1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_FLF BIT(15) 111 #define LAN8814_INT_LINK_DOWN BIT(2) 112 #define LAN8814_INT_LINK_UP BIT(0) 113 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 114 LAN8814_INT_LINK_DOWN) 115 116 #define LAN8814_INTR_CTRL_REG 0x34 117 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 118 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 119 120 #define LAN8814_EEE_STATE 0x38 121 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 122 123 #define LAN8814_PD_CONTROLS 0x9d 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 125 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 126 127 /* Represents 1ppm adjustment in 2^32 format with 128 * each nsec contains 4 clock cycles. 129 * The value is calculated as following: (1/1000000)/((2^-32)/4) 130 */ 131 #define LAN8814_1PPM_FORMAT 17179 132 133 /* Represents 1ppm adjustment in 2^32 format with 134 * each nsec contains 8 clock cycles. 135 * The value is calculated as following: (1/1000000)/((2^-32)/8) 136 */ 137 #define LAN8841_1PPM_FORMAT 34360 138 139 #define PTP_RX_VERSION 0x0248 140 #define PTP_TX_VERSION 0x0288 141 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 142 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 143 144 #define PTP_RX_MOD 0x024F 145 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 146 #define PTP_RX_TIMESTAMP_EN 0x024D 147 #define PTP_TX_TIMESTAMP_EN 0x028D 148 149 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 150 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 151 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 152 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 153 154 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 155 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 156 157 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 158 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 159 #define LTC_HARD_RESET 0x023F 160 #define LTC_HARD_RESET_ BIT(0) 161 162 #define TSU_HARD_RESET 0x02C1 163 #define TSU_HARD_RESET_ BIT(0) 164 165 #define PTP_CMD_CTL 0x0200 166 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 167 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 168 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 169 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 171 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 172 173 #define PTP_COMMON_INT_ENA 0x0204 174 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 175 176 #define PTP_CLOCK_SET_SEC_HI 0x0205 177 #define PTP_CLOCK_SET_SEC_MID 0x0206 178 #define PTP_CLOCK_SET_SEC_LO 0x0207 179 #define PTP_CLOCK_SET_NS_HI 0x0208 180 #define PTP_CLOCK_SET_NS_LO 0x0209 181 182 #define PTP_CLOCK_READ_SEC_HI 0x0229 183 #define PTP_CLOCK_READ_SEC_MID 0x022A 184 #define PTP_CLOCK_READ_SEC_LO 0x022B 185 #define PTP_CLOCK_READ_NS_HI 0x022C 186 #define PTP_CLOCK_READ_NS_LO 0x022D 187 188 #define PTP_GPIO_SEL 0x0230 189 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 190 #define PTP_GPIO_CAP_MAP_LO 0x0232 191 192 #define PTP_GPIO_CAP_EN 0x0233 193 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 194 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 195 196 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 197 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 198 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 199 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 200 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 201 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 202 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 203 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 204 205 #define PTP_GPIO_CAP_STS 0x023D 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 207 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 208 209 #define PTP_OPERATING_MODE 0x0241 210 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 211 212 #define PTP_TX_MOD 0x028F 213 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 214 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 215 216 #define PTP_RX_PARSE_CONFIG 0x0242 217 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 218 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 219 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 220 221 #define PTP_TX_PARSE_CONFIG 0x0282 222 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 223 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 224 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 225 226 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 227 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 228 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 229 230 #define PTP_LTC_STEP_ADJ_HI 0x0212 231 #define PTP_LTC_STEP_ADJ_LO 0x0213 232 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 233 234 #define LAN8814_INTR_STS_REG 0x0033 235 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 236 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 237 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 238 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 239 240 #define PTP_CAP_INFO 0x022A 241 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 242 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 243 244 #define PTP_TX_EGRESS_SEC_HI 0x0296 245 #define PTP_TX_EGRESS_SEC_LO 0x0297 246 #define PTP_TX_EGRESS_NS_HI 0x0294 247 #define PTP_TX_EGRESS_NS_LO 0x0295 248 #define PTP_TX_MSG_HEADER2 0x0299 249 250 #define PTP_RX_INGRESS_SEC_HI 0x0256 251 #define PTP_RX_INGRESS_SEC_LO 0x0257 252 #define PTP_RX_INGRESS_NS_HI 0x0254 253 #define PTP_RX_INGRESS_NS_LO 0x0255 254 #define PTP_RX_MSG_HEADER2 0x0259 255 256 #define PTP_TSU_INT_EN 0x0200 257 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 258 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 260 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 261 262 #define PTP_TSU_INT_STS 0x0201 263 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 264 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 266 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 267 268 #define LAN8814_LED_CTRL_1 0x0 269 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 270 #define LAN8814_LED_CTRL_2 0x1 271 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 272 273 /* PHY Control 1 */ 274 #define MII_KSZPHY_CTRL_1 0x1e 275 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 276 277 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 278 #define MII_KSZPHY_CTRL_2 0x1f 279 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 280 /* bitmap of PHY register to set interrupt mode */ 281 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 282 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 283 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 284 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 285 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 286 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 287 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 288 289 /* Write/read to/from extended registers */ 290 #define MII_KSZPHY_EXTREG 0x0b 291 #define KSZPHY_EXTREG_WRITE 0x8000 292 293 #define MII_KSZPHY_EXTREG_WRITE 0x0c 294 #define MII_KSZPHY_EXTREG_READ 0x0d 295 296 /* Extended registers */ 297 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 298 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 299 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 300 301 #define PS_TO_REG 200 302 #define FIFO_SIZE 8 303 304 #define LAN8814_PTP_GPIO_NUM 24 305 #define LAN8814_PTP_PEROUT_NUM 2 306 #define LAN8814_PTP_EXTTS_NUM 3 307 308 #define LAN8814_BUFFER_TIME 2 309 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 324 325 #define LAN8814_GPIO_EN1 0x20 326 #define LAN8814_GPIO_EN2 0x21 327 #define LAN8814_GPIO_DIR1 0x22 328 #define LAN8814_GPIO_DIR2 0x23 329 #define LAN8814_GPIO_BUF1 0x24 330 #define LAN8814_GPIO_BUF2 0x25 331 332 #define LAN8814_GPIO_EN_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 334 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_DIR_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 337 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 338 #define LAN8814_GPIO_BUF_ADDR(pin) \ 339 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 340 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 341 342 #define LAN8814_EVENT_A 0 343 #define LAN8814_EVENT_B 1 344 345 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 346 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 347 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 349 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 350 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 351 ((event) ? BIT(2) : BIT(0)) 352 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 353 ((event) ? BIT(3) : BIT(1)) 354 355 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 356 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 357 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 358 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 359 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 361 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 364 365 /* Delay used to get the second part from the LTC */ 366 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 367 368 #define LAN8842_REV_8832 0x8832 369 370 struct kszphy_hw_stat { 371 const char *string; 372 u8 reg; 373 u8 bits; 374 }; 375 376 static struct kszphy_hw_stat kszphy_hw_stats[] = { 377 { "phy_receive_errors", 21, 16}, 378 { "phy_idle_errors", 10, 8 }, 379 }; 380 381 struct kszphy_type { 382 u32 led_mode_reg; 383 u16 interrupt_level_mask; 384 u16 cable_diag_reg; 385 unsigned long pair_mask; 386 u16 disable_dll_tx_bit; 387 u16 disable_dll_rx_bit; 388 u16 disable_dll_mask; 389 bool has_broadcast_disable; 390 bool has_nand_tree_disable; 391 bool has_rmii_ref_clk_sel; 392 }; 393 394 /* Shared structure between the PHYs of the same package. */ 395 struct lan8814_shared_priv { 396 struct phy_device *phydev; 397 struct ptp_clock *ptp_clock; 398 struct ptp_clock_info ptp_clock_info; 399 struct ptp_pin_desc *pin_config; 400 401 /* Lock for ptp_clock */ 402 struct mutex shared_lock; 403 }; 404 405 struct lan8814_ptp_rx_ts { 406 struct list_head list; 407 u32 seconds; 408 u32 nsec; 409 u16 seq_id; 410 }; 411 412 struct kszphy_ptp_priv { 413 struct mii_timestamper mii_ts; 414 struct phy_device *phydev; 415 416 struct sk_buff_head tx_queue; 417 struct sk_buff_head rx_queue; 418 419 struct list_head rx_ts_list; 420 /* Lock for Rx ts fifo */ 421 spinlock_t rx_ts_lock; 422 423 int hwts_tx_type; 424 enum hwtstamp_rx_filters rx_filter; 425 int layer; 426 int version; 427 428 struct ptp_clock *ptp_clock; 429 struct ptp_clock_info ptp_clock_info; 430 /* Lock for ptp_clock */ 431 struct mutex ptp_lock; 432 struct ptp_pin_desc *pin_config; 433 434 s64 seconds; 435 /* Lock for accessing seconds */ 436 spinlock_t seconds_lock; 437 }; 438 439 struct kszphy_phy_stats { 440 u64 rx_err_pkt_cnt; 441 }; 442 443 struct kszphy_priv { 444 struct kszphy_ptp_priv ptp_priv; 445 const struct kszphy_type *type; 446 struct clk *clk; 447 int led_mode; 448 u16 vct_ctrl1000; 449 bool rmii_ref_clk_sel; 450 bool rmii_ref_clk_sel_val; 451 bool clk_enable; 452 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 453 struct kszphy_phy_stats phy_stats; 454 }; 455 456 struct lan8842_phy_stats { 457 u64 rx_packets; 458 u64 rx_errors; 459 u64 tx_packets; 460 u64 tx_errors; 461 }; 462 463 struct lan8842_priv { 464 struct lan8842_phy_stats phy_stats; 465 struct kszphy_ptp_priv ptp_priv; 466 u16 rev; 467 }; 468 469 static const struct kszphy_type lan8814_type = { 470 .led_mode_reg = ~LAN8814_LED_CTRL_1, 471 .cable_diag_reg = LAN8814_CABLE_DIAG, 472 .pair_mask = LAN8814_WIRE_PAIR_MASK, 473 }; 474 475 static const struct kszphy_type ksz886x_type = { 476 .cable_diag_reg = KSZ8081_LMD, 477 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 478 }; 479 480 static const struct kszphy_type ksz8021_type = { 481 .led_mode_reg = MII_KSZPHY_CTRL_2, 482 .has_broadcast_disable = true, 483 .has_nand_tree_disable = true, 484 .has_rmii_ref_clk_sel = true, 485 }; 486 487 static const struct kszphy_type ksz8041_type = { 488 .led_mode_reg = MII_KSZPHY_CTRL_1, 489 }; 490 491 static const struct kszphy_type ksz8051_type = { 492 .led_mode_reg = MII_KSZPHY_CTRL_2, 493 .has_nand_tree_disable = true, 494 }; 495 496 static const struct kszphy_type ksz8081_type = { 497 .led_mode_reg = MII_KSZPHY_CTRL_2, 498 .cable_diag_reg = KSZ8081_LMD, 499 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 500 .has_broadcast_disable = true, 501 .has_nand_tree_disable = true, 502 .has_rmii_ref_clk_sel = true, 503 }; 504 505 static const struct kszphy_type ks8737_type = { 506 .interrupt_level_mask = BIT(14), 507 }; 508 509 static const struct kszphy_type ksz9021_type = { 510 .interrupt_level_mask = BIT(14), 511 }; 512 513 static const struct kszphy_type ksz9131_type = { 514 .interrupt_level_mask = BIT(14), 515 .disable_dll_tx_bit = BIT(12), 516 .disable_dll_rx_bit = BIT(12), 517 .disable_dll_mask = BIT_MASK(12), 518 }; 519 520 static const struct kszphy_type lan8841_type = { 521 .disable_dll_tx_bit = BIT(14), 522 .disable_dll_rx_bit = BIT(14), 523 .disable_dll_mask = BIT_MASK(14), 524 .cable_diag_reg = LAN8814_CABLE_DIAG, 525 .pair_mask = LAN8814_WIRE_PAIR_MASK, 526 }; 527 528 static int kszphy_extended_write(struct phy_device *phydev, 529 u32 regnum, u16 val) 530 { 531 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 532 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 533 } 534 535 static int kszphy_extended_read(struct phy_device *phydev, 536 u32 regnum) 537 { 538 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 539 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 540 } 541 542 static int kszphy_ack_interrupt(struct phy_device *phydev) 543 { 544 /* bit[7..0] int status, which is a read and clear register. */ 545 int rc; 546 547 rc = phy_read(phydev, MII_KSZPHY_INTCS); 548 549 return (rc < 0) ? rc : 0; 550 } 551 552 static int kszphy_config_intr(struct phy_device *phydev) 553 { 554 const struct kszphy_type *type = phydev->drv->driver_data; 555 int temp, err; 556 u16 mask; 557 558 if (type && type->interrupt_level_mask) 559 mask = type->interrupt_level_mask; 560 else 561 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 562 563 /* set the interrupt pin active low */ 564 temp = phy_read(phydev, MII_KSZPHY_CTRL); 565 if (temp < 0) 566 return temp; 567 temp &= ~mask; 568 phy_write(phydev, MII_KSZPHY_CTRL, temp); 569 570 /* enable / disable interrupts */ 571 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 572 err = kszphy_ack_interrupt(phydev); 573 if (err) 574 return err; 575 576 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 577 } else { 578 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 579 if (err) 580 return err; 581 582 err = kszphy_ack_interrupt(phydev); 583 } 584 585 return err; 586 } 587 588 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 589 { 590 int irq_status; 591 592 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 593 if (irq_status < 0) { 594 phy_error(phydev); 595 return IRQ_NONE; 596 } 597 598 if (!(irq_status & KSZPHY_INTCS_STATUS)) 599 return IRQ_NONE; 600 601 phy_trigger_machine(phydev); 602 603 return IRQ_HANDLED; 604 } 605 606 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 607 { 608 int ctrl; 609 610 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 611 if (ctrl < 0) 612 return ctrl; 613 614 if (val) 615 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 616 else 617 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 618 619 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 620 } 621 622 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 623 { 624 int rc, temp, shift; 625 626 switch (reg) { 627 case MII_KSZPHY_CTRL_1: 628 shift = 14; 629 break; 630 case MII_KSZPHY_CTRL_2: 631 shift = 4; 632 break; 633 default: 634 return -EINVAL; 635 } 636 637 temp = phy_read(phydev, reg); 638 if (temp < 0) { 639 rc = temp; 640 goto out; 641 } 642 643 temp &= ~(3 << shift); 644 temp |= val << shift; 645 rc = phy_write(phydev, reg, temp); 646 out: 647 if (rc < 0) 648 phydev_err(phydev, "failed to set led mode\n"); 649 650 return rc; 651 } 652 653 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 654 * unique (non-broadcast) address on a shared bus. 655 */ 656 static int kszphy_broadcast_disable(struct phy_device *phydev) 657 { 658 int ret; 659 660 ret = phy_read(phydev, MII_KSZPHY_OMSO); 661 if (ret < 0) 662 goto out; 663 664 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 665 out: 666 if (ret) 667 phydev_err(phydev, "failed to disable broadcast address\n"); 668 669 return ret; 670 } 671 672 static int kszphy_nand_tree_disable(struct phy_device *phydev) 673 { 674 int ret; 675 676 ret = phy_read(phydev, MII_KSZPHY_OMSO); 677 if (ret < 0) 678 goto out; 679 680 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 681 return 0; 682 683 ret = phy_write(phydev, MII_KSZPHY_OMSO, 684 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 685 out: 686 if (ret) 687 phydev_err(phydev, "failed to disable NAND tree mode\n"); 688 689 return ret; 690 } 691 692 /* Some config bits need to be set again on resume, handle them here. */ 693 static int kszphy_config_reset(struct phy_device *phydev) 694 { 695 struct kszphy_priv *priv = phydev->priv; 696 int ret; 697 698 if (priv->rmii_ref_clk_sel) { 699 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 700 if (ret) { 701 phydev_err(phydev, 702 "failed to set rmii reference clock\n"); 703 return ret; 704 } 705 } 706 707 if (priv->type && priv->led_mode >= 0) 708 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 709 710 return 0; 711 } 712 713 static int kszphy_config_init(struct phy_device *phydev) 714 { 715 struct kszphy_priv *priv = phydev->priv; 716 const struct kszphy_type *type; 717 718 if (!priv) 719 return 0; 720 721 type = priv->type; 722 723 if (type && type->has_broadcast_disable) 724 kszphy_broadcast_disable(phydev); 725 726 if (type && type->has_nand_tree_disable) 727 kszphy_nand_tree_disable(phydev); 728 729 return kszphy_config_reset(phydev); 730 } 731 732 static int ksz8041_fiber_mode(struct phy_device *phydev) 733 { 734 struct device_node *of_node = phydev->mdio.dev.of_node; 735 736 return of_property_read_bool(of_node, "micrel,fiber-mode"); 737 } 738 739 static int ksz8041_config_init(struct phy_device *phydev) 740 { 741 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 742 743 /* Limit supported and advertised modes in fiber mode */ 744 if (ksz8041_fiber_mode(phydev)) { 745 phydev->dev_flags |= MICREL_PHY_FXEN; 746 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 747 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 748 749 linkmode_and(phydev->supported, phydev->supported, mask); 750 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 751 phydev->supported); 752 linkmode_and(phydev->advertising, phydev->advertising, mask); 753 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 754 phydev->advertising); 755 phydev->autoneg = AUTONEG_DISABLE; 756 } 757 758 return kszphy_config_init(phydev); 759 } 760 761 static int ksz8041_config_aneg(struct phy_device *phydev) 762 { 763 /* Skip auto-negotiation in fiber mode */ 764 if (phydev->dev_flags & MICREL_PHY_FXEN) { 765 phydev->speed = SPEED_100; 766 return 0; 767 } 768 769 return genphy_config_aneg(phydev); 770 } 771 772 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 773 const bool ksz_8051) 774 { 775 int ret; 776 777 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 778 return 0; 779 780 ret = phy_read(phydev, MII_BMSR); 781 if (ret < 0) 782 return ret; 783 784 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 785 * exact PHY ID. However, they can be told apart by the extended 786 * capability registers presence. The KSZ8051 PHY has them while 787 * the switch does not. 788 */ 789 ret &= BMSR_ERCAP; 790 if (ksz_8051) 791 return ret; 792 else 793 return !ret; 794 } 795 796 static int ksz8051_match_phy_device(struct phy_device *phydev, 797 const struct phy_driver *phydrv) 798 { 799 return ksz8051_ksz8795_match_phy_device(phydev, true); 800 } 801 802 static int ksz8081_config_init(struct phy_device *phydev) 803 { 804 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 805 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 806 * pull-down is missing, the factory test mode should be cleared by 807 * manually writing a 0. 808 */ 809 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 810 811 return kszphy_config_init(phydev); 812 } 813 814 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 815 { 816 u16 val; 817 818 switch (ctrl) { 819 case ETH_TP_MDI: 820 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 821 break; 822 case ETH_TP_MDI_X: 823 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 824 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 825 break; 826 case ETH_TP_MDI_AUTO: 827 val = 0; 828 break; 829 default: 830 return 0; 831 } 832 833 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 834 KSZ8081_CTRL2_HP_MDIX | 835 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 836 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 837 KSZ8081_CTRL2_HP_MDIX | val); 838 } 839 840 static int ksz8081_config_aneg(struct phy_device *phydev) 841 { 842 int ret; 843 844 ret = genphy_config_aneg(phydev); 845 if (ret) 846 return ret; 847 848 /* The MDI-X configuration is automatically changed by the PHY after 849 * switching from autoneg off to on. So, take MDI-X configuration under 850 * own control and set it after autoneg configuration was done. 851 */ 852 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 853 } 854 855 static int ksz8081_mdix_update(struct phy_device *phydev) 856 { 857 int ret; 858 859 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 860 if (ret < 0) 861 return ret; 862 863 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 864 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 865 phydev->mdix_ctrl = ETH_TP_MDI_X; 866 else 867 phydev->mdix_ctrl = ETH_TP_MDI; 868 } else { 869 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 870 } 871 872 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 873 if (ret < 0) 874 return ret; 875 876 if (ret & KSZ8081_CTRL1_MDIX_STAT) 877 phydev->mdix = ETH_TP_MDI; 878 else 879 phydev->mdix = ETH_TP_MDI_X; 880 881 return 0; 882 } 883 884 static int ksz8081_read_status(struct phy_device *phydev) 885 { 886 int ret; 887 888 ret = ksz8081_mdix_update(phydev); 889 if (ret < 0) 890 return ret; 891 892 return genphy_read_status(phydev); 893 } 894 895 static int ksz8061_config_init(struct phy_device *phydev) 896 { 897 int ret; 898 899 /* Chip can be powered down by the bootstrap code. */ 900 ret = phy_read(phydev, MII_BMCR); 901 if (ret < 0) 902 return ret; 903 if (ret & BMCR_PDOWN) { 904 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 905 if (ret < 0) 906 return ret; 907 usleep_range(1000, 2000); 908 } 909 910 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 911 if (ret) 912 return ret; 913 914 return kszphy_config_init(phydev); 915 } 916 917 static int ksz8795_match_phy_device(struct phy_device *phydev, 918 const struct phy_driver *phydrv) 919 { 920 return ksz8051_ksz8795_match_phy_device(phydev, false); 921 } 922 923 static int ksz9021_load_values_from_of(struct phy_device *phydev, 924 const struct device_node *of_node, 925 u16 reg, 926 const char *field1, const char *field2, 927 const char *field3, const char *field4) 928 { 929 int val1 = -1; 930 int val2 = -2; 931 int val3 = -3; 932 int val4 = -4; 933 int newval; 934 int matches = 0; 935 936 if (!of_property_read_u32(of_node, field1, &val1)) 937 matches++; 938 939 if (!of_property_read_u32(of_node, field2, &val2)) 940 matches++; 941 942 if (!of_property_read_u32(of_node, field3, &val3)) 943 matches++; 944 945 if (!of_property_read_u32(of_node, field4, &val4)) 946 matches++; 947 948 if (!matches) 949 return 0; 950 951 if (matches < 4) 952 newval = kszphy_extended_read(phydev, reg); 953 else 954 newval = 0; 955 956 if (val1 != -1) 957 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 958 959 if (val2 != -2) 960 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 961 962 if (val3 != -3) 963 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 964 965 if (val4 != -4) 966 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 967 968 return kszphy_extended_write(phydev, reg, newval); 969 } 970 971 static int ksz9021_config_init(struct phy_device *phydev) 972 { 973 const struct device_node *of_node; 974 const struct device *dev_walker; 975 976 /* The Micrel driver has a deprecated option to place phy OF 977 * properties in the MAC node. Walk up the tree of devices to 978 * find a device with an OF node. 979 */ 980 dev_walker = &phydev->mdio.dev; 981 do { 982 of_node = dev_walker->of_node; 983 dev_walker = dev_walker->parent; 984 985 } while (!of_node && dev_walker); 986 987 if (of_node) { 988 ksz9021_load_values_from_of(phydev, of_node, 989 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 990 "txen-skew-ps", "txc-skew-ps", 991 "rxdv-skew-ps", "rxc-skew-ps"); 992 ksz9021_load_values_from_of(phydev, of_node, 993 MII_KSZPHY_RX_DATA_PAD_SKEW, 994 "rxd0-skew-ps", "rxd1-skew-ps", 995 "rxd2-skew-ps", "rxd3-skew-ps"); 996 ksz9021_load_values_from_of(phydev, of_node, 997 MII_KSZPHY_TX_DATA_PAD_SKEW, 998 "txd0-skew-ps", "txd1-skew-ps", 999 "txd2-skew-ps", "txd3-skew-ps"); 1000 } 1001 return 0; 1002 } 1003 1004 #define KSZ9031_PS_TO_REG 60 1005 1006 /* Extended registers */ 1007 /* MMD Address 0x0 */ 1008 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1009 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1010 1011 /* MMD Address 0x2 */ 1012 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1013 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1014 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1015 1016 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1017 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1018 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1019 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1020 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1021 1022 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1023 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1024 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1025 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1026 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1029 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1030 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1031 1032 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1033 * provide different RGMII options we need to configure delay offset 1034 * for each pad relative to build in delay. 1035 */ 1036 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1037 * 1.80ns 1038 */ 1039 #define RX_ID 0x7 1040 #define RX_CLK_ID 0x19 1041 1042 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1043 * internal 1.2ns delay. 1044 */ 1045 #define RX_ND 0xc 1046 #define RX_CLK_ND 0x0 1047 1048 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1049 #define TX_ID 0x0 1050 #define TX_CLK_ID 0x1f 1051 1052 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1053 * dealy 1054 */ 1055 #define TX_ND 0x7 1056 #define TX_CLK_ND 0xf 1057 1058 /* MMD Address 0x1C */ 1059 #define MII_KSZ9031RN_EDPD 0x23 1060 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1061 1062 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1063 int speed) 1064 { 1065 u16 ctl = BMCR_LOOPBACK; 1066 int val; 1067 1068 if (!enable) 1069 return genphy_loopback(phydev, enable, 0); 1070 1071 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1072 phydev->speed = speed; 1073 else if (speed) 1074 return -EINVAL; 1075 phydev->duplex = DUPLEX_FULL; 1076 1077 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1078 1079 phy_write(phydev, MII_BMCR, ctl); 1080 1081 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1082 5000, 500000, true); 1083 } 1084 1085 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1086 const struct device_node *of_node, 1087 u16 reg, size_t field_sz, 1088 const char *field[], u8 numfields, 1089 bool *update) 1090 { 1091 int val[4] = {-1, -2, -3, -4}; 1092 int matches = 0; 1093 u16 mask; 1094 u16 maxval; 1095 u16 newval; 1096 int i; 1097 1098 for (i = 0; i < numfields; i++) 1099 if (!of_property_read_u32(of_node, field[i], val + i)) 1100 matches++; 1101 1102 if (!matches) 1103 return 0; 1104 1105 *update |= true; 1106 1107 if (matches < numfields) 1108 newval = phy_read_mmd(phydev, 2, reg); 1109 else 1110 newval = 0; 1111 1112 maxval = (field_sz == 4) ? 0xf : 0x1f; 1113 for (i = 0; i < numfields; i++) 1114 if (val[i] != -(i + 1)) { 1115 mask = 0xffff; 1116 mask ^= maxval << (field_sz * i); 1117 newval = (newval & mask) | 1118 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1119 << (field_sz * i)); 1120 } 1121 1122 return phy_write_mmd(phydev, 2, reg, newval); 1123 } 1124 1125 /* Center KSZ9031RNX FLP timing at 16ms. */ 1126 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1127 { 1128 int result; 1129 1130 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1131 0x0006); 1132 if (result) 1133 return result; 1134 1135 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1136 0x1A80); 1137 if (result) 1138 return result; 1139 1140 return genphy_restart_aneg(phydev); 1141 } 1142 1143 /* Enable energy-detect power-down mode */ 1144 static int ksz9031_enable_edpd(struct phy_device *phydev) 1145 { 1146 int reg; 1147 1148 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1149 if (reg < 0) 1150 return reg; 1151 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1152 reg | MII_KSZ9031RN_EDPD_ENABLE); 1153 } 1154 1155 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1156 { 1157 u16 rx, tx, rx_clk, tx_clk; 1158 int ret; 1159 1160 switch (phydev->interface) { 1161 case PHY_INTERFACE_MODE_RGMII: 1162 tx = TX_ND; 1163 tx_clk = TX_CLK_ND; 1164 rx = RX_ND; 1165 rx_clk = RX_CLK_ND; 1166 break; 1167 case PHY_INTERFACE_MODE_RGMII_ID: 1168 tx = TX_ID; 1169 tx_clk = TX_CLK_ID; 1170 rx = RX_ID; 1171 rx_clk = RX_CLK_ID; 1172 break; 1173 case PHY_INTERFACE_MODE_RGMII_RXID: 1174 tx = TX_ND; 1175 tx_clk = TX_CLK_ND; 1176 rx = RX_ID; 1177 rx_clk = RX_CLK_ID; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_TXID: 1180 tx = TX_ID; 1181 tx_clk = TX_CLK_ID; 1182 rx = RX_ND; 1183 rx_clk = RX_CLK_ND; 1184 break; 1185 default: 1186 return 0; 1187 } 1188 1189 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1190 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1191 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1192 if (ret < 0) 1193 return ret; 1194 1195 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1196 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1197 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1198 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1199 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1200 if (ret < 0) 1201 return ret; 1202 1203 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1204 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1205 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1206 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1207 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1208 if (ret < 0) 1209 return ret; 1210 1211 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1212 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1213 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1214 } 1215 1216 static int ksz9031_config_init(struct phy_device *phydev) 1217 { 1218 const struct device_node *of_node; 1219 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1220 static const char *rx_data_skews[4] = { 1221 "rxd0-skew-ps", "rxd1-skew-ps", 1222 "rxd2-skew-ps", "rxd3-skew-ps" 1223 }; 1224 static const char *tx_data_skews[4] = { 1225 "txd0-skew-ps", "txd1-skew-ps", 1226 "txd2-skew-ps", "txd3-skew-ps" 1227 }; 1228 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1229 const struct device *dev_walker; 1230 int result; 1231 1232 result = ksz9031_enable_edpd(phydev); 1233 if (result < 0) 1234 return result; 1235 1236 /* The Micrel driver has a deprecated option to place phy OF 1237 * properties in the MAC node. Walk up the tree of devices to 1238 * find a device with an OF node. 1239 */ 1240 dev_walker = &phydev->mdio.dev; 1241 do { 1242 of_node = dev_walker->of_node; 1243 dev_walker = dev_walker->parent; 1244 } while (!of_node && dev_walker); 1245 1246 if (of_node) { 1247 bool update = false; 1248 1249 if (phy_interface_is_rgmii(phydev)) { 1250 result = ksz9031_config_rgmii_delay(phydev); 1251 if (result < 0) 1252 return result; 1253 } 1254 1255 ksz9031_of_load_skew_values(phydev, of_node, 1256 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1257 clk_skews, 2, &update); 1258 1259 ksz9031_of_load_skew_values(phydev, of_node, 1260 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1261 control_skews, 2, &update); 1262 1263 ksz9031_of_load_skew_values(phydev, of_node, 1264 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1265 rx_data_skews, 4, &update); 1266 1267 ksz9031_of_load_skew_values(phydev, of_node, 1268 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1269 tx_data_skews, 4, &update); 1270 1271 if (update && !phy_interface_is_rgmii(phydev)) 1272 phydev_warn(phydev, 1273 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1274 1275 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1276 * When the device links in the 1000BASE-T slave mode only, 1277 * the optional 125MHz reference output clock (CLK125_NDO) 1278 * has wide duty cycle variation. 1279 * 1280 * The optional CLK125_NDO clock does not meet the RGMII 1281 * 45/55 percent (min/max) duty cycle requirement and therefore 1282 * cannot be used directly by the MAC side for clocking 1283 * applications that have setup/hold time requirements on 1284 * rising and falling clock edges. 1285 * 1286 * Workaround: 1287 * Force the phy to be the master to receive a stable clock 1288 * which meets the duty cycle requirement. 1289 */ 1290 if (of_property_read_bool(of_node, "micrel,force-master")) { 1291 result = phy_read(phydev, MII_CTRL1000); 1292 if (result < 0) 1293 goto err_force_master; 1294 1295 /* enable master mode, config & prefer master */ 1296 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1297 result = phy_write(phydev, MII_CTRL1000, result); 1298 if (result < 0) 1299 goto err_force_master; 1300 } 1301 } 1302 1303 return ksz9031_center_flp_timing(phydev); 1304 1305 err_force_master: 1306 phydev_err(phydev, "failed to force the phy to master mode\n"); 1307 return result; 1308 } 1309 1310 #define KSZ9131_SKEW_5BIT_MAX 2400 1311 #define KSZ9131_SKEW_4BIT_MAX 800 1312 #define KSZ9131_OFFSET 700 1313 #define KSZ9131_STEP 100 1314 1315 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1316 struct device_node *of_node, 1317 u16 reg, size_t field_sz, 1318 char *field[], u8 numfields) 1319 { 1320 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1321 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1322 int skewval, skewmax = 0; 1323 int matches = 0; 1324 u16 maxval; 1325 u16 newval; 1326 u16 mask; 1327 int i; 1328 1329 /* psec properties in dts should mean x pico seconds */ 1330 if (field_sz == 5) 1331 skewmax = KSZ9131_SKEW_5BIT_MAX; 1332 else 1333 skewmax = KSZ9131_SKEW_4BIT_MAX; 1334 1335 for (i = 0; i < numfields; i++) 1336 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1337 if (skewval < -KSZ9131_OFFSET) 1338 skewval = -KSZ9131_OFFSET; 1339 else if (skewval > skewmax) 1340 skewval = skewmax; 1341 1342 val[i] = skewval + KSZ9131_OFFSET; 1343 matches++; 1344 } 1345 1346 if (!matches) 1347 return 0; 1348 1349 if (matches < numfields) 1350 newval = phy_read_mmd(phydev, 2, reg); 1351 else 1352 newval = 0; 1353 1354 maxval = (field_sz == 4) ? 0xf : 0x1f; 1355 for (i = 0; i < numfields; i++) 1356 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1357 mask = 0xffff; 1358 mask ^= maxval << (field_sz * i); 1359 newval = (newval & mask) | 1360 (((val[i] / KSZ9131_STEP) & maxval) 1361 << (field_sz * i)); 1362 } 1363 1364 return phy_write_mmd(phydev, 2, reg, newval); 1365 } 1366 1367 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1368 #define KSZ9131RN_RXC_DLL_CTRL 76 1369 #define KSZ9131RN_TXC_DLL_CTRL 77 1370 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1371 1372 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1373 { 1374 const struct kszphy_type *type = phydev->drv->driver_data; 1375 u16 rxcdll_val, txcdll_val; 1376 int ret; 1377 1378 switch (phydev->interface) { 1379 case PHY_INTERFACE_MODE_RGMII: 1380 rxcdll_val = type->disable_dll_rx_bit; 1381 txcdll_val = type->disable_dll_tx_bit; 1382 break; 1383 case PHY_INTERFACE_MODE_RGMII_ID: 1384 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1385 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1386 break; 1387 case PHY_INTERFACE_MODE_RGMII_RXID: 1388 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1389 txcdll_val = type->disable_dll_tx_bit; 1390 break; 1391 case PHY_INTERFACE_MODE_RGMII_TXID: 1392 rxcdll_val = type->disable_dll_rx_bit; 1393 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1394 break; 1395 default: 1396 return 0; 1397 } 1398 1399 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1400 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1401 rxcdll_val); 1402 if (ret < 0) 1403 return ret; 1404 1405 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1406 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1407 txcdll_val); 1408 } 1409 1410 /* Silicon Errata DS80000693B 1411 * 1412 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1413 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1414 * according to the datasheet (off if there is no link). 1415 */ 1416 static int ksz9131_led_errata(struct phy_device *phydev) 1417 { 1418 int reg; 1419 1420 reg = phy_read_mmd(phydev, 2, 0); 1421 if (reg < 0) 1422 return reg; 1423 1424 if (!(reg & BIT(4))) 1425 return 0; 1426 1427 return phy_set_bits(phydev, 0x1e, BIT(9)); 1428 } 1429 1430 static int ksz9131_config_init(struct phy_device *phydev) 1431 { 1432 struct device_node *of_node; 1433 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1434 char *rx_data_skews[4] = { 1435 "rxd0-skew-psec", "rxd1-skew-psec", 1436 "rxd2-skew-psec", "rxd3-skew-psec" 1437 }; 1438 char *tx_data_skews[4] = { 1439 "txd0-skew-psec", "txd1-skew-psec", 1440 "txd2-skew-psec", "txd3-skew-psec" 1441 }; 1442 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1443 const struct device *dev_walker; 1444 int ret; 1445 1446 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1447 1448 dev_walker = &phydev->mdio.dev; 1449 do { 1450 of_node = dev_walker->of_node; 1451 dev_walker = dev_walker->parent; 1452 } while (!of_node && dev_walker); 1453 1454 if (!of_node) 1455 return 0; 1456 1457 if (phy_interface_is_rgmii(phydev)) { 1458 ret = ksz9131_config_rgmii_delay(phydev); 1459 if (ret < 0) 1460 return ret; 1461 } 1462 1463 ret = ksz9131_of_load_skew_values(phydev, of_node, 1464 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1465 clk_skews, 2); 1466 if (ret < 0) 1467 return ret; 1468 1469 ret = ksz9131_of_load_skew_values(phydev, of_node, 1470 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1471 control_skews, 2); 1472 if (ret < 0) 1473 return ret; 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1477 rx_data_skews, 4); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1483 tx_data_skews, 4); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_led_errata(phydev); 1488 if (ret < 0) 1489 return ret; 1490 1491 return 0; 1492 } 1493 1494 #define MII_KSZ9131_AUTO_MDIX 0x1C 1495 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1496 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1497 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1498 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1499 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1500 1501 static int ksz9131_mdix_update(struct phy_device *phydev) 1502 { 1503 int ret; 1504 1505 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1506 phydev->mdix = phydev->mdix_ctrl; 1507 } else { 1508 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1509 if (ret < 0) 1510 return ret; 1511 1512 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1513 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1514 phydev->mdix = ETH_TP_MDI; 1515 else 1516 phydev->mdix = ETH_TP_MDI_X; 1517 } else { 1518 phydev->mdix = ETH_TP_MDI_INVALID; 1519 } 1520 } 1521 1522 return 0; 1523 } 1524 1525 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1526 { 1527 u16 val; 1528 1529 switch (ctrl) { 1530 case ETH_TP_MDI: 1531 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1532 MII_KSZ9131_AUTO_MDI_SET; 1533 break; 1534 case ETH_TP_MDI_X: 1535 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1536 break; 1537 case ETH_TP_MDI_AUTO: 1538 val = 0; 1539 break; 1540 default: 1541 return 0; 1542 } 1543 1544 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1545 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1546 MII_KSZ9131_AUTO_MDI_SET, val); 1547 } 1548 1549 static int ksz9131_read_status(struct phy_device *phydev) 1550 { 1551 int ret; 1552 1553 ret = ksz9131_mdix_update(phydev); 1554 if (ret < 0) 1555 return ret; 1556 1557 return genphy_read_status(phydev); 1558 } 1559 1560 static int ksz9131_config_aneg(struct phy_device *phydev) 1561 { 1562 int ret; 1563 1564 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1565 if (ret) 1566 return ret; 1567 1568 return genphy_config_aneg(phydev); 1569 } 1570 1571 static int ksz9477_get_features(struct phy_device *phydev) 1572 { 1573 int ret; 1574 1575 ret = genphy_read_abilities(phydev); 1576 if (ret) 1577 return ret; 1578 1579 /* The "EEE control and capability 1" (Register 3.20) seems to be 1580 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1581 * on the 7.60 will affect 3.20. So, we need to construct our own list 1582 * of caps. 1583 * KSZ8563R should have 100BaseTX/Full only. 1584 */ 1585 linkmode_and(phydev->supported_eee, phydev->supported, 1586 PHY_EEE_CAP1_FEATURES); 1587 1588 return 0; 1589 } 1590 1591 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1592 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1593 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1594 static int ksz8873mll_read_status(struct phy_device *phydev) 1595 { 1596 int regval; 1597 1598 /* dummy read */ 1599 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1600 1601 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1602 1603 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1604 phydev->duplex = DUPLEX_HALF; 1605 else 1606 phydev->duplex = DUPLEX_FULL; 1607 1608 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1609 phydev->speed = SPEED_10; 1610 else 1611 phydev->speed = SPEED_100; 1612 1613 phydev->link = 1; 1614 phydev->pause = phydev->asym_pause = 0; 1615 1616 return 0; 1617 } 1618 1619 static int ksz9031_get_features(struct phy_device *phydev) 1620 { 1621 int ret; 1622 1623 ret = genphy_read_abilities(phydev); 1624 if (ret < 0) 1625 return ret; 1626 1627 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1628 * Whenever the device's Asymmetric Pause capability is set to 1, 1629 * link-up may fail after a link-up to link-down transition. 1630 * 1631 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1632 * 1633 * Workaround: 1634 * Do not enable the Asymmetric Pause capability bit. 1635 */ 1636 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1637 1638 /* We force setting the Pause capability as the core will force the 1639 * Asymmetric Pause capability to 1 otherwise. 1640 */ 1641 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1642 1643 return 0; 1644 } 1645 1646 static int ksz9031_read_status(struct phy_device *phydev) 1647 { 1648 int err; 1649 int regval; 1650 1651 err = genphy_read_status(phydev); 1652 if (err) 1653 return err; 1654 1655 /* Make sure the PHY is not broken. Read idle error count, 1656 * and reset the PHY if it is maxed out. 1657 */ 1658 regval = phy_read(phydev, MII_STAT1000); 1659 if ((regval & 0xFF) == 0xFF) { 1660 phy_init_hw(phydev); 1661 phydev->link = 0; 1662 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1663 phydev->drv->config_intr(phydev); 1664 return genphy_config_aneg(phydev); 1665 } 1666 1667 return 0; 1668 } 1669 1670 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1671 { 1672 struct kszphy_priv *priv = phydev->priv; 1673 int ret; 1674 1675 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1676 * Prior to running the cable diagnostics, Auto-negotiation should 1677 * be disabled, full duplex set and the link speed set to 1000Mbps 1678 * via the Basic Control Register. 1679 */ 1680 ret = phy_modify(phydev, MII_BMCR, 1681 BMCR_SPEED1000 | BMCR_FULLDPLX | 1682 BMCR_ANENABLE | BMCR_SPEED100, 1683 BMCR_SPEED1000 | BMCR_FULLDPLX); 1684 if (ret) 1685 return ret; 1686 1687 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1688 * The Master-Slave configuration should be set to Slave by writing 1689 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1690 * Register. 1691 */ 1692 ret = phy_read(phydev, MII_CTRL1000); 1693 if (ret < 0) 1694 return ret; 1695 1696 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1697 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1698 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1699 ret |= CTL1000_ENABLE_MASTER; 1700 1701 return phy_write(phydev, MII_CTRL1000, ret); 1702 } 1703 1704 static int ksz9x31_cable_test_result_trans(u16 status) 1705 { 1706 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1707 case KSZ9x31_LMD_VCT_ST_NORMAL: 1708 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1709 case KSZ9x31_LMD_VCT_ST_OPEN: 1710 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1711 case KSZ9x31_LMD_VCT_ST_SHORT: 1712 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1713 case KSZ9x31_LMD_VCT_ST_FAIL: 1714 fallthrough; 1715 default: 1716 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1717 } 1718 } 1719 1720 static bool ksz9x31_cable_test_failed(u16 status) 1721 { 1722 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1723 1724 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1725 } 1726 1727 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1728 { 1729 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1730 case KSZ9x31_LMD_VCT_ST_OPEN: 1731 fallthrough; 1732 case KSZ9x31_LMD_VCT_ST_SHORT: 1733 return true; 1734 } 1735 return false; 1736 } 1737 1738 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1739 { 1740 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1741 1742 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1743 * 1744 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1745 */ 1746 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1747 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1748 dt = clamp(dt - 22, 0, 255); 1749 1750 return (dt * 400) / 10; 1751 } 1752 1753 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1754 { 1755 int val, ret; 1756 1757 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1758 !(val & KSZ9x31_LMD_VCT_EN), 1759 30000, 100000, true); 1760 1761 return ret < 0 ? ret : 0; 1762 } 1763 1764 static int ksz9x31_cable_test_get_pair(int pair) 1765 { 1766 static const int ethtool_pair[] = { 1767 ETHTOOL_A_CABLE_PAIR_A, 1768 ETHTOOL_A_CABLE_PAIR_B, 1769 ETHTOOL_A_CABLE_PAIR_C, 1770 ETHTOOL_A_CABLE_PAIR_D, 1771 }; 1772 1773 return ethtool_pair[pair]; 1774 } 1775 1776 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1777 { 1778 int ret, val; 1779 1780 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1781 * To test each individual cable pair, set the cable pair in the Cable 1782 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1783 * Diagnostic Register, along with setting the Cable Diagnostics Test 1784 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1785 * will self clear when the test is concluded. 1786 */ 1787 ret = phy_write(phydev, KSZ9x31_LMD, 1788 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1789 if (ret) 1790 return ret; 1791 1792 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1793 if (ret) 1794 return ret; 1795 1796 val = phy_read(phydev, KSZ9x31_LMD); 1797 if (val < 0) 1798 return val; 1799 1800 if (ksz9x31_cable_test_failed(val)) 1801 return -EAGAIN; 1802 1803 ret = ethnl_cable_test_result(phydev, 1804 ksz9x31_cable_test_get_pair(pair), 1805 ksz9x31_cable_test_result_trans(val)); 1806 if (ret) 1807 return ret; 1808 1809 if (!ksz9x31_cable_test_fault_length_valid(val)) 1810 return 0; 1811 1812 return ethnl_cable_test_fault_length(phydev, 1813 ksz9x31_cable_test_get_pair(pair), 1814 ksz9x31_cable_test_fault_length(phydev, val)); 1815 } 1816 1817 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1818 bool *finished) 1819 { 1820 struct kszphy_priv *priv = phydev->priv; 1821 unsigned long pair_mask; 1822 int retries = 20; 1823 int pair, ret, rv; 1824 1825 *finished = false; 1826 1827 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1828 phydev->supported) || 1829 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1830 phydev->supported)) 1831 pair_mask = 0xf; /* All pairs */ 1832 else 1833 pair_mask = 0x3; /* Pairs A and B only */ 1834 1835 /* Try harder if link partner is active */ 1836 while (pair_mask && retries--) { 1837 for_each_set_bit(pair, &pair_mask, 4) { 1838 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1839 if (ret == -EAGAIN) 1840 continue; 1841 if (ret < 0) 1842 return ret; 1843 clear_bit(pair, &pair_mask); 1844 } 1845 /* If link partner is in autonegotiation mode it will send 2ms 1846 * of FLPs with at least 6ms of silence. 1847 * Add 2ms sleep to have better chances to hit this silence. 1848 */ 1849 if (pair_mask) 1850 usleep_range(2000, 3000); 1851 } 1852 1853 /* Report remaining unfinished pair result as unknown. */ 1854 for_each_set_bit(pair, &pair_mask, 4) { 1855 ret = ethnl_cable_test_result(phydev, 1856 ksz9x31_cable_test_get_pair(pair), 1857 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1858 } 1859 1860 *finished = true; 1861 1862 /* Restore cached bits from before LinkMD got started. */ 1863 rv = phy_modify(phydev, MII_CTRL1000, 1864 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1865 priv->vct_ctrl1000); 1866 if (rv) 1867 return rv; 1868 1869 return ret; 1870 } 1871 1872 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1873 { 1874 return 0; 1875 } 1876 1877 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1878 { 1879 u16 val; 1880 1881 switch (ctrl) { 1882 case ETH_TP_MDI: 1883 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1884 break; 1885 case ETH_TP_MDI_X: 1886 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1887 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1888 * sheet seems to be missing: 1889 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1890 * 0 = Normal operation (transmit on TX+/TX- pins) 1891 */ 1892 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1893 break; 1894 case ETH_TP_MDI_AUTO: 1895 val = 0; 1896 break; 1897 default: 1898 return 0; 1899 } 1900 1901 return phy_modify(phydev, MII_BMCR, 1902 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1903 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1904 KSZ886X_BMCR_HP_MDIX | val); 1905 } 1906 1907 static int ksz886x_config_aneg(struct phy_device *phydev) 1908 { 1909 int ret; 1910 1911 ret = genphy_config_aneg(phydev); 1912 if (ret) 1913 return ret; 1914 1915 if (phydev->autoneg != AUTONEG_ENABLE) { 1916 /* When autonegotation is disabled, we need to manually force 1917 * the link state. If we don't do this, the PHY will keep 1918 * sending Fast Link Pulses (FLPs) which are part of the 1919 * autonegotiation process. This is not desired when 1920 * autonegotiation is off. 1921 */ 1922 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1923 KSZ886X_CTRL_FORCE_LINK); 1924 if (ret) 1925 return ret; 1926 } else { 1927 /* If we had previously forced the link state, we need to 1928 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1929 * will not perform autonegotiation. 1930 */ 1931 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1932 KSZ886X_CTRL_FORCE_LINK); 1933 if (ret) 1934 return ret; 1935 } 1936 1937 /* The MDI-X configuration is automatically changed by the PHY after 1938 * switching from autoneg off to on. So, take MDI-X configuration under 1939 * own control and set it after autoneg configuration was done. 1940 */ 1941 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1942 } 1943 1944 static int ksz886x_mdix_update(struct phy_device *phydev) 1945 { 1946 int ret; 1947 1948 ret = phy_read(phydev, MII_BMCR); 1949 if (ret < 0) 1950 return ret; 1951 1952 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1953 if (ret & KSZ886X_BMCR_FORCE_MDI) 1954 phydev->mdix_ctrl = ETH_TP_MDI_X; 1955 else 1956 phydev->mdix_ctrl = ETH_TP_MDI; 1957 } else { 1958 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1959 } 1960 1961 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1962 if (ret < 0) 1963 return ret; 1964 1965 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1966 if (ret & KSZ886X_CTRL_MDIX_STAT) 1967 phydev->mdix = ETH_TP_MDI_X; 1968 else 1969 phydev->mdix = ETH_TP_MDI; 1970 1971 return 0; 1972 } 1973 1974 static int ksz886x_read_status(struct phy_device *phydev) 1975 { 1976 int ret; 1977 1978 ret = ksz886x_mdix_update(phydev); 1979 if (ret < 0) 1980 return ret; 1981 1982 return genphy_read_status(phydev); 1983 } 1984 1985 static int ksz9477_mdix_update(struct phy_device *phydev) 1986 { 1987 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1988 phydev->mdix = phydev->mdix_ctrl; 1989 else 1990 phydev->mdix = ETH_TP_MDI_INVALID; 1991 1992 return 0; 1993 } 1994 1995 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 1996 { 1997 int val; 1998 1999 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2000 if (val < 0) 2001 return val; 2002 2003 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2004 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2005 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2006 phydev->mdix_ctrl = ETH_TP_MDI; 2007 else 2008 phydev->mdix_ctrl = ETH_TP_MDI_X; 2009 2010 return 0; 2011 } 2012 2013 static int ksz9477_read_status(struct phy_device *phydev) 2014 { 2015 int ret; 2016 2017 ret = ksz9477_mdix_update(phydev); 2018 if (ret) 2019 return ret; 2020 2021 return genphy_read_status(phydev); 2022 } 2023 2024 static int ksz9477_config_aneg(struct phy_device *phydev) 2025 { 2026 int ret; 2027 2028 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2029 if (ret) 2030 return ret; 2031 2032 return genphy_config_aneg(phydev); 2033 } 2034 2035 struct ksz9477_errata_write { 2036 u8 dev_addr; 2037 u8 reg_addr; 2038 u16 val; 2039 }; 2040 2041 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2042 /* Register settings are needed to improve PHY receive performance */ 2043 {0x01, 0x6f, 0xdd0b}, 2044 {0x01, 0x8f, 0x6032}, 2045 {0x01, 0x9d, 0x248c}, 2046 {0x01, 0x75, 0x0060}, 2047 {0x01, 0xd3, 0x7777}, 2048 {0x1c, 0x06, 0x3008}, 2049 {0x1c, 0x08, 0x2000}, 2050 2051 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2052 {0x1c, 0x04, 0x00d0}, 2053 2054 /* Register settings are required to meet data sheet supply current specifications */ 2055 {0x1c, 0x13, 0x6eff}, 2056 {0x1c, 0x14, 0xe6ff}, 2057 {0x1c, 0x15, 0x6eff}, 2058 {0x1c, 0x16, 0xe6ff}, 2059 {0x1c, 0x17, 0x00ff}, 2060 {0x1c, 0x18, 0x43ff}, 2061 {0x1c, 0x19, 0xc3ff}, 2062 {0x1c, 0x1a, 0x6fff}, 2063 {0x1c, 0x1b, 0x07ff}, 2064 {0x1c, 0x1c, 0x0fff}, 2065 {0x1c, 0x1d, 0xe7ff}, 2066 {0x1c, 0x1e, 0xefff}, 2067 {0x1c, 0x20, 0xeeee}, 2068 }; 2069 2070 static int ksz9477_phy_errata(struct phy_device *phydev) 2071 { 2072 int err; 2073 int i; 2074 2075 /* Apply PHY settings to address errata listed in 2076 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2077 * Silicon Errata and Data Sheet Clarification documents. 2078 * 2079 * Document notes: Before configuring the PHY MMD registers, it is 2080 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2081 * disabled by writing to register 0xN100-0xN101. After writing the 2082 * MMD registers, and after all errata workarounds that involve PHY 2083 * register settings, write register 0xN100-0xN101 again to enable 2084 * and restart auto-negotiation. 2085 */ 2086 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2087 if (err) 2088 return err; 2089 2090 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2091 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2092 2093 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2094 if (err) 2095 return err; 2096 } 2097 2098 err = genphy_restart_aneg(phydev); 2099 if (err) 2100 return err; 2101 2102 return err; 2103 } 2104 2105 static int ksz9477_config_init(struct phy_device *phydev) 2106 { 2107 int err; 2108 2109 /* Only KSZ9897 family of switches needs this fix. */ 2110 if ((phydev->phy_id & 0xf) == 1) { 2111 err = ksz9477_phy_errata(phydev); 2112 if (err) 2113 return err; 2114 } 2115 2116 /* Read initial MDI-X config state. So, we do not need to poll it 2117 * later on. 2118 */ 2119 err = ksz9477_read_mdix_ctrl(phydev); 2120 if (err) 2121 return err; 2122 2123 return kszphy_config_init(phydev); 2124 } 2125 2126 static int kszphy_get_sset_count(struct phy_device *phydev) 2127 { 2128 return ARRAY_SIZE(kszphy_hw_stats); 2129 } 2130 2131 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2132 { 2133 int i; 2134 2135 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2136 ethtool_puts(&data, kszphy_hw_stats[i].string); 2137 } 2138 2139 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2140 { 2141 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2142 struct kszphy_priv *priv = phydev->priv; 2143 int val; 2144 u64 ret; 2145 2146 val = phy_read(phydev, stat.reg); 2147 if (val < 0) { 2148 ret = U64_MAX; 2149 } else { 2150 val = val & ((1 << stat.bits) - 1); 2151 priv->stats[i] += val; 2152 ret = priv->stats[i]; 2153 } 2154 2155 return ret; 2156 } 2157 2158 static void kszphy_get_stats(struct phy_device *phydev, 2159 struct ethtool_stats *stats, u64 *data) 2160 { 2161 int i; 2162 2163 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2164 data[i] = kszphy_get_stat(phydev, i); 2165 } 2166 2167 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2168 * etc. The counter is incremented when the PHY receives a frame with one or 2169 * more symbol errors. The counter is cleared when the register is read. 2170 */ 2171 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2172 2173 static int kszphy_update_stats(struct phy_device *phydev) 2174 { 2175 struct kszphy_priv *priv = phydev->priv; 2176 int ret; 2177 2178 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2179 if (ret < 0) 2180 return ret; 2181 2182 priv->phy_stats.rx_err_pkt_cnt += ret; 2183 2184 return 0; 2185 } 2186 2187 static void kszphy_get_phy_stats(struct phy_device *phydev, 2188 struct ethtool_eth_phy_stats *eth_stats, 2189 struct ethtool_phy_stats *stats) 2190 { 2191 struct kszphy_priv *priv = phydev->priv; 2192 2193 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2194 } 2195 2196 /* Base register for Signal Quality Indicator (SQI) - Channel A 2197 * 2198 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2199 * Register: 0xAC (Channel A) 2200 * Each channel (pair) has its own register: 2201 * Channel A: 0xAC 2202 * Channel B: 0xAD 2203 * Channel C: 0xAE 2204 * Channel D: 0xAF 2205 */ 2206 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2207 2208 /* SQI field mask for bits [14:8] 2209 * 2210 * SQI indicates relative quality of the signal. 2211 * A lower value indicates better signal quality. 2212 */ 2213 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2214 2215 #define KSZ9477_MAX_CHANNELS 4 2216 #define KSZ9477_SQI_MAX 7 2217 2218 /* Number of SQI samples to average for a stable result. 2219 * 2220 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2221 * For noisy environments, a minimum of 30–50 readings is recommended. 2222 */ 2223 #define KSZ9477_SQI_SAMPLE_COUNT 40 2224 2225 /* The hardware SQI register provides a raw value from 0-127, where a lower 2226 * value indicates better signal quality. However, empirical testing has 2227 * shown that only the 0-7 range is relevant for a functional link. A raw 2228 * value of 8 or higher was measured directly before link drop. This aligns 2229 * with the OPEN Alliance recommendation that SQI=0 should represent the 2230 * pre-failure state. 2231 * 2232 * This table provides a non-linear mapping from the useful raw hardware 2233 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2234 */ 2235 static const u8 ksz_sqi_mapping[] = { 2236 7, /* raw 0 -> SQI 7 */ 2237 7, /* raw 1 -> SQI 7 */ 2238 6, /* raw 2 -> SQI 6 */ 2239 5, /* raw 3 -> SQI 5 */ 2240 4, /* raw 4 -> SQI 4 */ 2241 3, /* raw 5 -> SQI 3 */ 2242 2, /* raw 6 -> SQI 2 */ 2243 1, /* raw 7 -> SQI 1 */ 2244 }; 2245 2246 /** 2247 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2248 * @phydev: the PHY device 2249 * 2250 * This function reads and processes the raw Signal Quality Index from the 2251 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2252 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2253 * mapped to the standard 0-7 SQI scale via a lookup table. 2254 * 2255 * Return: SQI value (0–7), or a negative errno on failure. 2256 */ 2257 static int kszphy_get_sqi(struct phy_device *phydev) 2258 { 2259 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2260 int worst_sqi = KSZ9477_SQI_MAX; 2261 int i, val, raw_sqi, ch; 2262 u8 channels; 2263 2264 /* Determine applicable channels based on link speed */ 2265 if (phydev->speed == SPEED_1000) 2266 channels = 4; 2267 else if (phydev->speed == SPEED_100) 2268 channels = 1; 2269 else 2270 return -EOPNOTSUPP; 2271 2272 /* Sample and accumulate SQI readings for each pair (currently only one). 2273 * 2274 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2275 * - The SQI register is updated every 2 µs. 2276 * - Values may fluctuate significantly, even in low-noise environments. 2277 * - For reliable estimation, average a minimum of 30–50 samples 2278 * (recommended for noisy environments) 2279 * - In noisy environments, individual readings are highly unreliable. 2280 * 2281 * We use 40 samples per pair with a delay of 3 µs between each 2282 * read to ensure new values are captured (2 µs update interval). 2283 */ 2284 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2285 for (ch = 0; ch < channels; ch++) { 2286 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2287 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2288 if (val < 0) 2289 return val; 2290 2291 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2292 sum[ch] += raw_sqi; 2293 2294 /* We communicate with the PHY via MDIO via SPI or 2295 * I2C, which is relatively slow. At least slower than 2296 * the update interval of the SQI register. 2297 * So, we can skip the delay between reads. 2298 */ 2299 } 2300 } 2301 2302 /* Calculate average for each channel and find the worst SQI */ 2303 for (ch = 0; ch < channels; ch++) { 2304 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2305 int mapped_sqi; 2306 2307 /* Handle the pre-fail/failed state first. */ 2308 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2309 mapped_sqi = 0; 2310 else 2311 /* Use the lookup table for the good signal range. */ 2312 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2313 2314 if (mapped_sqi < worst_sqi) 2315 worst_sqi = mapped_sqi; 2316 } 2317 2318 return worst_sqi; 2319 } 2320 2321 static int kszphy_get_sqi_max(struct phy_device *phydev) 2322 { 2323 return KSZ9477_SQI_MAX; 2324 } 2325 2326 static void kszphy_enable_clk(struct phy_device *phydev) 2327 { 2328 struct kszphy_priv *priv = phydev->priv; 2329 2330 if (!priv->clk_enable && priv->clk) { 2331 clk_prepare_enable(priv->clk); 2332 priv->clk_enable = true; 2333 } 2334 } 2335 2336 static void kszphy_disable_clk(struct phy_device *phydev) 2337 { 2338 struct kszphy_priv *priv = phydev->priv; 2339 2340 if (priv->clk_enable && priv->clk) { 2341 clk_disable_unprepare(priv->clk); 2342 priv->clk_enable = false; 2343 } 2344 } 2345 2346 static int kszphy_generic_resume(struct phy_device *phydev) 2347 { 2348 kszphy_enable_clk(phydev); 2349 2350 return genphy_resume(phydev); 2351 } 2352 2353 static int kszphy_generic_suspend(struct phy_device *phydev) 2354 { 2355 int ret; 2356 2357 ret = genphy_suspend(phydev); 2358 if (ret) 2359 return ret; 2360 2361 kszphy_disable_clk(phydev); 2362 2363 return 0; 2364 } 2365 2366 static int kszphy_suspend(struct phy_device *phydev) 2367 { 2368 /* Disable PHY Interrupts */ 2369 if (phy_interrupt_is_valid(phydev)) { 2370 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2371 if (phydev->drv->config_intr) 2372 phydev->drv->config_intr(phydev); 2373 } 2374 2375 return kszphy_generic_suspend(phydev); 2376 } 2377 2378 static void kszphy_parse_led_mode(struct phy_device *phydev) 2379 { 2380 const struct kszphy_type *type = phydev->drv->driver_data; 2381 const struct device_node *np = phydev->mdio.dev.of_node; 2382 struct kszphy_priv *priv = phydev->priv; 2383 int ret; 2384 2385 if (type && type->led_mode_reg) { 2386 ret = of_property_read_u32(np, "micrel,led-mode", 2387 &priv->led_mode); 2388 2389 if (ret) 2390 priv->led_mode = -1; 2391 2392 if (priv->led_mode > 3) { 2393 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2394 priv->led_mode); 2395 priv->led_mode = -1; 2396 } 2397 } else { 2398 priv->led_mode = -1; 2399 } 2400 } 2401 2402 static int kszphy_resume(struct phy_device *phydev) 2403 { 2404 int ret; 2405 2406 ret = kszphy_generic_resume(phydev); 2407 if (ret) 2408 return ret; 2409 2410 /* After switching from power-down to normal mode, an internal global 2411 * reset is automatically generated. Wait a minimum of 1 ms before 2412 * read/write access to the PHY registers. 2413 */ 2414 usleep_range(1000, 2000); 2415 2416 ret = kszphy_config_reset(phydev); 2417 if (ret) 2418 return ret; 2419 2420 /* Enable PHY Interrupts */ 2421 if (phy_interrupt_is_valid(phydev)) { 2422 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2423 if (phydev->drv->config_intr) 2424 phydev->drv->config_intr(phydev); 2425 } 2426 2427 return 0; 2428 } 2429 2430 /* Because of errata DS80000700A, receiver error following software 2431 * power down. Suspend and resume callbacks only disable and enable 2432 * external rmii reference clock. 2433 */ 2434 static int ksz8041_resume(struct phy_device *phydev) 2435 { 2436 kszphy_enable_clk(phydev); 2437 2438 return 0; 2439 } 2440 2441 static int ksz8041_suspend(struct phy_device *phydev) 2442 { 2443 kszphy_disable_clk(phydev); 2444 2445 return 0; 2446 } 2447 2448 static int ksz9477_resume(struct phy_device *phydev) 2449 { 2450 int ret; 2451 2452 /* No need to initialize registers if not powered down. */ 2453 ret = phy_read(phydev, MII_BMCR); 2454 if (ret < 0) 2455 return ret; 2456 if (!(ret & BMCR_PDOWN)) 2457 return 0; 2458 2459 genphy_resume(phydev); 2460 2461 /* After switching from power-down to normal mode, an internal global 2462 * reset is automatically generated. Wait a minimum of 1 ms before 2463 * read/write access to the PHY registers. 2464 */ 2465 usleep_range(1000, 2000); 2466 2467 /* Only KSZ9897 family of switches needs this fix. */ 2468 if ((phydev->phy_id & 0xf) == 1) { 2469 ret = ksz9477_phy_errata(phydev); 2470 if (ret) 2471 return ret; 2472 } 2473 2474 /* Enable PHY Interrupts */ 2475 if (phy_interrupt_is_valid(phydev)) { 2476 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2477 if (phydev->drv->config_intr) 2478 phydev->drv->config_intr(phydev); 2479 } 2480 2481 return 0; 2482 } 2483 2484 static int ksz8061_resume(struct phy_device *phydev) 2485 { 2486 int ret; 2487 2488 /* This function can be called twice when the Ethernet device is on. */ 2489 ret = phy_read(phydev, MII_BMCR); 2490 if (ret < 0) 2491 return ret; 2492 if (!(ret & BMCR_PDOWN)) 2493 return 0; 2494 2495 ret = kszphy_generic_resume(phydev); 2496 if (ret) 2497 return ret; 2498 2499 usleep_range(1000, 2000); 2500 2501 /* Re-program the value after chip is reset. */ 2502 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2503 if (ret) 2504 return ret; 2505 2506 /* Enable PHY Interrupts */ 2507 if (phy_interrupt_is_valid(phydev)) { 2508 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2509 if (phydev->drv->config_intr) 2510 phydev->drv->config_intr(phydev); 2511 } 2512 2513 return 0; 2514 } 2515 2516 static int ksz8061_suspend(struct phy_device *phydev) 2517 { 2518 return kszphy_suspend(phydev); 2519 } 2520 2521 static int kszphy_probe(struct phy_device *phydev) 2522 { 2523 const struct kszphy_type *type = phydev->drv->driver_data; 2524 const struct device_node *np = phydev->mdio.dev.of_node; 2525 struct kszphy_priv *priv; 2526 struct clk *clk; 2527 2528 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2529 if (!priv) 2530 return -ENOMEM; 2531 2532 phydev->priv = priv; 2533 2534 priv->type = type; 2535 2536 kszphy_parse_led_mode(phydev); 2537 2538 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2539 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2540 if (!IS_ERR_OR_NULL(clk)) { 2541 unsigned long rate = clk_get_rate(clk); 2542 bool rmii_ref_clk_sel_25_mhz; 2543 2544 if (type) 2545 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2546 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2547 "micrel,rmii-reference-clock-select-25-mhz"); 2548 2549 if (rate > 24500000 && rate < 25500000) { 2550 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2551 } else if (rate > 49500000 && rate < 50500000) { 2552 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2553 } else { 2554 phydev_err(phydev, "Clock rate out of range: %ld\n", 2555 rate); 2556 return -EINVAL; 2557 } 2558 } else if (!clk) { 2559 /* unnamed clock from the generic ethernet-phy binding */ 2560 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2561 } 2562 2563 if (IS_ERR(clk)) 2564 return PTR_ERR(clk); 2565 2566 clk_disable_unprepare(clk); 2567 priv->clk = clk; 2568 2569 if (ksz8041_fiber_mode(phydev)) 2570 phydev->port = PORT_FIBRE; 2571 2572 /* Support legacy board-file configuration */ 2573 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2574 priv->rmii_ref_clk_sel = true; 2575 priv->rmii_ref_clk_sel_val = true; 2576 } 2577 2578 return 0; 2579 } 2580 2581 static int lan8814_cable_test_start(struct phy_device *phydev) 2582 { 2583 /* If autoneg is enabled, we won't be able to test cross pair 2584 * short. In this case, the PHY will "detect" a link and 2585 * confuse the internal state machine - disable auto neg here. 2586 * Set the speed to 1000mbit and full duplex. 2587 */ 2588 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2589 BMCR_SPEED1000 | BMCR_FULLDPLX); 2590 } 2591 2592 static int ksz886x_cable_test_start(struct phy_device *phydev) 2593 { 2594 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2595 return -EOPNOTSUPP; 2596 2597 /* If autoneg is enabled, we won't be able to test cross pair 2598 * short. In this case, the PHY will "detect" a link and 2599 * confuse the internal state machine - disable auto neg here. 2600 * If autoneg is disabled, we should set the speed to 10mbit. 2601 */ 2602 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2603 } 2604 2605 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2606 { 2607 switch (FIELD_GET(mask, status)) { 2608 case KSZ8081_LMD_STAT_NORMAL: 2609 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2610 case KSZ8081_LMD_STAT_SHORT: 2611 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2612 case KSZ8081_LMD_STAT_OPEN: 2613 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2614 case KSZ8081_LMD_STAT_FAIL: 2615 fallthrough; 2616 default: 2617 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2618 } 2619 } 2620 2621 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2622 { 2623 return FIELD_GET(mask, status) == 2624 KSZ8081_LMD_STAT_FAIL; 2625 } 2626 2627 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2628 { 2629 switch (FIELD_GET(mask, status)) { 2630 case KSZ8081_LMD_STAT_OPEN: 2631 fallthrough; 2632 case KSZ8081_LMD_STAT_SHORT: 2633 return true; 2634 } 2635 return false; 2636 } 2637 2638 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2639 u16 status, u16 data_mask) 2640 { 2641 int dt; 2642 2643 /* According to the data sheet the distance to the fault is 2644 * DELTA_TIME * 0.4 meters for ksz phys. 2645 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2646 */ 2647 dt = FIELD_GET(data_mask, status); 2648 2649 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2650 return ((dt - 22) * 800) / 10; 2651 else 2652 return (dt * 400) / 10; 2653 } 2654 2655 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2656 { 2657 const struct kszphy_type *type = phydev->drv->driver_data; 2658 int val, ret; 2659 2660 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2661 !(val & KSZ8081_LMD_ENABLE_TEST), 2662 30000, 100000, true); 2663 2664 return ret < 0 ? ret : 0; 2665 } 2666 2667 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2668 { 2669 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2670 ETHTOOL_A_CABLE_PAIR_B, 2671 ETHTOOL_A_CABLE_PAIR_C, 2672 ETHTOOL_A_CABLE_PAIR_D, 2673 }; 2674 u32 fault_length; 2675 int ret; 2676 int val; 2677 2678 val = KSZ8081_LMD_ENABLE_TEST; 2679 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2680 2681 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2682 if (ret < 0) 2683 return ret; 2684 2685 ret = ksz886x_cable_test_wait_for_completion(phydev); 2686 if (ret) 2687 return ret; 2688 2689 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2690 if (val < 0) 2691 return val; 2692 2693 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2694 return -EAGAIN; 2695 2696 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2697 ksz886x_cable_test_result_trans(val, 2698 LAN8814_CABLE_DIAG_STAT_MASK 2699 )); 2700 if (ret) 2701 return ret; 2702 2703 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2704 return 0; 2705 2706 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2707 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2708 2709 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2710 } 2711 2712 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2713 { 2714 static const int ethtool_pair[] = { 2715 ETHTOOL_A_CABLE_PAIR_A, 2716 ETHTOOL_A_CABLE_PAIR_B, 2717 }; 2718 int ret, val, mdix; 2719 u32 fault_length; 2720 2721 /* There is no way to choice the pair, like we do one ksz9031. 2722 * We can workaround this limitation by using the MDI-X functionality. 2723 */ 2724 if (pair == 0) 2725 mdix = ETH_TP_MDI; 2726 else 2727 mdix = ETH_TP_MDI_X; 2728 2729 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2730 case PHY_ID_KSZ8081: 2731 ret = ksz8081_config_mdix(phydev, mdix); 2732 break; 2733 case PHY_ID_KSZ886X: 2734 ret = ksz886x_config_mdix(phydev, mdix); 2735 break; 2736 default: 2737 ret = -ENODEV; 2738 } 2739 2740 if (ret) 2741 return ret; 2742 2743 /* Now we are ready to fire. This command will send a 100ns pulse 2744 * to the pair. 2745 */ 2746 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2747 if (ret) 2748 return ret; 2749 2750 ret = ksz886x_cable_test_wait_for_completion(phydev); 2751 if (ret) 2752 return ret; 2753 2754 val = phy_read(phydev, KSZ8081_LMD); 2755 if (val < 0) 2756 return val; 2757 2758 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2759 return -EAGAIN; 2760 2761 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2762 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2763 if (ret) 2764 return ret; 2765 2766 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2767 return 0; 2768 2769 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2770 2771 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2772 } 2773 2774 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2775 bool *finished) 2776 { 2777 const struct kszphy_type *type = phydev->drv->driver_data; 2778 unsigned long pair_mask = type->pair_mask; 2779 int retries = 20; 2780 int ret = 0; 2781 int pair; 2782 2783 *finished = false; 2784 2785 /* Try harder if link partner is active */ 2786 while (pair_mask && retries--) { 2787 for_each_set_bit(pair, &pair_mask, 4) { 2788 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2789 ret = lan8814_cable_test_one_pair(phydev, pair); 2790 else 2791 ret = ksz886x_cable_test_one_pair(phydev, pair); 2792 if (ret == -EAGAIN) 2793 continue; 2794 if (ret < 0) 2795 return ret; 2796 clear_bit(pair, &pair_mask); 2797 } 2798 /* If link partner is in autonegotiation mode it will send 2ms 2799 * of FLPs with at least 6ms of silence. 2800 * Add 2ms sleep to have better chances to hit this silence. 2801 */ 2802 if (pair_mask) 2803 msleep(2); 2804 } 2805 2806 *finished = true; 2807 2808 return ret; 2809 } 2810 2811 /** 2812 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2813 * 2814 * This page contains timers used for auto-negotiation, debug registers and 2815 * register to configure fast link failure. 2816 */ 2817 #define LAN8814_PAGE_PCS 0 2818 2819 /** 2820 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2821 * 2822 * This page appears to control the Analog Front-End (AFE) and Physical 2823 * Medium Attachment (PMA) layers. It is used to access registers like 2824 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2825 */ 2826 #define LAN8814_PAGE_AFE_PMA 1 2827 2828 /** 2829 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2830 * 2831 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2832 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2833 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2834 * and self-test counters in the LAN8842. 2835 */ 2836 #define LAN8814_PAGE_PCS_DIGITAL 2 2837 2838 /** 2839 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2840 * 2841 * This page contains device-common registers that affect the entire chip. 2842 * It includes controls for chip-level resets, strap status, GPIO, 2843 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2844 */ 2845 #define LAN8814_PAGE_COMMON_REGS 4 2846 2847 /** 2848 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2849 * 2850 * This page contains port-specific registers that must be accessed 2851 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2852 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2853 */ 2854 #define LAN8814_PAGE_PORT_REGS 5 2855 2856 /** 2857 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2858 * 2859 * This page appears to hold fundamental system or global controls. In the 2860 * driver, it is used by the related LAN8804 to access the 2861 * LAN8814_CLOCK_MANAGEMENT register. 2862 */ 2863 #define LAN8814_PAGE_SYSTEM_CTRL 31 2864 2865 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2866 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2867 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2868 2869 #define LAN8814_QSGMII_SOFT_RESET 0x43 2870 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2871 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2872 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2873 #define LAN8814_ALIGN_SWAP 0x4a 2874 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2875 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2876 2877 #define LAN8804_ALIGN_SWAP 0x4a 2878 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2879 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2880 #define LAN8814_CLOCK_MANAGEMENT 0xd 2881 #define LAN8814_LINK_QUALITY 0x8e 2882 2883 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2884 { 2885 int data; 2886 2887 phy_lock_mdio_bus(phydev); 2888 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2889 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2890 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2891 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2892 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2893 phy_unlock_mdio_bus(phydev); 2894 2895 return data; 2896 } 2897 2898 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2899 u16 val) 2900 { 2901 phy_lock_mdio_bus(phydev); 2902 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2903 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2904 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2905 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2906 2907 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2908 if (val != 0) 2909 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2910 val); 2911 phy_unlock_mdio_bus(phydev); 2912 return val; 2913 } 2914 2915 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 2916 u16 mask, u16 set) 2917 { 2918 int ret; 2919 2920 phy_lock_mdio_bus(phydev); 2921 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2922 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2923 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2924 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2925 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 2926 mask, set); 2927 phy_unlock_mdio_bus(phydev); 2928 2929 if (ret < 0) 2930 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 2931 ERR_PTR(ret)); 2932 2933 return ret; 2934 } 2935 2936 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2937 { 2938 u16 val = 0; 2939 2940 if (enable) 2941 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2942 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2943 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2944 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2945 2946 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2947 PTP_TSU_INT_EN, val); 2948 } 2949 2950 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2951 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2952 { 2953 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2954 PTP_RX_INGRESS_SEC_HI); 2955 *seconds = (*seconds << 16) | 2956 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2957 PTP_RX_INGRESS_SEC_LO); 2958 2959 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2960 PTP_RX_INGRESS_NS_HI); 2961 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2962 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2963 PTP_RX_INGRESS_NS_LO); 2964 2965 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2966 PTP_RX_MSG_HEADER2); 2967 } 2968 2969 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2970 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2971 { 2972 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2973 PTP_TX_EGRESS_SEC_HI); 2974 *seconds = *seconds << 16 | 2975 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2976 PTP_TX_EGRESS_SEC_LO); 2977 2978 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2979 PTP_TX_EGRESS_NS_HI); 2980 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2981 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2982 PTP_TX_EGRESS_NS_LO); 2983 2984 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2985 PTP_TX_MSG_HEADER2); 2986 } 2987 2988 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2989 { 2990 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2991 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2992 2993 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2994 SOF_TIMESTAMPING_RX_HARDWARE | 2995 SOF_TIMESTAMPING_RAW_HARDWARE; 2996 2997 info->phc_index = ptp_clock_index(shared->ptp_clock); 2998 2999 info->tx_types = 3000 (1 << HWTSTAMP_TX_OFF) | 3001 (1 << HWTSTAMP_TX_ON) | 3002 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3003 3004 info->rx_filters = 3005 (1 << HWTSTAMP_FILTER_NONE) | 3006 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3007 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3008 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3009 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3010 3011 return 0; 3012 } 3013 3014 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3015 { 3016 int i; 3017 3018 for (i = 0; i < FIFO_SIZE; ++i) 3019 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3020 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3021 3022 /* Read to clear overflow status bit */ 3023 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3024 } 3025 3026 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 3027 struct kernel_hwtstamp_config *config, 3028 struct netlink_ext_ack *extack) 3029 { 3030 struct kszphy_ptp_priv *ptp_priv = 3031 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3032 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3033 int txcfg = 0, rxcfg = 0; 3034 int pkt_ts_enable; 3035 3036 ptp_priv->hwts_tx_type = config->tx_type; 3037 ptp_priv->rx_filter = config->rx_filter; 3038 3039 switch (config->rx_filter) { 3040 case HWTSTAMP_FILTER_NONE: 3041 ptp_priv->layer = 0; 3042 ptp_priv->version = 0; 3043 break; 3044 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3045 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3046 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3047 ptp_priv->layer = PTP_CLASS_L4; 3048 ptp_priv->version = PTP_CLASS_V2; 3049 break; 3050 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3051 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3052 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3053 ptp_priv->layer = PTP_CLASS_L2; 3054 ptp_priv->version = PTP_CLASS_V2; 3055 break; 3056 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3057 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3058 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3059 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3060 ptp_priv->version = PTP_CLASS_V2; 3061 break; 3062 default: 3063 return -ERANGE; 3064 } 3065 3066 if (ptp_priv->layer & PTP_CLASS_L2) { 3067 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3068 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3069 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3070 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3071 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3072 } 3073 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3074 PTP_RX_PARSE_CONFIG, rxcfg); 3075 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3076 PTP_TX_PARSE_CONFIG, txcfg); 3077 3078 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3079 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3080 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3081 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3082 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3083 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3084 3085 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3086 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3087 PTP_TX_MOD, 3088 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3089 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3090 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3091 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3092 PTP_TX_MOD, 3093 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3094 0); 3095 } 3096 3097 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3098 lan8814_config_ts_intr(ptp_priv->phydev, true); 3099 else 3100 lan8814_config_ts_intr(ptp_priv->phydev, false); 3101 3102 /* In case of multiple starts and stops, these needs to be cleared */ 3103 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3104 list_del(&rx_ts->list); 3105 kfree(rx_ts); 3106 } 3107 skb_queue_purge(&ptp_priv->rx_queue); 3108 skb_queue_purge(&ptp_priv->tx_queue); 3109 3110 lan8814_flush_fifo(ptp_priv->phydev, false); 3111 lan8814_flush_fifo(ptp_priv->phydev, true); 3112 3113 return 0; 3114 } 3115 3116 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3117 struct sk_buff *skb, int type) 3118 { 3119 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3120 3121 switch (ptp_priv->hwts_tx_type) { 3122 case HWTSTAMP_TX_ONESTEP_SYNC: 3123 if (ptp_msg_is_sync(skb, type)) { 3124 kfree_skb(skb); 3125 return; 3126 } 3127 fallthrough; 3128 case HWTSTAMP_TX_ON: 3129 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3130 skb_queue_tail(&ptp_priv->tx_queue, skb); 3131 break; 3132 case HWTSTAMP_TX_OFF: 3133 default: 3134 kfree_skb(skb); 3135 break; 3136 } 3137 } 3138 3139 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3140 { 3141 struct ptp_header *ptp_header; 3142 u32 type; 3143 3144 skb_push(skb, ETH_HLEN); 3145 type = ptp_classify_raw(skb); 3146 ptp_header = ptp_parse_header(skb, type); 3147 skb_pull_inline(skb, ETH_HLEN); 3148 3149 if (!ptp_header) 3150 return false; 3151 3152 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3153 return true; 3154 } 3155 3156 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3157 struct sk_buff *skb) 3158 { 3159 struct skb_shared_hwtstamps *shhwtstamps; 3160 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3161 unsigned long flags; 3162 bool ret = false; 3163 u16 skb_sig; 3164 3165 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3166 return ret; 3167 3168 /* Iterate over all RX timestamps and match it with the received skbs */ 3169 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3170 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3171 /* Check if we found the signature we were looking for. */ 3172 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3173 continue; 3174 3175 shhwtstamps = skb_hwtstamps(skb); 3176 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3177 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3178 rx_ts->nsec); 3179 list_del(&rx_ts->list); 3180 kfree(rx_ts); 3181 3182 ret = true; 3183 break; 3184 } 3185 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3186 3187 if (ret) 3188 netif_rx(skb); 3189 return ret; 3190 } 3191 3192 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3193 { 3194 struct kszphy_ptp_priv *ptp_priv = 3195 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3196 3197 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3198 type == PTP_CLASS_NONE) 3199 return false; 3200 3201 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3202 return false; 3203 3204 /* If we failed to match then add it to the queue for when the timestamp 3205 * will come 3206 */ 3207 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3208 skb_queue_tail(&ptp_priv->rx_queue, skb); 3209 3210 return true; 3211 } 3212 3213 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3214 time64_t sec, u32 nsec) 3215 { 3216 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3217 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3218 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3219 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3220 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3221 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3222 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3223 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3224 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3225 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3226 3227 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3228 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3229 } 3230 3231 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3232 time64_t *sec, u32 *nsec) 3233 { 3234 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3235 PTP_CMD_CTL_PTP_CLOCK_READ_); 3236 3237 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3238 PTP_CLOCK_READ_SEC_HI); 3239 *sec <<= 16; 3240 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3241 PTP_CLOCK_READ_SEC_MID); 3242 *sec <<= 16; 3243 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3244 PTP_CLOCK_READ_SEC_LO); 3245 3246 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3247 PTP_CLOCK_READ_NS_HI); 3248 *nsec <<= 16; 3249 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3250 PTP_CLOCK_READ_NS_LO); 3251 } 3252 3253 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3254 struct timespec64 *ts) 3255 { 3256 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3257 ptp_clock_info); 3258 struct phy_device *phydev = shared->phydev; 3259 u32 nano_seconds; 3260 time64_t seconds; 3261 3262 mutex_lock(&shared->shared_lock); 3263 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3264 mutex_unlock(&shared->shared_lock); 3265 ts->tv_sec = seconds; 3266 ts->tv_nsec = nano_seconds; 3267 3268 return 0; 3269 } 3270 3271 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3272 const struct timespec64 *ts) 3273 { 3274 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3275 ptp_clock_info); 3276 struct phy_device *phydev = shared->phydev; 3277 3278 mutex_lock(&shared->shared_lock); 3279 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3280 mutex_unlock(&shared->shared_lock); 3281 3282 return 0; 3283 } 3284 3285 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3286 s64 start_sec, u32 start_nsec) 3287 { 3288 /* Set the start time */ 3289 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3290 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3291 lower_16_bits(start_sec)); 3292 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3293 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3294 upper_16_bits(start_sec)); 3295 3296 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3297 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3298 lower_16_bits(start_nsec)); 3299 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3300 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3301 upper_16_bits(start_nsec) & 0x3fff); 3302 } 3303 3304 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3305 { 3306 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3307 sec + LAN8814_BUFFER_TIME, 0); 3308 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3309 sec + LAN8814_BUFFER_TIME, 0); 3310 } 3311 3312 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3313 s64 time_step_ns) 3314 { 3315 u32 nano_seconds_step; 3316 u64 abs_time_step_ns; 3317 time64_t set_seconds; 3318 u32 nano_seconds; 3319 u32 remainder; 3320 s32 seconds; 3321 3322 if (time_step_ns > 15000000000LL) { 3323 /* convert to clock set */ 3324 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3325 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3326 &remainder); 3327 nano_seconds += remainder; 3328 if (nano_seconds >= 1000000000) { 3329 set_seconds++; 3330 nano_seconds -= 1000000000; 3331 } 3332 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3333 lan8814_ptp_update_target(phydev, set_seconds); 3334 return; 3335 } else if (time_step_ns < -15000000000LL) { 3336 /* convert to clock set */ 3337 time_step_ns = -time_step_ns; 3338 3339 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3340 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3341 &remainder); 3342 nano_seconds_step = remainder; 3343 if (nano_seconds < nano_seconds_step) { 3344 set_seconds--; 3345 nano_seconds += 1000000000; 3346 } 3347 nano_seconds -= nano_seconds_step; 3348 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3349 lan8814_ptp_update_target(phydev, set_seconds); 3350 return; 3351 } 3352 3353 /* do clock step */ 3354 if (time_step_ns >= 0) { 3355 abs_time_step_ns = (u64)time_step_ns; 3356 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3357 &remainder); 3358 nano_seconds = remainder; 3359 } else { 3360 abs_time_step_ns = (u64)(-time_step_ns); 3361 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3362 &remainder)); 3363 nano_seconds = remainder; 3364 if (nano_seconds > 0) { 3365 /* subtracting nano seconds is not allowed 3366 * convert to subtracting from seconds, 3367 * and adding to nanoseconds 3368 */ 3369 seconds--; 3370 nano_seconds = (1000000000 - nano_seconds); 3371 } 3372 } 3373 3374 if (nano_seconds > 0) { 3375 /* add 8 ns to cover the likely normal increment */ 3376 nano_seconds += 8; 3377 } 3378 3379 if (nano_seconds >= 1000000000) { 3380 /* carry into seconds */ 3381 seconds++; 3382 nano_seconds -= 1000000000; 3383 } 3384 3385 while (seconds) { 3386 u32 nsec; 3387 3388 if (seconds > 0) { 3389 u32 adjustment_value = (u32)seconds; 3390 u16 adjustment_value_lo, adjustment_value_hi; 3391 3392 if (adjustment_value > 0xF) 3393 adjustment_value = 0xF; 3394 3395 adjustment_value_lo = adjustment_value & 0xffff; 3396 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3397 3398 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3399 PTP_LTC_STEP_ADJ_LO, 3400 adjustment_value_lo); 3401 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3402 PTP_LTC_STEP_ADJ_HI, 3403 PTP_LTC_STEP_ADJ_DIR_ | 3404 adjustment_value_hi); 3405 seconds -= ((s32)adjustment_value); 3406 3407 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3408 set_seconds -= adjustment_value; 3409 lan8814_ptp_update_target(phydev, set_seconds); 3410 } else { 3411 u32 adjustment_value = (u32)(-seconds); 3412 u16 adjustment_value_lo, adjustment_value_hi; 3413 3414 if (adjustment_value > 0xF) 3415 adjustment_value = 0xF; 3416 3417 adjustment_value_lo = adjustment_value & 0xffff; 3418 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3419 3420 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3421 PTP_LTC_STEP_ADJ_LO, 3422 adjustment_value_lo); 3423 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3424 PTP_LTC_STEP_ADJ_HI, 3425 adjustment_value_hi); 3426 seconds += ((s32)adjustment_value); 3427 3428 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3429 set_seconds += adjustment_value; 3430 lan8814_ptp_update_target(phydev, set_seconds); 3431 } 3432 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3433 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3434 } 3435 if (nano_seconds) { 3436 u16 nano_seconds_lo; 3437 u16 nano_seconds_hi; 3438 3439 nano_seconds_lo = nano_seconds & 0xffff; 3440 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3441 3442 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3443 PTP_LTC_STEP_ADJ_LO, 3444 nano_seconds_lo); 3445 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3446 PTP_LTC_STEP_ADJ_HI, 3447 PTP_LTC_STEP_ADJ_DIR_ | 3448 nano_seconds_hi); 3449 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3450 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3451 } 3452 } 3453 3454 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3455 { 3456 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3457 ptp_clock_info); 3458 struct phy_device *phydev = shared->phydev; 3459 3460 mutex_lock(&shared->shared_lock); 3461 lan8814_ptp_clock_step(phydev, delta); 3462 mutex_unlock(&shared->shared_lock); 3463 3464 return 0; 3465 } 3466 3467 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3468 { 3469 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3470 ptp_clock_info); 3471 struct phy_device *phydev = shared->phydev; 3472 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3473 bool positive = true; 3474 u32 kszphy_rate_adj; 3475 3476 if (scaled_ppm < 0) { 3477 scaled_ppm = -scaled_ppm; 3478 positive = false; 3479 } 3480 3481 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3482 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3483 3484 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3485 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3486 3487 if (positive) 3488 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3489 3490 mutex_lock(&shared->shared_lock); 3491 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3492 kszphy_rate_adj_hi); 3493 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3494 kszphy_rate_adj_lo); 3495 mutex_unlock(&shared->shared_lock); 3496 3497 return 0; 3498 } 3499 3500 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3501 s64 period_sec, u32 period_nsec) 3502 { 3503 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3504 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3505 lower_16_bits(period_sec)); 3506 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3507 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3508 upper_16_bits(period_sec)); 3509 3510 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3511 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3512 lower_16_bits(period_nsec)); 3513 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3514 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3515 upper_16_bits(period_nsec) & 0x3fff); 3516 } 3517 3518 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3519 int pulse_width) 3520 { 3521 /* Set the pulse width of the event, 3522 * Make sure that the target clock will be incremented each time when 3523 * local time reaches or pass it 3524 * Set the polarity high 3525 */ 3526 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3527 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3528 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3529 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3530 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3531 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3532 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3533 } 3534 3535 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3536 { 3537 /* Set target to too far in the future, effectively disabling it */ 3538 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3539 3540 /* And then reload once it recheas the target */ 3541 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3542 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3543 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3544 } 3545 3546 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3547 { 3548 /* Disable gpio alternate function, 3549 * 1: select as gpio, 3550 * 0: select alt func 3551 */ 3552 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3553 LAN8814_GPIO_EN_ADDR(pin), 3554 LAN8814_GPIO_EN_BIT(pin), 3555 LAN8814_GPIO_EN_BIT(pin)); 3556 3557 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3558 LAN8814_GPIO_DIR_ADDR(pin), 3559 LAN8814_GPIO_DIR_BIT(pin), 3560 0); 3561 3562 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3563 LAN8814_GPIO_BUF_ADDR(pin), 3564 LAN8814_GPIO_BUF_BIT(pin), 3565 0); 3566 } 3567 3568 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3569 { 3570 /* Set as gpio output */ 3571 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3572 LAN8814_GPIO_DIR_ADDR(pin), 3573 LAN8814_GPIO_DIR_BIT(pin), 3574 LAN8814_GPIO_DIR_BIT(pin)); 3575 3576 /* Enable gpio 0:for alternate function, 1:gpio */ 3577 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3578 LAN8814_GPIO_EN_ADDR(pin), 3579 LAN8814_GPIO_EN_BIT(pin), 3580 0); 3581 3582 /* Set buffer type to push pull */ 3583 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3584 LAN8814_GPIO_BUF_ADDR(pin), 3585 LAN8814_GPIO_BUF_BIT(pin), 3586 LAN8814_GPIO_BUF_BIT(pin)); 3587 } 3588 3589 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3590 struct ptp_clock_request *rq, int on) 3591 { 3592 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3593 ptp_clock_info); 3594 struct phy_device *phydev = shared->phydev; 3595 struct timespec64 ts_on, ts_period; 3596 s64 on_nsec, period_nsec; 3597 int pulse_width; 3598 int pin, event; 3599 3600 mutex_lock(&shared->shared_lock); 3601 event = rq->perout.index; 3602 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3603 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3604 mutex_unlock(&shared->shared_lock); 3605 return -EBUSY; 3606 } 3607 3608 if (!on) { 3609 lan8814_ptp_perout_off(phydev, pin); 3610 lan8814_ptp_disable_event(phydev, event); 3611 mutex_unlock(&shared->shared_lock); 3612 return 0; 3613 } 3614 3615 ts_on.tv_sec = rq->perout.on.sec; 3616 ts_on.tv_nsec = rq->perout.on.nsec; 3617 on_nsec = timespec64_to_ns(&ts_on); 3618 3619 ts_period.tv_sec = rq->perout.period.sec; 3620 ts_period.tv_nsec = rq->perout.period.nsec; 3621 period_nsec = timespec64_to_ns(&ts_period); 3622 3623 if (period_nsec < 200) { 3624 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3625 phydev_name(phydev)); 3626 mutex_unlock(&shared->shared_lock); 3627 return -EOPNOTSUPP; 3628 } 3629 3630 if (on_nsec >= period_nsec) { 3631 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3632 phydev_name(phydev)); 3633 mutex_unlock(&shared->shared_lock); 3634 return -EINVAL; 3635 } 3636 3637 switch (on_nsec) { 3638 case 200000000: 3639 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3640 break; 3641 case 100000000: 3642 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3643 break; 3644 case 50000000: 3645 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3646 break; 3647 case 10000000: 3648 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3649 break; 3650 case 5000000: 3651 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3652 break; 3653 case 1000000: 3654 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3655 break; 3656 case 500000: 3657 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3658 break; 3659 case 100000: 3660 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3661 break; 3662 case 50000: 3663 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3664 break; 3665 case 10000: 3666 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3667 break; 3668 case 5000: 3669 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3670 break; 3671 case 1000: 3672 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3673 break; 3674 case 500: 3675 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3676 break; 3677 case 100: 3678 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3679 break; 3680 default: 3681 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3682 phydev_name(phydev)); 3683 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3684 break; 3685 } 3686 3687 /* Configure to pulse every period */ 3688 lan8814_ptp_enable_event(phydev, event, pulse_width); 3689 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3690 rq->perout.start.nsec); 3691 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3692 rq->perout.period.nsec); 3693 lan8814_ptp_perout_on(phydev, pin); 3694 mutex_unlock(&shared->shared_lock); 3695 3696 return 0; 3697 } 3698 3699 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3700 { 3701 /* Set as gpio input */ 3702 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3703 LAN8814_GPIO_DIR_ADDR(pin), 3704 LAN8814_GPIO_DIR_BIT(pin), 3705 0); 3706 3707 /* Map the pin to ltc pin 0 of the capture map registers */ 3708 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3709 PTP_GPIO_CAP_MAP_LO, pin, pin); 3710 3711 /* Enable capture on the edges of the ltc pin */ 3712 if (flags & PTP_RISING_EDGE) 3713 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3714 PTP_GPIO_CAP_EN, 3715 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3716 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3717 if (flags & PTP_FALLING_EDGE) 3718 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3719 PTP_GPIO_CAP_EN, 3720 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3721 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3722 3723 /* Enable interrupt top interrupt */ 3724 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3725 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3726 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3727 } 3728 3729 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3730 { 3731 /* Set as gpio out */ 3732 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3733 LAN8814_GPIO_DIR_ADDR(pin), 3734 LAN8814_GPIO_DIR_BIT(pin), 3735 LAN8814_GPIO_DIR_BIT(pin)); 3736 3737 /* Enable alternate, 0:for alternate function, 1:gpio */ 3738 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3739 LAN8814_GPIO_EN_ADDR(pin), 3740 LAN8814_GPIO_EN_BIT(pin), 3741 0); 3742 3743 /* Clear the mapping of pin to registers 0 of the capture registers */ 3744 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3745 PTP_GPIO_CAP_MAP_LO, 3746 GENMASK(3, 0), 3747 0); 3748 3749 /* Disable capture on both of the edges */ 3750 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3751 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3752 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3753 0); 3754 3755 /* Disable interrupt top interrupt */ 3756 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3757 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3758 0); 3759 } 3760 3761 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3762 struct ptp_clock_request *rq, int on) 3763 { 3764 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3765 ptp_clock_info); 3766 struct phy_device *phydev = shared->phydev; 3767 int pin; 3768 3769 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3770 rq->extts.index); 3771 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3772 return -EINVAL; 3773 3774 mutex_lock(&shared->shared_lock); 3775 if (on) 3776 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3777 else 3778 lan8814_ptp_extts_off(phydev, pin); 3779 3780 mutex_unlock(&shared->shared_lock); 3781 3782 return 0; 3783 } 3784 3785 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3786 struct ptp_clock_request *rq, int on) 3787 { 3788 switch (rq->type) { 3789 case PTP_CLK_REQ_PEROUT: 3790 return lan8814_ptp_perout(ptpci, rq, on); 3791 case PTP_CLK_REQ_EXTTS: 3792 return lan8814_ptp_extts(ptpci, rq, on); 3793 default: 3794 return -EINVAL; 3795 } 3796 } 3797 3798 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3799 enum ptp_pin_function func, unsigned int chan) 3800 { 3801 switch (func) { 3802 case PTP_PF_NONE: 3803 case PTP_PF_PEROUT: 3804 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3805 * there is only chan 0 (event A) and for pin 1 there is only 3806 * chan 1 (event B) 3807 */ 3808 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3809 return -1; 3810 break; 3811 case PTP_PF_EXTTS: 3812 if (pin != LAN8814_PTP_EXTTS_NUM) 3813 return -1; 3814 break; 3815 default: 3816 return -1; 3817 } 3818 3819 return 0; 3820 } 3821 3822 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3823 { 3824 struct ptp_header *ptp_header; 3825 u32 type; 3826 3827 type = ptp_classify_raw(skb); 3828 ptp_header = ptp_parse_header(skb, type); 3829 3830 if (!ptp_header) 3831 return false; 3832 3833 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3834 return true; 3835 } 3836 3837 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3838 u32 seconds, u32 nsec, u16 seq_id) 3839 { 3840 struct skb_shared_hwtstamps shhwtstamps; 3841 struct sk_buff *skb, *skb_tmp; 3842 unsigned long flags; 3843 bool ret = false; 3844 u16 skb_sig; 3845 3846 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3847 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3848 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3849 continue; 3850 3851 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3852 continue; 3853 3854 __skb_unlink(skb, &ptp_priv->tx_queue); 3855 ret = true; 3856 break; 3857 } 3858 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3859 3860 if (ret) { 3861 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3862 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3863 skb_complete_tx_timestamp(skb, &shhwtstamps); 3864 } 3865 } 3866 3867 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3868 { 3869 struct phy_device *phydev = ptp_priv->phydev; 3870 u32 seconds, nsec; 3871 u16 seq_id; 3872 3873 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3874 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3875 } 3876 3877 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3878 { 3879 struct phy_device *phydev = ptp_priv->phydev; 3880 u32 reg; 3881 3882 do { 3883 lan8814_dequeue_tx_skb(ptp_priv); 3884 3885 /* If other timestamps are available in the FIFO, 3886 * process them. 3887 */ 3888 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3889 PTP_CAP_INFO); 3890 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3891 } 3892 3893 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3894 struct lan8814_ptp_rx_ts *rx_ts) 3895 { 3896 struct skb_shared_hwtstamps *shhwtstamps; 3897 struct sk_buff *skb, *skb_tmp; 3898 unsigned long flags; 3899 bool ret = false; 3900 u16 skb_sig; 3901 3902 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3903 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3904 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3905 continue; 3906 3907 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3908 continue; 3909 3910 __skb_unlink(skb, &ptp_priv->rx_queue); 3911 3912 ret = true; 3913 break; 3914 } 3915 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3916 3917 if (ret) { 3918 shhwtstamps = skb_hwtstamps(skb); 3919 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3920 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3921 netif_rx(skb); 3922 } 3923 3924 return ret; 3925 } 3926 3927 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3928 struct lan8814_ptp_rx_ts *rx_ts) 3929 { 3930 unsigned long flags; 3931 3932 /* If we failed to match the skb add it to the queue for when 3933 * the frame will come 3934 */ 3935 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3936 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3937 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3938 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3939 } else { 3940 kfree(rx_ts); 3941 } 3942 } 3943 3944 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3945 { 3946 struct phy_device *phydev = ptp_priv->phydev; 3947 struct lan8814_ptp_rx_ts *rx_ts; 3948 u32 reg; 3949 3950 do { 3951 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3952 if (!rx_ts) 3953 return; 3954 3955 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3956 &rx_ts->seq_id); 3957 lan8814_match_rx_ts(ptp_priv, rx_ts); 3958 3959 /* If other timestamps are available in the FIFO, 3960 * process them. 3961 */ 3962 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3963 PTP_CAP_INFO); 3964 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3965 } 3966 3967 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3968 { 3969 struct kszphy_priv *priv = phydev->priv; 3970 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3971 3972 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3973 lan8814_get_tx_ts(ptp_priv); 3974 3975 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3976 lan8814_get_rx_ts(ptp_priv); 3977 3978 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3979 lan8814_flush_fifo(phydev, true); 3980 skb_queue_purge(&ptp_priv->tx_queue); 3981 } 3982 3983 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3984 lan8814_flush_fifo(phydev, false); 3985 skb_queue_purge(&ptp_priv->rx_queue); 3986 } 3987 } 3988 3989 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3990 { 3991 struct phy_device *phydev = shared->phydev; 3992 struct ptp_clock_event ptp_event = {0}; 3993 unsigned long nsec; 3994 s64 sec; 3995 u16 tmp; 3996 3997 /* This is 0 because whatever was the input pin it was mapped it to 3998 * ltc gpio pin 0 3999 */ 4000 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4001 PTP_GPIO_SEL_GPIO_SEL(0), 4002 PTP_GPIO_SEL_GPIO_SEL(0)); 4003 4004 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4005 PTP_GPIO_CAP_STS); 4006 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4007 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4008 return -1; 4009 4010 if (tmp & BIT(0)) { 4011 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4012 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4013 sec <<= 16; 4014 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4015 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4016 4017 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4018 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4019 nsec <<= 16; 4020 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4021 PTP_GPIO_RE_LTC_NS_LO_CAP); 4022 } else { 4023 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4024 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4025 sec <<= 16; 4026 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4027 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4028 4029 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4030 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4031 nsec <<= 16; 4032 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4033 PTP_GPIO_RE_LTC_NS_LO_CAP); 4034 } 4035 4036 ptp_event.index = 0; 4037 ptp_event.timestamp = ktime_set(sec, nsec); 4038 ptp_event.type = PTP_CLOCK_EXTTS; 4039 ptp_clock_event(shared->ptp_clock, &ptp_event); 4040 4041 return 0; 4042 } 4043 4044 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4045 { 4046 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4047 int ret; 4048 4049 mutex_lock(&shared->shared_lock); 4050 ret = lan8814_gpio_process_cap(shared); 4051 mutex_unlock(&shared->shared_lock); 4052 4053 return ret; 4054 } 4055 4056 static int lan8804_config_init(struct phy_device *phydev) 4057 { 4058 /* MDI-X setting for swap A,B transmit */ 4059 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4060 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4061 LAN8804_ALIGN_TX_A_B_SWAP); 4062 4063 /* Make sure that the PHY will not stop generating the clock when the 4064 * link partner goes down 4065 */ 4066 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4067 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4068 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4069 4070 return 0; 4071 } 4072 4073 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4074 { 4075 int status; 4076 4077 status = phy_read(phydev, LAN8814_INTS); 4078 if (status < 0) { 4079 phy_error(phydev); 4080 return IRQ_NONE; 4081 } 4082 4083 if (status > 0) 4084 phy_trigger_machine(phydev); 4085 4086 return IRQ_HANDLED; 4087 } 4088 4089 #define LAN8804_OUTPUT_CONTROL 25 4090 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4091 #define LAN8804_CONTROL 31 4092 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4093 4094 static int lan8804_config_intr(struct phy_device *phydev) 4095 { 4096 int err; 4097 4098 /* This is an internal PHY of lan966x and is not possible to change the 4099 * polarity on the GIC found in lan966x, therefore change the polarity 4100 * of the interrupt in the PHY from being active low instead of active 4101 * high. 4102 */ 4103 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4104 4105 /* By default interrupt buffer is open-drain in which case the interrupt 4106 * can be active only low. Therefore change the interrupt buffer to be 4107 * push-pull to be able to change interrupt polarity 4108 */ 4109 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4110 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4111 4112 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4113 err = phy_read(phydev, LAN8814_INTS); 4114 if (err < 0) 4115 return err; 4116 4117 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4118 if (err) 4119 return err; 4120 } else { 4121 err = phy_write(phydev, LAN8814_INTC, 0); 4122 if (err) 4123 return err; 4124 4125 err = phy_read(phydev, LAN8814_INTS); 4126 if (err < 0) 4127 return err; 4128 } 4129 4130 return 0; 4131 } 4132 4133 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4134 { 4135 int ret = IRQ_NONE; 4136 int irq_status; 4137 4138 irq_status = phy_read(phydev, LAN8814_INTS); 4139 if (irq_status < 0) { 4140 phy_error(phydev); 4141 return IRQ_NONE; 4142 } 4143 4144 if (irq_status & LAN8814_INT_LINK) { 4145 phy_trigger_machine(phydev); 4146 ret = IRQ_HANDLED; 4147 } 4148 4149 while (true) { 4150 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4151 PTP_TSU_INT_STS); 4152 if (!irq_status) 4153 break; 4154 4155 lan8814_handle_ptp_interrupt(phydev, irq_status); 4156 ret = IRQ_HANDLED; 4157 } 4158 4159 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4160 ret = IRQ_HANDLED; 4161 4162 return ret; 4163 } 4164 4165 static int lan8814_ack_interrupt(struct phy_device *phydev) 4166 { 4167 /* bit[12..0] int status, which is a read and clear register. */ 4168 int rc; 4169 4170 rc = phy_read(phydev, LAN8814_INTS); 4171 4172 return (rc < 0) ? rc : 0; 4173 } 4174 4175 static int lan8814_config_intr(struct phy_device *phydev) 4176 { 4177 int err; 4178 4179 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4180 LAN8814_INTR_CTRL_REG_POLARITY | 4181 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4182 4183 /* enable / disable interrupts */ 4184 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4185 err = lan8814_ack_interrupt(phydev); 4186 if (err) 4187 return err; 4188 4189 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4190 } else { 4191 err = phy_write(phydev, LAN8814_INTC, 0); 4192 if (err) 4193 return err; 4194 4195 err = lan8814_ack_interrupt(phydev); 4196 } 4197 4198 return err; 4199 } 4200 4201 static void lan8814_ptp_init(struct phy_device *phydev) 4202 { 4203 struct kszphy_priv *priv = phydev->priv; 4204 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4205 4206 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4207 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4208 return; 4209 4210 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4211 TSU_HARD_RESET, TSU_HARD_RESET_); 4212 4213 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4214 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4215 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4216 4217 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4218 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4219 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4220 4221 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4222 PTP_RX_PARSE_CONFIG, 0); 4223 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4224 PTP_TX_PARSE_CONFIG, 0); 4225 4226 /* Removing default registers configs related to L2 and IP */ 4227 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4228 PTP_TX_PARSE_L2_ADDR_EN, 0); 4229 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4230 PTP_RX_PARSE_L2_ADDR_EN, 0); 4231 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4232 PTP_TX_PARSE_IP_ADDR_EN, 0); 4233 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4234 PTP_RX_PARSE_IP_ADDR_EN, 0); 4235 4236 /* Disable checking for minorVersionPTP field */ 4237 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4238 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4239 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4240 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4241 4242 skb_queue_head_init(&ptp_priv->tx_queue); 4243 skb_queue_head_init(&ptp_priv->rx_queue); 4244 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4245 spin_lock_init(&ptp_priv->rx_ts_lock); 4246 4247 ptp_priv->phydev = phydev; 4248 4249 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4250 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4251 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4252 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4253 4254 phydev->mii_ts = &ptp_priv->mii_ts; 4255 4256 /* Timestamp selected by default to keep legacy API */ 4257 phydev->default_timestamp = true; 4258 } 4259 4260 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4261 int gpios) 4262 { 4263 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4264 4265 /* Initialise shared lock for clock*/ 4266 mutex_init(&shared->shared_lock); 4267 4268 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4269 gpios, 4270 sizeof(*shared->pin_config), 4271 GFP_KERNEL); 4272 if (!shared->pin_config) 4273 return -ENOMEM; 4274 4275 for (int i = 0; i < gpios; i++) { 4276 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4277 4278 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4279 snprintf(ptp_pin->name, 4280 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4281 ptp_pin->index = i; 4282 ptp_pin->func = PTP_PF_NONE; 4283 } 4284 4285 shared->ptp_clock_info.owner = THIS_MODULE; 4286 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4287 shared->ptp_clock_info.max_adj = 31249999; 4288 shared->ptp_clock_info.n_alarm = 0; 4289 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4290 shared->ptp_clock_info.n_pins = gpios; 4291 shared->ptp_clock_info.pps = 0; 4292 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4293 PTP_FALLING_EDGE | 4294 PTP_STRICT_FLAGS; 4295 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4296 shared->ptp_clock_info.pin_config = shared->pin_config; 4297 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4298 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4299 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4300 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4301 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4302 shared->ptp_clock_info.getcrosststamp = NULL; 4303 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4304 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4305 4306 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4307 &phydev->mdio.dev); 4308 if (IS_ERR(shared->ptp_clock)) { 4309 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4310 shared->ptp_clock); 4311 return -EINVAL; 4312 } 4313 4314 /* Check if PHC support is missing at the configuration level */ 4315 if (!shared->ptp_clock) 4316 return 0; 4317 4318 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4319 4320 shared->phydev = phydev; 4321 4322 /* The EP.4 is shared between all the PHYs in the package and also it 4323 * can be accessed by any of the PHYs 4324 */ 4325 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4326 LTC_HARD_RESET, LTC_HARD_RESET_); 4327 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4328 PTP_OPERATING_MODE_STANDALONE_); 4329 4330 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4331 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4332 PTP_CMD_CTL_PTP_ENABLE_); 4333 4334 return 0; 4335 } 4336 4337 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4338 { 4339 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4340 LAN8814_PTP_GPIO_NUM); 4341 } 4342 4343 static void lan8814_setup_led(struct phy_device *phydev, int val) 4344 { 4345 int temp; 4346 4347 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4348 LAN8814_LED_CTRL_1); 4349 4350 if (val) 4351 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4352 else 4353 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4354 4355 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4356 LAN8814_LED_CTRL_1, temp); 4357 } 4358 4359 static int lan8814_config_init(struct phy_device *phydev) 4360 { 4361 struct kszphy_priv *lan8814 = phydev->priv; 4362 4363 /* Reset the PHY */ 4364 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4365 LAN8814_QSGMII_SOFT_RESET, 4366 LAN8814_QSGMII_SOFT_RESET_BIT, 4367 LAN8814_QSGMII_SOFT_RESET_BIT); 4368 4369 /* Disable ANEG with QSGMII PCS Host side */ 4370 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4371 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 4372 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 4373 0); 4374 4375 /* MDI-X setting for swap A,B transmit */ 4376 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4377 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4378 LAN8814_ALIGN_TX_A_B_SWAP); 4379 4380 if (lan8814->led_mode >= 0) 4381 lan8814_setup_led(phydev, lan8814->led_mode); 4382 4383 return 0; 4384 } 4385 4386 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4387 * function called in suspend. Because the GPIO line can be shared, so if one of 4388 * the phys goes back in coma mode, then all the other PHYs will go, which is 4389 * wrong. 4390 */ 4391 static int lan8814_release_coma_mode(struct phy_device *phydev) 4392 { 4393 struct gpio_desc *gpiod; 4394 4395 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4396 GPIOD_OUT_HIGH_OPEN_DRAIN | 4397 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4398 if (IS_ERR(gpiod)) 4399 return PTR_ERR(gpiod); 4400 4401 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4402 gpiod_set_value_cansleep(gpiod, 0); 4403 4404 return 0; 4405 } 4406 4407 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4408 { 4409 /* It was noticed that when traffic is passing through the PHY and the 4410 * cable is removed then the LED was still one even though there is no 4411 * link 4412 */ 4413 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4414 LAN8814_EEE_STATE_MASK2P5P, 4415 0); 4416 } 4417 4418 static void lan8814_update_meas_time(struct phy_device *phydev) 4419 { 4420 /* By setting the measure time to a value of 0xb this will allow cables 4421 * longer than 100m to be used. This configuration can be used 4422 * regardless of the mode of operation of the PHY 4423 */ 4424 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4425 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4426 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4427 } 4428 4429 static int lan8814_probe(struct phy_device *phydev) 4430 { 4431 const struct kszphy_type *type = phydev->drv->driver_data; 4432 struct kszphy_priv *priv; 4433 u16 addr; 4434 int err; 4435 4436 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4437 if (!priv) 4438 return -ENOMEM; 4439 4440 phydev->priv = priv; 4441 4442 priv->type = type; 4443 4444 kszphy_parse_led_mode(phydev); 4445 4446 /* Strap-in value for PHY address, below register read gives starting 4447 * phy address value 4448 */ 4449 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4450 devm_phy_package_join(&phydev->mdio.dev, phydev, 4451 addr, sizeof(struct lan8814_shared_priv)); 4452 4453 if (phy_package_init_once(phydev)) { 4454 err = lan8814_release_coma_mode(phydev); 4455 if (err) 4456 return err; 4457 4458 err = lan8814_ptp_probe_once(phydev); 4459 if (err) 4460 return err; 4461 } 4462 4463 lan8814_ptp_init(phydev); 4464 4465 /* Errata workarounds */ 4466 lan8814_clear_2psp_bit(phydev); 4467 lan8814_update_meas_time(phydev); 4468 4469 return 0; 4470 } 4471 4472 #define LAN8841_MMD_TIMER_REG 0 4473 #define LAN8841_MMD0_REGISTER_17 17 4474 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4475 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4476 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4477 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4478 #define LAN8841_MMD_ANALOG_REG 28 4479 #define LAN8841_ANALOG_CONTROL_1 1 4480 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4481 #define LAN8841_ANALOG_CONTROL_10 13 4482 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4483 #define LAN8841_ANALOG_CONTROL_11 14 4484 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4485 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4486 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4487 #define LAN8841_BTRX_POWER_DOWN 70 4488 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4489 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4490 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4491 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4492 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4493 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4494 #define LAN8841_ADC_CHANNEL_MASK 198 4495 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4496 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4497 #define LAN8841_PTP_RX_VERSION 374 4498 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4499 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4500 #define LAN8841_PTP_TX_VERSION 438 4501 #define LAN8841_PTP_CMD_CTL 256 4502 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4503 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4504 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4505 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4506 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4507 #define LAN8841_PTP_RX_MODE 381 4508 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4509 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4510 4511 static int lan8841_config_init(struct phy_device *phydev) 4512 { 4513 int ret; 4514 4515 ret = ksz9131_config_init(phydev); 4516 if (ret) 4517 return ret; 4518 4519 /* Initialize the HW by resetting everything */ 4520 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4521 LAN8841_PTP_CMD_CTL, 4522 LAN8841_PTP_CMD_CTL_PTP_RESET, 4523 LAN8841_PTP_CMD_CTL_PTP_RESET); 4524 4525 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4526 LAN8841_PTP_CMD_CTL, 4527 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4528 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4529 4530 /* Don't process any frames */ 4531 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4532 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4533 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4534 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4535 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4536 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4537 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4538 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4539 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4540 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4541 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4542 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4543 4544 /* Disable checking for minorVersionPTP field */ 4545 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4546 LAN8841_PTP_RX_VERSION, 0xff00); 4547 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4548 LAN8841_PTP_TX_VERSION, 0xff00); 4549 4550 /* 100BT Clause 40 improvenent errata */ 4551 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4552 LAN8841_ANALOG_CONTROL_1, 4553 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4554 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4555 LAN8841_ANALOG_CONTROL_10, 4556 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4557 4558 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4559 * Magnetics 4560 */ 4561 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4562 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4563 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4564 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4565 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4566 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4567 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4568 LAN8841_BTRX_POWER_DOWN, 4569 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4570 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4571 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4572 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4573 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4574 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4575 } 4576 4577 /* LDO Adjustment errata */ 4578 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4579 LAN8841_ANALOG_CONTROL_11, 4580 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4581 4582 /* 100BT RGMII latency tuning errata */ 4583 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4584 LAN8841_ADC_CHANNEL_MASK, 0x0); 4585 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4586 LAN8841_MMD0_REGISTER_17, 4587 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4588 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4589 4590 return 0; 4591 } 4592 4593 #define LAN8841_OUTPUT_CTRL 25 4594 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4595 #define LAN8841_INT_PTP BIT(9) 4596 4597 static int lan8841_config_intr(struct phy_device *phydev) 4598 { 4599 int err; 4600 4601 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4602 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4603 4604 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4605 err = phy_read(phydev, LAN8814_INTS); 4606 if (err < 0) 4607 return err; 4608 4609 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4610 * even if it PTP is not enabled. Because the underneath blocks 4611 * will not enable the PTP so we will never get the PTP 4612 * interrupt. 4613 */ 4614 err = phy_write(phydev, LAN8814_INTC, 4615 LAN8814_INT_LINK | LAN8841_INT_PTP); 4616 } else { 4617 err = phy_write(phydev, LAN8814_INTC, 0); 4618 if (err) 4619 return err; 4620 4621 err = phy_read(phydev, LAN8814_INTS); 4622 if (err < 0) 4623 return err; 4624 4625 /* Getting a positive value doesn't mean that is an error, it 4626 * just indicates what was the status. Therefore make sure to 4627 * clear the value and say that there is no error. 4628 */ 4629 err = 0; 4630 } 4631 4632 return err; 4633 } 4634 4635 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4636 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4637 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4638 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4639 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4640 #define LAN8841_PTP_TX_MSG_HEADER2 455 4641 4642 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4643 u32 *sec, u32 *nsec, u16 *seq) 4644 { 4645 struct phy_device *phydev = ptp_priv->phydev; 4646 4647 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4648 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4649 return false; 4650 4651 *nsec = ((*nsec & 0x3fff) << 16); 4652 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4653 4654 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4655 *sec = *sec << 16; 4656 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4657 4658 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4659 4660 return true; 4661 } 4662 4663 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4664 { 4665 u32 sec, nsec; 4666 u16 seq; 4667 4668 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4669 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4670 } 4671 4672 #define LAN8841_PTP_INT_STS 259 4673 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4674 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4675 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4676 4677 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4678 { 4679 struct phy_device *phydev = ptp_priv->phydev; 4680 int i; 4681 4682 for (i = 0; i < FIFO_SIZE; ++i) 4683 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4684 4685 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4686 } 4687 4688 #define LAN8841_PTP_GPIO_CAP_STS 506 4689 #define LAN8841_PTP_GPIO_SEL 327 4690 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4691 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4692 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4693 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4694 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4695 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4696 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4697 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4698 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4699 4700 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4701 { 4702 struct phy_device *phydev = ptp_priv->phydev; 4703 struct ptp_clock_event ptp_event = {0}; 4704 int pin, ret, tmp; 4705 s32 sec, nsec; 4706 4707 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4708 if (pin == -1) 4709 return; 4710 4711 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4712 if (tmp < 0) 4713 return; 4714 4715 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4716 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4717 if (ret) 4718 return; 4719 4720 mutex_lock(&ptp_priv->ptp_lock); 4721 if (tmp & BIT(pin)) { 4722 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4723 sec <<= 16; 4724 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4725 4726 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4727 nsec <<= 16; 4728 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4729 } else { 4730 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4731 sec <<= 16; 4732 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4733 4734 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4735 nsec <<= 16; 4736 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4737 } 4738 mutex_unlock(&ptp_priv->ptp_lock); 4739 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4740 if (ret) 4741 return; 4742 4743 ptp_event.index = 0; 4744 ptp_event.timestamp = ktime_set(sec, nsec); 4745 ptp_event.type = PTP_CLOCK_EXTTS; 4746 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4747 } 4748 4749 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4750 { 4751 struct kszphy_priv *priv = phydev->priv; 4752 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4753 u16 status; 4754 4755 do { 4756 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4757 4758 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4759 lan8841_ptp_process_tx_ts(ptp_priv); 4760 4761 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4762 lan8841_gpio_process_cap(ptp_priv); 4763 4764 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4765 lan8841_ptp_flush_fifo(ptp_priv); 4766 skb_queue_purge(&ptp_priv->tx_queue); 4767 } 4768 4769 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4770 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4771 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4772 } 4773 4774 #define LAN8841_INTS_PTP BIT(9) 4775 4776 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4777 { 4778 irqreturn_t ret = IRQ_NONE; 4779 int irq_status; 4780 4781 irq_status = phy_read(phydev, LAN8814_INTS); 4782 if (irq_status < 0) { 4783 phy_error(phydev); 4784 return IRQ_NONE; 4785 } 4786 4787 if (irq_status & LAN8814_INT_LINK) { 4788 phy_trigger_machine(phydev); 4789 ret = IRQ_HANDLED; 4790 } 4791 4792 if (irq_status & LAN8841_INTS_PTP) { 4793 lan8841_handle_ptp_interrupt(phydev); 4794 ret = IRQ_HANDLED; 4795 } 4796 4797 return ret; 4798 } 4799 4800 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4801 struct kernel_ethtool_ts_info *info) 4802 { 4803 struct kszphy_ptp_priv *ptp_priv; 4804 4805 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4806 4807 info->phc_index = ptp_priv->ptp_clock ? 4808 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4809 if (info->phc_index == -1) 4810 return 0; 4811 4812 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4813 SOF_TIMESTAMPING_RX_HARDWARE | 4814 SOF_TIMESTAMPING_RAW_HARDWARE; 4815 4816 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4817 (1 << HWTSTAMP_TX_ON) | 4818 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4819 4820 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4821 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4822 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4823 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4824 4825 return 0; 4826 } 4827 4828 #define LAN8841_PTP_INT_EN 260 4829 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4830 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4831 4832 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4833 bool enable) 4834 { 4835 struct phy_device *phydev = ptp_priv->phydev; 4836 4837 if (enable) { 4838 /* Enable interrupts on the TX side */ 4839 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4840 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4841 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4842 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4843 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4844 4845 /* Enable the modification of the frame on RX side, 4846 * this will add the ns and 2 bits of sec in the reserved field 4847 * of the PTP header 4848 */ 4849 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4850 LAN8841_PTP_RX_MODE, 4851 LAN8841_PTP_INSERT_TS_EN | 4852 LAN8841_PTP_INSERT_TS_32BIT, 4853 LAN8841_PTP_INSERT_TS_EN | 4854 LAN8841_PTP_INSERT_TS_32BIT); 4855 4856 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4857 } else { 4858 /* Disable interrupts on the TX side */ 4859 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4860 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4861 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4862 4863 /* Disable modification of the RX frames */ 4864 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4865 LAN8841_PTP_RX_MODE, 4866 LAN8841_PTP_INSERT_TS_EN | 4867 LAN8841_PTP_INSERT_TS_32BIT, 0); 4868 4869 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4870 } 4871 } 4872 4873 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4874 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4875 #define LAN8841_PTP_TX_MOD 445 4876 4877 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4878 struct kernel_hwtstamp_config *config, 4879 struct netlink_ext_ack *extack) 4880 { 4881 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4882 struct phy_device *phydev = ptp_priv->phydev; 4883 int txcfg = 0, rxcfg = 0; 4884 int pkt_ts_enable; 4885 4886 ptp_priv->hwts_tx_type = config->tx_type; 4887 ptp_priv->rx_filter = config->rx_filter; 4888 4889 switch (config->rx_filter) { 4890 case HWTSTAMP_FILTER_NONE: 4891 ptp_priv->layer = 0; 4892 ptp_priv->version = 0; 4893 break; 4894 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4895 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4896 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4897 ptp_priv->layer = PTP_CLASS_L4; 4898 ptp_priv->version = PTP_CLASS_V2; 4899 break; 4900 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4901 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4902 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4903 ptp_priv->layer = PTP_CLASS_L2; 4904 ptp_priv->version = PTP_CLASS_V2; 4905 break; 4906 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4907 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4908 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4909 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4910 ptp_priv->version = PTP_CLASS_V2; 4911 break; 4912 default: 4913 return -ERANGE; 4914 } 4915 4916 /* Setup parsing of the frames and enable the timestamping for ptp 4917 * frames 4918 */ 4919 if (ptp_priv->layer & PTP_CLASS_L2) { 4920 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4921 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4922 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4923 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4924 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4925 } 4926 4927 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4928 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4929 4930 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4931 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4932 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4933 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4934 4935 /* Enable / disable of the TX timestamp in the SYNC frames */ 4936 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4937 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4938 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4939 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4940 4941 /* Now enable/disable the timestamping */ 4942 lan8841_ptp_enable_processing(ptp_priv, 4943 config->rx_filter != HWTSTAMP_FILTER_NONE); 4944 4945 skb_queue_purge(&ptp_priv->tx_queue); 4946 4947 lan8841_ptp_flush_fifo(ptp_priv); 4948 4949 return 0; 4950 } 4951 4952 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4953 struct sk_buff *skb, int type) 4954 { 4955 struct kszphy_ptp_priv *ptp_priv = 4956 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4957 struct ptp_header *header = ptp_parse_header(skb, type); 4958 struct skb_shared_hwtstamps *shhwtstamps; 4959 struct timespec64 ts; 4960 unsigned long flags; 4961 u32 ts_header; 4962 4963 if (!header) 4964 return false; 4965 4966 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4967 type == PTP_CLASS_NONE) 4968 return false; 4969 4970 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4971 return false; 4972 4973 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4974 ts.tv_sec = ptp_priv->seconds; 4975 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4976 ts_header = __be32_to_cpu(header->reserved2); 4977 4978 shhwtstamps = skb_hwtstamps(skb); 4979 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4980 4981 /* Check for any wrap arounds for the second part */ 4982 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4983 ts.tv_sec -= GENMASK(1, 0) + 1; 4984 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4985 ts.tv_sec += 1; 4986 4987 shhwtstamps->hwtstamp = 4988 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4989 ts_header & GENMASK(29, 0)); 4990 header->reserved2 = 0; 4991 4992 netif_rx(skb); 4993 4994 return true; 4995 } 4996 4997 #define LAN8841_EVENT_A 0 4998 #define LAN8841_EVENT_B 1 4999 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5000 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5001 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5002 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5003 5004 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5005 s64 sec, u32 nsec) 5006 { 5007 struct phy_device *phydev = ptp_priv->phydev; 5008 int ret; 5009 5010 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5011 upper_16_bits(sec)); 5012 if (ret) 5013 return ret; 5014 5015 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5016 lower_16_bits(sec)); 5017 if (ret) 5018 return ret; 5019 5020 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5021 upper_16_bits(nsec)); 5022 if (ret) 5023 return ret; 5024 5025 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5026 lower_16_bits(nsec)); 5027 } 5028 5029 #define LAN8841_BUFFER_TIME 2 5030 5031 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5032 const struct timespec64 *ts) 5033 { 5034 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5035 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5036 } 5037 5038 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5039 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5040 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5041 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5042 5043 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5044 s64 sec, u32 nsec) 5045 { 5046 struct phy_device *phydev = ptp_priv->phydev; 5047 int ret; 5048 5049 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5050 upper_16_bits(sec)); 5051 if (ret) 5052 return ret; 5053 5054 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5055 lower_16_bits(sec)); 5056 if (ret) 5057 return ret; 5058 5059 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5060 upper_16_bits(nsec)); 5061 if (ret) 5062 return ret; 5063 5064 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5065 lower_16_bits(nsec)); 5066 } 5067 5068 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5069 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5070 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5071 #define LAN8841_PTP_LTC_SET_NS_HI 265 5072 #define LAN8841_PTP_LTC_SET_NS_LO 266 5073 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5074 5075 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5076 const struct timespec64 *ts) 5077 { 5078 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5079 ptp_clock_info); 5080 struct phy_device *phydev = ptp_priv->phydev; 5081 unsigned long flags; 5082 int ret; 5083 5084 /* Set the value to be stored */ 5085 mutex_lock(&ptp_priv->ptp_lock); 5086 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5087 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5088 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5089 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5090 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5091 5092 /* Set the command to load the LTC */ 5093 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5094 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5095 ret = lan8841_ptp_update_target(ptp_priv, ts); 5096 mutex_unlock(&ptp_priv->ptp_lock); 5097 5098 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5099 ptp_priv->seconds = ts->tv_sec; 5100 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5101 5102 return ret; 5103 } 5104 5105 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5106 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5107 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5108 #define LAN8841_PTP_LTC_RD_NS_HI 361 5109 #define LAN8841_PTP_LTC_RD_NS_LO 362 5110 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5111 5112 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5113 struct timespec64 *ts) 5114 { 5115 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5116 ptp_clock_info); 5117 struct phy_device *phydev = ptp_priv->phydev; 5118 time64_t s; 5119 s64 ns; 5120 5121 mutex_lock(&ptp_priv->ptp_lock); 5122 /* Issue the command to read the LTC */ 5123 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5124 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5125 5126 /* Read the LTC */ 5127 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5128 s <<= 16; 5129 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5130 s <<= 16; 5131 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5132 5133 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5134 ns <<= 16; 5135 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5136 mutex_unlock(&ptp_priv->ptp_lock); 5137 5138 set_normalized_timespec64(ts, s, ns); 5139 return 0; 5140 } 5141 5142 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5143 struct timespec64 *ts) 5144 { 5145 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5146 ptp_clock_info); 5147 struct phy_device *phydev = ptp_priv->phydev; 5148 time64_t s; 5149 5150 mutex_lock(&ptp_priv->ptp_lock); 5151 /* Issue the command to read the LTC */ 5152 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5153 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5154 5155 /* Read the LTC */ 5156 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5157 s <<= 16; 5158 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5159 s <<= 16; 5160 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5161 mutex_unlock(&ptp_priv->ptp_lock); 5162 5163 set_normalized_timespec64(ts, s, 0); 5164 } 5165 5166 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5167 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5168 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5169 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5170 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5171 5172 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5173 { 5174 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5175 ptp_clock_info); 5176 struct phy_device *phydev = ptp_priv->phydev; 5177 struct timespec64 ts; 5178 bool add = true; 5179 u32 nsec; 5180 s32 sec; 5181 int ret; 5182 5183 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5184 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5185 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5186 * increment so the value can be bigger than 15 sec. Therefore limit the 5187 * possible adjustments so we will not have these corner cases 5188 */ 5189 if (delta > 10000000000LL || delta < -10000000000LL) { 5190 /* The timeadjustment is too big, so fall back using set time */ 5191 u64 now; 5192 5193 ptp->gettime64(ptp, &ts); 5194 5195 now = ktime_to_ns(timespec64_to_ktime(ts)); 5196 ts = ns_to_timespec64(now + delta); 5197 5198 ptp->settime64(ptp, &ts); 5199 return 0; 5200 } 5201 5202 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5203 if (delta < 0 && nsec != 0) { 5204 /* It is not allowed to adjust low the nsec part, therefore 5205 * subtract more from second part and add to nanosecond such 5206 * that would roll over, so the second part will increase 5207 */ 5208 sec--; 5209 nsec = NSEC_PER_SEC - nsec; 5210 } 5211 5212 /* Calculate the adjustments and the direction */ 5213 if (delta < 0) 5214 add = false; 5215 5216 if (nsec > 0) 5217 /* add 8 ns to cover the likely normal increment */ 5218 nsec += 8; 5219 5220 if (nsec >= NSEC_PER_SEC) { 5221 /* carry into seconds */ 5222 sec++; 5223 nsec -= NSEC_PER_SEC; 5224 } 5225 5226 mutex_lock(&ptp_priv->ptp_lock); 5227 if (sec) { 5228 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5229 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5230 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5231 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5232 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5233 } 5234 5235 if (nsec) { 5236 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5237 nsec & 0xffff); 5238 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5239 (nsec >> 16) & 0x3fff); 5240 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5241 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5242 } 5243 mutex_unlock(&ptp_priv->ptp_lock); 5244 5245 /* Update the target clock */ 5246 ptp->gettime64(ptp, &ts); 5247 mutex_lock(&ptp_priv->ptp_lock); 5248 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5249 mutex_unlock(&ptp_priv->ptp_lock); 5250 5251 return ret; 5252 } 5253 5254 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5255 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5256 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5257 5258 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5259 { 5260 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5261 ptp_clock_info); 5262 struct phy_device *phydev = ptp_priv->phydev; 5263 bool faster = true; 5264 u32 rate; 5265 5266 if (!scaled_ppm) 5267 return 0; 5268 5269 if (scaled_ppm < 0) { 5270 scaled_ppm = -scaled_ppm; 5271 faster = false; 5272 } 5273 5274 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5275 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5276 5277 mutex_lock(&ptp_priv->ptp_lock); 5278 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5279 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5280 : upper_16_bits(rate) & 0x3fff); 5281 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5282 mutex_unlock(&ptp_priv->ptp_lock); 5283 5284 return 0; 5285 } 5286 5287 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5288 enum ptp_pin_function func, unsigned int chan) 5289 { 5290 switch (func) { 5291 case PTP_PF_NONE: 5292 case PTP_PF_PEROUT: 5293 case PTP_PF_EXTTS: 5294 break; 5295 default: 5296 return -1; 5297 } 5298 5299 return 0; 5300 } 5301 5302 #define LAN8841_PTP_GPIO_NUM 10 5303 #define LAN8841_GPIO_EN 128 5304 #define LAN8841_GPIO_DIR 129 5305 #define LAN8841_GPIO_BUF 130 5306 5307 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5308 { 5309 struct phy_device *phydev = ptp_priv->phydev; 5310 int ret; 5311 5312 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5313 if (ret) 5314 return ret; 5315 5316 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5317 if (ret) 5318 return ret; 5319 5320 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5321 } 5322 5323 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5324 { 5325 struct phy_device *phydev = ptp_priv->phydev; 5326 int ret; 5327 5328 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5329 if (ret) 5330 return ret; 5331 5332 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5333 if (ret) 5334 return ret; 5335 5336 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5337 } 5338 5339 #define LAN8841_GPIO_DATA_SEL1 131 5340 #define LAN8841_GPIO_DATA_SEL2 132 5341 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5342 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5343 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5344 #define LAN8841_PTP_GENERAL_CONFIG 257 5345 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5346 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5347 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5348 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5349 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5350 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5351 5352 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5353 u8 event) 5354 { 5355 struct phy_device *phydev = ptp_priv->phydev; 5356 u16 tmp; 5357 int ret; 5358 5359 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5360 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5361 * depending on the pin, it requires to read a different register 5362 */ 5363 if (pin < 5) { 5364 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5365 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5366 } else { 5367 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5368 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5369 } 5370 if (ret) 5371 return ret; 5372 5373 /* Disable the event */ 5374 if (event == LAN8841_EVENT_A) 5375 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5376 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5377 else 5378 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5379 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5380 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5381 } 5382 5383 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5384 u8 event, int pulse_width) 5385 { 5386 struct phy_device *phydev = ptp_priv->phydev; 5387 u16 tmp; 5388 int ret; 5389 5390 /* Enable the event */ 5391 if (event == LAN8841_EVENT_A) 5392 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5393 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5394 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5395 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5396 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5397 else 5398 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5399 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5400 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5401 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5402 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5403 if (ret) 5404 return ret; 5405 5406 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5407 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5408 * depending on the pin, it requires to read a different register 5409 */ 5410 if (event == LAN8841_EVENT_A) 5411 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5412 else 5413 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5414 5415 if (pin < 5) 5416 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5417 tmp << (3 * pin)); 5418 else 5419 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5420 tmp << (3 * (pin - 5))); 5421 5422 return ret; 5423 } 5424 5425 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5426 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5427 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5428 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5429 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5430 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5431 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5432 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5433 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5434 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5435 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5436 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5437 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5438 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5439 5440 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5441 struct ptp_clock_request *rq, int on) 5442 { 5443 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5444 ptp_clock_info); 5445 struct phy_device *phydev = ptp_priv->phydev; 5446 struct timespec64 ts_on, ts_period; 5447 s64 on_nsec, period_nsec; 5448 int pulse_width; 5449 int pin; 5450 int ret; 5451 5452 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5453 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5454 return -EINVAL; 5455 5456 if (!on) { 5457 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5458 if (ret) 5459 return ret; 5460 5461 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5462 } 5463 5464 ts_on.tv_sec = rq->perout.on.sec; 5465 ts_on.tv_nsec = rq->perout.on.nsec; 5466 on_nsec = timespec64_to_ns(&ts_on); 5467 5468 ts_period.tv_sec = rq->perout.period.sec; 5469 ts_period.tv_nsec = rq->perout.period.nsec; 5470 period_nsec = timespec64_to_ns(&ts_period); 5471 5472 if (period_nsec < 200) { 5473 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5474 phydev_name(phydev)); 5475 return -EOPNOTSUPP; 5476 } 5477 5478 if (on_nsec >= period_nsec) { 5479 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5480 phydev_name(phydev)); 5481 return -EINVAL; 5482 } 5483 5484 switch (on_nsec) { 5485 case 200000000: 5486 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5487 break; 5488 case 100000000: 5489 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5490 break; 5491 case 50000000: 5492 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5493 break; 5494 case 10000000: 5495 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5496 break; 5497 case 5000000: 5498 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5499 break; 5500 case 1000000: 5501 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5502 break; 5503 case 500000: 5504 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5505 break; 5506 case 100000: 5507 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5508 break; 5509 case 50000: 5510 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5511 break; 5512 case 10000: 5513 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5514 break; 5515 case 5000: 5516 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5517 break; 5518 case 1000: 5519 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5520 break; 5521 case 500: 5522 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5523 break; 5524 case 100: 5525 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5526 break; 5527 default: 5528 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5529 phydev_name(phydev)); 5530 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5531 break; 5532 } 5533 5534 mutex_lock(&ptp_priv->ptp_lock); 5535 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5536 rq->perout.start.nsec); 5537 mutex_unlock(&ptp_priv->ptp_lock); 5538 if (ret) 5539 return ret; 5540 5541 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5542 rq->perout.period.nsec); 5543 if (ret) 5544 return ret; 5545 5546 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5547 pulse_width); 5548 if (ret) 5549 return ret; 5550 5551 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5552 if (ret) 5553 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5554 5555 return ret; 5556 } 5557 5558 #define LAN8841_PTP_GPIO_CAP_EN 496 5559 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5560 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5561 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5562 5563 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5564 u32 flags) 5565 { 5566 struct phy_device *phydev = ptp_priv->phydev; 5567 u16 tmp = 0; 5568 int ret; 5569 5570 /* Set GPIO to be intput */ 5571 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5572 if (ret) 5573 return ret; 5574 5575 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5576 if (ret) 5577 return ret; 5578 5579 /* Enable capture on the edges of the pin */ 5580 if (flags & PTP_RISING_EDGE) 5581 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5582 if (flags & PTP_FALLING_EDGE) 5583 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5584 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5585 if (ret) 5586 return ret; 5587 5588 /* Enable interrupt */ 5589 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5590 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5591 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5592 } 5593 5594 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5595 { 5596 struct phy_device *phydev = ptp_priv->phydev; 5597 int ret; 5598 5599 /* Set GPIO to be output */ 5600 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5601 if (ret) 5602 return ret; 5603 5604 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5605 if (ret) 5606 return ret; 5607 5608 /* Disable capture on both of the edges */ 5609 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5610 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5611 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5612 0); 5613 if (ret) 5614 return ret; 5615 5616 /* Disable interrupt */ 5617 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5618 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5619 0); 5620 } 5621 5622 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5623 struct ptp_clock_request *rq, int on) 5624 { 5625 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5626 ptp_clock_info); 5627 int pin; 5628 int ret; 5629 5630 /* Reject requests with unsupported flags */ 5631 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5632 PTP_EXTTS_EDGES | 5633 PTP_STRICT_FLAGS)) 5634 return -EOPNOTSUPP; 5635 5636 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5637 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5638 return -EINVAL; 5639 5640 mutex_lock(&ptp_priv->ptp_lock); 5641 if (on) 5642 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5643 else 5644 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5645 mutex_unlock(&ptp_priv->ptp_lock); 5646 5647 return ret; 5648 } 5649 5650 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5651 struct ptp_clock_request *rq, int on) 5652 { 5653 switch (rq->type) { 5654 case PTP_CLK_REQ_EXTTS: 5655 return lan8841_ptp_extts(ptp, rq, on); 5656 case PTP_CLK_REQ_PEROUT: 5657 return lan8841_ptp_perout(ptp, rq, on); 5658 default: 5659 return -EOPNOTSUPP; 5660 } 5661 5662 return 0; 5663 } 5664 5665 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5666 { 5667 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5668 ptp_clock_info); 5669 struct timespec64 ts; 5670 unsigned long flags; 5671 5672 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5673 5674 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5675 ptp_priv->seconds = ts.tv_sec; 5676 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5677 5678 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5679 } 5680 5681 static struct ptp_clock_info lan8841_ptp_clock_info = { 5682 .owner = THIS_MODULE, 5683 .name = "lan8841 ptp", 5684 .max_adj = 31249999, 5685 .gettime64 = lan8841_ptp_gettime64, 5686 .settime64 = lan8841_ptp_settime64, 5687 .adjtime = lan8841_ptp_adjtime, 5688 .adjfine = lan8841_ptp_adjfine, 5689 .verify = lan8841_ptp_verify, 5690 .enable = lan8841_ptp_enable, 5691 .do_aux_work = lan8841_ptp_do_aux_work, 5692 .n_per_out = LAN8841_PTP_GPIO_NUM, 5693 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5694 .n_pins = LAN8841_PTP_GPIO_NUM, 5695 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5696 }; 5697 5698 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5699 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5700 5701 static int lan8841_probe(struct phy_device *phydev) 5702 { 5703 struct kszphy_ptp_priv *ptp_priv; 5704 struct kszphy_priv *priv; 5705 int err; 5706 5707 err = kszphy_probe(phydev); 5708 if (err) 5709 return err; 5710 5711 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5712 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5713 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5714 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5715 5716 /* Register the clock */ 5717 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5718 return 0; 5719 5720 priv = phydev->priv; 5721 ptp_priv = &priv->ptp_priv; 5722 5723 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5724 LAN8841_PTP_GPIO_NUM, 5725 sizeof(*ptp_priv->pin_config), 5726 GFP_KERNEL); 5727 if (!ptp_priv->pin_config) 5728 return -ENOMEM; 5729 5730 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5731 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5732 5733 snprintf(p->name, sizeof(p->name), "pin%d", i); 5734 p->index = i; 5735 p->func = PTP_PF_NONE; 5736 } 5737 5738 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5739 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5740 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5741 &phydev->mdio.dev); 5742 if (IS_ERR(ptp_priv->ptp_clock)) { 5743 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5744 ptp_priv->ptp_clock); 5745 return -EINVAL; 5746 } 5747 5748 if (!ptp_priv->ptp_clock) 5749 return 0; 5750 5751 /* Initialize the SW */ 5752 skb_queue_head_init(&ptp_priv->tx_queue); 5753 ptp_priv->phydev = phydev; 5754 mutex_init(&ptp_priv->ptp_lock); 5755 spin_lock_init(&ptp_priv->seconds_lock); 5756 5757 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5758 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5759 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5760 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5761 5762 phydev->mii_ts = &ptp_priv->mii_ts; 5763 5764 /* Timestamp selected by default to keep legacy API */ 5765 phydev->default_timestamp = true; 5766 5767 return 0; 5768 } 5769 5770 static int lan8804_resume(struct phy_device *phydev) 5771 { 5772 return kszphy_resume(phydev); 5773 } 5774 5775 static int lan8804_suspend(struct phy_device *phydev) 5776 { 5777 return kszphy_generic_suspend(phydev); 5778 } 5779 5780 static int lan8841_resume(struct phy_device *phydev) 5781 { 5782 return kszphy_generic_resume(phydev); 5783 } 5784 5785 static int lan8841_suspend(struct phy_device *phydev) 5786 { 5787 struct kszphy_priv *priv = phydev->priv; 5788 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5789 5790 if (ptp_priv->ptp_clock) 5791 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5792 5793 return kszphy_generic_suspend(phydev); 5794 } 5795 5796 static int ksz9131_resume(struct phy_device *phydev) 5797 { 5798 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5799 ksz9131_config_rgmii_delay(phydev); 5800 5801 return kszphy_resume(phydev); 5802 } 5803 5804 #define LAN8842_PTP_GPIO_NUM 16 5805 5806 static int lan8842_ptp_probe_once(struct phy_device *phydev) 5807 { 5808 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5809 LAN8842_PTP_GPIO_NUM); 5810 } 5811 5812 #define LAN8842_STRAP_REG 0 /* 0x0 */ 5813 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5814 #define LAN8842_SKU_REG 11 /* 0x0b */ 5815 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5816 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5817 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5818 5819 static int lan8842_probe(struct phy_device *phydev) 5820 { 5821 struct lan8842_priv *priv; 5822 int addr; 5823 int ret; 5824 5825 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5826 if (!priv) 5827 return -ENOMEM; 5828 5829 phydev->priv = priv; 5830 5831 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 5832 * to enable to pass any traffic through it. Therefore use the same 5833 * function as lan8814 5834 */ 5835 ret = lan8814_release_coma_mode(phydev); 5836 if (ret) 5837 return ret; 5838 5839 /* Enable to count the RX and TX packets */ 5840 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5841 LAN8842_SELF_TEST, 5842 LAN8842_SELF_TEST_RX_CNT_ENA | 5843 LAN8842_SELF_TEST_TX_CNT_ENA); 5844 if (ret < 0) 5845 return ret; 5846 5847 /* Revision lan8832 doesn't have support for PTP, therefore don't add 5848 * any PTP clocks 5849 */ 5850 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5851 LAN8842_SKU_REG); 5852 if (ret < 0) 5853 return ret; 5854 5855 priv->rev = ret; 5856 if (priv->rev == LAN8842_REV_8832) 5857 return 0; 5858 5859 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 5860 * only difference is the number of the GPIOs, then make sure that the 5861 * lan8842 initialized also the shared data pointer as this is used in 5862 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 5863 * PHYs in the same package. 5864 */ 5865 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5866 LAN8842_STRAP_REG); 5867 if (addr < 0) 5868 return addr; 5869 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 5870 5871 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 5872 sizeof(struct lan8814_shared_priv)); 5873 if (ret) 5874 return ret; 5875 5876 if (phy_package_init_once(phydev)) { 5877 ret = lan8842_ptp_probe_once(phydev); 5878 if (ret) 5879 return ret; 5880 } 5881 5882 lan8814_ptp_init(phydev); 5883 5884 return 0; 5885 } 5886 5887 static int lan8842_config_init(struct phy_device *phydev) 5888 { 5889 int ret; 5890 5891 /* Reset the PHY */ 5892 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5893 LAN8814_QSGMII_SOFT_RESET, 5894 LAN8814_QSGMII_SOFT_RESET_BIT, 5895 LAN8814_QSGMII_SOFT_RESET_BIT); 5896 if (ret < 0) 5897 return ret; 5898 5899 /* Even if the GPIOs are set to control the LEDs the behaviour of the 5900 * LEDs is wrong, they are not blinking when there is traffic. 5901 * To fix this it is required to set extended LED mode 5902 */ 5903 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5904 LAN8814_LED_CTRL_1, 5905 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 5906 if (ret < 0) 5907 return ret; 5908 5909 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5910 LAN8814_LED_CTRL_2, 5911 LAN8814_LED_CTRL_2_LED1_COM_DIS, 5912 LAN8814_LED_CTRL_2_LED1_COM_DIS); 5913 if (ret < 0) 5914 return ret; 5915 5916 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 5917 * a function mode and not the GPIO. Apparently by default the value is 5918 * GPIO and not function even though the datasheet it says that it is 5919 * function. Therefore set this value. 5920 */ 5921 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5922 LAN8814_GPIO_EN2, 0); 5923 } 5924 5925 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 5926 5927 static int lan8842_config_intr(struct phy_device *phydev) 5928 { 5929 int err; 5930 5931 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5932 LAN8842_INTR_CTRL_REG, 5933 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 5934 5935 /* enable / disable interrupts */ 5936 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 5937 err = lan8814_ack_interrupt(phydev); 5938 if (err) 5939 return err; 5940 5941 err = phy_write(phydev, LAN8814_INTC, 5942 LAN8814_INT_LINK | LAN8814_INT_FLF); 5943 } else { 5944 err = phy_write(phydev, LAN8814_INTC, 0); 5945 if (err) 5946 return err; 5947 5948 err = lan8814_ack_interrupt(phydev); 5949 } 5950 5951 return err; 5952 } 5953 5954 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 5955 phy_interface_t interface) 5956 { 5957 /* Inband configuration can be enabled or disabled using the registers 5958 * PCS1G_ANEG_CONFIG. 5959 */ 5960 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 5961 } 5962 5963 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 5964 { 5965 bool enable; 5966 5967 if (modes == LINK_INBAND_DISABLE) 5968 enable = false; 5969 else 5970 enable = true; 5971 5972 /* Disable or enable in-band autoneg with PCS Host side 5973 * It has the same address as lan8814 5974 */ 5975 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5976 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 5977 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 5978 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 5979 } 5980 5981 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 5982 { 5983 struct kszphy_ptp_priv *ptp_priv; 5984 struct lan8842_priv *priv; 5985 5986 priv = phydev->priv; 5987 ptp_priv = &priv->ptp_priv; 5988 5989 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 5990 lan8814_get_tx_ts(ptp_priv); 5991 5992 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 5993 lan8814_get_rx_ts(ptp_priv); 5994 5995 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 5996 lan8814_flush_fifo(phydev, true); 5997 skb_queue_purge(&ptp_priv->tx_queue); 5998 } 5999 6000 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6001 lan8814_flush_fifo(phydev, false); 6002 skb_queue_purge(&ptp_priv->rx_queue); 6003 } 6004 } 6005 6006 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6007 { 6008 struct lan8842_priv *priv = phydev->priv; 6009 int ret = IRQ_NONE; 6010 int irq_status; 6011 6012 irq_status = phy_read(phydev, LAN8814_INTS); 6013 if (irq_status < 0) { 6014 phy_error(phydev); 6015 return IRQ_NONE; 6016 } 6017 6018 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6019 phy_trigger_machine(phydev); 6020 ret = IRQ_HANDLED; 6021 } 6022 6023 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6024 * not need to check the PTP and GPIO interrupts 6025 */ 6026 if (priv->rev == LAN8842_REV_8832) 6027 goto out; 6028 6029 while (true) { 6030 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6031 PTP_TSU_INT_STS); 6032 if (!irq_status) 6033 break; 6034 6035 lan8842_handle_ptp_interrupt(phydev, irq_status); 6036 ret = IRQ_HANDLED; 6037 } 6038 6039 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6040 ret = IRQ_HANDLED; 6041 6042 out: 6043 return ret; 6044 } 6045 6046 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6047 { 6048 u64 ret = 0; 6049 int val; 6050 6051 for (int j = 0; j < count; ++j) { 6052 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6053 regs[j]); 6054 if (val < 0) 6055 return U64_MAX; 6056 6057 ret <<= 16; 6058 ret += val; 6059 } 6060 return ret; 6061 } 6062 6063 static int lan8842_update_stats(struct phy_device *phydev) 6064 { 6065 struct lan8842_priv *priv = phydev->priv; 6066 int rx_packets_regs[] = {88, 61, 60}; 6067 int rx_errors_regs[] = {63, 62}; 6068 int tx_packets_regs[] = {89, 85, 84}; 6069 int tx_errors_regs[] = {87, 86}; 6070 6071 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6072 ARRAY_SIZE(rx_packets_regs), 6073 rx_packets_regs); 6074 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6075 ARRAY_SIZE(rx_errors_regs), 6076 rx_errors_regs); 6077 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6078 ARRAY_SIZE(tx_packets_regs), 6079 tx_packets_regs); 6080 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6081 ARRAY_SIZE(tx_errors_regs), 6082 tx_errors_regs); 6083 6084 return 0; 6085 } 6086 6087 #define LAN8842_FLF 15 /* 0x0e */ 6088 #define LAN8842_FLF_ENA BIT(1) 6089 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6090 6091 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6092 { 6093 int ret; 6094 6095 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6096 if (ret < 0) 6097 return ret; 6098 6099 if (ret & LAN8842_FLF_ENA) 6100 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6101 else 6102 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6103 6104 return 0; 6105 } 6106 6107 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6108 { 6109 u16 flf; 6110 6111 switch (*msecs) { 6112 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6113 flf = 0; 6114 break; 6115 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6116 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6117 break; 6118 default: 6119 return -EINVAL; 6120 } 6121 6122 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6123 LAN8842_FLF, 6124 LAN8842_FLF_ENA | 6125 LAN8842_FLF_ENA_LINK_DOWN, flf); 6126 } 6127 6128 static int lan8842_get_tunable(struct phy_device *phydev, 6129 struct ethtool_tunable *tuna, void *data) 6130 { 6131 switch (tuna->id) { 6132 case ETHTOOL_PHY_FAST_LINK_DOWN: 6133 return lan8842_get_fast_down(phydev, data); 6134 default: 6135 return -EOPNOTSUPP; 6136 } 6137 } 6138 6139 static int lan8842_set_tunable(struct phy_device *phydev, 6140 struct ethtool_tunable *tuna, const void *data) 6141 { 6142 switch (tuna->id) { 6143 case ETHTOOL_PHY_FAST_LINK_DOWN: 6144 return lan8842_set_fast_down(phydev, data); 6145 default: 6146 return -EOPNOTSUPP; 6147 } 6148 } 6149 6150 static void lan8842_get_phy_stats(struct phy_device *phydev, 6151 struct ethtool_eth_phy_stats *eth_stats, 6152 struct ethtool_phy_stats *stats) 6153 { 6154 struct lan8842_priv *priv = phydev->priv; 6155 6156 stats->rx_packets = priv->phy_stats.rx_packets; 6157 stats->rx_errors = priv->phy_stats.rx_errors; 6158 stats->tx_packets = priv->phy_stats.tx_packets; 6159 stats->tx_errors = priv->phy_stats.tx_errors; 6160 } 6161 6162 static struct phy_driver ksphy_driver[] = { 6163 { 6164 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6165 .name = "Micrel KS8737", 6166 /* PHY_BASIC_FEATURES */ 6167 .driver_data = &ks8737_type, 6168 .probe = kszphy_probe, 6169 .config_init = kszphy_config_init, 6170 .config_intr = kszphy_config_intr, 6171 .handle_interrupt = kszphy_handle_interrupt, 6172 .suspend = kszphy_suspend, 6173 .resume = kszphy_resume, 6174 }, { 6175 .phy_id = PHY_ID_KSZ8021, 6176 .phy_id_mask = 0x00ffffff, 6177 .name = "Micrel KSZ8021 or KSZ8031", 6178 /* PHY_BASIC_FEATURES */ 6179 .driver_data = &ksz8021_type, 6180 .probe = kszphy_probe, 6181 .config_init = kszphy_config_init, 6182 .config_intr = kszphy_config_intr, 6183 .handle_interrupt = kszphy_handle_interrupt, 6184 .get_sset_count = kszphy_get_sset_count, 6185 .get_strings = kszphy_get_strings, 6186 .get_stats = kszphy_get_stats, 6187 .suspend = kszphy_suspend, 6188 .resume = kszphy_resume, 6189 }, { 6190 .phy_id = PHY_ID_KSZ8031, 6191 .phy_id_mask = 0x00ffffff, 6192 .name = "Micrel KSZ8031", 6193 /* PHY_BASIC_FEATURES */ 6194 .driver_data = &ksz8021_type, 6195 .probe = kszphy_probe, 6196 .config_init = kszphy_config_init, 6197 .config_intr = kszphy_config_intr, 6198 .handle_interrupt = kszphy_handle_interrupt, 6199 .get_sset_count = kszphy_get_sset_count, 6200 .get_strings = kszphy_get_strings, 6201 .get_stats = kszphy_get_stats, 6202 .suspend = kszphy_suspend, 6203 .resume = kszphy_resume, 6204 }, { 6205 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6206 .name = "Micrel KSZ8041", 6207 /* PHY_BASIC_FEATURES */ 6208 .driver_data = &ksz8041_type, 6209 .probe = kszphy_probe, 6210 .config_init = ksz8041_config_init, 6211 .config_aneg = ksz8041_config_aneg, 6212 .config_intr = kszphy_config_intr, 6213 .handle_interrupt = kszphy_handle_interrupt, 6214 .get_sset_count = kszphy_get_sset_count, 6215 .get_strings = kszphy_get_strings, 6216 .get_stats = kszphy_get_stats, 6217 .suspend = ksz8041_suspend, 6218 .resume = ksz8041_resume, 6219 }, { 6220 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6221 .name = "Micrel KSZ8041RNLI", 6222 /* PHY_BASIC_FEATURES */ 6223 .driver_data = &ksz8041_type, 6224 .probe = kszphy_probe, 6225 .config_init = kszphy_config_init, 6226 .config_intr = kszphy_config_intr, 6227 .handle_interrupt = kszphy_handle_interrupt, 6228 .get_sset_count = kszphy_get_sset_count, 6229 .get_strings = kszphy_get_strings, 6230 .get_stats = kszphy_get_stats, 6231 .suspend = kszphy_suspend, 6232 .resume = kszphy_resume, 6233 }, { 6234 .name = "Micrel KSZ8051", 6235 /* PHY_BASIC_FEATURES */ 6236 .driver_data = &ksz8051_type, 6237 .probe = kszphy_probe, 6238 .config_init = kszphy_config_init, 6239 .config_intr = kszphy_config_intr, 6240 .handle_interrupt = kszphy_handle_interrupt, 6241 .get_sset_count = kszphy_get_sset_count, 6242 .get_strings = kszphy_get_strings, 6243 .get_stats = kszphy_get_stats, 6244 .match_phy_device = ksz8051_match_phy_device, 6245 .suspend = kszphy_suspend, 6246 .resume = kszphy_resume, 6247 }, { 6248 .phy_id = PHY_ID_KSZ8001, 6249 .name = "Micrel KSZ8001 or KS8721", 6250 .phy_id_mask = 0x00fffffc, 6251 /* PHY_BASIC_FEATURES */ 6252 .driver_data = &ksz8041_type, 6253 .probe = kszphy_probe, 6254 .config_init = kszphy_config_init, 6255 .config_intr = kszphy_config_intr, 6256 .handle_interrupt = kszphy_handle_interrupt, 6257 .get_sset_count = kszphy_get_sset_count, 6258 .get_strings = kszphy_get_strings, 6259 .get_stats = kszphy_get_stats, 6260 .suspend = kszphy_suspend, 6261 .resume = kszphy_resume, 6262 }, { 6263 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6264 .name = "Micrel KSZ8081 or KSZ8091", 6265 .flags = PHY_POLL_CABLE_TEST, 6266 /* PHY_BASIC_FEATURES */ 6267 .driver_data = &ksz8081_type, 6268 .probe = kszphy_probe, 6269 .config_init = ksz8081_config_init, 6270 .soft_reset = genphy_soft_reset, 6271 .config_aneg = ksz8081_config_aneg, 6272 .read_status = ksz8081_read_status, 6273 .config_intr = kszphy_config_intr, 6274 .handle_interrupt = kszphy_handle_interrupt, 6275 .get_sset_count = kszphy_get_sset_count, 6276 .get_strings = kszphy_get_strings, 6277 .get_stats = kszphy_get_stats, 6278 .suspend = kszphy_suspend, 6279 .resume = kszphy_resume, 6280 .cable_test_start = ksz886x_cable_test_start, 6281 .cable_test_get_status = ksz886x_cable_test_get_status, 6282 }, { 6283 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6284 .name = "Micrel KSZ8061", 6285 /* PHY_BASIC_FEATURES */ 6286 .probe = kszphy_probe, 6287 .config_init = ksz8061_config_init, 6288 .soft_reset = genphy_soft_reset, 6289 .config_intr = kszphy_config_intr, 6290 .handle_interrupt = kszphy_handle_interrupt, 6291 .suspend = ksz8061_suspend, 6292 .resume = ksz8061_resume, 6293 }, { 6294 .phy_id = PHY_ID_KSZ9021, 6295 .phy_id_mask = 0x000ffffe, 6296 .name = "Micrel KSZ9021 Gigabit PHY", 6297 /* PHY_GBIT_FEATURES */ 6298 .driver_data = &ksz9021_type, 6299 .probe = kszphy_probe, 6300 .get_features = ksz9031_get_features, 6301 .config_init = ksz9021_config_init, 6302 .config_intr = kszphy_config_intr, 6303 .handle_interrupt = kszphy_handle_interrupt, 6304 .get_sset_count = kszphy_get_sset_count, 6305 .get_strings = kszphy_get_strings, 6306 .get_stats = kszphy_get_stats, 6307 .suspend = kszphy_suspend, 6308 .resume = kszphy_resume, 6309 .read_mmd = genphy_read_mmd_unsupported, 6310 .write_mmd = genphy_write_mmd_unsupported, 6311 }, { 6312 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6313 .name = "Micrel KSZ9031 Gigabit PHY", 6314 .flags = PHY_POLL_CABLE_TEST, 6315 .driver_data = &ksz9021_type, 6316 .probe = kszphy_probe, 6317 .get_features = ksz9031_get_features, 6318 .config_init = ksz9031_config_init, 6319 .soft_reset = genphy_soft_reset, 6320 .read_status = ksz9031_read_status, 6321 .config_intr = kszphy_config_intr, 6322 .handle_interrupt = kszphy_handle_interrupt, 6323 .get_sset_count = kszphy_get_sset_count, 6324 .get_strings = kszphy_get_strings, 6325 .get_stats = kszphy_get_stats, 6326 .suspend = kszphy_suspend, 6327 .resume = kszphy_resume, 6328 .cable_test_start = ksz9x31_cable_test_start, 6329 .cable_test_get_status = ksz9x31_cable_test_get_status, 6330 .set_loopback = ksz9031_set_loopback, 6331 }, { 6332 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6333 .name = "Microchip INDY Gigabit Quad PHY", 6334 .flags = PHY_POLL_CABLE_TEST, 6335 .config_init = lan8814_config_init, 6336 .driver_data = &lan8814_type, 6337 .probe = lan8814_probe, 6338 .soft_reset = genphy_soft_reset, 6339 .read_status = ksz9031_read_status, 6340 .get_sset_count = kszphy_get_sset_count, 6341 .get_strings = kszphy_get_strings, 6342 .get_stats = kszphy_get_stats, 6343 .suspend = genphy_suspend, 6344 .resume = kszphy_resume, 6345 .config_intr = lan8814_config_intr, 6346 .handle_interrupt = lan8814_handle_interrupt, 6347 .cable_test_start = lan8814_cable_test_start, 6348 .cable_test_get_status = ksz886x_cable_test_get_status, 6349 }, { 6350 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6351 .name = "Microchip LAN966X Gigabit PHY", 6352 .config_init = lan8804_config_init, 6353 .driver_data = &ksz9021_type, 6354 .probe = kszphy_probe, 6355 .soft_reset = genphy_soft_reset, 6356 .read_status = ksz9031_read_status, 6357 .get_sset_count = kszphy_get_sset_count, 6358 .get_strings = kszphy_get_strings, 6359 .get_stats = kszphy_get_stats, 6360 .suspend = lan8804_suspend, 6361 .resume = lan8804_resume, 6362 .config_intr = lan8804_config_intr, 6363 .handle_interrupt = lan8804_handle_interrupt, 6364 }, { 6365 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6366 .name = "Microchip LAN8841 Gigabit PHY", 6367 .flags = PHY_POLL_CABLE_TEST, 6368 .driver_data = &lan8841_type, 6369 .config_init = lan8841_config_init, 6370 .probe = lan8841_probe, 6371 .soft_reset = genphy_soft_reset, 6372 .config_intr = lan8841_config_intr, 6373 .handle_interrupt = lan8841_handle_interrupt, 6374 .get_sset_count = kszphy_get_sset_count, 6375 .get_strings = kszphy_get_strings, 6376 .get_stats = kszphy_get_stats, 6377 .suspend = lan8841_suspend, 6378 .resume = lan8841_resume, 6379 .cable_test_start = lan8814_cable_test_start, 6380 .cable_test_get_status = ksz886x_cable_test_get_status, 6381 }, { 6382 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6383 .name = "Microchip LAN8842 Gigabit PHY", 6384 .flags = PHY_POLL_CABLE_TEST, 6385 .driver_data = &lan8814_type, 6386 .probe = lan8842_probe, 6387 .config_init = lan8842_config_init, 6388 .config_intr = lan8842_config_intr, 6389 .inband_caps = lan8842_inband_caps, 6390 .config_inband = lan8842_config_inband, 6391 .handle_interrupt = lan8842_handle_interrupt, 6392 .get_phy_stats = lan8842_get_phy_stats, 6393 .update_stats = lan8842_update_stats, 6394 .get_tunable = lan8842_get_tunable, 6395 .set_tunable = lan8842_set_tunable, 6396 .cable_test_start = lan8814_cable_test_start, 6397 .cable_test_get_status = ksz886x_cable_test_get_status, 6398 }, { 6399 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6400 .name = "Microchip KSZ9131 Gigabit PHY", 6401 /* PHY_GBIT_FEATURES */ 6402 .flags = PHY_POLL_CABLE_TEST, 6403 .driver_data = &ksz9131_type, 6404 .probe = kszphy_probe, 6405 .soft_reset = genphy_soft_reset, 6406 .config_init = ksz9131_config_init, 6407 .config_intr = kszphy_config_intr, 6408 .config_aneg = ksz9131_config_aneg, 6409 .read_status = ksz9131_read_status, 6410 .handle_interrupt = kszphy_handle_interrupt, 6411 .get_sset_count = kszphy_get_sset_count, 6412 .get_strings = kszphy_get_strings, 6413 .get_stats = kszphy_get_stats, 6414 .suspend = kszphy_suspend, 6415 .resume = ksz9131_resume, 6416 .cable_test_start = ksz9x31_cable_test_start, 6417 .cable_test_get_status = ksz9x31_cable_test_get_status, 6418 .get_features = ksz9477_get_features, 6419 }, { 6420 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6421 .name = "Micrel KSZ8873MLL Switch", 6422 /* PHY_BASIC_FEATURES */ 6423 .config_init = kszphy_config_init, 6424 .config_aneg = ksz8873mll_config_aneg, 6425 .read_status = ksz8873mll_read_status, 6426 .suspend = genphy_suspend, 6427 .resume = genphy_resume, 6428 }, { 6429 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6430 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6431 .driver_data = &ksz886x_type, 6432 /* PHY_BASIC_FEATURES */ 6433 .flags = PHY_POLL_CABLE_TEST, 6434 .config_init = kszphy_config_init, 6435 .config_aneg = ksz886x_config_aneg, 6436 .read_status = ksz886x_read_status, 6437 .suspend = genphy_suspend, 6438 .resume = genphy_resume, 6439 .cable_test_start = ksz886x_cable_test_start, 6440 .cable_test_get_status = ksz886x_cable_test_get_status, 6441 }, { 6442 .name = "Micrel KSZ87XX Switch", 6443 /* PHY_BASIC_FEATURES */ 6444 .config_init = kszphy_config_init, 6445 .match_phy_device = ksz8795_match_phy_device, 6446 .suspend = genphy_suspend, 6447 .resume = genphy_resume, 6448 }, { 6449 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6450 .name = "Microchip KSZ9477", 6451 .probe = kszphy_probe, 6452 /* PHY_GBIT_FEATURES */ 6453 .config_init = ksz9477_config_init, 6454 .config_intr = kszphy_config_intr, 6455 .config_aneg = ksz9477_config_aneg, 6456 .read_status = ksz9477_read_status, 6457 .handle_interrupt = kszphy_handle_interrupt, 6458 .suspend = genphy_suspend, 6459 .resume = ksz9477_resume, 6460 .get_phy_stats = kszphy_get_phy_stats, 6461 .update_stats = kszphy_update_stats, 6462 .cable_test_start = ksz9x31_cable_test_start, 6463 .cable_test_get_status = ksz9x31_cable_test_get_status, 6464 .get_sqi = kszphy_get_sqi, 6465 .get_sqi_max = kszphy_get_sqi_max, 6466 } }; 6467 6468 module_phy_driver(ksphy_driver); 6469 6470 MODULE_DESCRIPTION("Micrel PHY driver"); 6471 MODULE_AUTHOR("David J. Choi"); 6472 MODULE_LICENSE("GPL"); 6473 6474 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6475 { PHY_ID_KSZ9021, 0x000ffffe }, 6476 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6477 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6478 { PHY_ID_KSZ8001, 0x00fffffc }, 6479 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6480 { PHY_ID_KSZ8021, 0x00ffffff }, 6481 { PHY_ID_KSZ8031, 0x00ffffff }, 6482 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6483 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6484 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6485 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6486 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6487 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6488 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6489 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6490 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6491 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6492 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6493 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6494 { } 6495 }; 6496 6497 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6498