xref: /linux/drivers/net/phy/mediatek/mtk-ge-soc.c (revision 7f9c320c98dbca18934afa80306015eb71c05a6c)
1 // SPDX-License-Identifier: GPL-2.0+
2 #include <linux/bitfield.h>
3 #include <linux/bitmap.h>
4 #include <linux/mfd/syscon.h>
5 #include <linux/module.h>
6 #include <linux/nvmem-consumer.h>
7 #include <linux/pinctrl/consumer.h>
8 #include <linux/phy.h>
9 #include <linux/regmap.h>
10 
11 #include "mtk.h"
12 
13 #define MTK_GPHY_ID_MT7981			0x03a29461
14 #define MTK_GPHY_ID_MT7988			0x03a29481
15 
16 #define MTK_EXT_PAGE_ACCESS			0x1f
17 #define MTK_PHY_PAGE_STANDARD			0x0000
18 #define MTK_PHY_PAGE_EXTENDED_3			0x0003
19 
20 #define MTK_PHY_LPI_REG_14			0x14
21 #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK	GENMASK(8, 0)
22 
23 #define MTK_PHY_LPI_REG_1c			0x1c
24 #define MTK_PHY_SMI_DET_ON_THRESH_MASK		GENMASK(13, 8)
25 
26 #define MTK_PHY_PAGE_EXTENDED_2A30		0x2a30
27 #define MTK_PHY_PAGE_EXTENDED_52B5		0x52b5
28 
29 #define ANALOG_INTERNAL_OPERATION_MAX_US	20
30 #define TXRESERVE_MIN				0
31 #define TXRESERVE_MAX				7
32 
33 #define MTK_PHY_ANARG_RG			0x10
34 #define   MTK_PHY_TCLKOFFSET_MASK		GENMASK(12, 8)
35 
36 /* Registers on MDIO_MMD_VEND1 */
37 #define MTK_PHY_TXVLD_DA_RG			0x12
38 #define   MTK_PHY_DA_TX_I2MPB_A_GBE_MASK	GENMASK(15, 10)
39 #define   MTK_PHY_DA_TX_I2MPB_A_TBT_MASK	GENMASK(5, 0)
40 
41 #define MTK_PHY_TX_I2MPB_TEST_MODE_A2		0x16
42 #define   MTK_PHY_DA_TX_I2MPB_A_HBT_MASK	GENMASK(15, 10)
43 #define   MTK_PHY_DA_TX_I2MPB_A_TST_MASK	GENMASK(5, 0)
44 
45 #define MTK_PHY_TX_I2MPB_TEST_MODE_B1		0x17
46 #define   MTK_PHY_DA_TX_I2MPB_B_GBE_MASK	GENMASK(13, 8)
47 #define   MTK_PHY_DA_TX_I2MPB_B_TBT_MASK	GENMASK(5, 0)
48 
49 #define MTK_PHY_TX_I2MPB_TEST_MODE_B2		0x18
50 #define   MTK_PHY_DA_TX_I2MPB_B_HBT_MASK	GENMASK(13, 8)
51 #define   MTK_PHY_DA_TX_I2MPB_B_TST_MASK	GENMASK(5, 0)
52 
53 #define MTK_PHY_TX_I2MPB_TEST_MODE_C1		0x19
54 #define   MTK_PHY_DA_TX_I2MPB_C_GBE_MASK	GENMASK(13, 8)
55 #define   MTK_PHY_DA_TX_I2MPB_C_TBT_MASK	GENMASK(5, 0)
56 
57 #define MTK_PHY_TX_I2MPB_TEST_MODE_C2		0x20
58 #define   MTK_PHY_DA_TX_I2MPB_C_HBT_MASK	GENMASK(13, 8)
59 #define   MTK_PHY_DA_TX_I2MPB_C_TST_MASK	GENMASK(5, 0)
60 
61 #define MTK_PHY_TX_I2MPB_TEST_MODE_D1		0x21
62 #define   MTK_PHY_DA_TX_I2MPB_D_GBE_MASK	GENMASK(13, 8)
63 #define   MTK_PHY_DA_TX_I2MPB_D_TBT_MASK	GENMASK(5, 0)
64 
65 #define MTK_PHY_TX_I2MPB_TEST_MODE_D2		0x22
66 #define   MTK_PHY_DA_TX_I2MPB_D_HBT_MASK	GENMASK(13, 8)
67 #define   MTK_PHY_DA_TX_I2MPB_D_TST_MASK	GENMASK(5, 0)
68 
69 #define MTK_PHY_RXADC_CTRL_RG7			0xc6
70 #define   MTK_PHY_DA_AD_BUF_BIAS_LP_MASK	GENMASK(9, 8)
71 
72 #define MTK_PHY_RXADC_CTRL_RG9			0xc8
73 #define   MTK_PHY_DA_RX_PSBN_TBT_MASK		GENMASK(14, 12)
74 #define   MTK_PHY_DA_RX_PSBN_HBT_MASK		GENMASK(10, 8)
75 #define   MTK_PHY_DA_RX_PSBN_GBE_MASK		GENMASK(6, 4)
76 #define   MTK_PHY_DA_RX_PSBN_LP_MASK		GENMASK(2, 0)
77 
78 #define MTK_PHY_LDO_OUTPUT_V			0xd7
79 
80 #define MTK_PHY_RG_ANA_CAL_RG0			0xdb
81 #define   MTK_PHY_RG_CAL_CKINV			BIT(12)
82 #define   MTK_PHY_RG_ANA_CALEN			BIT(8)
83 #define   MTK_PHY_RG_ZCALEN_A			BIT(0)
84 
85 #define MTK_PHY_RG_ANA_CAL_RG1			0xdc
86 #define   MTK_PHY_RG_ZCALEN_B			BIT(12)
87 #define   MTK_PHY_RG_ZCALEN_C			BIT(8)
88 #define   MTK_PHY_RG_ZCALEN_D			BIT(4)
89 #define   MTK_PHY_RG_TXVOS_CALEN		BIT(0)
90 
91 #define MTK_PHY_RG_ANA_CAL_RG5			0xe0
92 #define   MTK_PHY_RG_REXT_TRIM_MASK		GENMASK(13, 8)
93 
94 #define MTK_PHY_RG_TX_FILTER			0xfe
95 
96 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120	0x120
97 #define   MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK	GENMASK(12, 8)
98 #define   MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK	GENMASK(4, 0)
99 
100 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122	0x122
101 #define   MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK	GENMASK(7, 0)
102 
103 #define MTK_PHY_RG_TESTMUX_ADC_CTRL		0x144
104 #define   MTK_PHY_RG_TXEN_DIG_MASK		GENMASK(5, 5)
105 
106 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B		0x172
107 #define   MTK_PHY_CR_TX_AMP_OFFSET_A_MASK	GENMASK(13, 8)
108 #define   MTK_PHY_CR_TX_AMP_OFFSET_B_MASK	GENMASK(6, 0)
109 
110 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D		0x173
111 #define   MTK_PHY_CR_TX_AMP_OFFSET_C_MASK	GENMASK(13, 8)
112 #define   MTK_PHY_CR_TX_AMP_OFFSET_D_MASK	GENMASK(6, 0)
113 
114 #define MTK_PHY_RG_AD_CAL_COMP			0x17a
115 #define   MTK_PHY_AD_CAL_COMP_OUT_MASK		GENMASK(8, 8)
116 
117 #define MTK_PHY_RG_AD_CAL_CLK			0x17b
118 #define   MTK_PHY_DA_CAL_CLK			BIT(0)
119 
120 #define MTK_PHY_RG_AD_CALIN			0x17c
121 #define   MTK_PHY_DA_CALIN_FLAG			BIT(0)
122 
123 #define MTK_PHY_RG_DASN_DAC_IN0_A		0x17d
124 #define   MTK_PHY_DASN_DAC_IN0_A_MASK		GENMASK(9, 0)
125 
126 #define MTK_PHY_RG_DASN_DAC_IN0_B		0x17e
127 #define   MTK_PHY_DASN_DAC_IN0_B_MASK		GENMASK(9, 0)
128 
129 #define MTK_PHY_RG_DASN_DAC_IN0_C		0x17f
130 #define   MTK_PHY_DASN_DAC_IN0_C_MASK		GENMASK(9, 0)
131 
132 #define MTK_PHY_RG_DASN_DAC_IN0_D		0x180
133 #define   MTK_PHY_DASN_DAC_IN0_D_MASK		GENMASK(9, 0)
134 
135 #define MTK_PHY_RG_DASN_DAC_IN1_A		0x181
136 #define   MTK_PHY_DASN_DAC_IN1_A_MASK		GENMASK(9, 0)
137 
138 #define MTK_PHY_RG_DASN_DAC_IN1_B		0x182
139 #define   MTK_PHY_DASN_DAC_IN1_B_MASK		GENMASK(9, 0)
140 
141 #define MTK_PHY_RG_DASN_DAC_IN1_C		0x183
142 #define   MTK_PHY_DASN_DAC_IN1_C_MASK		GENMASK(9, 0)
143 
144 #define MTK_PHY_RG_DASN_DAC_IN1_D		0x184
145 #define   MTK_PHY_DASN_DAC_IN1_D_MASK		GENMASK(9, 0)
146 
147 #define MTK_PHY_RG_DEV1E_REG19b			0x19b
148 #define   MTK_PHY_BYPASS_DSP_LPI_READY		BIT(8)
149 
150 #define MTK_PHY_RG_LP_IIR2_K1_L			0x22a
151 #define MTK_PHY_RG_LP_IIR2_K1_U			0x22b
152 #define MTK_PHY_RG_LP_IIR2_K2_L			0x22c
153 #define MTK_PHY_RG_LP_IIR2_K2_U			0x22d
154 #define MTK_PHY_RG_LP_IIR2_K3_L			0x22e
155 #define MTK_PHY_RG_LP_IIR2_K3_U			0x22f
156 #define MTK_PHY_RG_LP_IIR2_K4_L			0x230
157 #define MTK_PHY_RG_LP_IIR2_K4_U			0x231
158 #define MTK_PHY_RG_LP_IIR2_K5_L			0x232
159 #define MTK_PHY_RG_LP_IIR2_K5_U			0x233
160 
161 #define MTK_PHY_RG_DEV1E_REG234			0x234
162 #define   MTK_PHY_TR_OPEN_LOOP_EN_MASK		GENMASK(0, 0)
163 #define   MTK_PHY_LPF_X_AVERAGE_MASK		GENMASK(7, 4)
164 #define   MTK_PHY_TR_LP_IIR_EEE_EN		BIT(12)
165 
166 #define MTK_PHY_RG_LPF_CNT_VAL			0x235
167 
168 #define MTK_PHY_RG_DEV1E_REG238			0x238
169 #define   MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK	GENMASK(8, 0)
170 #define   MTK_PHY_LPI_SLV_SEND_TX_EN		BIT(12)
171 
172 #define MTK_PHY_RG_DEV1E_REG239			0x239
173 #define   MTK_PHY_LPI_SEND_LOC_TIMER_MASK	GENMASK(8, 0)
174 #define   MTK_PHY_LPI_TXPCS_LOC_RCV		BIT(12)
175 
176 #define MTK_PHY_RG_DEV1E_REG27C			0x27c
177 #define   MTK_PHY_VGASTATE_FFE_THR_ST1_MASK	GENMASK(12, 8)
178 #define MTK_PHY_RG_DEV1E_REG27D			0x27d
179 #define   MTK_PHY_VGASTATE_FFE_THR_ST2_MASK	GENMASK(4, 0)
180 
181 #define MTK_PHY_RG_DEV1E_REG2C7			0x2c7
182 #define   MTK_PHY_MAX_GAIN_MASK			GENMASK(4, 0)
183 #define   MTK_PHY_MIN_GAIN_MASK			GENMASK(12, 8)
184 
185 #define MTK_PHY_RG_DEV1E_REG2D1			0x2d1
186 #define   MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK	GENMASK(7, 0)
187 #define   MTK_PHY_LPI_SKIP_SD_SLV_TR		BIT(8)
188 #define   MTK_PHY_LPI_TR_READY			BIT(9)
189 #define   MTK_PHY_LPI_VCO_EEE_STG0_EN		BIT(10)
190 
191 #define MTK_PHY_RG_DEV1E_REG323			0x323
192 #define   MTK_PHY_EEE_WAKE_MAS_INT_DC		BIT(0)
193 #define   MTK_PHY_EEE_WAKE_SLV_INT_DC		BIT(4)
194 
195 #define MTK_PHY_RG_DEV1E_REG324			0x324
196 #define   MTK_PHY_SMI_DETCNT_MAX_MASK		GENMASK(5, 0)
197 #define   MTK_PHY_SMI_DET_MAX_EN		BIT(8)
198 
199 #define MTK_PHY_RG_DEV1E_REG326			0x326
200 #define   MTK_PHY_LPI_MODE_SD_ON		BIT(0)
201 #define   MTK_PHY_RESET_RANDUPD_CNT		BIT(1)
202 #define   MTK_PHY_TREC_UPDATE_ENAB_CLR		BIT(2)
203 #define   MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF	BIT(4)
204 #define   MTK_PHY_TR_READY_SKIP_AFE_WAKEUP	BIT(5)
205 
206 #define MTK_PHY_LDO_PUMP_EN_PAIRAB		0x502
207 #define MTK_PHY_LDO_PUMP_EN_PAIRCD		0x503
208 
209 #define MTK_PHY_DA_TX_R50_PAIR_A		0x53d
210 #define MTK_PHY_DA_TX_R50_PAIR_B		0x53e
211 #define MTK_PHY_DA_TX_R50_PAIR_C		0x53f
212 #define MTK_PHY_DA_TX_R50_PAIR_D		0x540
213 
214 /* Registers on MDIO_MMD_VEND2 */
215 #define MTK_PHY_LED1_DEFAULT_POLARITIES		BIT(1)
216 
217 #define MTK_PHY_RG_BG_RASEL			0x115
218 #define   MTK_PHY_RG_BG_RASEL_MASK		GENMASK(2, 0)
219 
220 /* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
221 #define RG_GPIO_MISC_TPBANK0			0x6f0
222 #define   RG_GPIO_MISC_TPBANK0_BOOTMODE		GENMASK(11, 8)
223 
224 /* These macro privides efuse parsing for internal phy. */
225 #define EFS_DA_TX_I2MPB_A(x)			(((x) >> 0) & GENMASK(5, 0))
226 #define EFS_DA_TX_I2MPB_B(x)			(((x) >> 6) & GENMASK(5, 0))
227 #define EFS_DA_TX_I2MPB_C(x)			(((x) >> 12) & GENMASK(5, 0))
228 #define EFS_DA_TX_I2MPB_D(x)			(((x) >> 18) & GENMASK(5, 0))
229 #define EFS_DA_TX_AMP_OFFSET_A(x)		(((x) >> 24) & GENMASK(5, 0))
230 
231 #define EFS_DA_TX_AMP_OFFSET_B(x)		(((x) >> 0) & GENMASK(5, 0))
232 #define EFS_DA_TX_AMP_OFFSET_C(x)		(((x) >> 6) & GENMASK(5, 0))
233 #define EFS_DA_TX_AMP_OFFSET_D(x)		(((x) >> 12) & GENMASK(5, 0))
234 #define EFS_DA_TX_R50_A(x)			(((x) >> 18) & GENMASK(5, 0))
235 #define EFS_DA_TX_R50_B(x)			(((x) >> 24) & GENMASK(5, 0))
236 
237 #define EFS_DA_TX_R50_C(x)			(((x) >> 0) & GENMASK(5, 0))
238 #define EFS_DA_TX_R50_D(x)			(((x) >> 6) & GENMASK(5, 0))
239 
240 #define EFS_RG_BG_RASEL(x)			(((x) >> 4) & GENMASK(2, 0))
241 #define EFS_RG_REXT_TRIM(x)			(((x) >> 7) & GENMASK(5, 0))
242 
243 enum {
244 	NO_PAIR,
245 	PAIR_A,
246 	PAIR_B,
247 	PAIR_C,
248 	PAIR_D,
249 };
250 
251 enum calibration_mode {
252 	EFUSE_K,
253 	SW_K
254 };
255 
256 enum CAL_ITEM {
257 	REXT,
258 	TX_OFFSET,
259 	TX_AMP,
260 	TX_R50,
261 	TX_VCM
262 };
263 
264 enum CAL_MODE {
265 	EFUSE_M,
266 	SW_M
267 };
268 
269 struct mtk_socphy_shared {
270 	u32			boottrap;
271 	struct mtk_socphy_priv	priv[4];
272 };
273 
274 static int mtk_socphy_read_page(struct phy_device *phydev)
275 {
276 	return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
277 }
278 
279 static int mtk_socphy_write_page(struct phy_device *phydev, int page)
280 {
281 	return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
282 }
283 
284 /* One calibration cycle consists of:
285  * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
286  *   until AD_CAL_COMP is ready to output calibration result.
287  * 2.Wait until DA_CAL_CLK is available.
288  * 3.Fetch AD_CAL_COMP_OUT.
289  */
290 static int cal_cycle(struct phy_device *phydev, int devad,
291 		     u32 regnum, u16 mask, u16 cal_val)
292 {
293 	int reg_val;
294 	int ret;
295 
296 	phy_modify_mmd(phydev, devad, regnum,
297 		       mask, cal_val);
298 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
299 			 MTK_PHY_DA_CALIN_FLAG);
300 
301 	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
302 					MTK_PHY_RG_AD_CAL_CLK, reg_val,
303 					reg_val & MTK_PHY_DA_CAL_CLK, 500,
304 					ANALOG_INTERNAL_OPERATION_MAX_US,
305 					false);
306 	if (ret) {
307 		phydev_err(phydev, "Calibration cycle timeout\n");
308 		return ret;
309 	}
310 
311 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
312 			   MTK_PHY_DA_CALIN_FLAG);
313 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP);
314 	if (ret < 0)
315 		return ret;
316 	ret = FIELD_GET(MTK_PHY_AD_CAL_COMP_OUT_MASK, ret);
317 	phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
318 
319 	return ret;
320 }
321 
322 static int rext_fill_result(struct phy_device *phydev, u16 *buf)
323 {
324 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
325 		       MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
326 	phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
327 		       MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
328 
329 	return 0;
330 }
331 
332 static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
333 {
334 	u16 rext_cal_val[2];
335 
336 	rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
337 	rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
338 	rext_fill_result(phydev, rext_cal_val);
339 
340 	return 0;
341 }
342 
343 static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
344 {
345 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
346 		       MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
347 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
348 		       MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
349 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
350 		       MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
351 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
352 		       MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
353 
354 	return 0;
355 }
356 
357 static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
358 {
359 	u16 tx_offset_cal_val[4];
360 
361 	tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
362 	tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
363 	tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
364 	tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
365 
366 	tx_offset_fill_result(phydev, tx_offset_cal_val);
367 
368 	return 0;
369 }
370 
371 static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
372 {
373 	const int vals_9481[16] = { 10, 6, 6, 10,
374 				    10, 6, 6, 10,
375 				    10, 6, 6, 10,
376 				    10, 6, 6, 10 };
377 	const int vals_9461[16] = { 7, 1, 4, 7,
378 				    7, 1, 4, 7,
379 				    7, 1, 4, 7,
380 				    7, 1, 4, 7 };
381 	int bias[16] = {};
382 	int i;
383 
384 	switch (phydev->drv->phy_id) {
385 	case MTK_GPHY_ID_MT7981:
386 		/* We add some calibration to efuse values
387 		 * due to board level influence.
388 		 * GBE: +7, TBT: +1, HBT: +4, TST: +7
389 		 */
390 		memcpy(bias, (const void *)vals_9461, sizeof(bias));
391 		break;
392 	case MTK_GPHY_ID_MT7988:
393 		memcpy(bias, (const void *)vals_9481, sizeof(bias));
394 		break;
395 	}
396 
397 	/* Prevent overflow */
398 	for (i = 0; i < 12; i++) {
399 		if (buf[i >> 2] + bias[i] > 63) {
400 			buf[i >> 2] = 63;
401 			bias[i] = 0;
402 		}
403 	}
404 
405 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
406 		       MTK_PHY_DA_TX_I2MPB_A_GBE_MASK,
407 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_A_GBE_MASK,
408 				  buf[0] + bias[0]));
409 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
410 		       MTK_PHY_DA_TX_I2MPB_A_TBT_MASK,
411 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_A_TBT_MASK,
412 				  buf[0] + bias[1]));
413 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
414 		       MTK_PHY_DA_TX_I2MPB_A_HBT_MASK,
415 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_A_HBT_MASK,
416 				  buf[0] + bias[2]));
417 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
418 		       MTK_PHY_DA_TX_I2MPB_A_TST_MASK,
419 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_A_TST_MASK,
420 				  buf[0] + bias[3]));
421 
422 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
423 		       MTK_PHY_DA_TX_I2MPB_B_GBE_MASK,
424 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_B_GBE_MASK,
425 				  buf[1] + bias[4]));
426 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
427 		       MTK_PHY_DA_TX_I2MPB_B_TBT_MASK,
428 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_B_TBT_MASK,
429 				  buf[1] + bias[5]));
430 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
431 		       MTK_PHY_DA_TX_I2MPB_B_HBT_MASK,
432 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_B_HBT_MASK,
433 				  buf[1] + bias[6]));
434 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
435 		       MTK_PHY_DA_TX_I2MPB_B_TST_MASK,
436 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_B_TST_MASK,
437 				  buf[1] + bias[7]));
438 
439 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
440 		       MTK_PHY_DA_TX_I2MPB_C_GBE_MASK,
441 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_C_GBE_MASK,
442 				  buf[2] + bias[8]));
443 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
444 		       MTK_PHY_DA_TX_I2MPB_C_TBT_MASK,
445 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_C_TBT_MASK,
446 				  buf[2] + bias[9]));
447 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
448 		       MTK_PHY_DA_TX_I2MPB_C_HBT_MASK,
449 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_C_HBT_MASK,
450 				  buf[2] + bias[10]));
451 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
452 		       MTK_PHY_DA_TX_I2MPB_C_TST_MASK,
453 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_C_TST_MASK,
454 				  buf[2] + bias[11]));
455 
456 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
457 		       MTK_PHY_DA_TX_I2MPB_D_GBE_MASK,
458 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_D_GBE_MASK,
459 				  buf[3] + bias[12]));
460 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
461 		       MTK_PHY_DA_TX_I2MPB_D_TBT_MASK,
462 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_D_TBT_MASK,
463 				  buf[3] + bias[13]));
464 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
465 		       MTK_PHY_DA_TX_I2MPB_D_HBT_MASK,
466 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_D_HBT_MASK,
467 				  buf[3] + bias[14]));
468 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
469 		       MTK_PHY_DA_TX_I2MPB_D_TST_MASK,
470 		       FIELD_PREP(MTK_PHY_DA_TX_I2MPB_D_TST_MASK,
471 				  buf[3] + bias[15]));
472 
473 	return 0;
474 }
475 
476 static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
477 {
478 	u16 tx_amp_cal_val[4];
479 
480 	tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
481 	tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
482 	tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
483 	tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
484 	tx_amp_fill_result(phydev, tx_amp_cal_val);
485 
486 	return 0;
487 }
488 
489 static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
490 			      u8 txg_calen_x)
491 {
492 	int bias = 0;
493 	u16 reg, val;
494 
495 	if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
496 		bias = -1;
497 
498 	val = clamp_val(bias + tx_r50_cal_val, 0, 63);
499 
500 	switch (txg_calen_x) {
501 	case PAIR_A:
502 		reg = MTK_PHY_DA_TX_R50_PAIR_A;
503 		break;
504 	case PAIR_B:
505 		reg = MTK_PHY_DA_TX_R50_PAIR_B;
506 		break;
507 	case PAIR_C:
508 		reg = MTK_PHY_DA_TX_R50_PAIR_C;
509 		break;
510 	case PAIR_D:
511 		reg = MTK_PHY_DA_TX_R50_PAIR_D;
512 		break;
513 	default:
514 		return -EINVAL;
515 	}
516 
517 	phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
518 
519 	return 0;
520 }
521 
522 static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
523 			    u8 txg_calen_x)
524 {
525 	u16 tx_r50_cal_val;
526 
527 	switch (txg_calen_x) {
528 	case PAIR_A:
529 		tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
530 		break;
531 	case PAIR_B:
532 		tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
533 		break;
534 	case PAIR_C:
535 		tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
536 		break;
537 	case PAIR_D:
538 		tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
539 		break;
540 	default:
541 		return -EINVAL;
542 	}
543 	tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
544 
545 	return 0;
546 }
547 
548 static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
549 {
550 	u8 lower_idx, upper_idx, txreserve_val;
551 	u8 lower_ret, upper_ret;
552 	int ret;
553 
554 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
555 			 MTK_PHY_RG_ANA_CALEN);
556 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
557 			   MTK_PHY_RG_CAL_CKINV);
558 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
559 			 MTK_PHY_RG_TXVOS_CALEN);
560 
561 	switch (rg_txreserve_x) {
562 	case PAIR_A:
563 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
564 				   MTK_PHY_RG_DASN_DAC_IN0_A,
565 				   MTK_PHY_DASN_DAC_IN0_A_MASK);
566 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
567 				   MTK_PHY_RG_DASN_DAC_IN1_A,
568 				   MTK_PHY_DASN_DAC_IN1_A_MASK);
569 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
570 				 MTK_PHY_RG_ANA_CAL_RG0,
571 				 MTK_PHY_RG_ZCALEN_A);
572 		break;
573 	case PAIR_B:
574 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
575 				   MTK_PHY_RG_DASN_DAC_IN0_B,
576 				   MTK_PHY_DASN_DAC_IN0_B_MASK);
577 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
578 				   MTK_PHY_RG_DASN_DAC_IN1_B,
579 				   MTK_PHY_DASN_DAC_IN1_B_MASK);
580 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
581 				 MTK_PHY_RG_ANA_CAL_RG1,
582 				 MTK_PHY_RG_ZCALEN_B);
583 		break;
584 	case PAIR_C:
585 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
586 				   MTK_PHY_RG_DASN_DAC_IN0_C,
587 				   MTK_PHY_DASN_DAC_IN0_C_MASK);
588 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
589 				   MTK_PHY_RG_DASN_DAC_IN1_C,
590 				   MTK_PHY_DASN_DAC_IN1_C_MASK);
591 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
592 				 MTK_PHY_RG_ANA_CAL_RG1,
593 				 MTK_PHY_RG_ZCALEN_C);
594 		break;
595 	case PAIR_D:
596 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
597 				   MTK_PHY_RG_DASN_DAC_IN0_D,
598 				   MTK_PHY_DASN_DAC_IN0_D_MASK);
599 		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
600 				   MTK_PHY_RG_DASN_DAC_IN1_D,
601 				   MTK_PHY_DASN_DAC_IN1_D_MASK);
602 		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
603 				 MTK_PHY_RG_ANA_CAL_RG1,
604 				 MTK_PHY_RG_ZCALEN_D);
605 		break;
606 	default:
607 		ret = -EINVAL;
608 		goto restore;
609 	}
610 
611 	lower_idx = TXRESERVE_MIN;
612 	upper_idx = TXRESERVE_MAX;
613 
614 	phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
615 	while ((upper_idx - lower_idx) > 1) {
616 		txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
617 		ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
618 				MTK_PHY_DA_RX_PSBN_TBT_MASK |
619 				MTK_PHY_DA_RX_PSBN_HBT_MASK |
620 				MTK_PHY_DA_RX_PSBN_GBE_MASK |
621 				MTK_PHY_DA_RX_PSBN_LP_MASK,
622 				txreserve_val << 12 | txreserve_val << 8 |
623 				txreserve_val << 4 | txreserve_val);
624 		if (ret == 1) {
625 			upper_idx = txreserve_val;
626 			upper_ret = ret;
627 		} else if (ret == 0) {
628 			lower_idx = txreserve_val;
629 			lower_ret = ret;
630 		} else {
631 			goto restore;
632 		}
633 	}
634 
635 	if (lower_idx == TXRESERVE_MIN) {
636 		lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
637 				      MTK_PHY_RXADC_CTRL_RG9,
638 				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
639 				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
640 				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
641 				      MTK_PHY_DA_RX_PSBN_LP_MASK,
642 				      lower_idx << 12 | lower_idx << 8 |
643 				      lower_idx << 4 | lower_idx);
644 		ret = lower_ret;
645 	} else if (upper_idx == TXRESERVE_MAX) {
646 		upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
647 				      MTK_PHY_RXADC_CTRL_RG9,
648 				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
649 				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
650 				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
651 				      MTK_PHY_DA_RX_PSBN_LP_MASK,
652 				      upper_idx << 12 | upper_idx << 8 |
653 				      upper_idx << 4 | upper_idx);
654 		ret = upper_ret;
655 	}
656 	if (ret < 0)
657 		goto restore;
658 
659 	/* We calibrate TX-VCM in different logic. Check upper index and then
660 	 * lower index. If this calibration is valid, apply lower index's
661 	 * result.
662 	 */
663 	ret = upper_ret - lower_ret;
664 	if (ret == 1) {
665 		ret = 0;
666 		/* Make sure we use upper_idx in our calibration system */
667 		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
668 			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
669 			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
670 			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
671 			  MTK_PHY_DA_RX_PSBN_LP_MASK,
672 			  upper_idx << 12 | upper_idx << 8 |
673 			  upper_idx << 4 | upper_idx);
674 		phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
675 	} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
676 		   lower_ret == 1) {
677 		ret = 0;
678 		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
679 			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
680 			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
681 			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
682 			  MTK_PHY_DA_RX_PSBN_LP_MASK,
683 			  lower_idx << 12 | lower_idx << 8 |
684 			  lower_idx << 4 | lower_idx);
685 		phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
686 			    lower_idx);
687 	} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
688 		   lower_ret == 0) {
689 		ret = 0;
690 		phydev_warn(phydev,
691 			    "TX-VCM SW cal result at high margin 0x%x\n",
692 			    upper_idx);
693 	} else {
694 		ret = -EINVAL;
695 	}
696 
697 restore:
698 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
699 			   MTK_PHY_RG_ANA_CALEN);
700 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
701 			   MTK_PHY_RG_TXVOS_CALEN);
702 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
703 			   MTK_PHY_RG_ZCALEN_A);
704 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
705 			   MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
706 			   MTK_PHY_RG_ZCALEN_D);
707 
708 	return ret;
709 }
710 
711 static void mt798x_phy_common_finetune(struct phy_device *phydev)
712 {
713 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
714 	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
715 	__phy_write(phydev, 0x11, 0xc71);
716 	__phy_write(phydev, 0x12, 0xc);
717 	__phy_write(phydev, 0x10, 0x8fae);
718 
719 	/* EnabRandUpdTrig = 1 */
720 	__phy_write(phydev, 0x11, 0x2f00);
721 	__phy_write(phydev, 0x12, 0xe);
722 	__phy_write(phydev, 0x10, 0x8fb0);
723 
724 	/* NormMseLoThresh = 85 */
725 	__phy_write(phydev, 0x11, 0x55a0);
726 	__phy_write(phydev, 0x12, 0x0);
727 	__phy_write(phydev, 0x10, 0x83aa);
728 
729 	/* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
730 	__phy_write(phydev, 0x11, 0x240);
731 	__phy_write(phydev, 0x12, 0x0);
732 	__phy_write(phydev, 0x10, 0x9680);
733 
734 	/* TrFreeze = 0 (mt7988 default) */
735 	__phy_write(phydev, 0x11, 0x0);
736 	__phy_write(phydev, 0x12, 0x0);
737 	__phy_write(phydev, 0x10, 0x9686);
738 
739 	/* SSTrKp100 = 5 */
740 	/* SSTrKf100 = 6 */
741 	/* SSTrKp1000Mas = 5 */
742 	/* SSTrKf1000Mas = 6 */
743 	/* SSTrKp1000Slv = 5 */
744 	/* SSTrKf1000Slv = 6 */
745 	__phy_write(phydev, 0x11, 0xbaef);
746 	__phy_write(phydev, 0x12, 0x2e);
747 	__phy_write(phydev, 0x10, 0x968c);
748 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
749 }
750 
751 static void mt7981_phy_finetune(struct phy_device *phydev)
752 {
753 	u16 val[8] = { 0x01ce, 0x01c1,
754 		       0x020f, 0x0202,
755 		       0x03d0, 0x03c0,
756 		       0x0013, 0x0005 };
757 	int i, k;
758 
759 	/* 100M eye finetune:
760 	 * Keep middle level of TX MLT3 shapper as default.
761 	 * Only change TX MLT3 overshoot level here.
762 	 */
763 	for (k = 0, i = 1; i < 12; i++) {
764 		if (i % 3 == 0)
765 			continue;
766 		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
767 	}
768 
769 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
770 	/* ResetSyncOffset = 6 */
771 	__phy_write(phydev, 0x11, 0x600);
772 	__phy_write(phydev, 0x12, 0x0);
773 	__phy_write(phydev, 0x10, 0x8fc0);
774 
775 	/* VgaDecRate = 1 */
776 	__phy_write(phydev, 0x11, 0x4c2a);
777 	__phy_write(phydev, 0x12, 0x3e);
778 	__phy_write(phydev, 0x10, 0x8fa4);
779 
780 	/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
781 	 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
782 	 */
783 	__phy_write(phydev, 0x11, 0xd10a);
784 	__phy_write(phydev, 0x12, 0x34);
785 	__phy_write(phydev, 0x10, 0x8f82);
786 
787 	/* VcoSlicerThreshBitsHigh */
788 	__phy_write(phydev, 0x11, 0x5555);
789 	__phy_write(phydev, 0x12, 0x55);
790 	__phy_write(phydev, 0x10, 0x8ec0);
791 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
792 
793 	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
794 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
795 		       MTK_PHY_TR_OPEN_LOOP_EN_MASK |
796 		       MTK_PHY_LPF_X_AVERAGE_MASK,
797 		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
798 
799 	/* rg_tr_lpf_cnt_val = 512 */
800 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
801 
802 	/* IIR2 related */
803 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
804 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
805 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
806 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
807 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
808 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
809 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
810 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
811 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
812 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
813 
814 	/* FFE peaking */
815 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
816 		       MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
817 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
818 		       MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
819 
820 	/* Disable LDO pump */
821 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
822 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
823 	/* Adjust LDO output voltage */
824 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
825 }
826 
827 static void mt7988_phy_finetune(struct phy_device *phydev)
828 {
829 	u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
830 			0x020d, 0x0206, 0x0384, 0x03d0,
831 			0x03c6, 0x030a, 0x0011, 0x0005 };
832 	int i;
833 
834 	/* Set default MLT3 shaper first */
835 	for (i = 0; i < 12; i++)
836 		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
837 
838 	/* TCT finetune */
839 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
840 
841 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
842 	/* ResetSyncOffset = 5 */
843 	__phy_write(phydev, 0x11, 0x500);
844 	__phy_write(phydev, 0x12, 0x0);
845 	__phy_write(phydev, 0x10, 0x8fc0);
846 
847 	/* VgaDecRate is 1 at default on mt7988 */
848 
849 	/* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
850 	 * MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
851 	 */
852 	__phy_write(phydev, 0x11, 0xb90a);
853 	__phy_write(phydev, 0x12, 0x6f);
854 	__phy_write(phydev, 0x10, 0x8f82);
855 
856 	/* RemAckCntLimitCtrl = 1 */
857 	__phy_write(phydev, 0x11, 0xfbba);
858 	__phy_write(phydev, 0x12, 0xc3);
859 	__phy_write(phydev, 0x10, 0x87f8);
860 
861 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
862 
863 	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
864 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
865 		       MTK_PHY_TR_OPEN_LOOP_EN_MASK |
866 		       MTK_PHY_LPF_X_AVERAGE_MASK,
867 		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
868 
869 	/* rg_tr_lpf_cnt_val = 1023 */
870 	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
871 }
872 
873 static void mt798x_phy_eee(struct phy_device *phydev)
874 {
875 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
876 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
877 		       MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
878 		       MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
879 		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
880 		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
881 
882 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
883 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
884 		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
885 		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
886 				  0xff));
887 
888 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
889 			   MTK_PHY_RG_TESTMUX_ADC_CTRL,
890 			   MTK_PHY_RG_TXEN_DIG_MASK);
891 
892 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
893 			 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
894 
895 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
896 			   MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
897 
898 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
899 		       MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
900 		       MTK_PHY_LPI_SLV_SEND_TX_EN,
901 		       FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
902 
903 	/* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
904 	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
905 			   MTK_PHY_LPI_TXPCS_LOC_RCV);
906 
907 	/* This also fixes some IoT issues, such as CH340 */
908 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
909 		       MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
910 		       FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
911 		       FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
912 
913 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
914 		       MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
915 		       FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
916 				  0x33) |
917 		       MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
918 		       MTK_PHY_LPI_VCO_EEE_STG0_EN);
919 
920 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
921 			 MTK_PHY_EEE_WAKE_MAS_INT_DC |
922 			 MTK_PHY_EEE_WAKE_SLV_INT_DC);
923 
924 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
925 		       MTK_PHY_SMI_DETCNT_MAX_MASK,
926 		       FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
927 		       MTK_PHY_SMI_DET_MAX_EN);
928 
929 	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
930 			 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
931 			 MTK_PHY_TREC_UPDATE_ENAB_CLR |
932 			 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
933 			 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
934 
935 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
936 	/* Regsigdet_sel_1000 = 0 */
937 	__phy_write(phydev, 0x11, 0xb);
938 	__phy_write(phydev, 0x12, 0x0);
939 	__phy_write(phydev, 0x10, 0x9690);
940 
941 	/* REG_EEE_st2TrKf1000 = 2 */
942 	__phy_write(phydev, 0x11, 0x114f);
943 	__phy_write(phydev, 0x12, 0x2);
944 	__phy_write(phydev, 0x10, 0x969a);
945 
946 	/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
947 	__phy_write(phydev, 0x11, 0x3028);
948 	__phy_write(phydev, 0x12, 0x0);
949 	__phy_write(phydev, 0x10, 0x969e);
950 
951 	/* RegEEE_slv_wake_int_timer_tar = 8 */
952 	__phy_write(phydev, 0x11, 0x5010);
953 	__phy_write(phydev, 0x12, 0x0);
954 	__phy_write(phydev, 0x10, 0x96a0);
955 
956 	/* RegEEE_trfreeze_timer2 = 586 */
957 	__phy_write(phydev, 0x11, 0x24a);
958 	__phy_write(phydev, 0x12, 0x0);
959 	__phy_write(phydev, 0x10, 0x96a8);
960 
961 	/* RegEEE100Stg1_tar = 16 */
962 	__phy_write(phydev, 0x11, 0x3210);
963 	__phy_write(phydev, 0x12, 0x0);
964 	__phy_write(phydev, 0x10, 0x96b8);
965 
966 	/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
967 	__phy_write(phydev, 0x11, 0x1463);
968 	__phy_write(phydev, 0x12, 0x0);
969 	__phy_write(phydev, 0x10, 0x96ca);
970 
971 	/* DfeTailEnableVgaThresh1000 = 27 */
972 	__phy_write(phydev, 0x11, 0x36);
973 	__phy_write(phydev, 0x12, 0x0);
974 	__phy_write(phydev, 0x10, 0x8f80);
975 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
976 
977 	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
978 	__phy_modify(phydev, MTK_PHY_LPI_REG_14,
979 		     MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
980 		     FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
981 
982 	__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
983 		     FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
984 	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
985 
986 	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
987 		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
988 		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
989 		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
990 				  0xff));
991 }
992 
993 static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
994 		  u8 start_pair, u8 end_pair)
995 {
996 	u8 pair_n;
997 	int ret;
998 
999 	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1000 		/* TX_OFFSET & TX_AMP have no SW calibration. */
1001 		switch (cal_item) {
1002 		case TX_VCM:
1003 			ret = tx_vcm_cal_sw(phydev, pair_n);
1004 			break;
1005 		default:
1006 			return -EINVAL;
1007 		}
1008 		if (ret)
1009 			return ret;
1010 	}
1011 	return 0;
1012 }
1013 
1014 static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
1015 		     u8 start_pair, u8 end_pair, u32 *buf)
1016 {
1017 	u8 pair_n;
1018 	int ret;
1019 
1020 	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1021 		/* TX_VCM has no efuse calibration. */
1022 		switch (cal_item) {
1023 		case REXT:
1024 			ret = rext_cal_efuse(phydev, buf);
1025 			break;
1026 		case TX_OFFSET:
1027 			ret = tx_offset_cal_efuse(phydev, buf);
1028 			break;
1029 		case TX_AMP:
1030 			ret = tx_amp_cal_efuse(phydev, buf);
1031 			break;
1032 		case TX_R50:
1033 			ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1034 			break;
1035 		default:
1036 			return -EINVAL;
1037 		}
1038 		if (ret)
1039 			return ret;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1046 		     enum CAL_MODE cal_mode, u8 start_pair,
1047 		     u8 end_pair, u32 *buf)
1048 {
1049 	int ret;
1050 
1051 	switch (cal_mode) {
1052 	case EFUSE_M:
1053 		ret = cal_efuse(phydev, cal_item, start_pair,
1054 				end_pair, buf);
1055 		break;
1056 	case SW_M:
1057 		ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1058 		break;
1059 	default:
1060 		return -EINVAL;
1061 	}
1062 
1063 	if (ret) {
1064 		phydev_err(phydev, "cal %d failed\n", cal_item);
1065 		return -EIO;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int mt798x_phy_calibration(struct phy_device *phydev)
1072 {
1073 	struct nvmem_cell *cell;
1074 	int ret = 0;
1075 	size_t len;
1076 	u32 *buf;
1077 
1078 	cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1079 	if (IS_ERR(cell)) {
1080 		if (PTR_ERR(cell) == -EPROBE_DEFER)
1081 			return PTR_ERR(cell);
1082 		return 0;
1083 	}
1084 
1085 	buf = (u32 *)nvmem_cell_read(cell, &len);
1086 	if (IS_ERR(buf))
1087 		return PTR_ERR(buf);
1088 	nvmem_cell_put(cell);
1089 
1090 	if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1091 		phydev_err(phydev, "invalid efuse data\n");
1092 		ret = -EINVAL;
1093 		goto out;
1094 	}
1095 
1096 	ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1097 	if (ret)
1098 		goto out;
1099 	ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1100 	if (ret)
1101 		goto out;
1102 	ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1103 	if (ret)
1104 		goto out;
1105 	ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1106 	if (ret)
1107 		goto out;
1108 	ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1109 	if (ret)
1110 		goto out;
1111 
1112 out:
1113 	kfree(buf);
1114 	return ret;
1115 }
1116 
1117 static int mt798x_phy_config_init(struct phy_device *phydev)
1118 {
1119 	switch (phydev->drv->phy_id) {
1120 	case MTK_GPHY_ID_MT7981:
1121 		mt7981_phy_finetune(phydev);
1122 		break;
1123 	case MTK_GPHY_ID_MT7988:
1124 		mt7988_phy_finetune(phydev);
1125 		break;
1126 	}
1127 
1128 	mt798x_phy_common_finetune(phydev);
1129 	mt798x_phy_eee(phydev);
1130 
1131 	return mt798x_phy_calibration(phydev);
1132 }
1133 
1134 static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1135 				    unsigned long *delay_on,
1136 				    unsigned long *delay_off)
1137 {
1138 	bool blinking = false;
1139 	int err;
1140 
1141 	err = mtk_phy_led_num_dly_cfg(index, delay_on, delay_off, &blinking);
1142 	if (err < 0)
1143 		return err;
1144 
1145 	err = mtk_phy_hw_led_blink_set(phydev, index, blinking);
1146 	if (err)
1147 		return err;
1148 
1149 	return mtk_phy_hw_led_on_set(phydev, index, MTK_GPHY_LED_ON_MASK,
1150 				     false);
1151 }
1152 
1153 static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1154 					 u8 index, enum led_brightness value)
1155 {
1156 	int err;
1157 
1158 	err = mtk_phy_hw_led_blink_set(phydev, index, false);
1159 	if (err)
1160 		return err;
1161 
1162 	return mtk_phy_hw_led_on_set(phydev, index, MTK_GPHY_LED_ON_MASK,
1163 				     (value != LED_OFF));
1164 }
1165 
1166 static const unsigned long supported_triggers =
1167 	BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1168 	BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1169 	BIT(TRIGGER_NETDEV_LINK)        |
1170 	BIT(TRIGGER_NETDEV_LINK_10)     |
1171 	BIT(TRIGGER_NETDEV_LINK_100)    |
1172 	BIT(TRIGGER_NETDEV_LINK_1000)   |
1173 	BIT(TRIGGER_NETDEV_RX)          |
1174 	BIT(TRIGGER_NETDEV_TX);
1175 
1176 static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1177 					  unsigned long rules)
1178 {
1179 	return mtk_phy_led_hw_is_supported(phydev, index, rules,
1180 					   supported_triggers);
1181 }
1182 
1183 static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1184 					 unsigned long *rules)
1185 {
1186 	return mtk_phy_led_hw_ctrl_get(phydev, index, rules,
1187 				       MTK_GPHY_LED_ON_SET,
1188 				       MTK_GPHY_LED_RX_BLINK_SET,
1189 				       MTK_GPHY_LED_TX_BLINK_SET);
1190 };
1191 
1192 static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1193 					 unsigned long rules)
1194 {
1195 	return mtk_phy_led_hw_ctrl_set(phydev, index, rules,
1196 				       MTK_GPHY_LED_ON_SET,
1197 				       MTK_GPHY_LED_RX_BLINK_SET,
1198 				       MTK_GPHY_LED_TX_BLINK_SET);
1199 };
1200 
1201 static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1202 {
1203 	struct mtk_socphy_shared *priv = phydev->shared->priv;
1204 	u32 polarities;
1205 
1206 	if (led_num == 0)
1207 		polarities = ~(priv->boottrap);
1208 	else
1209 		polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1210 
1211 	if (polarities & BIT(phydev->mdio.addr))
1212 		return true;
1213 
1214 	return false;
1215 }
1216 
1217 static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1218 {
1219 	struct pinctrl *pinctrl;
1220 	int index;
1221 
1222 	/* Setup LED polarity according to bootstrap use of LED pins */
1223 	for (index = 0; index < 2; ++index)
1224 		phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1225 				MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1226 			       MTK_PHY_LED_ON_POLARITY,
1227 			       mt7988_phy_led_get_polarity(phydev, index) ?
1228 				MTK_PHY_LED_ON_POLARITY : 0);
1229 
1230 	/* Only now setup pinctrl to avoid bogus blinking */
1231 	pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1232 	if (IS_ERR(pinctrl))
1233 		dev_err(&phydev->mdio.bus->dev,
1234 			"Failed to setup PHY LED pinctrl\n");
1235 
1236 	return 0;
1237 }
1238 
1239 static int mt7988_phy_probe_shared(struct phy_device *phydev)
1240 {
1241 	struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1242 	struct mtk_socphy_shared *shared = phydev->shared->priv;
1243 	struct regmap *regmap;
1244 	u32 reg;
1245 	int ret;
1246 
1247 	/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1248 	 * LED_C and LED_D respectively. At the same time those pins are used to
1249 	 * bootstrap configuration of the reference clock source (LED_A),
1250 	 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1251 	 * In practice this is done using a LED and a resistor pulling the pin
1252 	 * either to GND or to VIO.
1253 	 * The detected value at boot time is accessible at run-time using the
1254 	 * TPBANK0 register located in the gpio base of the pinctrl, in order
1255 	 * to read it here it needs to be referenced by a phandle called
1256 	 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1257 	 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1258 	 * set LED polarity for each of the LED0.
1259 	 */
1260 	regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1261 	if (IS_ERR(regmap))
1262 		return PTR_ERR(regmap);
1263 
1264 	ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
1265 	if (ret)
1266 		return ret;
1267 
1268 	shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1269 
1270 	return 0;
1271 }
1272 
1273 static int mt7988_phy_probe(struct phy_device *phydev)
1274 {
1275 	struct mtk_socphy_shared *shared;
1276 	struct mtk_socphy_priv *priv;
1277 	int err;
1278 
1279 	if (phydev->mdio.addr > 3)
1280 		return -EINVAL;
1281 
1282 	err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1283 				    sizeof(struct mtk_socphy_shared));
1284 	if (err)
1285 		return err;
1286 
1287 	if (phy_package_probe_once(phydev)) {
1288 		err = mt7988_phy_probe_shared(phydev);
1289 		if (err)
1290 			return err;
1291 	}
1292 
1293 	shared = phydev->shared->priv;
1294 	priv = &shared->priv[phydev->mdio.addr];
1295 
1296 	phydev->priv = priv;
1297 
1298 	mtk_phy_leds_state_init(phydev);
1299 
1300 	err = mt7988_phy_fix_leds_polarities(phydev);
1301 	if (err)
1302 		return err;
1303 
1304 	/* Disable TX power saving at probing to:
1305 	 * 1. Meet common mode compliance test criteria
1306 	 * 2. Make sure that TX-VCM calibration works fine
1307 	 */
1308 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
1309 		       MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
1310 
1311 	return mt798x_phy_calibration(phydev);
1312 }
1313 
1314 static int mt7981_phy_probe(struct phy_device *phydev)
1315 {
1316 	struct mtk_socphy_priv *priv;
1317 
1318 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1319 			    GFP_KERNEL);
1320 	if (!priv)
1321 		return -ENOMEM;
1322 
1323 	phydev->priv = priv;
1324 
1325 	mtk_phy_leds_state_init(phydev);
1326 
1327 	return mt798x_phy_calibration(phydev);
1328 }
1329 
1330 static struct phy_driver mtk_socphy_driver[] = {
1331 	{
1332 		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1333 		.name		= "MediaTek MT7981 PHY",
1334 		.config_init	= mt798x_phy_config_init,
1335 		.config_intr	= genphy_no_config_intr,
1336 		.handle_interrupt = genphy_handle_interrupt_no_ack,
1337 		.probe		= mt7981_phy_probe,
1338 		.suspend	= genphy_suspend,
1339 		.resume		= genphy_resume,
1340 		.read_page	= mtk_socphy_read_page,
1341 		.write_page	= mtk_socphy_write_page,
1342 		.led_blink_set	= mt798x_phy_led_blink_set,
1343 		.led_brightness_set = mt798x_phy_led_brightness_set,
1344 		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1345 		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1346 		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1347 	},
1348 	{
1349 		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1350 		.name		= "MediaTek MT7988 PHY",
1351 		.config_init	= mt798x_phy_config_init,
1352 		.config_intr	= genphy_no_config_intr,
1353 		.handle_interrupt = genphy_handle_interrupt_no_ack,
1354 		.probe		= mt7988_phy_probe,
1355 		.suspend	= genphy_suspend,
1356 		.resume		= genphy_resume,
1357 		.read_page	= mtk_socphy_read_page,
1358 		.write_page	= mtk_socphy_write_page,
1359 		.led_blink_set	= mt798x_phy_led_blink_set,
1360 		.led_brightness_set = mt798x_phy_led_brightness_set,
1361 		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1362 		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1363 		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1364 	},
1365 };
1366 
1367 module_phy_driver(mtk_socphy_driver);
1368 
1369 static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1370 	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1371 	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1372 	{ }
1373 };
1374 
1375 MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1376 MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1377 MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1378 MODULE_LICENSE("GPL");
1379 
1380 MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
1381