1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 /* Delay used to get the second part from the LTC */ 256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 257 258 struct kszphy_hw_stat { 259 const char *string; 260 u8 reg; 261 u8 bits; 262 }; 263 264 static struct kszphy_hw_stat kszphy_hw_stats[] = { 265 { "phy_receive_errors", 21, 16}, 266 { "phy_idle_errors", 10, 8 }, 267 }; 268 269 struct kszphy_type { 270 u32 led_mode_reg; 271 u16 interrupt_level_mask; 272 u16 cable_diag_reg; 273 unsigned long pair_mask; 274 u16 disable_dll_tx_bit; 275 u16 disable_dll_rx_bit; 276 u16 disable_dll_mask; 277 bool has_broadcast_disable; 278 bool has_nand_tree_disable; 279 bool has_rmii_ref_clk_sel; 280 }; 281 282 /* Shared structure between the PHYs of the same package. */ 283 struct lan8814_shared_priv { 284 struct phy_device *phydev; 285 struct ptp_clock *ptp_clock; 286 struct ptp_clock_info ptp_clock_info; 287 288 /* Reference counter to how many ports in the package are enabling the 289 * timestamping 290 */ 291 u8 ref; 292 293 /* Lock for ptp_clock and ref */ 294 struct mutex shared_lock; 295 }; 296 297 struct lan8814_ptp_rx_ts { 298 struct list_head list; 299 u32 seconds; 300 u32 nsec; 301 u16 seq_id; 302 }; 303 304 struct kszphy_ptp_priv { 305 struct mii_timestamper mii_ts; 306 struct phy_device *phydev; 307 308 struct sk_buff_head tx_queue; 309 struct sk_buff_head rx_queue; 310 311 struct list_head rx_ts_list; 312 /* Lock for Rx ts fifo */ 313 spinlock_t rx_ts_lock; 314 315 int hwts_tx_type; 316 enum hwtstamp_rx_filters rx_filter; 317 int layer; 318 int version; 319 320 struct ptp_clock *ptp_clock; 321 struct ptp_clock_info ptp_clock_info; 322 /* Lock for ptp_clock */ 323 struct mutex ptp_lock; 324 struct ptp_pin_desc *pin_config; 325 326 s64 seconds; 327 /* Lock for accessing seconds */ 328 spinlock_t seconds_lock; 329 }; 330 331 struct kszphy_priv { 332 struct kszphy_ptp_priv ptp_priv; 333 const struct kszphy_type *type; 334 int led_mode; 335 u16 vct_ctrl1000; 336 bool rmii_ref_clk_sel; 337 bool rmii_ref_clk_sel_val; 338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 339 }; 340 341 static const struct kszphy_type lan8814_type = { 342 .led_mode_reg = ~LAN8814_LED_CTRL_1, 343 .cable_diag_reg = LAN8814_CABLE_DIAG, 344 .pair_mask = LAN8814_WIRE_PAIR_MASK, 345 }; 346 347 static const struct kszphy_type ksz886x_type = { 348 .cable_diag_reg = KSZ8081_LMD, 349 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz8021_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ksz8041_type = { 360 .led_mode_reg = MII_KSZPHY_CTRL_1, 361 }; 362 363 static const struct kszphy_type ksz8051_type = { 364 .led_mode_reg = MII_KSZPHY_CTRL_2, 365 .has_nand_tree_disable = true, 366 }; 367 368 static const struct kszphy_type ksz8081_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_broadcast_disable = true, 371 .has_nand_tree_disable = true, 372 .has_rmii_ref_clk_sel = true, 373 }; 374 375 static const struct kszphy_type ks8737_type = { 376 .interrupt_level_mask = BIT(14), 377 }; 378 379 static const struct kszphy_type ksz9021_type = { 380 .interrupt_level_mask = BIT(14), 381 }; 382 383 static const struct kszphy_type ksz9131_type = { 384 .interrupt_level_mask = BIT(14), 385 .disable_dll_tx_bit = BIT(12), 386 .disable_dll_rx_bit = BIT(12), 387 .disable_dll_mask = BIT_MASK(12), 388 }; 389 390 static const struct kszphy_type lan8841_type = { 391 .disable_dll_tx_bit = BIT(14), 392 .disable_dll_rx_bit = BIT(14), 393 .disable_dll_mask = BIT_MASK(14), 394 .cable_diag_reg = LAN8814_CABLE_DIAG, 395 .pair_mask = LAN8814_WIRE_PAIR_MASK, 396 }; 397 398 static int kszphy_extended_write(struct phy_device *phydev, 399 u32 regnum, u16 val) 400 { 401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 403 } 404 405 static int kszphy_extended_read(struct phy_device *phydev, 406 u32 regnum) 407 { 408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 410 } 411 412 static int kszphy_ack_interrupt(struct phy_device *phydev) 413 { 414 /* bit[7..0] int status, which is a read and clear register. */ 415 int rc; 416 417 rc = phy_read(phydev, MII_KSZPHY_INTCS); 418 419 return (rc < 0) ? rc : 0; 420 } 421 422 static int kszphy_config_intr(struct phy_device *phydev) 423 { 424 const struct kszphy_type *type = phydev->drv->driver_data; 425 int temp, err; 426 u16 mask; 427 428 if (type && type->interrupt_level_mask) 429 mask = type->interrupt_level_mask; 430 else 431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 432 433 /* set the interrupt pin active low */ 434 temp = phy_read(phydev, MII_KSZPHY_CTRL); 435 if (temp < 0) 436 return temp; 437 temp &= ~mask; 438 phy_write(phydev, MII_KSZPHY_CTRL, temp); 439 440 /* enable / disable interrupts */ 441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 442 err = kszphy_ack_interrupt(phydev); 443 if (err) 444 return err; 445 446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 447 } else { 448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 449 if (err) 450 return err; 451 452 err = kszphy_ack_interrupt(phydev); 453 } 454 455 return err; 456 } 457 458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 459 { 460 int irq_status; 461 462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 463 if (irq_status < 0) { 464 phy_error(phydev); 465 return IRQ_NONE; 466 } 467 468 if (!(irq_status & KSZPHY_INTCS_STATUS)) 469 return IRQ_NONE; 470 471 phy_trigger_machine(phydev); 472 473 return IRQ_HANDLED; 474 } 475 476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 477 { 478 int ctrl; 479 480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 481 if (ctrl < 0) 482 return ctrl; 483 484 if (val) 485 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 486 else 487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 488 489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 490 } 491 492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 493 { 494 int rc, temp, shift; 495 496 switch (reg) { 497 case MII_KSZPHY_CTRL_1: 498 shift = 14; 499 break; 500 case MII_KSZPHY_CTRL_2: 501 shift = 4; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 temp = phy_read(phydev, reg); 508 if (temp < 0) { 509 rc = temp; 510 goto out; 511 } 512 513 temp &= ~(3 << shift); 514 temp |= val << shift; 515 rc = phy_write(phydev, reg, temp); 516 out: 517 if (rc < 0) 518 phydev_err(phydev, "failed to set led mode\n"); 519 520 return rc; 521 } 522 523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 524 * unique (non-broadcast) address on a shared bus. 525 */ 526 static int kszphy_broadcast_disable(struct phy_device *phydev) 527 { 528 int ret; 529 530 ret = phy_read(phydev, MII_KSZPHY_OMSO); 531 if (ret < 0) 532 goto out; 533 534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 535 out: 536 if (ret) 537 phydev_err(phydev, "failed to disable broadcast address\n"); 538 539 return ret; 540 } 541 542 static int kszphy_nand_tree_disable(struct phy_device *phydev) 543 { 544 int ret; 545 546 ret = phy_read(phydev, MII_KSZPHY_OMSO); 547 if (ret < 0) 548 goto out; 549 550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 551 return 0; 552 553 ret = phy_write(phydev, MII_KSZPHY_OMSO, 554 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 555 out: 556 if (ret) 557 phydev_err(phydev, "failed to disable NAND tree mode\n"); 558 559 return ret; 560 } 561 562 /* Some config bits need to be set again on resume, handle them here. */ 563 static int kszphy_config_reset(struct phy_device *phydev) 564 { 565 struct kszphy_priv *priv = phydev->priv; 566 int ret; 567 568 if (priv->rmii_ref_clk_sel) { 569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 570 if (ret) { 571 phydev_err(phydev, 572 "failed to set rmii reference clock\n"); 573 return ret; 574 } 575 } 576 577 if (priv->type && priv->led_mode >= 0) 578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 579 580 return 0; 581 } 582 583 static int kszphy_config_init(struct phy_device *phydev) 584 { 585 struct kszphy_priv *priv = phydev->priv; 586 const struct kszphy_type *type; 587 588 if (!priv) 589 return 0; 590 591 type = priv->type; 592 593 if (type && type->has_broadcast_disable) 594 kszphy_broadcast_disable(phydev); 595 596 if (type && type->has_nand_tree_disable) 597 kszphy_nand_tree_disable(phydev); 598 599 return kszphy_config_reset(phydev); 600 } 601 602 static int ksz8041_fiber_mode(struct phy_device *phydev) 603 { 604 struct device_node *of_node = phydev->mdio.dev.of_node; 605 606 return of_property_read_bool(of_node, "micrel,fiber-mode"); 607 } 608 609 static int ksz8041_config_init(struct phy_device *phydev) 610 { 611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 612 613 /* Limit supported and advertised modes in fiber mode */ 614 if (ksz8041_fiber_mode(phydev)) { 615 phydev->dev_flags |= MICREL_PHY_FXEN; 616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 618 619 linkmode_and(phydev->supported, phydev->supported, mask); 620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 621 phydev->supported); 622 linkmode_and(phydev->advertising, phydev->advertising, mask); 623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 624 phydev->advertising); 625 phydev->autoneg = AUTONEG_DISABLE; 626 } 627 628 return kszphy_config_init(phydev); 629 } 630 631 static int ksz8041_config_aneg(struct phy_device *phydev) 632 { 633 /* Skip auto-negotiation in fiber mode */ 634 if (phydev->dev_flags & MICREL_PHY_FXEN) { 635 phydev->speed = SPEED_100; 636 return 0; 637 } 638 639 return genphy_config_aneg(phydev); 640 } 641 642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 643 const bool ksz_8051) 644 { 645 int ret; 646 647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 648 return 0; 649 650 ret = phy_read(phydev, MII_BMSR); 651 if (ret < 0) 652 return ret; 653 654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 655 * exact PHY ID. However, they can be told apart by the extended 656 * capability registers presence. The KSZ8051 PHY has them while 657 * the switch does not. 658 */ 659 ret &= BMSR_ERCAP; 660 if (ksz_8051) 661 return ret; 662 else 663 return !ret; 664 } 665 666 static int ksz8051_match_phy_device(struct phy_device *phydev) 667 { 668 return ksz8051_ksz8795_match_phy_device(phydev, true); 669 } 670 671 static int ksz8081_config_init(struct phy_device *phydev) 672 { 673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 675 * pull-down is missing, the factory test mode should be cleared by 676 * manually writing a 0. 677 */ 678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 679 680 return kszphy_config_init(phydev); 681 } 682 683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 684 { 685 u16 val; 686 687 switch (ctrl) { 688 case ETH_TP_MDI: 689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 690 break; 691 case ETH_TP_MDI_X: 692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 693 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 694 break; 695 case ETH_TP_MDI_AUTO: 696 val = 0; 697 break; 698 default: 699 return 0; 700 } 701 702 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 703 KSZ8081_CTRL2_HP_MDIX | 704 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 706 KSZ8081_CTRL2_HP_MDIX | val); 707 } 708 709 static int ksz8081_config_aneg(struct phy_device *phydev) 710 { 711 int ret; 712 713 ret = genphy_config_aneg(phydev); 714 if (ret) 715 return ret; 716 717 /* The MDI-X configuration is automatically changed by the PHY after 718 * switching from autoneg off to on. So, take MDI-X configuration under 719 * own control and set it after autoneg configuration was done. 720 */ 721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 722 } 723 724 static int ksz8081_mdix_update(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 734 phydev->mdix_ctrl = ETH_TP_MDI_X; 735 else 736 phydev->mdix_ctrl = ETH_TP_MDI; 737 } else { 738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 739 } 740 741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 742 if (ret < 0) 743 return ret; 744 745 if (ret & KSZ8081_CTRL1_MDIX_STAT) 746 phydev->mdix = ETH_TP_MDI; 747 else 748 phydev->mdix = ETH_TP_MDI_X; 749 750 return 0; 751 } 752 753 static int ksz8081_read_status(struct phy_device *phydev) 754 { 755 int ret; 756 757 ret = ksz8081_mdix_update(phydev); 758 if (ret < 0) 759 return ret; 760 761 return genphy_read_status(phydev); 762 } 763 764 static int ksz8061_config_init(struct phy_device *phydev) 765 { 766 int ret; 767 768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 769 if (ret) 770 return ret; 771 772 return kszphy_config_init(phydev); 773 } 774 775 static int ksz8795_match_phy_device(struct phy_device *phydev) 776 { 777 return ksz8051_ksz8795_match_phy_device(phydev, false); 778 } 779 780 static int ksz9021_load_values_from_of(struct phy_device *phydev, 781 const struct device_node *of_node, 782 u16 reg, 783 const char *field1, const char *field2, 784 const char *field3, const char *field4) 785 { 786 int val1 = -1; 787 int val2 = -2; 788 int val3 = -3; 789 int val4 = -4; 790 int newval; 791 int matches = 0; 792 793 if (!of_property_read_u32(of_node, field1, &val1)) 794 matches++; 795 796 if (!of_property_read_u32(of_node, field2, &val2)) 797 matches++; 798 799 if (!of_property_read_u32(of_node, field3, &val3)) 800 matches++; 801 802 if (!of_property_read_u32(of_node, field4, &val4)) 803 matches++; 804 805 if (!matches) 806 return 0; 807 808 if (matches < 4) 809 newval = kszphy_extended_read(phydev, reg); 810 else 811 newval = 0; 812 813 if (val1 != -1) 814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 815 816 if (val2 != -2) 817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 818 819 if (val3 != -3) 820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 821 822 if (val4 != -4) 823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 824 825 return kszphy_extended_write(phydev, reg, newval); 826 } 827 828 static int ksz9021_config_init(struct phy_device *phydev) 829 { 830 const struct device_node *of_node; 831 const struct device *dev_walker; 832 833 /* The Micrel driver has a deprecated option to place phy OF 834 * properties in the MAC node. Walk up the tree of devices to 835 * find a device with an OF node. 836 */ 837 dev_walker = &phydev->mdio.dev; 838 do { 839 of_node = dev_walker->of_node; 840 dev_walker = dev_walker->parent; 841 842 } while (!of_node && dev_walker); 843 844 if (of_node) { 845 ksz9021_load_values_from_of(phydev, of_node, 846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 847 "txen-skew-ps", "txc-skew-ps", 848 "rxdv-skew-ps", "rxc-skew-ps"); 849 ksz9021_load_values_from_of(phydev, of_node, 850 MII_KSZPHY_RX_DATA_PAD_SKEW, 851 "rxd0-skew-ps", "rxd1-skew-ps", 852 "rxd2-skew-ps", "rxd3-skew-ps"); 853 ksz9021_load_values_from_of(phydev, of_node, 854 MII_KSZPHY_TX_DATA_PAD_SKEW, 855 "txd0-skew-ps", "txd1-skew-ps", 856 "txd2-skew-ps", "txd3-skew-ps"); 857 } 858 return 0; 859 } 860 861 #define KSZ9031_PS_TO_REG 60 862 863 /* Extended registers */ 864 /* MMD Address 0x0 */ 865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 867 868 /* MMD Address 0x2 */ 869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 872 873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 878 879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 884 885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 888 889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 890 * provide different RGMII options we need to configure delay offset 891 * for each pad relative to build in delay. 892 */ 893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 894 * 1.80ns 895 */ 896 #define RX_ID 0x7 897 #define RX_CLK_ID 0x19 898 899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 900 * internal 1.2ns delay. 901 */ 902 #define RX_ND 0xc 903 #define RX_CLK_ND 0x0 904 905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 906 #define TX_ID 0x0 907 #define TX_CLK_ID 0x1f 908 909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 910 * dealy 911 */ 912 #define TX_ND 0x7 913 #define TX_CLK_ND 0xf 914 915 /* MMD Address 0x1C */ 916 #define MII_KSZ9031RN_EDPD 0x23 917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 918 919 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 920 const struct device_node *of_node, 921 u16 reg, size_t field_sz, 922 const char *field[], u8 numfields, 923 bool *update) 924 { 925 int val[4] = {-1, -2, -3, -4}; 926 int matches = 0; 927 u16 mask; 928 u16 maxval; 929 u16 newval; 930 int i; 931 932 for (i = 0; i < numfields; i++) 933 if (!of_property_read_u32(of_node, field[i], val + i)) 934 matches++; 935 936 if (!matches) 937 return 0; 938 939 *update |= true; 940 941 if (matches < numfields) 942 newval = phy_read_mmd(phydev, 2, reg); 943 else 944 newval = 0; 945 946 maxval = (field_sz == 4) ? 0xf : 0x1f; 947 for (i = 0; i < numfields; i++) 948 if (val[i] != -(i + 1)) { 949 mask = 0xffff; 950 mask ^= maxval << (field_sz * i); 951 newval = (newval & mask) | 952 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 953 << (field_sz * i)); 954 } 955 956 return phy_write_mmd(phydev, 2, reg, newval); 957 } 958 959 /* Center KSZ9031RNX FLP timing at 16ms. */ 960 static int ksz9031_center_flp_timing(struct phy_device *phydev) 961 { 962 int result; 963 964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 965 0x0006); 966 if (result) 967 return result; 968 969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 970 0x1A80); 971 if (result) 972 return result; 973 974 return genphy_restart_aneg(phydev); 975 } 976 977 /* Enable energy-detect power-down mode */ 978 static int ksz9031_enable_edpd(struct phy_device *phydev) 979 { 980 int reg; 981 982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 983 if (reg < 0) 984 return reg; 985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 986 reg | MII_KSZ9031RN_EDPD_ENABLE); 987 } 988 989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 990 { 991 u16 rx, tx, rx_clk, tx_clk; 992 int ret; 993 994 switch (phydev->interface) { 995 case PHY_INTERFACE_MODE_RGMII: 996 tx = TX_ND; 997 tx_clk = TX_CLK_ND; 998 rx = RX_ND; 999 rx_clk = RX_CLK_ND; 1000 break; 1001 case PHY_INTERFACE_MODE_RGMII_ID: 1002 tx = TX_ID; 1003 tx_clk = TX_CLK_ID; 1004 rx = RX_ID; 1005 rx_clk = RX_CLK_ID; 1006 break; 1007 case PHY_INTERFACE_MODE_RGMII_RXID: 1008 tx = TX_ND; 1009 tx_clk = TX_CLK_ND; 1010 rx = RX_ID; 1011 rx_clk = RX_CLK_ID; 1012 break; 1013 case PHY_INTERFACE_MODE_RGMII_TXID: 1014 tx = TX_ID; 1015 tx_clk = TX_CLK_ID; 1016 rx = RX_ND; 1017 rx_clk = RX_CLK_ND; 1018 break; 1019 default: 1020 return 0; 1021 } 1022 1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1026 if (ret < 0) 1027 return ret; 1028 1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1034 if (ret < 0) 1035 return ret; 1036 1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1048 } 1049 1050 static int ksz9031_config_init(struct phy_device *phydev) 1051 { 1052 const struct device_node *of_node; 1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1054 static const char *rx_data_skews[4] = { 1055 "rxd0-skew-ps", "rxd1-skew-ps", 1056 "rxd2-skew-ps", "rxd3-skew-ps" 1057 }; 1058 static const char *tx_data_skews[4] = { 1059 "txd0-skew-ps", "txd1-skew-ps", 1060 "txd2-skew-ps", "txd3-skew-ps" 1061 }; 1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1063 const struct device *dev_walker; 1064 int result; 1065 1066 result = ksz9031_enable_edpd(phydev); 1067 if (result < 0) 1068 return result; 1069 1070 /* The Micrel driver has a deprecated option to place phy OF 1071 * properties in the MAC node. Walk up the tree of devices to 1072 * find a device with an OF node. 1073 */ 1074 dev_walker = &phydev->mdio.dev; 1075 do { 1076 of_node = dev_walker->of_node; 1077 dev_walker = dev_walker->parent; 1078 } while (!of_node && dev_walker); 1079 1080 if (of_node) { 1081 bool update = false; 1082 1083 if (phy_interface_is_rgmii(phydev)) { 1084 result = ksz9031_config_rgmii_delay(phydev); 1085 if (result < 0) 1086 return result; 1087 } 1088 1089 ksz9031_of_load_skew_values(phydev, of_node, 1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1091 clk_skews, 2, &update); 1092 1093 ksz9031_of_load_skew_values(phydev, of_node, 1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1095 control_skews, 2, &update); 1096 1097 ksz9031_of_load_skew_values(phydev, of_node, 1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1099 rx_data_skews, 4, &update); 1100 1101 ksz9031_of_load_skew_values(phydev, of_node, 1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1103 tx_data_skews, 4, &update); 1104 1105 if (update && !phy_interface_is_rgmii(phydev)) 1106 phydev_warn(phydev, 1107 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1108 1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1110 * When the device links in the 1000BASE-T slave mode only, 1111 * the optional 125MHz reference output clock (CLK125_NDO) 1112 * has wide duty cycle variation. 1113 * 1114 * The optional CLK125_NDO clock does not meet the RGMII 1115 * 45/55 percent (min/max) duty cycle requirement and therefore 1116 * cannot be used directly by the MAC side for clocking 1117 * applications that have setup/hold time requirements on 1118 * rising and falling clock edges. 1119 * 1120 * Workaround: 1121 * Force the phy to be the master to receive a stable clock 1122 * which meets the duty cycle requirement. 1123 */ 1124 if (of_property_read_bool(of_node, "micrel,force-master")) { 1125 result = phy_read(phydev, MII_CTRL1000); 1126 if (result < 0) 1127 goto err_force_master; 1128 1129 /* enable master mode, config & prefer master */ 1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1131 result = phy_write(phydev, MII_CTRL1000, result); 1132 if (result < 0) 1133 goto err_force_master; 1134 } 1135 } 1136 1137 return ksz9031_center_flp_timing(phydev); 1138 1139 err_force_master: 1140 phydev_err(phydev, "failed to force the phy to master mode\n"); 1141 return result; 1142 } 1143 1144 #define KSZ9131_SKEW_5BIT_MAX 2400 1145 #define KSZ9131_SKEW_4BIT_MAX 800 1146 #define KSZ9131_OFFSET 700 1147 #define KSZ9131_STEP 100 1148 1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1150 struct device_node *of_node, 1151 u16 reg, size_t field_sz, 1152 char *field[], u8 numfields) 1153 { 1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1156 int skewval, skewmax = 0; 1157 int matches = 0; 1158 u16 maxval; 1159 u16 newval; 1160 u16 mask; 1161 int i; 1162 1163 /* psec properties in dts should mean x pico seconds */ 1164 if (field_sz == 5) 1165 skewmax = KSZ9131_SKEW_5BIT_MAX; 1166 else 1167 skewmax = KSZ9131_SKEW_4BIT_MAX; 1168 1169 for (i = 0; i < numfields; i++) 1170 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1171 if (skewval < -KSZ9131_OFFSET) 1172 skewval = -KSZ9131_OFFSET; 1173 else if (skewval > skewmax) 1174 skewval = skewmax; 1175 1176 val[i] = skewval + KSZ9131_OFFSET; 1177 matches++; 1178 } 1179 1180 if (!matches) 1181 return 0; 1182 1183 if (matches < numfields) 1184 newval = phy_read_mmd(phydev, 2, reg); 1185 else 1186 newval = 0; 1187 1188 maxval = (field_sz == 4) ? 0xf : 0x1f; 1189 for (i = 0; i < numfields; i++) 1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1191 mask = 0xffff; 1192 mask ^= maxval << (field_sz * i); 1193 newval = (newval & mask) | 1194 (((val[i] / KSZ9131_STEP) & maxval) 1195 << (field_sz * i)); 1196 } 1197 1198 return phy_write_mmd(phydev, 2, reg, newval); 1199 } 1200 1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1202 #define KSZ9131RN_RXC_DLL_CTRL 76 1203 #define KSZ9131RN_TXC_DLL_CTRL 77 1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1205 1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1207 { 1208 const struct kszphy_type *type = phydev->drv->driver_data; 1209 u16 rxcdll_val, txcdll_val; 1210 int ret; 1211 1212 switch (phydev->interface) { 1213 case PHY_INTERFACE_MODE_RGMII: 1214 rxcdll_val = type->disable_dll_rx_bit; 1215 txcdll_val = type->disable_dll_tx_bit; 1216 break; 1217 case PHY_INTERFACE_MODE_RGMII_ID: 1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1220 break; 1221 case PHY_INTERFACE_MODE_RGMII_RXID: 1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1223 txcdll_val = type->disable_dll_tx_bit; 1224 break; 1225 case PHY_INTERFACE_MODE_RGMII_TXID: 1226 rxcdll_val = type->disable_dll_rx_bit; 1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1228 break; 1229 default: 1230 return 0; 1231 } 1232 1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1235 rxcdll_val); 1236 if (ret < 0) 1237 return ret; 1238 1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1241 txcdll_val); 1242 } 1243 1244 /* Silicon Errata DS80000693B 1245 * 1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1248 * according to the datasheet (off if there is no link). 1249 */ 1250 static int ksz9131_led_errata(struct phy_device *phydev) 1251 { 1252 int reg; 1253 1254 reg = phy_read_mmd(phydev, 2, 0); 1255 if (reg < 0) 1256 return reg; 1257 1258 if (!(reg & BIT(4))) 1259 return 0; 1260 1261 return phy_set_bits(phydev, 0x1e, BIT(9)); 1262 } 1263 1264 static int ksz9131_config_init(struct phy_device *phydev) 1265 { 1266 struct device_node *of_node; 1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1268 char *rx_data_skews[4] = { 1269 "rxd0-skew-psec", "rxd1-skew-psec", 1270 "rxd2-skew-psec", "rxd3-skew-psec" 1271 }; 1272 char *tx_data_skews[4] = { 1273 "txd0-skew-psec", "txd1-skew-psec", 1274 "txd2-skew-psec", "txd3-skew-psec" 1275 }; 1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1277 const struct device *dev_walker; 1278 int ret; 1279 1280 dev_walker = &phydev->mdio.dev; 1281 do { 1282 of_node = dev_walker->of_node; 1283 dev_walker = dev_walker->parent; 1284 } while (!of_node && dev_walker); 1285 1286 if (!of_node) 1287 return 0; 1288 1289 if (phy_interface_is_rgmii(phydev)) { 1290 ret = ksz9131_config_rgmii_delay(phydev); 1291 if (ret < 0) 1292 return ret; 1293 } 1294 1295 ret = ksz9131_of_load_skew_values(phydev, of_node, 1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1297 clk_skews, 2); 1298 if (ret < 0) 1299 return ret; 1300 1301 ret = ksz9131_of_load_skew_values(phydev, of_node, 1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1303 control_skews, 2); 1304 if (ret < 0) 1305 return ret; 1306 1307 ret = ksz9131_of_load_skew_values(phydev, of_node, 1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1309 rx_data_skews, 4); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1315 tx_data_skews, 4); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_led_errata(phydev); 1320 if (ret < 0) 1321 return ret; 1322 1323 return 0; 1324 } 1325 1326 #define MII_KSZ9131_AUTO_MDIX 0x1C 1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1329 1330 static int ksz9131_mdix_update(struct phy_device *phydev) 1331 { 1332 int ret; 1333 1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1335 if (ret < 0) 1336 return ret; 1337 1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1339 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1340 phydev->mdix_ctrl = ETH_TP_MDI; 1341 else 1342 phydev->mdix_ctrl = ETH_TP_MDI_X; 1343 } else { 1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1345 } 1346 1347 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1348 phydev->mdix = ETH_TP_MDI; 1349 else 1350 phydev->mdix = ETH_TP_MDI_X; 1351 1352 return 0; 1353 } 1354 1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1356 { 1357 u16 val; 1358 1359 switch (ctrl) { 1360 case ETH_TP_MDI: 1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1362 MII_KSZ9131_AUTO_MDI_SET; 1363 break; 1364 case ETH_TP_MDI_X: 1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1366 break; 1367 case ETH_TP_MDI_AUTO: 1368 val = 0; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1376 MII_KSZ9131_AUTO_MDI_SET, val); 1377 } 1378 1379 static int ksz9131_read_status(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = ksz9131_mdix_update(phydev); 1384 if (ret < 0) 1385 return ret; 1386 1387 return genphy_read_status(phydev); 1388 } 1389 1390 static int ksz9131_config_aneg(struct phy_device *phydev) 1391 { 1392 int ret; 1393 1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1395 if (ret) 1396 return ret; 1397 1398 return genphy_config_aneg(phydev); 1399 } 1400 1401 static int ksz9477_get_features(struct phy_device *phydev) 1402 { 1403 int ret; 1404 1405 ret = genphy_read_abilities(phydev); 1406 if (ret) 1407 return ret; 1408 1409 /* The "EEE control and capability 1" (Register 3.20) seems to be 1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1411 * on the 7.60 will affect 3.20. So, we need to construct our own list 1412 * of caps. 1413 * KSZ8563R should have 100BaseTX/Full only. 1414 */ 1415 linkmode_and(phydev->supported_eee, phydev->supported, 1416 PHY_EEE_CAP1_FEATURES); 1417 1418 return 0; 1419 } 1420 1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1424 static int ksz8873mll_read_status(struct phy_device *phydev) 1425 { 1426 int regval; 1427 1428 /* dummy read */ 1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1430 1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1432 1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1434 phydev->duplex = DUPLEX_HALF; 1435 else 1436 phydev->duplex = DUPLEX_FULL; 1437 1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1439 phydev->speed = SPEED_10; 1440 else 1441 phydev->speed = SPEED_100; 1442 1443 phydev->link = 1; 1444 phydev->pause = phydev->asym_pause = 0; 1445 1446 return 0; 1447 } 1448 1449 static int ksz9031_get_features(struct phy_device *phydev) 1450 { 1451 int ret; 1452 1453 ret = genphy_read_abilities(phydev); 1454 if (ret < 0) 1455 return ret; 1456 1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1458 * Whenever the device's Asymmetric Pause capability is set to 1, 1459 * link-up may fail after a link-up to link-down transition. 1460 * 1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1462 * 1463 * Workaround: 1464 * Do not enable the Asymmetric Pause capability bit. 1465 */ 1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1467 1468 /* We force setting the Pause capability as the core will force the 1469 * Asymmetric Pause capability to 1 otherwise. 1470 */ 1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1472 1473 return 0; 1474 } 1475 1476 static int ksz9031_read_status(struct phy_device *phydev) 1477 { 1478 int err; 1479 int regval; 1480 1481 err = genphy_read_status(phydev); 1482 if (err) 1483 return err; 1484 1485 /* Make sure the PHY is not broken. Read idle error count, 1486 * and reset the PHY if it is maxed out. 1487 */ 1488 regval = phy_read(phydev, MII_STAT1000); 1489 if ((regval & 0xFF) == 0xFF) { 1490 phy_init_hw(phydev); 1491 phydev->link = 0; 1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1493 phydev->drv->config_intr(phydev); 1494 return genphy_config_aneg(phydev); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1501 { 1502 struct kszphy_priv *priv = phydev->priv; 1503 int ret; 1504 1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1506 * Prior to running the cable diagnostics, Auto-negotiation should 1507 * be disabled, full duplex set and the link speed set to 1000Mbps 1508 * via the Basic Control Register. 1509 */ 1510 ret = phy_modify(phydev, MII_BMCR, 1511 BMCR_SPEED1000 | BMCR_FULLDPLX | 1512 BMCR_ANENABLE | BMCR_SPEED100, 1513 BMCR_SPEED1000 | BMCR_FULLDPLX); 1514 if (ret) 1515 return ret; 1516 1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1518 * The Master-Slave configuration should be set to Slave by writing 1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1520 * Register. 1521 */ 1522 ret = phy_read(phydev, MII_CTRL1000); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1529 ret |= CTL1000_ENABLE_MASTER; 1530 1531 return phy_write(phydev, MII_CTRL1000, ret); 1532 } 1533 1534 static int ksz9x31_cable_test_result_trans(u16 status) 1535 { 1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1537 case KSZ9x31_LMD_VCT_ST_NORMAL: 1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1539 case KSZ9x31_LMD_VCT_ST_OPEN: 1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1541 case KSZ9x31_LMD_VCT_ST_SHORT: 1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1543 case KSZ9x31_LMD_VCT_ST_FAIL: 1544 fallthrough; 1545 default: 1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1547 } 1548 } 1549 1550 static bool ksz9x31_cable_test_failed(u16 status) 1551 { 1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1553 1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1555 } 1556 1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1558 { 1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1560 case KSZ9x31_LMD_VCT_ST_OPEN: 1561 fallthrough; 1562 case KSZ9x31_LMD_VCT_ST_SHORT: 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1569 { 1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1571 1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1573 * 1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1575 */ 1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1577 dt = clamp(dt - 22, 0, 255); 1578 1579 return (dt * 400) / 10; 1580 } 1581 1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1583 { 1584 int val, ret; 1585 1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1587 !(val & KSZ9x31_LMD_VCT_EN), 1588 30000, 100000, true); 1589 1590 return ret < 0 ? ret : 0; 1591 } 1592 1593 static int ksz9x31_cable_test_get_pair(int pair) 1594 { 1595 static const int ethtool_pair[] = { 1596 ETHTOOL_A_CABLE_PAIR_A, 1597 ETHTOOL_A_CABLE_PAIR_B, 1598 ETHTOOL_A_CABLE_PAIR_C, 1599 ETHTOOL_A_CABLE_PAIR_D, 1600 }; 1601 1602 return ethtool_pair[pair]; 1603 } 1604 1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1606 { 1607 int ret, val; 1608 1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1610 * To test each individual cable pair, set the cable pair in the Cable 1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1612 * Diagnostic Register, along with setting the Cable Diagnostics Test 1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1614 * will self clear when the test is concluded. 1615 */ 1616 ret = phy_write(phydev, KSZ9x31_LMD, 1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1618 if (ret) 1619 return ret; 1620 1621 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1622 if (ret) 1623 return ret; 1624 1625 val = phy_read(phydev, KSZ9x31_LMD); 1626 if (val < 0) 1627 return val; 1628 1629 if (ksz9x31_cable_test_failed(val)) 1630 return -EAGAIN; 1631 1632 ret = ethnl_cable_test_result(phydev, 1633 ksz9x31_cable_test_get_pair(pair), 1634 ksz9x31_cable_test_result_trans(val)); 1635 if (ret) 1636 return ret; 1637 1638 if (!ksz9x31_cable_test_fault_length_valid(val)) 1639 return 0; 1640 1641 return ethnl_cable_test_fault_length(phydev, 1642 ksz9x31_cable_test_get_pair(pair), 1643 ksz9x31_cable_test_fault_length(phydev, val)); 1644 } 1645 1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1647 bool *finished) 1648 { 1649 struct kszphy_priv *priv = phydev->priv; 1650 unsigned long pair_mask = 0xf; 1651 int retries = 20; 1652 int pair, ret, rv; 1653 1654 *finished = false; 1655 1656 /* Try harder if link partner is active */ 1657 while (pair_mask && retries--) { 1658 for_each_set_bit(pair, &pair_mask, 4) { 1659 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1660 if (ret == -EAGAIN) 1661 continue; 1662 if (ret < 0) 1663 return ret; 1664 clear_bit(pair, &pair_mask); 1665 } 1666 /* If link partner is in autonegotiation mode it will send 2ms 1667 * of FLPs with at least 6ms of silence. 1668 * Add 2ms sleep to have better chances to hit this silence. 1669 */ 1670 if (pair_mask) 1671 usleep_range(2000, 3000); 1672 } 1673 1674 /* Report remaining unfinished pair result as unknown. */ 1675 for_each_set_bit(pair, &pair_mask, 4) { 1676 ret = ethnl_cable_test_result(phydev, 1677 ksz9x31_cable_test_get_pair(pair), 1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1679 } 1680 1681 *finished = true; 1682 1683 /* Restore cached bits from before LinkMD got started. */ 1684 rv = phy_modify(phydev, MII_CTRL1000, 1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1686 priv->vct_ctrl1000); 1687 if (rv) 1688 return rv; 1689 1690 return ret; 1691 } 1692 1693 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1694 { 1695 return 0; 1696 } 1697 1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1699 { 1700 u16 val; 1701 1702 switch (ctrl) { 1703 case ETH_TP_MDI: 1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1705 break; 1706 case ETH_TP_MDI_X: 1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1709 * sheet seems to be missing: 1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1711 * 0 = Normal operation (transmit on TX+/TX- pins) 1712 */ 1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1714 break; 1715 case ETH_TP_MDI_AUTO: 1716 val = 0; 1717 break; 1718 default: 1719 return 0; 1720 } 1721 1722 return phy_modify(phydev, MII_BMCR, 1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1725 KSZ886X_BMCR_HP_MDIX | val); 1726 } 1727 1728 static int ksz886x_config_aneg(struct phy_device *phydev) 1729 { 1730 int ret; 1731 1732 ret = genphy_config_aneg(phydev); 1733 if (ret) 1734 return ret; 1735 1736 if (phydev->autoneg != AUTONEG_ENABLE) { 1737 /* When autonegotation is disabled, we need to manually force 1738 * the link state. If we don't do this, the PHY will keep 1739 * sending Fast Link Pulses (FLPs) which are part of the 1740 * autonegotiation process. This is not desired when 1741 * autonegotiation is off. 1742 */ 1743 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1744 KSZ886X_CTRL_FORCE_LINK); 1745 if (ret) 1746 return ret; 1747 } else { 1748 /* If we had previously forced the link state, we need to 1749 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1750 * will not perform autonegotiation. 1751 */ 1752 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1753 KSZ886X_CTRL_FORCE_LINK); 1754 if (ret) 1755 return ret; 1756 } 1757 1758 /* The MDI-X configuration is automatically changed by the PHY after 1759 * switching from autoneg off to on. So, take MDI-X configuration under 1760 * own control and set it after autoneg configuration was done. 1761 */ 1762 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1763 } 1764 1765 static int ksz886x_mdix_update(struct phy_device *phydev) 1766 { 1767 int ret; 1768 1769 ret = phy_read(phydev, MII_BMCR); 1770 if (ret < 0) 1771 return ret; 1772 1773 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1774 if (ret & KSZ886X_BMCR_FORCE_MDI) 1775 phydev->mdix_ctrl = ETH_TP_MDI_X; 1776 else 1777 phydev->mdix_ctrl = ETH_TP_MDI; 1778 } else { 1779 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1780 } 1781 1782 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1783 if (ret < 0) 1784 return ret; 1785 1786 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1787 if (ret & KSZ886X_CTRL_MDIX_STAT) 1788 phydev->mdix = ETH_TP_MDI_X; 1789 else 1790 phydev->mdix = ETH_TP_MDI; 1791 1792 return 0; 1793 } 1794 1795 static int ksz886x_read_status(struct phy_device *phydev) 1796 { 1797 int ret; 1798 1799 ret = ksz886x_mdix_update(phydev); 1800 if (ret < 0) 1801 return ret; 1802 1803 return genphy_read_status(phydev); 1804 } 1805 1806 struct ksz9477_errata_write { 1807 u8 dev_addr; 1808 u8 reg_addr; 1809 u16 val; 1810 }; 1811 1812 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1813 /* Register settings are needed to improve PHY receive performance */ 1814 {0x01, 0x6f, 0xdd0b}, 1815 {0x01, 0x8f, 0x6032}, 1816 {0x01, 0x9d, 0x248c}, 1817 {0x01, 0x75, 0x0060}, 1818 {0x01, 0xd3, 0x7777}, 1819 {0x1c, 0x06, 0x3008}, 1820 {0x1c, 0x08, 0x2000}, 1821 1822 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1823 {0x1c, 0x04, 0x00d0}, 1824 1825 /* Register settings are required to meet data sheet supply current specifications */ 1826 {0x1c, 0x13, 0x6eff}, 1827 {0x1c, 0x14, 0xe6ff}, 1828 {0x1c, 0x15, 0x6eff}, 1829 {0x1c, 0x16, 0xe6ff}, 1830 {0x1c, 0x17, 0x00ff}, 1831 {0x1c, 0x18, 0x43ff}, 1832 {0x1c, 0x19, 0xc3ff}, 1833 {0x1c, 0x1a, 0x6fff}, 1834 {0x1c, 0x1b, 0x07ff}, 1835 {0x1c, 0x1c, 0x0fff}, 1836 {0x1c, 0x1d, 0xe7ff}, 1837 {0x1c, 0x1e, 0xefff}, 1838 {0x1c, 0x20, 0xeeee}, 1839 }; 1840 1841 static int ksz9477_config_init(struct phy_device *phydev) 1842 { 1843 int err; 1844 int i; 1845 1846 /* Apply PHY settings to address errata listed in 1847 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1848 * Silicon Errata and Data Sheet Clarification documents. 1849 * 1850 * Document notes: Before configuring the PHY MMD registers, it is 1851 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1852 * disabled by writing to register 0xN100-0xN101. After writing the 1853 * MMD registers, and after all errata workarounds that involve PHY 1854 * register settings, write register 0xN100-0xN101 again to enable 1855 * and restart auto-negotiation. 1856 */ 1857 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1858 if (err) 1859 return err; 1860 1861 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1862 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1863 1864 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1865 if (err) 1866 return err; 1867 } 1868 1869 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 1870 * in this switch shall be regarded as broken. 1871 */ 1872 if (phydev->dev_flags & MICREL_NO_EEE) 1873 phydev->eee_broken_modes = -1; 1874 1875 err = genphy_restart_aneg(phydev); 1876 if (err) 1877 return err; 1878 1879 return kszphy_config_init(phydev); 1880 } 1881 1882 static int kszphy_get_sset_count(struct phy_device *phydev) 1883 { 1884 return ARRAY_SIZE(kszphy_hw_stats); 1885 } 1886 1887 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1888 { 1889 int i; 1890 1891 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1892 strscpy(data + i * ETH_GSTRING_LEN, 1893 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1894 } 1895 } 1896 1897 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1898 { 1899 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1900 struct kszphy_priv *priv = phydev->priv; 1901 int val; 1902 u64 ret; 1903 1904 val = phy_read(phydev, stat.reg); 1905 if (val < 0) { 1906 ret = U64_MAX; 1907 } else { 1908 val = val & ((1 << stat.bits) - 1); 1909 priv->stats[i] += val; 1910 ret = priv->stats[i]; 1911 } 1912 1913 return ret; 1914 } 1915 1916 static void kszphy_get_stats(struct phy_device *phydev, 1917 struct ethtool_stats *stats, u64 *data) 1918 { 1919 int i; 1920 1921 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1922 data[i] = kszphy_get_stat(phydev, i); 1923 } 1924 1925 static int kszphy_suspend(struct phy_device *phydev) 1926 { 1927 /* Disable PHY Interrupts */ 1928 if (phy_interrupt_is_valid(phydev)) { 1929 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1930 if (phydev->drv->config_intr) 1931 phydev->drv->config_intr(phydev); 1932 } 1933 1934 return genphy_suspend(phydev); 1935 } 1936 1937 static void kszphy_parse_led_mode(struct phy_device *phydev) 1938 { 1939 const struct kszphy_type *type = phydev->drv->driver_data; 1940 const struct device_node *np = phydev->mdio.dev.of_node; 1941 struct kszphy_priv *priv = phydev->priv; 1942 int ret; 1943 1944 if (type && type->led_mode_reg) { 1945 ret = of_property_read_u32(np, "micrel,led-mode", 1946 &priv->led_mode); 1947 1948 if (ret) 1949 priv->led_mode = -1; 1950 1951 if (priv->led_mode > 3) { 1952 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1953 priv->led_mode); 1954 priv->led_mode = -1; 1955 } 1956 } else { 1957 priv->led_mode = -1; 1958 } 1959 } 1960 1961 static int kszphy_resume(struct phy_device *phydev) 1962 { 1963 int ret; 1964 1965 genphy_resume(phydev); 1966 1967 /* After switching from power-down to normal mode, an internal global 1968 * reset is automatically generated. Wait a minimum of 1 ms before 1969 * read/write access to the PHY registers. 1970 */ 1971 usleep_range(1000, 2000); 1972 1973 ret = kszphy_config_reset(phydev); 1974 if (ret) 1975 return ret; 1976 1977 /* Enable PHY Interrupts */ 1978 if (phy_interrupt_is_valid(phydev)) { 1979 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1980 if (phydev->drv->config_intr) 1981 phydev->drv->config_intr(phydev); 1982 } 1983 1984 return 0; 1985 } 1986 1987 static int kszphy_probe(struct phy_device *phydev) 1988 { 1989 const struct kszphy_type *type = phydev->drv->driver_data; 1990 const struct device_node *np = phydev->mdio.dev.of_node; 1991 struct kszphy_priv *priv; 1992 struct clk *clk; 1993 1994 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1995 if (!priv) 1996 return -ENOMEM; 1997 1998 phydev->priv = priv; 1999 2000 priv->type = type; 2001 2002 kszphy_parse_led_mode(phydev); 2003 2004 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 2005 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2006 if (!IS_ERR_OR_NULL(clk)) { 2007 unsigned long rate = clk_get_rate(clk); 2008 bool rmii_ref_clk_sel_25_mhz; 2009 2010 if (type) 2011 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2012 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2013 "micrel,rmii-reference-clock-select-25-mhz"); 2014 2015 if (rate > 24500000 && rate < 25500000) { 2016 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2017 } else if (rate > 49500000 && rate < 50500000) { 2018 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2019 } else { 2020 phydev_err(phydev, "Clock rate out of range: %ld\n", 2021 rate); 2022 return -EINVAL; 2023 } 2024 } 2025 2026 if (ksz8041_fiber_mode(phydev)) 2027 phydev->port = PORT_FIBRE; 2028 2029 /* Support legacy board-file configuration */ 2030 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2031 priv->rmii_ref_clk_sel = true; 2032 priv->rmii_ref_clk_sel_val = true; 2033 } 2034 2035 return 0; 2036 } 2037 2038 static int lan8814_cable_test_start(struct phy_device *phydev) 2039 { 2040 /* If autoneg is enabled, we won't be able to test cross pair 2041 * short. In this case, the PHY will "detect" a link and 2042 * confuse the internal state machine - disable auto neg here. 2043 * Set the speed to 1000mbit and full duplex. 2044 */ 2045 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2046 BMCR_SPEED1000 | BMCR_FULLDPLX); 2047 } 2048 2049 static int ksz886x_cable_test_start(struct phy_device *phydev) 2050 { 2051 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2052 return -EOPNOTSUPP; 2053 2054 /* If autoneg is enabled, we won't be able to test cross pair 2055 * short. In this case, the PHY will "detect" a link and 2056 * confuse the internal state machine - disable auto neg here. 2057 * If autoneg is disabled, we should set the speed to 10mbit. 2058 */ 2059 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2060 } 2061 2062 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2063 { 2064 switch (FIELD_GET(mask, status)) { 2065 case KSZ8081_LMD_STAT_NORMAL: 2066 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2067 case KSZ8081_LMD_STAT_SHORT: 2068 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2069 case KSZ8081_LMD_STAT_OPEN: 2070 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2071 case KSZ8081_LMD_STAT_FAIL: 2072 fallthrough; 2073 default: 2074 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2075 } 2076 } 2077 2078 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2079 { 2080 return FIELD_GET(mask, status) == 2081 KSZ8081_LMD_STAT_FAIL; 2082 } 2083 2084 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2085 { 2086 switch (FIELD_GET(mask, status)) { 2087 case KSZ8081_LMD_STAT_OPEN: 2088 fallthrough; 2089 case KSZ8081_LMD_STAT_SHORT: 2090 return true; 2091 } 2092 return false; 2093 } 2094 2095 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2096 u16 status, u16 data_mask) 2097 { 2098 int dt; 2099 2100 /* According to the data sheet the distance to the fault is 2101 * DELTA_TIME * 0.4 meters for ksz phys. 2102 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2103 */ 2104 dt = FIELD_GET(data_mask, status); 2105 2106 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2107 return ((dt - 22) * 800) / 10; 2108 else 2109 return (dt * 400) / 10; 2110 } 2111 2112 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2113 { 2114 const struct kszphy_type *type = phydev->drv->driver_data; 2115 int val, ret; 2116 2117 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2118 !(val & KSZ8081_LMD_ENABLE_TEST), 2119 30000, 100000, true); 2120 2121 return ret < 0 ? ret : 0; 2122 } 2123 2124 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2125 { 2126 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2127 ETHTOOL_A_CABLE_PAIR_B, 2128 ETHTOOL_A_CABLE_PAIR_C, 2129 ETHTOOL_A_CABLE_PAIR_D, 2130 }; 2131 u32 fault_length; 2132 int ret; 2133 int val; 2134 2135 val = KSZ8081_LMD_ENABLE_TEST; 2136 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2137 2138 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2139 if (ret < 0) 2140 return ret; 2141 2142 ret = ksz886x_cable_test_wait_for_completion(phydev); 2143 if (ret) 2144 return ret; 2145 2146 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2147 if (val < 0) 2148 return val; 2149 2150 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2151 return -EAGAIN; 2152 2153 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2154 ksz886x_cable_test_result_trans(val, 2155 LAN8814_CABLE_DIAG_STAT_MASK 2156 )); 2157 if (ret) 2158 return ret; 2159 2160 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2161 return 0; 2162 2163 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2164 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2165 2166 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2167 } 2168 2169 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2170 { 2171 static const int ethtool_pair[] = { 2172 ETHTOOL_A_CABLE_PAIR_A, 2173 ETHTOOL_A_CABLE_PAIR_B, 2174 }; 2175 int ret, val, mdix; 2176 u32 fault_length; 2177 2178 /* There is no way to choice the pair, like we do one ksz9031. 2179 * We can workaround this limitation by using the MDI-X functionality. 2180 */ 2181 if (pair == 0) 2182 mdix = ETH_TP_MDI; 2183 else 2184 mdix = ETH_TP_MDI_X; 2185 2186 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2187 case PHY_ID_KSZ8081: 2188 ret = ksz8081_config_mdix(phydev, mdix); 2189 break; 2190 case PHY_ID_KSZ886X: 2191 ret = ksz886x_config_mdix(phydev, mdix); 2192 break; 2193 default: 2194 ret = -ENODEV; 2195 } 2196 2197 if (ret) 2198 return ret; 2199 2200 /* Now we are ready to fire. This command will send a 100ns pulse 2201 * to the pair. 2202 */ 2203 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2204 if (ret) 2205 return ret; 2206 2207 ret = ksz886x_cable_test_wait_for_completion(phydev); 2208 if (ret) 2209 return ret; 2210 2211 val = phy_read(phydev, KSZ8081_LMD); 2212 if (val < 0) 2213 return val; 2214 2215 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2216 return -EAGAIN; 2217 2218 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2219 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2220 if (ret) 2221 return ret; 2222 2223 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2224 return 0; 2225 2226 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2227 2228 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2229 } 2230 2231 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2232 bool *finished) 2233 { 2234 const struct kszphy_type *type = phydev->drv->driver_data; 2235 unsigned long pair_mask = type->pair_mask; 2236 int retries = 20; 2237 int ret = 0; 2238 int pair; 2239 2240 *finished = false; 2241 2242 /* Try harder if link partner is active */ 2243 while (pair_mask && retries--) { 2244 for_each_set_bit(pair, &pair_mask, 4) { 2245 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2246 ret = lan8814_cable_test_one_pair(phydev, pair); 2247 else 2248 ret = ksz886x_cable_test_one_pair(phydev, pair); 2249 if (ret == -EAGAIN) 2250 continue; 2251 if (ret < 0) 2252 return ret; 2253 clear_bit(pair, &pair_mask); 2254 } 2255 /* If link partner is in autonegotiation mode it will send 2ms 2256 * of FLPs with at least 6ms of silence. 2257 * Add 2ms sleep to have better chances to hit this silence. 2258 */ 2259 if (pair_mask) 2260 msleep(2); 2261 } 2262 2263 *finished = true; 2264 2265 return ret; 2266 } 2267 2268 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2269 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2270 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2271 2272 #define LAN8814_QSGMII_SOFT_RESET 0x43 2273 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2274 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2275 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2276 #define LAN8814_ALIGN_SWAP 0x4a 2277 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2278 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2279 2280 #define LAN8804_ALIGN_SWAP 0x4a 2281 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2282 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2283 #define LAN8814_CLOCK_MANAGEMENT 0xd 2284 #define LAN8814_LINK_QUALITY 0x8e 2285 2286 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2287 { 2288 int data; 2289 2290 phy_lock_mdio_bus(phydev); 2291 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2292 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2293 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2294 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2295 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2296 phy_unlock_mdio_bus(phydev); 2297 2298 return data; 2299 } 2300 2301 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2302 u16 val) 2303 { 2304 phy_lock_mdio_bus(phydev); 2305 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2306 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2307 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2308 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2309 2310 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2311 if (val != 0) 2312 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2313 val); 2314 phy_unlock_mdio_bus(phydev); 2315 return val; 2316 } 2317 2318 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2319 { 2320 u16 val = 0; 2321 2322 if (enable) 2323 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2324 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2325 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2326 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2327 2328 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2329 } 2330 2331 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2332 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2333 { 2334 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2335 *seconds = (*seconds << 16) | 2336 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2337 2338 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2339 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2340 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2341 2342 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2343 } 2344 2345 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2346 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2347 { 2348 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2349 *seconds = *seconds << 16 | 2350 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2351 2352 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2353 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2354 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2355 2356 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2357 } 2358 2359 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2360 { 2361 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2362 struct phy_device *phydev = ptp_priv->phydev; 2363 struct lan8814_shared_priv *shared = phydev->shared->priv; 2364 2365 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2366 SOF_TIMESTAMPING_RX_HARDWARE | 2367 SOF_TIMESTAMPING_RAW_HARDWARE; 2368 2369 info->phc_index = ptp_clock_index(shared->ptp_clock); 2370 2371 info->tx_types = 2372 (1 << HWTSTAMP_TX_OFF) | 2373 (1 << HWTSTAMP_TX_ON) | 2374 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2375 2376 info->rx_filters = 2377 (1 << HWTSTAMP_FILTER_NONE) | 2378 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2379 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2380 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2381 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2382 2383 return 0; 2384 } 2385 2386 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2387 { 2388 int i; 2389 2390 for (i = 0; i < FIFO_SIZE; ++i) 2391 lanphy_read_page_reg(phydev, 5, 2392 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2393 2394 /* Read to clear overflow status bit */ 2395 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2396 } 2397 2398 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2399 { 2400 struct kszphy_ptp_priv *ptp_priv = 2401 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2402 struct phy_device *phydev = ptp_priv->phydev; 2403 struct lan8814_shared_priv *shared = phydev->shared->priv; 2404 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2405 struct hwtstamp_config config; 2406 int txcfg = 0, rxcfg = 0; 2407 int pkt_ts_enable; 2408 2409 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2410 return -EFAULT; 2411 2412 ptp_priv->hwts_tx_type = config.tx_type; 2413 ptp_priv->rx_filter = config.rx_filter; 2414 2415 switch (config.rx_filter) { 2416 case HWTSTAMP_FILTER_NONE: 2417 ptp_priv->layer = 0; 2418 ptp_priv->version = 0; 2419 break; 2420 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2421 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2422 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2423 ptp_priv->layer = PTP_CLASS_L4; 2424 ptp_priv->version = PTP_CLASS_V2; 2425 break; 2426 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2427 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2428 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2429 ptp_priv->layer = PTP_CLASS_L2; 2430 ptp_priv->version = PTP_CLASS_V2; 2431 break; 2432 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2433 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2434 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2435 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2436 ptp_priv->version = PTP_CLASS_V2; 2437 break; 2438 default: 2439 return -ERANGE; 2440 } 2441 2442 if (ptp_priv->layer & PTP_CLASS_L2) { 2443 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2444 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2445 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2446 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2447 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2448 } 2449 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2450 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2451 2452 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2453 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2454 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2455 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2456 2457 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2458 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2459 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2460 2461 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2462 lan8814_config_ts_intr(ptp_priv->phydev, true); 2463 else 2464 lan8814_config_ts_intr(ptp_priv->phydev, false); 2465 2466 mutex_lock(&shared->shared_lock); 2467 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2468 shared->ref++; 2469 else 2470 shared->ref--; 2471 2472 if (shared->ref) 2473 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2474 PTP_CMD_CTL_PTP_ENABLE_); 2475 else 2476 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2477 PTP_CMD_CTL_PTP_DISABLE_); 2478 mutex_unlock(&shared->shared_lock); 2479 2480 /* In case of multiple starts and stops, these needs to be cleared */ 2481 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2482 list_del(&rx_ts->list); 2483 kfree(rx_ts); 2484 } 2485 skb_queue_purge(&ptp_priv->rx_queue); 2486 skb_queue_purge(&ptp_priv->tx_queue); 2487 2488 lan8814_flush_fifo(ptp_priv->phydev, false); 2489 lan8814_flush_fifo(ptp_priv->phydev, true); 2490 2491 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2492 } 2493 2494 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2495 struct sk_buff *skb, int type) 2496 { 2497 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2498 2499 switch (ptp_priv->hwts_tx_type) { 2500 case HWTSTAMP_TX_ONESTEP_SYNC: 2501 if (ptp_msg_is_sync(skb, type)) { 2502 kfree_skb(skb); 2503 return; 2504 } 2505 fallthrough; 2506 case HWTSTAMP_TX_ON: 2507 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2508 skb_queue_tail(&ptp_priv->tx_queue, skb); 2509 break; 2510 case HWTSTAMP_TX_OFF: 2511 default: 2512 kfree_skb(skb); 2513 break; 2514 } 2515 } 2516 2517 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2518 { 2519 struct ptp_header *ptp_header; 2520 u32 type; 2521 2522 skb_push(skb, ETH_HLEN); 2523 type = ptp_classify_raw(skb); 2524 ptp_header = ptp_parse_header(skb, type); 2525 skb_pull_inline(skb, ETH_HLEN); 2526 2527 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2528 } 2529 2530 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2531 struct sk_buff *skb) 2532 { 2533 struct skb_shared_hwtstamps *shhwtstamps; 2534 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2535 unsigned long flags; 2536 bool ret = false; 2537 u16 skb_sig; 2538 2539 lan8814_get_sig_rx(skb, &skb_sig); 2540 2541 /* Iterate over all RX timestamps and match it with the received skbs */ 2542 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2543 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2544 /* Check if we found the signature we were looking for. */ 2545 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2546 continue; 2547 2548 shhwtstamps = skb_hwtstamps(skb); 2549 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2550 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2551 rx_ts->nsec); 2552 list_del(&rx_ts->list); 2553 kfree(rx_ts); 2554 2555 ret = true; 2556 break; 2557 } 2558 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2559 2560 if (ret) 2561 netif_rx(skb); 2562 return ret; 2563 } 2564 2565 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2566 { 2567 struct kszphy_ptp_priv *ptp_priv = 2568 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2569 2570 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2571 type == PTP_CLASS_NONE) 2572 return false; 2573 2574 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2575 return false; 2576 2577 /* If we failed to match then add it to the queue for when the timestamp 2578 * will come 2579 */ 2580 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2581 skb_queue_tail(&ptp_priv->rx_queue, skb); 2582 2583 return true; 2584 } 2585 2586 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2587 u32 seconds, u32 nano_seconds) 2588 { 2589 u32 sec_low, sec_high, nsec_low, nsec_high; 2590 2591 sec_low = seconds & 0xffff; 2592 sec_high = (seconds >> 16) & 0xffff; 2593 nsec_low = nano_seconds & 0xffff; 2594 nsec_high = (nano_seconds >> 16) & 0x3fff; 2595 2596 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2597 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2598 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2599 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2600 2601 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2602 } 2603 2604 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2605 u32 *seconds, u32 *nano_seconds) 2606 { 2607 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2608 2609 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2610 *seconds = (*seconds << 16) | 2611 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2612 2613 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2614 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2615 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2616 } 2617 2618 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2619 struct timespec64 *ts) 2620 { 2621 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2622 ptp_clock_info); 2623 struct phy_device *phydev = shared->phydev; 2624 u32 nano_seconds; 2625 u32 seconds; 2626 2627 mutex_lock(&shared->shared_lock); 2628 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2629 mutex_unlock(&shared->shared_lock); 2630 ts->tv_sec = seconds; 2631 ts->tv_nsec = nano_seconds; 2632 2633 return 0; 2634 } 2635 2636 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2637 const struct timespec64 *ts) 2638 { 2639 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2640 ptp_clock_info); 2641 struct phy_device *phydev = shared->phydev; 2642 2643 mutex_lock(&shared->shared_lock); 2644 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2645 mutex_unlock(&shared->shared_lock); 2646 2647 return 0; 2648 } 2649 2650 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2651 s64 time_step_ns) 2652 { 2653 u32 nano_seconds_step; 2654 u64 abs_time_step_ns; 2655 u32 unsigned_seconds; 2656 u32 nano_seconds; 2657 u32 remainder; 2658 s32 seconds; 2659 2660 if (time_step_ns > 15000000000LL) { 2661 /* convert to clock set */ 2662 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2663 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2664 &remainder); 2665 nano_seconds += remainder; 2666 if (nano_seconds >= 1000000000) { 2667 unsigned_seconds++; 2668 nano_seconds -= 1000000000; 2669 } 2670 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2671 return; 2672 } else if (time_step_ns < -15000000000LL) { 2673 /* convert to clock set */ 2674 time_step_ns = -time_step_ns; 2675 2676 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2677 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2678 &remainder); 2679 nano_seconds_step = remainder; 2680 if (nano_seconds < nano_seconds_step) { 2681 unsigned_seconds--; 2682 nano_seconds += 1000000000; 2683 } 2684 nano_seconds -= nano_seconds_step; 2685 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2686 nano_seconds); 2687 return; 2688 } 2689 2690 /* do clock step */ 2691 if (time_step_ns >= 0) { 2692 abs_time_step_ns = (u64)time_step_ns; 2693 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2694 &remainder); 2695 nano_seconds = remainder; 2696 } else { 2697 abs_time_step_ns = (u64)(-time_step_ns); 2698 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2699 &remainder)); 2700 nano_seconds = remainder; 2701 if (nano_seconds > 0) { 2702 /* subtracting nano seconds is not allowed 2703 * convert to subtracting from seconds, 2704 * and adding to nanoseconds 2705 */ 2706 seconds--; 2707 nano_seconds = (1000000000 - nano_seconds); 2708 } 2709 } 2710 2711 if (nano_seconds > 0) { 2712 /* add 8 ns to cover the likely normal increment */ 2713 nano_seconds += 8; 2714 } 2715 2716 if (nano_seconds >= 1000000000) { 2717 /* carry into seconds */ 2718 seconds++; 2719 nano_seconds -= 1000000000; 2720 } 2721 2722 while (seconds) { 2723 if (seconds > 0) { 2724 u32 adjustment_value = (u32)seconds; 2725 u16 adjustment_value_lo, adjustment_value_hi; 2726 2727 if (adjustment_value > 0xF) 2728 adjustment_value = 0xF; 2729 2730 adjustment_value_lo = adjustment_value & 0xffff; 2731 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2732 2733 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2734 adjustment_value_lo); 2735 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2736 PTP_LTC_STEP_ADJ_DIR_ | 2737 adjustment_value_hi); 2738 seconds -= ((s32)adjustment_value); 2739 } else { 2740 u32 adjustment_value = (u32)(-seconds); 2741 u16 adjustment_value_lo, adjustment_value_hi; 2742 2743 if (adjustment_value > 0xF) 2744 adjustment_value = 0xF; 2745 2746 adjustment_value_lo = adjustment_value & 0xffff; 2747 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2748 2749 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2750 adjustment_value_lo); 2751 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2752 adjustment_value_hi); 2753 seconds += ((s32)adjustment_value); 2754 } 2755 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2756 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2757 } 2758 if (nano_seconds) { 2759 u16 nano_seconds_lo; 2760 u16 nano_seconds_hi; 2761 2762 nano_seconds_lo = nano_seconds & 0xffff; 2763 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2764 2765 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2766 nano_seconds_lo); 2767 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2768 PTP_LTC_STEP_ADJ_DIR_ | 2769 nano_seconds_hi); 2770 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2771 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2772 } 2773 } 2774 2775 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2776 { 2777 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2778 ptp_clock_info); 2779 struct phy_device *phydev = shared->phydev; 2780 2781 mutex_lock(&shared->shared_lock); 2782 lan8814_ptp_clock_step(phydev, delta); 2783 mutex_unlock(&shared->shared_lock); 2784 2785 return 0; 2786 } 2787 2788 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2789 { 2790 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2791 ptp_clock_info); 2792 struct phy_device *phydev = shared->phydev; 2793 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2794 bool positive = true; 2795 u32 kszphy_rate_adj; 2796 2797 if (scaled_ppm < 0) { 2798 scaled_ppm = -scaled_ppm; 2799 positive = false; 2800 } 2801 2802 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2803 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2804 2805 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2806 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2807 2808 if (positive) 2809 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2810 2811 mutex_lock(&shared->shared_lock); 2812 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2813 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2814 mutex_unlock(&shared->shared_lock); 2815 2816 return 0; 2817 } 2818 2819 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2820 { 2821 struct ptp_header *ptp_header; 2822 u32 type; 2823 2824 type = ptp_classify_raw(skb); 2825 ptp_header = ptp_parse_header(skb, type); 2826 2827 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2828 } 2829 2830 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2831 u32 seconds, u32 nsec, u16 seq_id) 2832 { 2833 struct skb_shared_hwtstamps shhwtstamps; 2834 struct sk_buff *skb, *skb_tmp; 2835 unsigned long flags; 2836 bool ret = false; 2837 u16 skb_sig; 2838 2839 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2840 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2841 lan8814_get_sig_tx(skb, &skb_sig); 2842 2843 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2844 continue; 2845 2846 __skb_unlink(skb, &ptp_priv->tx_queue); 2847 ret = true; 2848 break; 2849 } 2850 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2851 2852 if (ret) { 2853 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2854 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2855 skb_complete_tx_timestamp(skb, &shhwtstamps); 2856 } 2857 } 2858 2859 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2860 { 2861 struct phy_device *phydev = ptp_priv->phydev; 2862 u32 seconds, nsec; 2863 u16 seq_id; 2864 2865 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2866 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2867 } 2868 2869 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2870 { 2871 struct phy_device *phydev = ptp_priv->phydev; 2872 u32 reg; 2873 2874 do { 2875 lan8814_dequeue_tx_skb(ptp_priv); 2876 2877 /* If other timestamps are available in the FIFO, 2878 * process them. 2879 */ 2880 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2881 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2882 } 2883 2884 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2885 struct lan8814_ptp_rx_ts *rx_ts) 2886 { 2887 struct skb_shared_hwtstamps *shhwtstamps; 2888 struct sk_buff *skb, *skb_tmp; 2889 unsigned long flags; 2890 bool ret = false; 2891 u16 skb_sig; 2892 2893 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2894 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2895 lan8814_get_sig_rx(skb, &skb_sig); 2896 2897 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2898 continue; 2899 2900 __skb_unlink(skb, &ptp_priv->rx_queue); 2901 2902 ret = true; 2903 break; 2904 } 2905 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2906 2907 if (ret) { 2908 shhwtstamps = skb_hwtstamps(skb); 2909 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2910 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2911 netif_rx(skb); 2912 } 2913 2914 return ret; 2915 } 2916 2917 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2918 struct lan8814_ptp_rx_ts *rx_ts) 2919 { 2920 unsigned long flags; 2921 2922 /* If we failed to match the skb add it to the queue for when 2923 * the frame will come 2924 */ 2925 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2926 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2927 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2928 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2929 } else { 2930 kfree(rx_ts); 2931 } 2932 } 2933 2934 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2935 { 2936 struct phy_device *phydev = ptp_priv->phydev; 2937 struct lan8814_ptp_rx_ts *rx_ts; 2938 u32 reg; 2939 2940 do { 2941 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2942 if (!rx_ts) 2943 return; 2944 2945 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2946 &rx_ts->seq_id); 2947 lan8814_match_rx_ts(ptp_priv, rx_ts); 2948 2949 /* If other timestamps are available in the FIFO, 2950 * process them. 2951 */ 2952 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2953 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2954 } 2955 2956 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2957 { 2958 struct kszphy_priv *priv = phydev->priv; 2959 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2960 2961 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2962 lan8814_get_tx_ts(ptp_priv); 2963 2964 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2965 lan8814_get_rx_ts(ptp_priv); 2966 2967 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2968 lan8814_flush_fifo(phydev, true); 2969 skb_queue_purge(&ptp_priv->tx_queue); 2970 } 2971 2972 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2973 lan8814_flush_fifo(phydev, false); 2974 skb_queue_purge(&ptp_priv->rx_queue); 2975 } 2976 } 2977 2978 static int lan8804_config_init(struct phy_device *phydev) 2979 { 2980 int val; 2981 2982 /* MDI-X setting for swap A,B transmit */ 2983 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2984 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2985 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2986 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2987 2988 /* Make sure that the PHY will not stop generating the clock when the 2989 * link partner goes down 2990 */ 2991 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2992 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2993 2994 return 0; 2995 } 2996 2997 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2998 { 2999 int status; 3000 3001 status = phy_read(phydev, LAN8814_INTS); 3002 if (status < 0) { 3003 phy_error(phydev); 3004 return IRQ_NONE; 3005 } 3006 3007 if (status > 0) 3008 phy_trigger_machine(phydev); 3009 3010 return IRQ_HANDLED; 3011 } 3012 3013 #define LAN8804_OUTPUT_CONTROL 25 3014 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3015 #define LAN8804_CONTROL 31 3016 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3017 3018 static int lan8804_config_intr(struct phy_device *phydev) 3019 { 3020 int err; 3021 3022 /* This is an internal PHY of lan966x and is not possible to change the 3023 * polarity on the GIC found in lan966x, therefore change the polarity 3024 * of the interrupt in the PHY from being active low instead of active 3025 * high. 3026 */ 3027 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3028 3029 /* By default interrupt buffer is open-drain in which case the interrupt 3030 * can be active only low. Therefore change the interrupt buffer to be 3031 * push-pull to be able to change interrupt polarity 3032 */ 3033 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3034 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3035 3036 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3037 err = phy_read(phydev, LAN8814_INTS); 3038 if (err < 0) 3039 return err; 3040 3041 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3042 if (err) 3043 return err; 3044 } else { 3045 err = phy_write(phydev, LAN8814_INTC, 0); 3046 if (err) 3047 return err; 3048 3049 err = phy_read(phydev, LAN8814_INTS); 3050 if (err < 0) 3051 return err; 3052 } 3053 3054 return 0; 3055 } 3056 3057 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3058 { 3059 int ret = IRQ_NONE; 3060 int irq_status; 3061 3062 irq_status = phy_read(phydev, LAN8814_INTS); 3063 if (irq_status < 0) { 3064 phy_error(phydev); 3065 return IRQ_NONE; 3066 } 3067 3068 if (irq_status & LAN8814_INT_LINK) { 3069 phy_trigger_machine(phydev); 3070 ret = IRQ_HANDLED; 3071 } 3072 3073 while (true) { 3074 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3075 if (!irq_status) 3076 break; 3077 3078 lan8814_handle_ptp_interrupt(phydev, irq_status); 3079 ret = IRQ_HANDLED; 3080 } 3081 3082 return ret; 3083 } 3084 3085 static int lan8814_ack_interrupt(struct phy_device *phydev) 3086 { 3087 /* bit[12..0] int status, which is a read and clear register. */ 3088 int rc; 3089 3090 rc = phy_read(phydev, LAN8814_INTS); 3091 3092 return (rc < 0) ? rc : 0; 3093 } 3094 3095 static int lan8814_config_intr(struct phy_device *phydev) 3096 { 3097 int err; 3098 3099 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3100 LAN8814_INTR_CTRL_REG_POLARITY | 3101 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3102 3103 /* enable / disable interrupts */ 3104 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3105 err = lan8814_ack_interrupt(phydev); 3106 if (err) 3107 return err; 3108 3109 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3110 } else { 3111 err = phy_write(phydev, LAN8814_INTC, 0); 3112 if (err) 3113 return err; 3114 3115 err = lan8814_ack_interrupt(phydev); 3116 } 3117 3118 return err; 3119 } 3120 3121 static void lan8814_ptp_init(struct phy_device *phydev) 3122 { 3123 struct kszphy_priv *priv = phydev->priv; 3124 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3125 u32 temp; 3126 3127 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3128 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3129 return; 3130 3131 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3132 3133 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3134 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3135 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3136 3137 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3138 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3139 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3140 3141 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3142 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3143 3144 /* Removing default registers configs related to L2 and IP */ 3145 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3146 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3147 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3148 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3149 3150 skb_queue_head_init(&ptp_priv->tx_queue); 3151 skb_queue_head_init(&ptp_priv->rx_queue); 3152 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3153 spin_lock_init(&ptp_priv->rx_ts_lock); 3154 3155 ptp_priv->phydev = phydev; 3156 3157 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3158 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3159 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3160 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3161 3162 phydev->mii_ts = &ptp_priv->mii_ts; 3163 } 3164 3165 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3166 { 3167 struct lan8814_shared_priv *shared = phydev->shared->priv; 3168 3169 /* Initialise shared lock for clock*/ 3170 mutex_init(&shared->shared_lock); 3171 3172 shared->ptp_clock_info.owner = THIS_MODULE; 3173 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3174 shared->ptp_clock_info.max_adj = 31249999; 3175 shared->ptp_clock_info.n_alarm = 0; 3176 shared->ptp_clock_info.n_ext_ts = 0; 3177 shared->ptp_clock_info.n_pins = 0; 3178 shared->ptp_clock_info.pps = 0; 3179 shared->ptp_clock_info.pin_config = NULL; 3180 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3181 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3182 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3183 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3184 shared->ptp_clock_info.getcrosststamp = NULL; 3185 3186 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3187 &phydev->mdio.dev); 3188 if (IS_ERR(shared->ptp_clock)) { 3189 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3190 PTR_ERR(shared->ptp_clock)); 3191 return -EINVAL; 3192 } 3193 3194 /* Check if PHC support is missing at the configuration level */ 3195 if (!shared->ptp_clock) 3196 return 0; 3197 3198 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3199 3200 shared->phydev = phydev; 3201 3202 /* The EP.4 is shared between all the PHYs in the package and also it 3203 * can be accessed by any of the PHYs 3204 */ 3205 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3206 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3207 PTP_OPERATING_MODE_STANDALONE_); 3208 3209 return 0; 3210 } 3211 3212 static void lan8814_setup_led(struct phy_device *phydev, int val) 3213 { 3214 int temp; 3215 3216 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3217 3218 if (val) 3219 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3220 else 3221 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3222 3223 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3224 } 3225 3226 static int lan8814_config_init(struct phy_device *phydev) 3227 { 3228 struct kszphy_priv *lan8814 = phydev->priv; 3229 int val; 3230 3231 /* Reset the PHY */ 3232 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3233 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3234 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3235 3236 /* Disable ANEG with QSGMII PCS Host side */ 3237 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3238 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3239 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3240 3241 /* MDI-X setting for swap A,B transmit */ 3242 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3243 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3244 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3245 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3246 3247 if (lan8814->led_mode >= 0) 3248 lan8814_setup_led(phydev, lan8814->led_mode); 3249 3250 return 0; 3251 } 3252 3253 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3254 * function called in suspend. Because the GPIO line can be shared, so if one of 3255 * the phys goes back in coma mode, then all the other PHYs will go, which is 3256 * wrong. 3257 */ 3258 static int lan8814_release_coma_mode(struct phy_device *phydev) 3259 { 3260 struct gpio_desc *gpiod; 3261 3262 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3263 GPIOD_OUT_HIGH_OPEN_DRAIN | 3264 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3265 if (IS_ERR(gpiod)) 3266 return PTR_ERR(gpiod); 3267 3268 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3269 gpiod_set_value_cansleep(gpiod, 0); 3270 3271 return 0; 3272 } 3273 3274 static int lan8814_probe(struct phy_device *phydev) 3275 { 3276 const struct kszphy_type *type = phydev->drv->driver_data; 3277 struct kszphy_priv *priv; 3278 u16 addr; 3279 int err; 3280 3281 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3282 if (!priv) 3283 return -ENOMEM; 3284 3285 phydev->priv = priv; 3286 3287 priv->type = type; 3288 3289 kszphy_parse_led_mode(phydev); 3290 3291 /* Strap-in value for PHY address, below register read gives starting 3292 * phy address value 3293 */ 3294 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3295 devm_phy_package_join(&phydev->mdio.dev, phydev, 3296 addr, sizeof(struct lan8814_shared_priv)); 3297 3298 if (phy_package_init_once(phydev)) { 3299 err = lan8814_release_coma_mode(phydev); 3300 if (err) 3301 return err; 3302 3303 err = lan8814_ptp_probe_once(phydev); 3304 if (err) 3305 return err; 3306 } 3307 3308 lan8814_ptp_init(phydev); 3309 3310 return 0; 3311 } 3312 3313 #define LAN8841_MMD_TIMER_REG 0 3314 #define LAN8841_MMD0_REGISTER_17 17 3315 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3316 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3317 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3318 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3319 #define LAN8841_MMD_ANALOG_REG 28 3320 #define LAN8841_ANALOG_CONTROL_1 1 3321 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3322 #define LAN8841_ANALOG_CONTROL_10 13 3323 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3324 #define LAN8841_ANALOG_CONTROL_11 14 3325 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3326 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3327 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3328 #define LAN8841_BTRX_POWER_DOWN 70 3329 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3330 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3331 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3332 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3333 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3334 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3335 #define LAN8841_ADC_CHANNEL_MASK 198 3336 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3337 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3338 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3339 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3340 #define LAN8841_PTP_CMD_CTL 256 3341 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3342 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3343 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3344 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3345 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3346 #define LAN8841_PTP_RX_MODE 381 3347 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3348 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3349 3350 static int lan8841_config_init(struct phy_device *phydev) 3351 { 3352 int ret; 3353 3354 ret = ksz9131_config_init(phydev); 3355 if (ret) 3356 return ret; 3357 3358 /* Initialize the HW by resetting everything */ 3359 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3360 LAN8841_PTP_CMD_CTL, 3361 LAN8841_PTP_CMD_CTL_PTP_RESET, 3362 LAN8841_PTP_CMD_CTL_PTP_RESET); 3363 3364 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3365 LAN8841_PTP_CMD_CTL, 3366 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3367 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3368 3369 /* Don't process any frames */ 3370 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3371 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3372 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3373 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3374 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3375 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3376 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3377 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3378 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3379 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3380 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3381 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3382 3383 /* 100BT Clause 40 improvenent errata */ 3384 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3385 LAN8841_ANALOG_CONTROL_1, 3386 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3387 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3388 LAN8841_ANALOG_CONTROL_10, 3389 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3390 3391 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3392 * Magnetics 3393 */ 3394 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3395 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3396 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3397 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3398 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3399 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3400 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3401 LAN8841_BTRX_POWER_DOWN, 3402 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3403 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3404 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3405 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3406 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3407 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3408 } 3409 3410 /* LDO Adjustment errata */ 3411 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3412 LAN8841_ANALOG_CONTROL_11, 3413 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3414 3415 /* 100BT RGMII latency tuning errata */ 3416 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3417 LAN8841_ADC_CHANNEL_MASK, 0x0); 3418 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3419 LAN8841_MMD0_REGISTER_17, 3420 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3421 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3422 3423 return 0; 3424 } 3425 3426 #define LAN8841_OUTPUT_CTRL 25 3427 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3428 #define LAN8841_INT_PTP BIT(9) 3429 3430 static int lan8841_config_intr(struct phy_device *phydev) 3431 { 3432 int err; 3433 3434 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3435 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3436 3437 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3438 err = phy_read(phydev, LAN8814_INTS); 3439 if (err) 3440 return err; 3441 3442 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3443 * even if it PTP is not enabled. Because the underneath blocks 3444 * will not enable the PTP so we will never get the PTP 3445 * interrupt. 3446 */ 3447 err = phy_write(phydev, LAN8814_INTC, 3448 LAN8814_INT_LINK | LAN8841_INT_PTP); 3449 } else { 3450 err = phy_write(phydev, LAN8814_INTC, 0); 3451 if (err) 3452 return err; 3453 3454 err = phy_read(phydev, LAN8814_INTS); 3455 } 3456 3457 return err; 3458 } 3459 3460 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3461 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3462 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3463 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3464 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3465 #define LAN8841_PTP_TX_MSG_HEADER2 455 3466 3467 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3468 u32 *sec, u32 *nsec, u16 *seq) 3469 { 3470 struct phy_device *phydev = ptp_priv->phydev; 3471 3472 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3473 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3474 return false; 3475 3476 *nsec = ((*nsec & 0x3fff) << 16); 3477 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3478 3479 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3480 *sec = *sec << 16; 3481 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3482 3483 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3484 3485 return true; 3486 } 3487 3488 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3489 { 3490 u32 sec, nsec; 3491 u16 seq; 3492 3493 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3494 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3495 } 3496 3497 #define LAN8841_PTP_INT_STS 259 3498 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3499 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3500 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3501 3502 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3503 { 3504 struct phy_device *phydev = ptp_priv->phydev; 3505 int i; 3506 3507 for (i = 0; i < FIFO_SIZE; ++i) 3508 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3509 3510 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3511 } 3512 3513 #define LAN8841_PTP_GPIO_CAP_STS 506 3514 #define LAN8841_PTP_GPIO_SEL 327 3515 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3516 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3517 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3518 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3519 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3520 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3521 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3522 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3523 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3524 3525 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3526 { 3527 struct phy_device *phydev = ptp_priv->phydev; 3528 struct ptp_clock_event ptp_event = {0}; 3529 int pin, ret, tmp; 3530 s32 sec, nsec; 3531 3532 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3533 if (pin == -1) 3534 return; 3535 3536 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3537 if (tmp < 0) 3538 return; 3539 3540 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3541 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3542 if (ret) 3543 return; 3544 3545 mutex_lock(&ptp_priv->ptp_lock); 3546 if (tmp & BIT(pin)) { 3547 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3548 sec <<= 16; 3549 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3550 3551 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3552 nsec <<= 16; 3553 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3554 } else { 3555 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3556 sec <<= 16; 3557 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3558 3559 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3560 nsec <<= 16; 3561 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3562 } 3563 mutex_unlock(&ptp_priv->ptp_lock); 3564 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3565 if (ret) 3566 return; 3567 3568 ptp_event.index = 0; 3569 ptp_event.timestamp = ktime_set(sec, nsec); 3570 ptp_event.type = PTP_CLOCK_EXTTS; 3571 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3572 } 3573 3574 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3575 { 3576 struct kszphy_priv *priv = phydev->priv; 3577 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3578 u16 status; 3579 3580 do { 3581 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3582 3583 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3584 lan8841_ptp_process_tx_ts(ptp_priv); 3585 3586 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3587 lan8841_gpio_process_cap(ptp_priv); 3588 3589 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3590 lan8841_ptp_flush_fifo(ptp_priv); 3591 skb_queue_purge(&ptp_priv->tx_queue); 3592 } 3593 3594 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3595 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3596 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3597 } 3598 3599 #define LAN8841_INTS_PTP BIT(9) 3600 3601 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3602 { 3603 irqreturn_t ret = IRQ_NONE; 3604 int irq_status; 3605 3606 irq_status = phy_read(phydev, LAN8814_INTS); 3607 if (irq_status < 0) { 3608 phy_error(phydev); 3609 return IRQ_NONE; 3610 } 3611 3612 if (irq_status & LAN8814_INT_LINK) { 3613 phy_trigger_machine(phydev); 3614 ret = IRQ_HANDLED; 3615 } 3616 3617 if (irq_status & LAN8841_INTS_PTP) { 3618 lan8841_handle_ptp_interrupt(phydev); 3619 ret = IRQ_HANDLED; 3620 } 3621 3622 return ret; 3623 } 3624 3625 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3626 struct ethtool_ts_info *info) 3627 { 3628 struct kszphy_ptp_priv *ptp_priv; 3629 3630 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3631 3632 info->phc_index = ptp_priv->ptp_clock ? 3633 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3634 if (info->phc_index == -1) { 3635 info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE | 3636 SOF_TIMESTAMPING_RX_SOFTWARE | 3637 SOF_TIMESTAMPING_SOFTWARE; 3638 return 0; 3639 } 3640 3641 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3642 SOF_TIMESTAMPING_RX_HARDWARE | 3643 SOF_TIMESTAMPING_RAW_HARDWARE; 3644 3645 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3646 (1 << HWTSTAMP_TX_ON) | 3647 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3648 3649 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3650 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3651 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3652 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3653 3654 return 0; 3655 } 3656 3657 #define LAN8841_PTP_INT_EN 260 3658 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3659 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3660 3661 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3662 bool enable) 3663 { 3664 struct phy_device *phydev = ptp_priv->phydev; 3665 3666 if (enable) { 3667 /* Enable interrupts on the TX side */ 3668 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3669 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3670 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3671 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3672 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3673 3674 /* Enable the modification of the frame on RX side, 3675 * this will add the ns and 2 bits of sec in the reserved field 3676 * of the PTP header 3677 */ 3678 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3679 LAN8841_PTP_RX_MODE, 3680 LAN8841_PTP_INSERT_TS_EN | 3681 LAN8841_PTP_INSERT_TS_32BIT, 3682 LAN8841_PTP_INSERT_TS_EN | 3683 LAN8841_PTP_INSERT_TS_32BIT); 3684 3685 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3686 } else { 3687 /* Disable interrupts on the TX side */ 3688 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3689 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3690 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3691 3692 /* Disable modification of the RX frames */ 3693 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3694 LAN8841_PTP_RX_MODE, 3695 LAN8841_PTP_INSERT_TS_EN | 3696 LAN8841_PTP_INSERT_TS_32BIT, 0); 3697 3698 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3699 } 3700 } 3701 3702 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3703 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3704 #define LAN8841_PTP_TX_MOD 445 3705 3706 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 3707 { 3708 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3709 struct phy_device *phydev = ptp_priv->phydev; 3710 struct hwtstamp_config config; 3711 int txcfg = 0, rxcfg = 0; 3712 int pkt_ts_enable; 3713 3714 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 3715 return -EFAULT; 3716 3717 ptp_priv->hwts_tx_type = config.tx_type; 3718 ptp_priv->rx_filter = config.rx_filter; 3719 3720 switch (config.rx_filter) { 3721 case HWTSTAMP_FILTER_NONE: 3722 ptp_priv->layer = 0; 3723 ptp_priv->version = 0; 3724 break; 3725 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3726 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3727 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3728 ptp_priv->layer = PTP_CLASS_L4; 3729 ptp_priv->version = PTP_CLASS_V2; 3730 break; 3731 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3732 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3733 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3734 ptp_priv->layer = PTP_CLASS_L2; 3735 ptp_priv->version = PTP_CLASS_V2; 3736 break; 3737 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3739 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3740 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3741 ptp_priv->version = PTP_CLASS_V2; 3742 break; 3743 default: 3744 return -ERANGE; 3745 } 3746 3747 /* Setup parsing of the frames and enable the timestamping for ptp 3748 * frames 3749 */ 3750 if (ptp_priv->layer & PTP_CLASS_L2) { 3751 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3752 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3753 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3754 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3755 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3756 } 3757 3758 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3759 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3760 3761 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3762 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3763 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3764 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3765 3766 /* Enable / disable of the TX timestamp in the SYNC frames */ 3767 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3768 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3769 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3770 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3771 3772 /* Now enable/disable the timestamping */ 3773 lan8841_ptp_enable_processing(ptp_priv, 3774 config.rx_filter != HWTSTAMP_FILTER_NONE); 3775 3776 skb_queue_purge(&ptp_priv->tx_queue); 3777 3778 lan8841_ptp_flush_fifo(ptp_priv); 3779 3780 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 3781 } 3782 3783 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3784 struct sk_buff *skb, int type) 3785 { 3786 struct kszphy_ptp_priv *ptp_priv = 3787 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3788 struct ptp_header *header = ptp_parse_header(skb, type); 3789 struct skb_shared_hwtstamps *shhwtstamps; 3790 struct timespec64 ts; 3791 unsigned long flags; 3792 u32 ts_header; 3793 3794 if (!header) 3795 return false; 3796 3797 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3798 type == PTP_CLASS_NONE) 3799 return false; 3800 3801 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3802 return false; 3803 3804 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3805 ts.tv_sec = ptp_priv->seconds; 3806 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3807 ts_header = __be32_to_cpu(header->reserved2); 3808 3809 shhwtstamps = skb_hwtstamps(skb); 3810 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3811 3812 /* Check for any wrap arounds for the second part */ 3813 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3814 ts.tv_sec -= GENMASK(1, 0) + 1; 3815 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3816 ts.tv_sec += 1; 3817 3818 shhwtstamps->hwtstamp = 3819 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3820 ts_header & GENMASK(29, 0)); 3821 header->reserved2 = 0; 3822 3823 netif_rx(skb); 3824 3825 return true; 3826 } 3827 3828 #define LAN8841_EVENT_A 0 3829 #define LAN8841_EVENT_B 1 3830 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3831 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3832 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3833 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3834 3835 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3836 s64 sec, u32 nsec) 3837 { 3838 struct phy_device *phydev = ptp_priv->phydev; 3839 int ret; 3840 3841 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3842 upper_16_bits(sec)); 3843 if (ret) 3844 return ret; 3845 3846 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3847 lower_16_bits(sec)); 3848 if (ret) 3849 return ret; 3850 3851 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3852 upper_16_bits(nsec)); 3853 if (ret) 3854 return ret; 3855 3856 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3857 lower_16_bits(nsec)); 3858 } 3859 3860 #define LAN8841_BUFFER_TIME 2 3861 3862 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3863 const struct timespec64 *ts) 3864 { 3865 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3866 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3867 } 3868 3869 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3870 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3871 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3872 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3873 3874 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3875 s64 sec, u32 nsec) 3876 { 3877 struct phy_device *phydev = ptp_priv->phydev; 3878 int ret; 3879 3880 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3881 upper_16_bits(sec)); 3882 if (ret) 3883 return ret; 3884 3885 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3886 lower_16_bits(sec)); 3887 if (ret) 3888 return ret; 3889 3890 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 3891 upper_16_bits(nsec)); 3892 if (ret) 3893 return ret; 3894 3895 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 3896 lower_16_bits(nsec)); 3897 } 3898 3899 #define LAN8841_PTP_LTC_SET_SEC_HI 262 3900 #define LAN8841_PTP_LTC_SET_SEC_MID 263 3901 #define LAN8841_PTP_LTC_SET_SEC_LO 264 3902 #define LAN8841_PTP_LTC_SET_NS_HI 265 3903 #define LAN8841_PTP_LTC_SET_NS_LO 266 3904 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 3905 3906 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 3907 const struct timespec64 *ts) 3908 { 3909 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3910 ptp_clock_info); 3911 struct phy_device *phydev = ptp_priv->phydev; 3912 unsigned long flags; 3913 int ret; 3914 3915 /* Set the value to be stored */ 3916 mutex_lock(&ptp_priv->ptp_lock); 3917 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 3918 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 3919 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 3920 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 3921 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 3922 3923 /* Set the command to load the LTC */ 3924 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3925 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 3926 ret = lan8841_ptp_update_target(ptp_priv, ts); 3927 mutex_unlock(&ptp_priv->ptp_lock); 3928 3929 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3930 ptp_priv->seconds = ts->tv_sec; 3931 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3932 3933 return ret; 3934 } 3935 3936 #define LAN8841_PTP_LTC_RD_SEC_HI 358 3937 #define LAN8841_PTP_LTC_RD_SEC_MID 359 3938 #define LAN8841_PTP_LTC_RD_SEC_LO 360 3939 #define LAN8841_PTP_LTC_RD_NS_HI 361 3940 #define LAN8841_PTP_LTC_RD_NS_LO 362 3941 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 3942 3943 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 3944 struct timespec64 *ts) 3945 { 3946 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3947 ptp_clock_info); 3948 struct phy_device *phydev = ptp_priv->phydev; 3949 time64_t s; 3950 s64 ns; 3951 3952 mutex_lock(&ptp_priv->ptp_lock); 3953 /* Issue the command to read the LTC */ 3954 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3955 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3956 3957 /* Read the LTC */ 3958 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3959 s <<= 16; 3960 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3961 s <<= 16; 3962 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3963 3964 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 3965 ns <<= 16; 3966 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 3967 mutex_unlock(&ptp_priv->ptp_lock); 3968 3969 set_normalized_timespec64(ts, s, ns); 3970 return 0; 3971 } 3972 3973 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 3974 struct timespec64 *ts) 3975 { 3976 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3977 ptp_clock_info); 3978 struct phy_device *phydev = ptp_priv->phydev; 3979 time64_t s; 3980 3981 mutex_lock(&ptp_priv->ptp_lock); 3982 /* Issue the command to read the LTC */ 3983 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3984 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3985 3986 /* Read the LTC */ 3987 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3988 s <<= 16; 3989 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3990 s <<= 16; 3991 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3992 mutex_unlock(&ptp_priv->ptp_lock); 3993 3994 set_normalized_timespec64(ts, s, 0); 3995 } 3996 3997 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 3998 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 3999 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4000 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4001 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4002 4003 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4004 { 4005 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4006 ptp_clock_info); 4007 struct phy_device *phydev = ptp_priv->phydev; 4008 struct timespec64 ts; 4009 bool add = true; 4010 u32 nsec; 4011 s32 sec; 4012 int ret; 4013 4014 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4015 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4016 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4017 * increment so the value can be bigger than 15 sec. Therefore limit the 4018 * possible adjustments so we will not have these corner cases 4019 */ 4020 if (delta > 10000000000LL || delta < -10000000000LL) { 4021 /* The timeadjustment is too big, so fall back using set time */ 4022 u64 now; 4023 4024 ptp->gettime64(ptp, &ts); 4025 4026 now = ktime_to_ns(timespec64_to_ktime(ts)); 4027 ts = ns_to_timespec64(now + delta); 4028 4029 ptp->settime64(ptp, &ts); 4030 return 0; 4031 } 4032 4033 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4034 if (delta < 0 && nsec != 0) { 4035 /* It is not allowed to adjust low the nsec part, therefore 4036 * subtract more from second part and add to nanosecond such 4037 * that would roll over, so the second part will increase 4038 */ 4039 sec--; 4040 nsec = NSEC_PER_SEC - nsec; 4041 } 4042 4043 /* Calculate the adjustments and the direction */ 4044 if (delta < 0) 4045 add = false; 4046 4047 if (nsec > 0) 4048 /* add 8 ns to cover the likely normal increment */ 4049 nsec += 8; 4050 4051 if (nsec >= NSEC_PER_SEC) { 4052 /* carry into seconds */ 4053 sec++; 4054 nsec -= NSEC_PER_SEC; 4055 } 4056 4057 mutex_lock(&ptp_priv->ptp_lock); 4058 if (sec) { 4059 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4060 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4061 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4062 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4063 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4064 } 4065 4066 if (nsec) { 4067 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4068 nsec & 0xffff); 4069 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4070 (nsec >> 16) & 0x3fff); 4071 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4072 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4073 } 4074 mutex_unlock(&ptp_priv->ptp_lock); 4075 4076 /* Update the target clock */ 4077 ptp->gettime64(ptp, &ts); 4078 mutex_lock(&ptp_priv->ptp_lock); 4079 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4080 mutex_unlock(&ptp_priv->ptp_lock); 4081 4082 return ret; 4083 } 4084 4085 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4086 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4087 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4088 4089 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4090 { 4091 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4092 ptp_clock_info); 4093 struct phy_device *phydev = ptp_priv->phydev; 4094 bool faster = true; 4095 u32 rate; 4096 4097 if (!scaled_ppm) 4098 return 0; 4099 4100 if (scaled_ppm < 0) { 4101 scaled_ppm = -scaled_ppm; 4102 faster = false; 4103 } 4104 4105 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4106 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4107 4108 mutex_lock(&ptp_priv->ptp_lock); 4109 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4110 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4111 : upper_16_bits(rate) & 0x3fff); 4112 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4113 mutex_unlock(&ptp_priv->ptp_lock); 4114 4115 return 0; 4116 } 4117 4118 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4119 enum ptp_pin_function func, unsigned int chan) 4120 { 4121 switch (func) { 4122 case PTP_PF_NONE: 4123 case PTP_PF_PEROUT: 4124 case PTP_PF_EXTTS: 4125 break; 4126 default: 4127 return -1; 4128 } 4129 4130 return 0; 4131 } 4132 4133 #define LAN8841_PTP_GPIO_NUM 10 4134 #define LAN8841_GPIO_EN 128 4135 #define LAN8841_GPIO_DIR 129 4136 #define LAN8841_GPIO_BUF 130 4137 4138 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4139 { 4140 struct phy_device *phydev = ptp_priv->phydev; 4141 int ret; 4142 4143 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4144 if (ret) 4145 return ret; 4146 4147 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4148 if (ret) 4149 return ret; 4150 4151 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4152 } 4153 4154 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4155 { 4156 struct phy_device *phydev = ptp_priv->phydev; 4157 int ret; 4158 4159 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4160 if (ret) 4161 return ret; 4162 4163 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4164 if (ret) 4165 return ret; 4166 4167 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4168 } 4169 4170 #define LAN8841_GPIO_DATA_SEL1 131 4171 #define LAN8841_GPIO_DATA_SEL2 132 4172 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4173 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4174 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4175 #define LAN8841_PTP_GENERAL_CONFIG 257 4176 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4177 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4178 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4179 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4180 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4181 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4182 4183 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4184 u8 event) 4185 { 4186 struct phy_device *phydev = ptp_priv->phydev; 4187 u16 tmp; 4188 int ret; 4189 4190 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4191 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4192 * depending on the pin, it requires to read a different register 4193 */ 4194 if (pin < 5) { 4195 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4196 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4197 } else { 4198 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4199 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4200 } 4201 if (ret) 4202 return ret; 4203 4204 /* Disable the event */ 4205 if (event == LAN8841_EVENT_A) 4206 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4207 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4208 else 4209 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4210 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4211 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4212 } 4213 4214 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4215 u8 event, int pulse_width) 4216 { 4217 struct phy_device *phydev = ptp_priv->phydev; 4218 u16 tmp; 4219 int ret; 4220 4221 /* Enable the event */ 4222 if (event == LAN8841_EVENT_A) 4223 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4224 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4225 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4226 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4227 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4228 else 4229 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4230 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4231 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4232 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4233 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4234 if (ret) 4235 return ret; 4236 4237 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4238 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4239 * depending on the pin, it requires to read a different register 4240 */ 4241 if (event == LAN8841_EVENT_A) 4242 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4243 else 4244 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4245 4246 if (pin < 5) 4247 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4248 tmp << (3 * pin)); 4249 else 4250 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4251 tmp << (3 * (pin - 5))); 4252 4253 return ret; 4254 } 4255 4256 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4257 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4258 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4259 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4260 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4261 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4262 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4263 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4264 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4265 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4266 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4267 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4268 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4270 4271 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4272 struct ptp_clock_request *rq, int on) 4273 { 4274 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4275 ptp_clock_info); 4276 struct phy_device *phydev = ptp_priv->phydev; 4277 struct timespec64 ts_on, ts_period; 4278 s64 on_nsec, period_nsec; 4279 int pulse_width; 4280 int pin; 4281 int ret; 4282 4283 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4284 return -EOPNOTSUPP; 4285 4286 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4287 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4288 return -EINVAL; 4289 4290 if (!on) { 4291 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4292 if (ret) 4293 return ret; 4294 4295 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4296 } 4297 4298 ts_on.tv_sec = rq->perout.on.sec; 4299 ts_on.tv_nsec = rq->perout.on.nsec; 4300 on_nsec = timespec64_to_ns(&ts_on); 4301 4302 ts_period.tv_sec = rq->perout.period.sec; 4303 ts_period.tv_nsec = rq->perout.period.nsec; 4304 period_nsec = timespec64_to_ns(&ts_period); 4305 4306 if (period_nsec < 200) { 4307 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4308 phydev_name(phydev)); 4309 return -EOPNOTSUPP; 4310 } 4311 4312 if (on_nsec >= period_nsec) { 4313 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4314 phydev_name(phydev)); 4315 return -EINVAL; 4316 } 4317 4318 switch (on_nsec) { 4319 case 200000000: 4320 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4321 break; 4322 case 100000000: 4323 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4324 break; 4325 case 50000000: 4326 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4327 break; 4328 case 10000000: 4329 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4330 break; 4331 case 5000000: 4332 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4333 break; 4334 case 1000000: 4335 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4336 break; 4337 case 500000: 4338 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4339 break; 4340 case 100000: 4341 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4342 break; 4343 case 50000: 4344 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4345 break; 4346 case 10000: 4347 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4348 break; 4349 case 5000: 4350 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4351 break; 4352 case 1000: 4353 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4354 break; 4355 case 500: 4356 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4357 break; 4358 case 100: 4359 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4360 break; 4361 default: 4362 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4363 phydev_name(phydev)); 4364 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4365 break; 4366 } 4367 4368 mutex_lock(&ptp_priv->ptp_lock); 4369 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4370 rq->perout.start.nsec); 4371 mutex_unlock(&ptp_priv->ptp_lock); 4372 if (ret) 4373 return ret; 4374 4375 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4376 rq->perout.period.nsec); 4377 if (ret) 4378 return ret; 4379 4380 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4381 pulse_width); 4382 if (ret) 4383 return ret; 4384 4385 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4386 if (ret) 4387 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4388 4389 return ret; 4390 } 4391 4392 #define LAN8841_PTP_GPIO_CAP_EN 496 4393 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4394 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4395 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4396 4397 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4398 u32 flags) 4399 { 4400 struct phy_device *phydev = ptp_priv->phydev; 4401 u16 tmp = 0; 4402 int ret; 4403 4404 /* Set GPIO to be intput */ 4405 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4406 if (ret) 4407 return ret; 4408 4409 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4410 if (ret) 4411 return ret; 4412 4413 /* Enable capture on the edges of the pin */ 4414 if (flags & PTP_RISING_EDGE) 4415 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4416 if (flags & PTP_FALLING_EDGE) 4417 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4418 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4419 if (ret) 4420 return ret; 4421 4422 /* Enable interrupt */ 4423 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4424 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4425 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4426 } 4427 4428 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4429 { 4430 struct phy_device *phydev = ptp_priv->phydev; 4431 int ret; 4432 4433 /* Set GPIO to be output */ 4434 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4435 if (ret) 4436 return ret; 4437 4438 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4439 if (ret) 4440 return ret; 4441 4442 /* Disable capture on both of the edges */ 4443 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4444 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4445 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4446 0); 4447 if (ret) 4448 return ret; 4449 4450 /* Disable interrupt */ 4451 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4452 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4453 0); 4454 } 4455 4456 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4457 struct ptp_clock_request *rq, int on) 4458 { 4459 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4460 ptp_clock_info); 4461 int pin; 4462 int ret; 4463 4464 /* Reject requests with unsupported flags */ 4465 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4466 PTP_EXTTS_EDGES | 4467 PTP_STRICT_FLAGS)) 4468 return -EOPNOTSUPP; 4469 4470 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4471 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4472 return -EINVAL; 4473 4474 mutex_lock(&ptp_priv->ptp_lock); 4475 if (on) 4476 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4477 else 4478 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4479 mutex_unlock(&ptp_priv->ptp_lock); 4480 4481 return ret; 4482 } 4483 4484 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4485 struct ptp_clock_request *rq, int on) 4486 { 4487 switch (rq->type) { 4488 case PTP_CLK_REQ_EXTTS: 4489 return lan8841_ptp_extts(ptp, rq, on); 4490 case PTP_CLK_REQ_PEROUT: 4491 return lan8841_ptp_perout(ptp, rq, on); 4492 default: 4493 return -EOPNOTSUPP; 4494 } 4495 4496 return 0; 4497 } 4498 4499 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4500 { 4501 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4502 ptp_clock_info); 4503 struct timespec64 ts; 4504 unsigned long flags; 4505 4506 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4507 4508 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4509 ptp_priv->seconds = ts.tv_sec; 4510 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4511 4512 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4513 } 4514 4515 static struct ptp_clock_info lan8841_ptp_clock_info = { 4516 .owner = THIS_MODULE, 4517 .name = "lan8841 ptp", 4518 .max_adj = 31249999, 4519 .gettime64 = lan8841_ptp_gettime64, 4520 .settime64 = lan8841_ptp_settime64, 4521 .adjtime = lan8841_ptp_adjtime, 4522 .adjfine = lan8841_ptp_adjfine, 4523 .verify = lan8841_ptp_verify, 4524 .enable = lan8841_ptp_enable, 4525 .do_aux_work = lan8841_ptp_do_aux_work, 4526 .n_per_out = LAN8841_PTP_GPIO_NUM, 4527 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4528 .n_pins = LAN8841_PTP_GPIO_NUM, 4529 }; 4530 4531 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4532 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4533 4534 static int lan8841_probe(struct phy_device *phydev) 4535 { 4536 struct kszphy_ptp_priv *ptp_priv; 4537 struct kszphy_priv *priv; 4538 int err; 4539 4540 err = kszphy_probe(phydev); 4541 if (err) 4542 return err; 4543 4544 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4545 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4546 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4547 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4548 4549 /* Register the clock */ 4550 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4551 return 0; 4552 4553 priv = phydev->priv; 4554 ptp_priv = &priv->ptp_priv; 4555 4556 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4557 LAN8841_PTP_GPIO_NUM, 4558 sizeof(*ptp_priv->pin_config), 4559 GFP_KERNEL); 4560 if (!ptp_priv->pin_config) 4561 return -ENOMEM; 4562 4563 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4564 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4565 4566 snprintf(p->name, sizeof(p->name), "pin%d", i); 4567 p->index = i; 4568 p->func = PTP_PF_NONE; 4569 } 4570 4571 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4572 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4573 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4574 &phydev->mdio.dev); 4575 if (IS_ERR(ptp_priv->ptp_clock)) { 4576 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4577 PTR_ERR(ptp_priv->ptp_clock)); 4578 return -EINVAL; 4579 } 4580 4581 if (!ptp_priv->ptp_clock) 4582 return 0; 4583 4584 /* Initialize the SW */ 4585 skb_queue_head_init(&ptp_priv->tx_queue); 4586 ptp_priv->phydev = phydev; 4587 mutex_init(&ptp_priv->ptp_lock); 4588 spin_lock_init(&ptp_priv->seconds_lock); 4589 4590 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4591 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4592 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4593 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4594 4595 phydev->mii_ts = &ptp_priv->mii_ts; 4596 4597 return 0; 4598 } 4599 4600 static int lan8841_suspend(struct phy_device *phydev) 4601 { 4602 struct kszphy_priv *priv = phydev->priv; 4603 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4604 4605 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4606 4607 return genphy_suspend(phydev); 4608 } 4609 4610 static struct phy_driver ksphy_driver[] = { 4611 { 4612 .phy_id = PHY_ID_KS8737, 4613 .phy_id_mask = MICREL_PHY_ID_MASK, 4614 .name = "Micrel KS8737", 4615 /* PHY_BASIC_FEATURES */ 4616 .driver_data = &ks8737_type, 4617 .probe = kszphy_probe, 4618 .config_init = kszphy_config_init, 4619 .config_intr = kszphy_config_intr, 4620 .handle_interrupt = kszphy_handle_interrupt, 4621 .suspend = kszphy_suspend, 4622 .resume = kszphy_resume, 4623 }, { 4624 .phy_id = PHY_ID_KSZ8021, 4625 .phy_id_mask = 0x00ffffff, 4626 .name = "Micrel KSZ8021 or KSZ8031", 4627 /* PHY_BASIC_FEATURES */ 4628 .driver_data = &ksz8021_type, 4629 .probe = kszphy_probe, 4630 .config_init = kszphy_config_init, 4631 .config_intr = kszphy_config_intr, 4632 .handle_interrupt = kszphy_handle_interrupt, 4633 .get_sset_count = kszphy_get_sset_count, 4634 .get_strings = kszphy_get_strings, 4635 .get_stats = kszphy_get_stats, 4636 .suspend = kszphy_suspend, 4637 .resume = kszphy_resume, 4638 }, { 4639 .phy_id = PHY_ID_KSZ8031, 4640 .phy_id_mask = 0x00ffffff, 4641 .name = "Micrel KSZ8031", 4642 /* PHY_BASIC_FEATURES */ 4643 .driver_data = &ksz8021_type, 4644 .probe = kszphy_probe, 4645 .config_init = kszphy_config_init, 4646 .config_intr = kszphy_config_intr, 4647 .handle_interrupt = kszphy_handle_interrupt, 4648 .get_sset_count = kszphy_get_sset_count, 4649 .get_strings = kszphy_get_strings, 4650 .get_stats = kszphy_get_stats, 4651 .suspend = kszphy_suspend, 4652 .resume = kszphy_resume, 4653 }, { 4654 .phy_id = PHY_ID_KSZ8041, 4655 .phy_id_mask = MICREL_PHY_ID_MASK, 4656 .name = "Micrel KSZ8041", 4657 /* PHY_BASIC_FEATURES */ 4658 .driver_data = &ksz8041_type, 4659 .probe = kszphy_probe, 4660 .config_init = ksz8041_config_init, 4661 .config_aneg = ksz8041_config_aneg, 4662 .config_intr = kszphy_config_intr, 4663 .handle_interrupt = kszphy_handle_interrupt, 4664 .get_sset_count = kszphy_get_sset_count, 4665 .get_strings = kszphy_get_strings, 4666 .get_stats = kszphy_get_stats, 4667 /* No suspend/resume callbacks because of errata DS80000700A, 4668 * receiver error following software power down. 4669 */ 4670 }, { 4671 .phy_id = PHY_ID_KSZ8041RNLI, 4672 .phy_id_mask = MICREL_PHY_ID_MASK, 4673 .name = "Micrel KSZ8041RNLI", 4674 /* PHY_BASIC_FEATURES */ 4675 .driver_data = &ksz8041_type, 4676 .probe = kszphy_probe, 4677 .config_init = kszphy_config_init, 4678 .config_intr = kszphy_config_intr, 4679 .handle_interrupt = kszphy_handle_interrupt, 4680 .get_sset_count = kszphy_get_sset_count, 4681 .get_strings = kszphy_get_strings, 4682 .get_stats = kszphy_get_stats, 4683 .suspend = kszphy_suspend, 4684 .resume = kszphy_resume, 4685 }, { 4686 .name = "Micrel KSZ8051", 4687 /* PHY_BASIC_FEATURES */ 4688 .driver_data = &ksz8051_type, 4689 .probe = kszphy_probe, 4690 .config_init = kszphy_config_init, 4691 .config_intr = kszphy_config_intr, 4692 .handle_interrupt = kszphy_handle_interrupt, 4693 .get_sset_count = kszphy_get_sset_count, 4694 .get_strings = kszphy_get_strings, 4695 .get_stats = kszphy_get_stats, 4696 .match_phy_device = ksz8051_match_phy_device, 4697 .suspend = kszphy_suspend, 4698 .resume = kszphy_resume, 4699 }, { 4700 .phy_id = PHY_ID_KSZ8001, 4701 .name = "Micrel KSZ8001 or KS8721", 4702 .phy_id_mask = 0x00fffffc, 4703 /* PHY_BASIC_FEATURES */ 4704 .driver_data = &ksz8041_type, 4705 .probe = kszphy_probe, 4706 .config_init = kszphy_config_init, 4707 .config_intr = kszphy_config_intr, 4708 .handle_interrupt = kszphy_handle_interrupt, 4709 .get_sset_count = kszphy_get_sset_count, 4710 .get_strings = kszphy_get_strings, 4711 .get_stats = kszphy_get_stats, 4712 .suspend = kszphy_suspend, 4713 .resume = kszphy_resume, 4714 }, { 4715 .phy_id = PHY_ID_KSZ8081, 4716 .name = "Micrel KSZ8081 or KSZ8091", 4717 .phy_id_mask = MICREL_PHY_ID_MASK, 4718 .flags = PHY_POLL_CABLE_TEST, 4719 /* PHY_BASIC_FEATURES */ 4720 .driver_data = &ksz8081_type, 4721 .probe = kszphy_probe, 4722 .config_init = ksz8081_config_init, 4723 .soft_reset = genphy_soft_reset, 4724 .config_aneg = ksz8081_config_aneg, 4725 .read_status = ksz8081_read_status, 4726 .config_intr = kszphy_config_intr, 4727 .handle_interrupt = kszphy_handle_interrupt, 4728 .get_sset_count = kszphy_get_sset_count, 4729 .get_strings = kszphy_get_strings, 4730 .get_stats = kszphy_get_stats, 4731 .suspend = kszphy_suspend, 4732 .resume = kszphy_resume, 4733 .cable_test_start = ksz886x_cable_test_start, 4734 .cable_test_get_status = ksz886x_cable_test_get_status, 4735 }, { 4736 .phy_id = PHY_ID_KSZ8061, 4737 .name = "Micrel KSZ8061", 4738 .phy_id_mask = MICREL_PHY_ID_MASK, 4739 /* PHY_BASIC_FEATURES */ 4740 .probe = kszphy_probe, 4741 .config_init = ksz8061_config_init, 4742 .config_intr = kszphy_config_intr, 4743 .handle_interrupt = kszphy_handle_interrupt, 4744 .suspend = kszphy_suspend, 4745 .resume = kszphy_resume, 4746 }, { 4747 .phy_id = PHY_ID_KSZ9021, 4748 .phy_id_mask = 0x000ffffe, 4749 .name = "Micrel KSZ9021 Gigabit PHY", 4750 /* PHY_GBIT_FEATURES */ 4751 .driver_data = &ksz9021_type, 4752 .probe = kszphy_probe, 4753 .get_features = ksz9031_get_features, 4754 .config_init = ksz9021_config_init, 4755 .config_intr = kszphy_config_intr, 4756 .handle_interrupt = kszphy_handle_interrupt, 4757 .get_sset_count = kszphy_get_sset_count, 4758 .get_strings = kszphy_get_strings, 4759 .get_stats = kszphy_get_stats, 4760 .suspend = kszphy_suspend, 4761 .resume = kszphy_resume, 4762 .read_mmd = genphy_read_mmd_unsupported, 4763 .write_mmd = genphy_write_mmd_unsupported, 4764 }, { 4765 .phy_id = PHY_ID_KSZ9031, 4766 .phy_id_mask = MICREL_PHY_ID_MASK, 4767 .name = "Micrel KSZ9031 Gigabit PHY", 4768 .flags = PHY_POLL_CABLE_TEST, 4769 .driver_data = &ksz9021_type, 4770 .probe = kszphy_probe, 4771 .get_features = ksz9031_get_features, 4772 .config_init = ksz9031_config_init, 4773 .soft_reset = genphy_soft_reset, 4774 .read_status = ksz9031_read_status, 4775 .config_intr = kszphy_config_intr, 4776 .handle_interrupt = kszphy_handle_interrupt, 4777 .get_sset_count = kszphy_get_sset_count, 4778 .get_strings = kszphy_get_strings, 4779 .get_stats = kszphy_get_stats, 4780 .suspend = kszphy_suspend, 4781 .resume = kszphy_resume, 4782 .cable_test_start = ksz9x31_cable_test_start, 4783 .cable_test_get_status = ksz9x31_cable_test_get_status, 4784 }, { 4785 .phy_id = PHY_ID_LAN8814, 4786 .phy_id_mask = MICREL_PHY_ID_MASK, 4787 .name = "Microchip INDY Gigabit Quad PHY", 4788 .flags = PHY_POLL_CABLE_TEST, 4789 .config_init = lan8814_config_init, 4790 .driver_data = &lan8814_type, 4791 .probe = lan8814_probe, 4792 .soft_reset = genphy_soft_reset, 4793 .read_status = ksz9031_read_status, 4794 .get_sset_count = kszphy_get_sset_count, 4795 .get_strings = kszphy_get_strings, 4796 .get_stats = kszphy_get_stats, 4797 .suspend = genphy_suspend, 4798 .resume = kszphy_resume, 4799 .config_intr = lan8814_config_intr, 4800 .handle_interrupt = lan8814_handle_interrupt, 4801 .cable_test_start = lan8814_cable_test_start, 4802 .cable_test_get_status = ksz886x_cable_test_get_status, 4803 }, { 4804 .phy_id = PHY_ID_LAN8804, 4805 .phy_id_mask = MICREL_PHY_ID_MASK, 4806 .name = "Microchip LAN966X Gigabit PHY", 4807 .config_init = lan8804_config_init, 4808 .driver_data = &ksz9021_type, 4809 .probe = kszphy_probe, 4810 .soft_reset = genphy_soft_reset, 4811 .read_status = ksz9031_read_status, 4812 .get_sset_count = kszphy_get_sset_count, 4813 .get_strings = kszphy_get_strings, 4814 .get_stats = kszphy_get_stats, 4815 .suspend = genphy_suspend, 4816 .resume = kszphy_resume, 4817 .config_intr = lan8804_config_intr, 4818 .handle_interrupt = lan8804_handle_interrupt, 4819 }, { 4820 .phy_id = PHY_ID_LAN8841, 4821 .phy_id_mask = MICREL_PHY_ID_MASK, 4822 .name = "Microchip LAN8841 Gigabit PHY", 4823 .flags = PHY_POLL_CABLE_TEST, 4824 .driver_data = &lan8841_type, 4825 .config_init = lan8841_config_init, 4826 .probe = lan8841_probe, 4827 .soft_reset = genphy_soft_reset, 4828 .config_intr = lan8841_config_intr, 4829 .handle_interrupt = lan8841_handle_interrupt, 4830 .get_sset_count = kszphy_get_sset_count, 4831 .get_strings = kszphy_get_strings, 4832 .get_stats = kszphy_get_stats, 4833 .suspend = lan8841_suspend, 4834 .resume = genphy_resume, 4835 .cable_test_start = lan8814_cable_test_start, 4836 .cable_test_get_status = ksz886x_cable_test_get_status, 4837 }, { 4838 .phy_id = PHY_ID_KSZ9131, 4839 .phy_id_mask = MICREL_PHY_ID_MASK, 4840 .name = "Microchip KSZ9131 Gigabit PHY", 4841 /* PHY_GBIT_FEATURES */ 4842 .flags = PHY_POLL_CABLE_TEST, 4843 .driver_data = &ksz9131_type, 4844 .probe = kszphy_probe, 4845 .config_init = ksz9131_config_init, 4846 .config_intr = kszphy_config_intr, 4847 .config_aneg = ksz9131_config_aneg, 4848 .read_status = ksz9131_read_status, 4849 .handle_interrupt = kszphy_handle_interrupt, 4850 .get_sset_count = kszphy_get_sset_count, 4851 .get_strings = kszphy_get_strings, 4852 .get_stats = kszphy_get_stats, 4853 .suspend = kszphy_suspend, 4854 .resume = kszphy_resume, 4855 .cable_test_start = ksz9x31_cable_test_start, 4856 .cable_test_get_status = ksz9x31_cable_test_get_status, 4857 .get_features = ksz9477_get_features, 4858 }, { 4859 .phy_id = PHY_ID_KSZ8873MLL, 4860 .phy_id_mask = MICREL_PHY_ID_MASK, 4861 .name = "Micrel KSZ8873MLL Switch", 4862 /* PHY_BASIC_FEATURES */ 4863 .config_init = kszphy_config_init, 4864 .config_aneg = ksz8873mll_config_aneg, 4865 .read_status = ksz8873mll_read_status, 4866 .suspend = genphy_suspend, 4867 .resume = genphy_resume, 4868 }, { 4869 .phy_id = PHY_ID_KSZ886X, 4870 .phy_id_mask = MICREL_PHY_ID_MASK, 4871 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4872 .driver_data = &ksz886x_type, 4873 /* PHY_BASIC_FEATURES */ 4874 .flags = PHY_POLL_CABLE_TEST, 4875 .config_init = kszphy_config_init, 4876 .config_aneg = ksz886x_config_aneg, 4877 .read_status = ksz886x_read_status, 4878 .suspend = genphy_suspend, 4879 .resume = genphy_resume, 4880 .cable_test_start = ksz886x_cable_test_start, 4881 .cable_test_get_status = ksz886x_cable_test_get_status, 4882 }, { 4883 .name = "Micrel KSZ87XX Switch", 4884 /* PHY_BASIC_FEATURES */ 4885 .config_init = kszphy_config_init, 4886 .match_phy_device = ksz8795_match_phy_device, 4887 .suspend = genphy_suspend, 4888 .resume = genphy_resume, 4889 }, { 4890 .phy_id = PHY_ID_KSZ9477, 4891 .phy_id_mask = MICREL_PHY_ID_MASK, 4892 .name = "Microchip KSZ9477", 4893 /* PHY_GBIT_FEATURES */ 4894 .config_init = ksz9477_config_init, 4895 .config_intr = kszphy_config_intr, 4896 .handle_interrupt = kszphy_handle_interrupt, 4897 .suspend = genphy_suspend, 4898 .resume = genphy_resume, 4899 .get_features = ksz9477_get_features, 4900 } }; 4901 4902 module_phy_driver(ksphy_driver); 4903 4904 MODULE_DESCRIPTION("Micrel PHY driver"); 4905 MODULE_AUTHOR("David J. Choi"); 4906 MODULE_LICENSE("GPL"); 4907 4908 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 4909 { PHY_ID_KSZ9021, 0x000ffffe }, 4910 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 4911 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 4912 { PHY_ID_KSZ8001, 0x00fffffc }, 4913 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 4914 { PHY_ID_KSZ8021, 0x00ffffff }, 4915 { PHY_ID_KSZ8031, 0x00ffffff }, 4916 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 4917 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 4918 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 4919 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 4920 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 4921 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 4922 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 4923 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 4924 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 4925 { } 4926 }; 4927 4928 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 4929