4886 	.suspend	= genphy_suspend,
4887 	.resume		= genphy_resume,
4888 }, {
4889 	.phy_id		= PHY_ID_KSZ886X,
4890 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4891 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4892 	.driver_data	= &ksz886x_type,
4893 	/* PHY_BASIC_FEATURES */
4894 	.flags		= PHY_POLL_CABLE_TEST,
4895 	.config_init	= kszphy_config_init,
4896 	.config_aneg	= ksz886x_config_aneg,
4897 	.read_status	= ksz886x_read_status,
4898 	.suspend	= genphy_suspend,
4899 	.resume		= genphy_resume,
4900 	.cable_test_start	= ksz886x_cable_test_start,
4901 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4902 }, {
4903 	.name		= "Micrel KSZ87XX Switch",
4904 	/* PHY_BASIC_FEATURES */
4905 	.config_init	= kszphy_config_init,
4906 	.match_phy_device = ksz8795_match_phy_device,
4907 	.suspend	= genphy_suspend,
4908 	.resume		= genphy_resume,
4909 }, {
4910 	.phy_id		= PHY_ID_KSZ9477,
4911 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4912 	.name		= "Microchip KSZ9477",
4913 	/* PHY_GBIT_FEATURES */
4914 	.config_init	= ksz9477_config_init,
4915 	.config_intr	= kszphy_config_intr,
4916 	.handle_interrupt = kszphy_handle_interrupt,
4917 	.suspend	= genphy_suspend,
4918 	.resume		= genphy_resume,
4919 	.get_features	= ksz9477_get_features,
4920 } };
4921 
4922 module_phy_driver(ksphy_driver);
4923 
4924 MODULE_DESCRIPTION("Micrel PHY driver");
4925 MODULE_AUTHOR("David J. Choi");
4926 MODULE_LICENSE("GPL");
4927 
4928 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4929 	{ PHY_ID_KSZ9021, 0x000ffffe },
4930 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4931 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4932 	{ PHY_ID_KSZ8001, 0x00fffffc },
4933 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4934 	{ PHY_ID_KSZ8021, 0x00ffffff },
4935 	{ PHY_ID_KSZ8031, 0x00ffffff },
4936 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4937 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4938 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4939 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4940 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4941 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4942 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4943 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4944 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4945 	{ }
4946 };
4947 
4948 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4949