1 /* 2 * Driver for the National Semiconductor DP83640 PHYTER 3 * 4 * Copyright (C) 2010 OMICRON electronics GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/ethtool.h> 24 #include <linux/kernel.h> 25 #include <linux/list.h> 26 #include <linux/mii.h> 27 #include <linux/module.h> 28 #include <linux/net_tstamp.h> 29 #include <linux/netdevice.h> 30 #include <linux/if_vlan.h> 31 #include <linux/phy.h> 32 #include <linux/ptp_classify.h> 33 #include <linux/ptp_clock_kernel.h> 34 35 #include "dp83640_reg.h" 36 37 #define DP83640_PHY_ID 0x20005ce1 38 #define PAGESEL 0x13 39 #define LAYER4 0x02 40 #define LAYER2 0x01 41 #define MAX_RXTS 64 42 #define N_EXT_TS 6 43 #define N_PER_OUT 7 44 #define PSF_PTPVER 2 45 #define PSF_EVNT 0x4000 46 #define PSF_RX 0x2000 47 #define PSF_TX 0x1000 48 #define EXT_EVENT 1 49 #define CAL_EVENT 7 50 #define CAL_TRIGGER 1 51 #define DP83640_N_PINS 12 52 53 #define MII_DP83640_MICR 0x11 54 #define MII_DP83640_MISR 0x12 55 56 #define MII_DP83640_MICR_OE 0x1 57 #define MII_DP83640_MICR_IE 0x2 58 59 #define MII_DP83640_MISR_RHF_INT_EN 0x01 60 #define MII_DP83640_MISR_FHF_INT_EN 0x02 61 #define MII_DP83640_MISR_ANC_INT_EN 0x04 62 #define MII_DP83640_MISR_DUP_INT_EN 0x08 63 #define MII_DP83640_MISR_SPD_INT_EN 0x10 64 #define MII_DP83640_MISR_LINK_INT_EN 0x20 65 #define MII_DP83640_MISR_ED_INT_EN 0x40 66 #define MII_DP83640_MISR_LQ_INT_EN 0x80 67 68 /* phyter seems to miss the mark by 16 ns */ 69 #define ADJTIME_FIX 16 70 71 #if defined(__BIG_ENDIAN) 72 #define ENDIAN_FLAG 0 73 #elif defined(__LITTLE_ENDIAN) 74 #define ENDIAN_FLAG PSF_ENDIAN 75 #endif 76 77 struct dp83640_skb_info { 78 int ptp_type; 79 unsigned long tmo; 80 }; 81 82 struct phy_rxts { 83 u16 ns_lo; /* ns[15:0] */ 84 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 85 u16 sec_lo; /* sec[15:0] */ 86 u16 sec_hi; /* sec[31:16] */ 87 u16 seqid; /* sequenceId[15:0] */ 88 u16 msgtype; /* messageType[3:0], hash[11:0] */ 89 }; 90 91 struct phy_txts { 92 u16 ns_lo; /* ns[15:0] */ 93 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 94 u16 sec_lo; /* sec[15:0] */ 95 u16 sec_hi; /* sec[31:16] */ 96 }; 97 98 struct rxts { 99 struct list_head list; 100 unsigned long tmo; 101 u64 ns; 102 u16 seqid; 103 u8 msgtype; 104 u16 hash; 105 }; 106 107 struct dp83640_clock; 108 109 struct dp83640_private { 110 struct list_head list; 111 struct dp83640_clock *clock; 112 struct phy_device *phydev; 113 struct work_struct ts_work; 114 int hwts_tx_en; 115 int hwts_rx_en; 116 int layer; 117 int version; 118 /* remember state of cfg0 during calibration */ 119 int cfg0; 120 /* remember the last event time stamp */ 121 struct phy_txts edata; 122 /* list of rx timestamps */ 123 struct list_head rxts; 124 struct list_head rxpool; 125 struct rxts rx_pool_data[MAX_RXTS]; 126 /* protects above three fields from concurrent access */ 127 spinlock_t rx_lock; 128 /* queues of incoming and outgoing packets */ 129 struct sk_buff_head rx_queue; 130 struct sk_buff_head tx_queue; 131 }; 132 133 struct dp83640_clock { 134 /* keeps the instance in the 'phyter_clocks' list */ 135 struct list_head list; 136 /* we create one clock instance per MII bus */ 137 struct mii_bus *bus; 138 /* protects extended registers from concurrent access */ 139 struct mutex extreg_lock; 140 /* remembers which page was last selected */ 141 int page; 142 /* our advertised capabilities */ 143 struct ptp_clock_info caps; 144 /* protects the three fields below from concurrent access */ 145 struct mutex clock_lock; 146 /* the one phyter from which we shall read */ 147 struct dp83640_private *chosen; 148 /* list of the other attached phyters, not chosen */ 149 struct list_head phylist; 150 /* reference to our PTP hardware clock */ 151 struct ptp_clock *ptp_clock; 152 }; 153 154 /* globals */ 155 156 enum { 157 CALIBRATE_GPIO, 158 PEROUT_GPIO, 159 EXTTS0_GPIO, 160 EXTTS1_GPIO, 161 EXTTS2_GPIO, 162 EXTTS3_GPIO, 163 EXTTS4_GPIO, 164 EXTTS5_GPIO, 165 GPIO_TABLE_SIZE 166 }; 167 168 static int chosen_phy = -1; 169 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 170 1, 2, 3, 4, 8, 9, 10, 11 171 }; 172 173 module_param(chosen_phy, int, 0444); 174 module_param_array(gpio_tab, ushort, NULL, 0444); 175 176 MODULE_PARM_DESC(chosen_phy, \ 177 "The address of the PHY to use for the ancillary clock features"); 178 MODULE_PARM_DESC(gpio_tab, \ 179 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 180 181 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) 182 { 183 int i, index; 184 185 for (i = 0; i < DP83640_N_PINS; i++) { 186 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); 187 pd[i].index = i; 188 } 189 190 for (i = 0; i < GPIO_TABLE_SIZE; i++) { 191 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { 192 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); 193 return; 194 } 195 } 196 197 index = gpio_tab[CALIBRATE_GPIO] - 1; 198 pd[index].func = PTP_PF_PHYSYNC; 199 pd[index].chan = 0; 200 201 index = gpio_tab[PEROUT_GPIO] - 1; 202 pd[index].func = PTP_PF_PEROUT; 203 pd[index].chan = 0; 204 205 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { 206 index = gpio_tab[i] - 1; 207 pd[index].func = PTP_PF_EXTTS; 208 pd[index].chan = i - EXTTS0_GPIO; 209 } 210 } 211 212 /* a list of clocks and a mutex to protect it */ 213 static LIST_HEAD(phyter_clocks); 214 static DEFINE_MUTEX(phyter_clocks_lock); 215 216 static void rx_timestamp_work(struct work_struct *work); 217 218 /* extended register access functions */ 219 220 #define BROADCAST_ADDR 31 221 222 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val) 223 { 224 return mdiobus_write(bus, BROADCAST_ADDR, regnum, val); 225 } 226 227 /* Caller must hold extreg_lock. */ 228 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 229 { 230 struct dp83640_private *dp83640 = phydev->priv; 231 int val; 232 233 if (dp83640->clock->page != page) { 234 broadcast_write(phydev->bus, PAGESEL, page); 235 dp83640->clock->page = page; 236 } 237 val = phy_read(phydev, regnum); 238 239 return val; 240 } 241 242 /* Caller must hold extreg_lock. */ 243 static void ext_write(int broadcast, struct phy_device *phydev, 244 int page, u32 regnum, u16 val) 245 { 246 struct dp83640_private *dp83640 = phydev->priv; 247 248 if (dp83640->clock->page != page) { 249 broadcast_write(phydev->bus, PAGESEL, page); 250 dp83640->clock->page = page; 251 } 252 if (broadcast) 253 broadcast_write(phydev->bus, regnum, val); 254 else 255 phy_write(phydev, regnum, val); 256 } 257 258 /* Caller must hold extreg_lock. */ 259 static int tdr_write(int bc, struct phy_device *dev, 260 const struct timespec64 *ts, u16 cmd) 261 { 262 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 263 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 264 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 265 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 266 267 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 268 269 return 0; 270 } 271 272 /* convert phy timestamps into driver timestamps */ 273 274 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 275 { 276 u32 sec; 277 278 sec = p->sec_lo; 279 sec |= p->sec_hi << 16; 280 281 rxts->ns = p->ns_lo; 282 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 283 rxts->ns += ((u64)sec) * 1000000000ULL; 284 rxts->seqid = p->seqid; 285 rxts->msgtype = (p->msgtype >> 12) & 0xf; 286 rxts->hash = p->msgtype & 0x0fff; 287 rxts->tmo = jiffies + 2; 288 } 289 290 static u64 phy2txts(struct phy_txts *p) 291 { 292 u64 ns; 293 u32 sec; 294 295 sec = p->sec_lo; 296 sec |= p->sec_hi << 16; 297 298 ns = p->ns_lo; 299 ns |= (p->ns_hi & 0x3fff) << 16; 300 ns += ((u64)sec) * 1000000000ULL; 301 302 return ns; 303 } 304 305 static int periodic_output(struct dp83640_clock *clock, 306 struct ptp_clock_request *clkreq, bool on, 307 int trigger) 308 { 309 struct dp83640_private *dp83640 = clock->chosen; 310 struct phy_device *phydev = dp83640->phydev; 311 u32 sec, nsec, pwidth; 312 u16 gpio, ptp_trig, val; 313 314 if (on) { 315 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 316 trigger); 317 if (gpio < 1) 318 return -EINVAL; 319 } else { 320 gpio = 0; 321 } 322 323 ptp_trig = TRIG_WR | 324 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 325 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 326 TRIG_PER | 327 TRIG_PULSE; 328 329 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 330 331 if (!on) { 332 val |= TRIG_DIS; 333 mutex_lock(&clock->extreg_lock); 334 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 335 ext_write(0, phydev, PAGE4, PTP_CTL, val); 336 mutex_unlock(&clock->extreg_lock); 337 return 0; 338 } 339 340 sec = clkreq->perout.start.sec; 341 nsec = clkreq->perout.start.nsec; 342 pwidth = clkreq->perout.period.sec * 1000000000UL; 343 pwidth += clkreq->perout.period.nsec; 344 pwidth /= 2; 345 346 mutex_lock(&clock->extreg_lock); 347 348 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 349 350 /*load trigger*/ 351 val |= TRIG_LOAD; 352 ext_write(0, phydev, PAGE4, PTP_CTL, val); 353 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 354 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 355 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 356 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 357 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ 358 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ 359 /* Triggers 0 and 1 has programmable pulsewidth2 */ 360 if (trigger < 2) { 361 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); 362 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); 363 } 364 365 /*enable trigger*/ 366 val &= ~TRIG_LOAD; 367 val |= TRIG_EN; 368 ext_write(0, phydev, PAGE4, PTP_CTL, val); 369 370 mutex_unlock(&clock->extreg_lock); 371 return 0; 372 } 373 374 /* ptp clock methods */ 375 376 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 377 { 378 struct dp83640_clock *clock = 379 container_of(ptp, struct dp83640_clock, caps); 380 struct phy_device *phydev = clock->chosen->phydev; 381 u64 rate; 382 int neg_adj = 0; 383 u16 hi, lo; 384 385 if (ppb < 0) { 386 neg_adj = 1; 387 ppb = -ppb; 388 } 389 rate = ppb; 390 rate <<= 26; 391 rate = div_u64(rate, 1953125); 392 393 hi = (rate >> 16) & PTP_RATE_HI_MASK; 394 if (neg_adj) 395 hi |= PTP_RATE_DIR; 396 397 lo = rate & 0xffff; 398 399 mutex_lock(&clock->extreg_lock); 400 401 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 402 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 403 404 mutex_unlock(&clock->extreg_lock); 405 406 return 0; 407 } 408 409 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 410 { 411 struct dp83640_clock *clock = 412 container_of(ptp, struct dp83640_clock, caps); 413 struct phy_device *phydev = clock->chosen->phydev; 414 struct timespec64 ts; 415 int err; 416 417 delta += ADJTIME_FIX; 418 419 ts = ns_to_timespec64(delta); 420 421 mutex_lock(&clock->extreg_lock); 422 423 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 424 425 mutex_unlock(&clock->extreg_lock); 426 427 return err; 428 } 429 430 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, 431 struct timespec64 *ts) 432 { 433 struct dp83640_clock *clock = 434 container_of(ptp, struct dp83640_clock, caps); 435 struct phy_device *phydev = clock->chosen->phydev; 436 unsigned int val[4]; 437 438 mutex_lock(&clock->extreg_lock); 439 440 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 441 442 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 443 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 444 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 445 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 446 447 mutex_unlock(&clock->extreg_lock); 448 449 ts->tv_nsec = val[0] | (val[1] << 16); 450 ts->tv_sec = val[2] | (val[3] << 16); 451 452 return 0; 453 } 454 455 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 456 const struct timespec64 *ts) 457 { 458 struct dp83640_clock *clock = 459 container_of(ptp, struct dp83640_clock, caps); 460 struct phy_device *phydev = clock->chosen->phydev; 461 int err; 462 463 mutex_lock(&clock->extreg_lock); 464 465 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 466 467 mutex_unlock(&clock->extreg_lock); 468 469 return err; 470 } 471 472 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 473 struct ptp_clock_request *rq, int on) 474 { 475 struct dp83640_clock *clock = 476 container_of(ptp, struct dp83640_clock, caps); 477 struct phy_device *phydev = clock->chosen->phydev; 478 unsigned int index; 479 u16 evnt, event_num, gpio_num; 480 481 switch (rq->type) { 482 case PTP_CLK_REQ_EXTTS: 483 index = rq->extts.index; 484 if (index >= N_EXT_TS) 485 return -EINVAL; 486 event_num = EXT_EVENT + index; 487 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 488 if (on) { 489 gpio_num = 1 + ptp_find_pin(clock->ptp_clock, 490 PTP_PF_EXTTS, index); 491 if (gpio_num < 1) 492 return -EINVAL; 493 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 494 if (rq->extts.flags & PTP_FALLING_EDGE) 495 evnt |= EVNT_FALL; 496 else 497 evnt |= EVNT_RISE; 498 } 499 mutex_lock(&clock->extreg_lock); 500 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 501 mutex_unlock(&clock->extreg_lock); 502 return 0; 503 504 case PTP_CLK_REQ_PEROUT: 505 if (rq->perout.index >= N_PER_OUT) 506 return -EINVAL; 507 return periodic_output(clock, rq, on, rq->perout.index); 508 509 default: 510 break; 511 } 512 513 return -EOPNOTSUPP; 514 } 515 516 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, 517 enum ptp_pin_function func, unsigned int chan) 518 { 519 struct dp83640_clock *clock = 520 container_of(ptp, struct dp83640_clock, caps); 521 522 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && 523 !list_empty(&clock->phylist)) 524 return 1; 525 526 if (func == PTP_PF_PHYSYNC) 527 return 1; 528 529 return 0; 530 } 531 532 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 533 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 534 535 static void enable_status_frames(struct phy_device *phydev, bool on) 536 { 537 struct dp83640_private *dp83640 = phydev->priv; 538 struct dp83640_clock *clock = dp83640->clock; 539 u16 cfg0 = 0, ver; 540 541 if (on) 542 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 543 544 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 545 546 mutex_lock(&clock->extreg_lock); 547 548 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 549 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 550 551 mutex_unlock(&clock->extreg_lock); 552 553 if (!phydev->attached_dev) { 554 pr_warn("expected to find an attached netdevice\n"); 555 return; 556 } 557 558 if (on) { 559 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 560 pr_warn("failed to add mc address\n"); 561 } else { 562 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 563 pr_warn("failed to delete mc address\n"); 564 } 565 } 566 567 static bool is_status_frame(struct sk_buff *skb, int type) 568 { 569 struct ethhdr *h = eth_hdr(skb); 570 571 if (PTP_CLASS_V2_L2 == type && 572 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 573 return true; 574 else 575 return false; 576 } 577 578 static int expired(struct rxts *rxts) 579 { 580 return time_after(jiffies, rxts->tmo); 581 } 582 583 /* Caller must hold rx_lock. */ 584 static void prune_rx_ts(struct dp83640_private *dp83640) 585 { 586 struct list_head *this, *next; 587 struct rxts *rxts; 588 589 list_for_each_safe(this, next, &dp83640->rxts) { 590 rxts = list_entry(this, struct rxts, list); 591 if (expired(rxts)) { 592 list_del_init(&rxts->list); 593 list_add(&rxts->list, &dp83640->rxpool); 594 } 595 } 596 } 597 598 /* synchronize the phyters so they act as one clock */ 599 600 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 601 { 602 int val; 603 phy_write(phydev, PAGESEL, 0); 604 val = phy_read(phydev, PHYCR2); 605 if (on) 606 val |= BC_WRITE; 607 else 608 val &= ~BC_WRITE; 609 phy_write(phydev, PHYCR2, val); 610 phy_write(phydev, PAGESEL, init_page); 611 } 612 613 static void recalibrate(struct dp83640_clock *clock) 614 { 615 s64 now, diff; 616 struct phy_txts event_ts; 617 struct timespec64 ts; 618 struct list_head *this; 619 struct dp83640_private *tmp; 620 struct phy_device *master = clock->chosen->phydev; 621 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 622 623 trigger = CAL_TRIGGER; 624 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0); 625 if (cal_gpio < 1) { 626 pr_err("PHY calibration pin not available - PHY is not calibrated."); 627 return; 628 } 629 630 mutex_lock(&clock->extreg_lock); 631 632 /* 633 * enable broadcast, disable status frames, enable ptp clock 634 */ 635 list_for_each(this, &clock->phylist) { 636 tmp = list_entry(this, struct dp83640_private, list); 637 enable_broadcast(tmp->phydev, clock->page, 1); 638 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 639 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 640 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 641 } 642 enable_broadcast(master, clock->page, 1); 643 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 644 ext_write(0, master, PAGE5, PSF_CFG0, 0); 645 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 646 647 /* 648 * enable an event timestamp 649 */ 650 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 651 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 652 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 653 654 list_for_each(this, &clock->phylist) { 655 tmp = list_entry(this, struct dp83640_private, list); 656 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 657 } 658 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 659 660 /* 661 * configure a trigger 662 */ 663 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 664 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 665 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 666 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 667 668 /* load trigger */ 669 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 670 val |= TRIG_LOAD; 671 ext_write(0, master, PAGE4, PTP_CTL, val); 672 673 /* enable trigger */ 674 val &= ~TRIG_LOAD; 675 val |= TRIG_EN; 676 ext_write(0, master, PAGE4, PTP_CTL, val); 677 678 /* disable trigger */ 679 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 680 val |= TRIG_DIS; 681 ext_write(0, master, PAGE4, PTP_CTL, val); 682 683 /* 684 * read out and correct offsets 685 */ 686 val = ext_read(master, PAGE4, PTP_STS); 687 pr_info("master PTP_STS 0x%04hx\n", val); 688 val = ext_read(master, PAGE4, PTP_ESTS); 689 pr_info("master PTP_ESTS 0x%04hx\n", val); 690 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 691 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 692 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 693 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 694 now = phy2txts(&event_ts); 695 696 list_for_each(this, &clock->phylist) { 697 tmp = list_entry(this, struct dp83640_private, list); 698 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 699 pr_info("slave PTP_STS 0x%04hx\n", val); 700 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 701 pr_info("slave PTP_ESTS 0x%04hx\n", val); 702 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 703 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 704 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 705 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 706 diff = now - (s64) phy2txts(&event_ts); 707 pr_info("slave offset %lld nanoseconds\n", diff); 708 diff += ADJTIME_FIX; 709 ts = ns_to_timespec64(diff); 710 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 711 } 712 713 /* 714 * restore status frames 715 */ 716 list_for_each(this, &clock->phylist) { 717 tmp = list_entry(this, struct dp83640_private, list); 718 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 719 } 720 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 721 722 mutex_unlock(&clock->extreg_lock); 723 } 724 725 /* time stamping methods */ 726 727 static inline u16 exts_chan_to_edata(int ch) 728 { 729 return 1 << ((ch + EXT_EVENT) * 2); 730 } 731 732 static int decode_evnt(struct dp83640_private *dp83640, 733 void *data, int len, u16 ests) 734 { 735 struct phy_txts *phy_txts; 736 struct ptp_clock_event event; 737 int i, parsed; 738 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 739 u16 ext_status = 0; 740 741 /* calculate length of the event timestamp status message */ 742 if (ests & MULT_EVNT) 743 parsed = (words + 2) * sizeof(u16); 744 else 745 parsed = (words + 1) * sizeof(u16); 746 747 /* check if enough data is available */ 748 if (len < parsed) 749 return len; 750 751 if (ests & MULT_EVNT) { 752 ext_status = *(u16 *) data; 753 data += sizeof(ext_status); 754 } 755 756 phy_txts = data; 757 758 switch (words) { /* fall through in every case */ 759 case 3: 760 dp83640->edata.sec_hi = phy_txts->sec_hi; 761 case 2: 762 dp83640->edata.sec_lo = phy_txts->sec_lo; 763 case 1: 764 dp83640->edata.ns_hi = phy_txts->ns_hi; 765 case 0: 766 dp83640->edata.ns_lo = phy_txts->ns_lo; 767 } 768 769 if (!ext_status) { 770 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 771 ext_status = exts_chan_to_edata(i); 772 } 773 774 event.type = PTP_CLOCK_EXTTS; 775 event.timestamp = phy2txts(&dp83640->edata); 776 777 /* Compensate for input path and synchronization delays */ 778 event.timestamp -= 35; 779 780 for (i = 0; i < N_EXT_TS; i++) { 781 if (ext_status & exts_chan_to_edata(i)) { 782 event.index = i; 783 ptp_clock_event(dp83640->clock->ptp_clock, &event); 784 } 785 } 786 787 return parsed; 788 } 789 790 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 791 { 792 u16 *seqid; 793 unsigned int offset = 0; 794 u8 *msgtype, *data = skb_mac_header(skb); 795 796 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 797 798 if (type & PTP_CLASS_VLAN) 799 offset += VLAN_HLEN; 800 801 switch (type & PTP_CLASS_PMASK) { 802 case PTP_CLASS_IPV4: 803 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 804 break; 805 case PTP_CLASS_IPV6: 806 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 807 break; 808 case PTP_CLASS_L2: 809 offset += ETH_HLEN; 810 break; 811 default: 812 return 0; 813 } 814 815 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 816 return 0; 817 818 if (unlikely(type & PTP_CLASS_V1)) 819 msgtype = data + offset + OFF_PTP_CONTROL; 820 else 821 msgtype = data + offset; 822 823 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 824 825 return rxts->msgtype == (*msgtype & 0xf) && 826 rxts->seqid == ntohs(*seqid); 827 } 828 829 static void decode_rxts(struct dp83640_private *dp83640, 830 struct phy_rxts *phy_rxts) 831 { 832 struct rxts *rxts; 833 struct skb_shared_hwtstamps *shhwtstamps = NULL; 834 struct sk_buff *skb; 835 unsigned long flags; 836 837 spin_lock_irqsave(&dp83640->rx_lock, flags); 838 839 prune_rx_ts(dp83640); 840 841 if (list_empty(&dp83640->rxpool)) { 842 pr_debug("rx timestamp pool is empty\n"); 843 goto out; 844 } 845 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 846 list_del_init(&rxts->list); 847 phy2rxts(phy_rxts, rxts); 848 849 spin_lock(&dp83640->rx_queue.lock); 850 skb_queue_walk(&dp83640->rx_queue, skb) { 851 struct dp83640_skb_info *skb_info; 852 853 skb_info = (struct dp83640_skb_info *)skb->cb; 854 if (match(skb, skb_info->ptp_type, rxts)) { 855 __skb_unlink(skb, &dp83640->rx_queue); 856 shhwtstamps = skb_hwtstamps(skb); 857 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 858 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 859 netif_rx_ni(skb); 860 list_add(&rxts->list, &dp83640->rxpool); 861 break; 862 } 863 } 864 spin_unlock(&dp83640->rx_queue.lock); 865 866 if (!shhwtstamps) 867 list_add_tail(&rxts->list, &dp83640->rxts); 868 out: 869 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 870 } 871 872 static void decode_txts(struct dp83640_private *dp83640, 873 struct phy_txts *phy_txts) 874 { 875 struct skb_shared_hwtstamps shhwtstamps; 876 struct sk_buff *skb; 877 u64 ns; 878 879 /* We must already have the skb that triggered this. */ 880 881 skb = skb_dequeue(&dp83640->tx_queue); 882 883 if (!skb) { 884 pr_debug("have timestamp but tx_queue empty\n"); 885 return; 886 } 887 ns = phy2txts(phy_txts); 888 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 889 shhwtstamps.hwtstamp = ns_to_ktime(ns); 890 skb_complete_tx_timestamp(skb, &shhwtstamps); 891 } 892 893 static void decode_status_frame(struct dp83640_private *dp83640, 894 struct sk_buff *skb) 895 { 896 struct phy_rxts *phy_rxts; 897 struct phy_txts *phy_txts; 898 u8 *ptr; 899 int len, size; 900 u16 ests, type; 901 902 ptr = skb->data + 2; 903 904 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 905 906 type = *(u16 *)ptr; 907 ests = type & 0x0fff; 908 type = type & 0xf000; 909 len -= sizeof(type); 910 ptr += sizeof(type); 911 912 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 913 914 phy_rxts = (struct phy_rxts *) ptr; 915 decode_rxts(dp83640, phy_rxts); 916 size = sizeof(*phy_rxts); 917 918 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 919 920 phy_txts = (struct phy_txts *) ptr; 921 decode_txts(dp83640, phy_txts); 922 size = sizeof(*phy_txts); 923 924 } else if (PSF_EVNT == type) { 925 926 size = decode_evnt(dp83640, ptr, len, ests); 927 928 } else { 929 size = 0; 930 break; 931 } 932 ptr += size; 933 } 934 } 935 936 static int is_sync(struct sk_buff *skb, int type) 937 { 938 u8 *data = skb->data, *msgtype; 939 unsigned int offset = 0; 940 941 if (type & PTP_CLASS_VLAN) 942 offset += VLAN_HLEN; 943 944 switch (type & PTP_CLASS_PMASK) { 945 case PTP_CLASS_IPV4: 946 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 947 break; 948 case PTP_CLASS_IPV6: 949 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 950 break; 951 case PTP_CLASS_L2: 952 offset += ETH_HLEN; 953 break; 954 default: 955 return 0; 956 } 957 958 if (type & PTP_CLASS_V1) 959 offset += OFF_PTP_CONTROL; 960 961 if (skb->len < offset + 1) 962 return 0; 963 964 msgtype = data + offset; 965 966 return (*msgtype & 0xf) == 0; 967 } 968 969 static void dp83640_free_clocks(void) 970 { 971 struct dp83640_clock *clock; 972 struct list_head *this, *next; 973 974 mutex_lock(&phyter_clocks_lock); 975 976 list_for_each_safe(this, next, &phyter_clocks) { 977 clock = list_entry(this, struct dp83640_clock, list); 978 if (!list_empty(&clock->phylist)) { 979 pr_warn("phy list non-empty while unloading\n"); 980 BUG(); 981 } 982 list_del(&clock->list); 983 mutex_destroy(&clock->extreg_lock); 984 mutex_destroy(&clock->clock_lock); 985 put_device(&clock->bus->dev); 986 kfree(clock->caps.pin_config); 987 kfree(clock); 988 } 989 990 mutex_unlock(&phyter_clocks_lock); 991 } 992 993 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 994 { 995 INIT_LIST_HEAD(&clock->list); 996 clock->bus = bus; 997 mutex_init(&clock->extreg_lock); 998 mutex_init(&clock->clock_lock); 999 INIT_LIST_HEAD(&clock->phylist); 1000 clock->caps.owner = THIS_MODULE; 1001 sprintf(clock->caps.name, "dp83640 timer"); 1002 clock->caps.max_adj = 1953124; 1003 clock->caps.n_alarm = 0; 1004 clock->caps.n_ext_ts = N_EXT_TS; 1005 clock->caps.n_per_out = N_PER_OUT; 1006 clock->caps.n_pins = DP83640_N_PINS; 1007 clock->caps.pps = 0; 1008 clock->caps.adjfreq = ptp_dp83640_adjfreq; 1009 clock->caps.adjtime = ptp_dp83640_adjtime; 1010 clock->caps.gettime64 = ptp_dp83640_gettime; 1011 clock->caps.settime64 = ptp_dp83640_settime; 1012 clock->caps.enable = ptp_dp83640_enable; 1013 clock->caps.verify = ptp_dp83640_verify; 1014 /* 1015 * Convert the module param defaults into a dynamic pin configuration. 1016 */ 1017 dp83640_gpio_defaults(clock->caps.pin_config); 1018 /* 1019 * Get a reference to this bus instance. 1020 */ 1021 get_device(&bus->dev); 1022 } 1023 1024 static int choose_this_phy(struct dp83640_clock *clock, 1025 struct phy_device *phydev) 1026 { 1027 if (chosen_phy == -1 && !clock->chosen) 1028 return 1; 1029 1030 if (chosen_phy == phydev->addr) 1031 return 1; 1032 1033 return 0; 1034 } 1035 1036 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 1037 { 1038 if (clock) 1039 mutex_lock(&clock->clock_lock); 1040 return clock; 1041 } 1042 1043 /* 1044 * Look up and lock a clock by bus instance. 1045 * If there is no clock for this bus, then create it first. 1046 */ 1047 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 1048 { 1049 struct dp83640_clock *clock = NULL, *tmp; 1050 struct list_head *this; 1051 1052 mutex_lock(&phyter_clocks_lock); 1053 1054 list_for_each(this, &phyter_clocks) { 1055 tmp = list_entry(this, struct dp83640_clock, list); 1056 if (tmp->bus == bus) { 1057 clock = tmp; 1058 break; 1059 } 1060 } 1061 if (clock) 1062 goto out; 1063 1064 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 1065 if (!clock) 1066 goto out; 1067 1068 clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) * 1069 DP83640_N_PINS, GFP_KERNEL); 1070 if (!clock->caps.pin_config) { 1071 kfree(clock); 1072 clock = NULL; 1073 goto out; 1074 } 1075 dp83640_clock_init(clock, bus); 1076 list_add_tail(&phyter_clocks, &clock->list); 1077 out: 1078 mutex_unlock(&phyter_clocks_lock); 1079 1080 return dp83640_clock_get(clock); 1081 } 1082 1083 static void dp83640_clock_put(struct dp83640_clock *clock) 1084 { 1085 mutex_unlock(&clock->clock_lock); 1086 } 1087 1088 static int dp83640_probe(struct phy_device *phydev) 1089 { 1090 struct dp83640_clock *clock; 1091 struct dp83640_private *dp83640; 1092 int err = -ENOMEM, i; 1093 1094 if (phydev->addr == BROADCAST_ADDR) 1095 return 0; 1096 1097 clock = dp83640_clock_get_bus(phydev->bus); 1098 if (!clock) 1099 goto no_clock; 1100 1101 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 1102 if (!dp83640) 1103 goto no_memory; 1104 1105 dp83640->phydev = phydev; 1106 INIT_WORK(&dp83640->ts_work, rx_timestamp_work); 1107 1108 INIT_LIST_HEAD(&dp83640->rxts); 1109 INIT_LIST_HEAD(&dp83640->rxpool); 1110 for (i = 0; i < MAX_RXTS; i++) 1111 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 1112 1113 phydev->priv = dp83640; 1114 1115 spin_lock_init(&dp83640->rx_lock); 1116 skb_queue_head_init(&dp83640->rx_queue); 1117 skb_queue_head_init(&dp83640->tx_queue); 1118 1119 dp83640->clock = clock; 1120 1121 if (choose_this_phy(clock, phydev)) { 1122 clock->chosen = dp83640; 1123 clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev); 1124 if (IS_ERR(clock->ptp_clock)) { 1125 err = PTR_ERR(clock->ptp_clock); 1126 goto no_register; 1127 } 1128 } else 1129 list_add_tail(&dp83640->list, &clock->phylist); 1130 1131 dp83640_clock_put(clock); 1132 return 0; 1133 1134 no_register: 1135 clock->chosen = NULL; 1136 kfree(dp83640); 1137 no_memory: 1138 dp83640_clock_put(clock); 1139 no_clock: 1140 return err; 1141 } 1142 1143 static void dp83640_remove(struct phy_device *phydev) 1144 { 1145 struct dp83640_clock *clock; 1146 struct list_head *this, *next; 1147 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1148 1149 if (phydev->addr == BROADCAST_ADDR) 1150 return; 1151 1152 enable_status_frames(phydev, false); 1153 cancel_work_sync(&dp83640->ts_work); 1154 1155 skb_queue_purge(&dp83640->rx_queue); 1156 skb_queue_purge(&dp83640->tx_queue); 1157 1158 clock = dp83640_clock_get(dp83640->clock); 1159 1160 if (dp83640 == clock->chosen) { 1161 ptp_clock_unregister(clock->ptp_clock); 1162 clock->chosen = NULL; 1163 } else { 1164 list_for_each_safe(this, next, &clock->phylist) { 1165 tmp = list_entry(this, struct dp83640_private, list); 1166 if (tmp == dp83640) { 1167 list_del_init(&tmp->list); 1168 break; 1169 } 1170 } 1171 } 1172 1173 dp83640_clock_put(clock); 1174 kfree(dp83640); 1175 } 1176 1177 static int dp83640_config_init(struct phy_device *phydev) 1178 { 1179 struct dp83640_private *dp83640 = phydev->priv; 1180 struct dp83640_clock *clock = dp83640->clock; 1181 1182 if (clock->chosen && !list_empty(&clock->phylist)) 1183 recalibrate(clock); 1184 else { 1185 mutex_lock(&clock->extreg_lock); 1186 enable_broadcast(phydev, clock->page, 1); 1187 mutex_unlock(&clock->extreg_lock); 1188 } 1189 1190 enable_status_frames(phydev, true); 1191 1192 mutex_lock(&clock->extreg_lock); 1193 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1194 mutex_unlock(&clock->extreg_lock); 1195 1196 return 0; 1197 } 1198 1199 static int dp83640_ack_interrupt(struct phy_device *phydev) 1200 { 1201 int err = phy_read(phydev, MII_DP83640_MISR); 1202 1203 if (err < 0) 1204 return err; 1205 1206 return 0; 1207 } 1208 1209 static int dp83640_config_intr(struct phy_device *phydev) 1210 { 1211 int micr; 1212 int misr; 1213 int err; 1214 1215 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 1216 misr = phy_read(phydev, MII_DP83640_MISR); 1217 if (misr < 0) 1218 return misr; 1219 misr |= 1220 (MII_DP83640_MISR_ANC_INT_EN | 1221 MII_DP83640_MISR_DUP_INT_EN | 1222 MII_DP83640_MISR_SPD_INT_EN | 1223 MII_DP83640_MISR_LINK_INT_EN); 1224 err = phy_write(phydev, MII_DP83640_MISR, misr); 1225 if (err < 0) 1226 return err; 1227 1228 micr = phy_read(phydev, MII_DP83640_MICR); 1229 if (micr < 0) 1230 return micr; 1231 micr |= 1232 (MII_DP83640_MICR_OE | 1233 MII_DP83640_MICR_IE); 1234 return phy_write(phydev, MII_DP83640_MICR, micr); 1235 } else { 1236 micr = phy_read(phydev, MII_DP83640_MICR); 1237 if (micr < 0) 1238 return micr; 1239 micr &= 1240 ~(MII_DP83640_MICR_OE | 1241 MII_DP83640_MICR_IE); 1242 err = phy_write(phydev, MII_DP83640_MICR, micr); 1243 if (err < 0) 1244 return err; 1245 1246 misr = phy_read(phydev, MII_DP83640_MISR); 1247 if (misr < 0) 1248 return misr; 1249 misr &= 1250 ~(MII_DP83640_MISR_ANC_INT_EN | 1251 MII_DP83640_MISR_DUP_INT_EN | 1252 MII_DP83640_MISR_SPD_INT_EN | 1253 MII_DP83640_MISR_LINK_INT_EN); 1254 return phy_write(phydev, MII_DP83640_MISR, misr); 1255 } 1256 } 1257 1258 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) 1259 { 1260 struct dp83640_private *dp83640 = phydev->priv; 1261 struct hwtstamp_config cfg; 1262 u16 txcfg0, rxcfg0; 1263 1264 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1265 return -EFAULT; 1266 1267 if (cfg.flags) /* reserved for future extensions */ 1268 return -EINVAL; 1269 1270 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1271 return -ERANGE; 1272 1273 dp83640->hwts_tx_en = cfg.tx_type; 1274 1275 switch (cfg.rx_filter) { 1276 case HWTSTAMP_FILTER_NONE: 1277 dp83640->hwts_rx_en = 0; 1278 dp83640->layer = 0; 1279 dp83640->version = 0; 1280 break; 1281 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1282 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1283 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1284 dp83640->hwts_rx_en = 1; 1285 dp83640->layer = LAYER4; 1286 dp83640->version = 1; 1287 break; 1288 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1289 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1290 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1291 dp83640->hwts_rx_en = 1; 1292 dp83640->layer = LAYER4; 1293 dp83640->version = 2; 1294 break; 1295 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1296 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1297 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1298 dp83640->hwts_rx_en = 1; 1299 dp83640->layer = LAYER2; 1300 dp83640->version = 2; 1301 break; 1302 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1303 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1304 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1305 dp83640->hwts_rx_en = 1; 1306 dp83640->layer = LAYER4|LAYER2; 1307 dp83640->version = 2; 1308 break; 1309 default: 1310 return -ERANGE; 1311 } 1312 1313 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1314 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1315 1316 if (dp83640->layer & LAYER2) { 1317 txcfg0 |= TX_L2_EN; 1318 rxcfg0 |= RX_L2_EN; 1319 } 1320 if (dp83640->layer & LAYER4) { 1321 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1322 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1323 } 1324 1325 if (dp83640->hwts_tx_en) 1326 txcfg0 |= TX_TS_EN; 1327 1328 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1329 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1330 1331 if (dp83640->hwts_rx_en) 1332 rxcfg0 |= RX_TS_EN; 1333 1334 mutex_lock(&dp83640->clock->extreg_lock); 1335 1336 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); 1337 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1338 1339 mutex_unlock(&dp83640->clock->extreg_lock); 1340 1341 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1342 } 1343 1344 static void rx_timestamp_work(struct work_struct *work) 1345 { 1346 struct dp83640_private *dp83640 = 1347 container_of(work, struct dp83640_private, ts_work); 1348 struct sk_buff *skb; 1349 1350 /* Deliver expired packets. */ 1351 while ((skb = skb_dequeue(&dp83640->rx_queue))) { 1352 struct dp83640_skb_info *skb_info; 1353 1354 skb_info = (struct dp83640_skb_info *)skb->cb; 1355 if (!time_after(jiffies, skb_info->tmo)) { 1356 skb_queue_head(&dp83640->rx_queue, skb); 1357 break; 1358 } 1359 1360 netif_rx_ni(skb); 1361 } 1362 1363 if (!skb_queue_empty(&dp83640->rx_queue)) 1364 schedule_work(&dp83640->ts_work); 1365 } 1366 1367 static bool dp83640_rxtstamp(struct phy_device *phydev, 1368 struct sk_buff *skb, int type) 1369 { 1370 struct dp83640_private *dp83640 = phydev->priv; 1371 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1372 struct list_head *this, *next; 1373 struct rxts *rxts; 1374 struct skb_shared_hwtstamps *shhwtstamps = NULL; 1375 unsigned long flags; 1376 1377 if (is_status_frame(skb, type)) { 1378 decode_status_frame(dp83640, skb); 1379 kfree_skb(skb); 1380 return true; 1381 } 1382 1383 if (!dp83640->hwts_rx_en) 1384 return false; 1385 1386 spin_lock_irqsave(&dp83640->rx_lock, flags); 1387 list_for_each_safe(this, next, &dp83640->rxts) { 1388 rxts = list_entry(this, struct rxts, list); 1389 if (match(skb, type, rxts)) { 1390 shhwtstamps = skb_hwtstamps(skb); 1391 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1392 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1393 netif_rx_ni(skb); 1394 list_del_init(&rxts->list); 1395 list_add(&rxts->list, &dp83640->rxpool); 1396 break; 1397 } 1398 } 1399 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1400 1401 if (!shhwtstamps) { 1402 skb_info->ptp_type = type; 1403 skb_info->tmo = jiffies + 2; 1404 skb_queue_tail(&dp83640->rx_queue, skb); 1405 schedule_work(&dp83640->ts_work); 1406 } 1407 1408 return true; 1409 } 1410 1411 static void dp83640_txtstamp(struct phy_device *phydev, 1412 struct sk_buff *skb, int type) 1413 { 1414 struct dp83640_private *dp83640 = phydev->priv; 1415 1416 switch (dp83640->hwts_tx_en) { 1417 1418 case HWTSTAMP_TX_ONESTEP_SYNC: 1419 if (is_sync(skb, type)) { 1420 kfree_skb(skb); 1421 return; 1422 } 1423 /* fall through */ 1424 case HWTSTAMP_TX_ON: 1425 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1426 skb_queue_tail(&dp83640->tx_queue, skb); 1427 break; 1428 1429 case HWTSTAMP_TX_OFF: 1430 default: 1431 kfree_skb(skb); 1432 break; 1433 } 1434 } 1435 1436 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info) 1437 { 1438 struct dp83640_private *dp83640 = dev->priv; 1439 1440 info->so_timestamping = 1441 SOF_TIMESTAMPING_TX_HARDWARE | 1442 SOF_TIMESTAMPING_RX_HARDWARE | 1443 SOF_TIMESTAMPING_RAW_HARDWARE; 1444 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); 1445 info->tx_types = 1446 (1 << HWTSTAMP_TX_OFF) | 1447 (1 << HWTSTAMP_TX_ON) | 1448 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1449 info->rx_filters = 1450 (1 << HWTSTAMP_FILTER_NONE) | 1451 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1452 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 1453 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 1454 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1455 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 1456 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 1457 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1458 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 1459 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 1460 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | 1461 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | 1462 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ); 1463 return 0; 1464 } 1465 1466 static struct phy_driver dp83640_driver = { 1467 .phy_id = DP83640_PHY_ID, 1468 .phy_id_mask = 0xfffffff0, 1469 .name = "NatSemi DP83640", 1470 .features = PHY_BASIC_FEATURES, 1471 .flags = PHY_HAS_INTERRUPT, 1472 .probe = dp83640_probe, 1473 .remove = dp83640_remove, 1474 .config_init = dp83640_config_init, 1475 .config_aneg = genphy_config_aneg, 1476 .read_status = genphy_read_status, 1477 .ack_interrupt = dp83640_ack_interrupt, 1478 .config_intr = dp83640_config_intr, 1479 .ts_info = dp83640_ts_info, 1480 .hwtstamp = dp83640_hwtstamp, 1481 .rxtstamp = dp83640_rxtstamp, 1482 .txtstamp = dp83640_txtstamp, 1483 .driver = {.owner = THIS_MODULE,} 1484 }; 1485 1486 static int __init dp83640_init(void) 1487 { 1488 return phy_driver_register(&dp83640_driver); 1489 } 1490 1491 static void __exit dp83640_exit(void) 1492 { 1493 dp83640_free_clocks(); 1494 phy_driver_unregister(&dp83640_driver); 1495 } 1496 1497 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1498 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 1499 MODULE_LICENSE("GPL"); 1500 1501 module_init(dp83640_init); 1502 module_exit(dp83640_exit); 1503 1504 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1505 { DP83640_PHY_ID, 0xfffffff0 }, 1506 { } 1507 }; 1508 1509 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1510