1 /* 2 * Driver for the National Semiconductor DP83640 PHYTER 3 * 4 * Copyright (C) 2010 OMICRON electronics GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/crc32.h> 24 #include <linux/ethtool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/mii.h> 28 #include <linux/module.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_vlan.h> 32 #include <linux/phy.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/ptp_clock_kernel.h> 35 36 #include "dp83640_reg.h" 37 38 #define DP83640_PHY_ID 0x20005ce1 39 #define PAGESEL 0x13 40 #define MAX_RXTS 64 41 #define N_EXT_TS 6 42 #define N_PER_OUT 7 43 #define PSF_PTPVER 2 44 #define PSF_EVNT 0x4000 45 #define PSF_RX 0x2000 46 #define PSF_TX 0x1000 47 #define EXT_EVENT 1 48 #define CAL_EVENT 7 49 #define CAL_TRIGGER 1 50 #define DP83640_N_PINS 12 51 52 #define MII_DP83640_MICR 0x11 53 #define MII_DP83640_MISR 0x12 54 55 #define MII_DP83640_MICR_OE 0x1 56 #define MII_DP83640_MICR_IE 0x2 57 58 #define MII_DP83640_MISR_RHF_INT_EN 0x01 59 #define MII_DP83640_MISR_FHF_INT_EN 0x02 60 #define MII_DP83640_MISR_ANC_INT_EN 0x04 61 #define MII_DP83640_MISR_DUP_INT_EN 0x08 62 #define MII_DP83640_MISR_SPD_INT_EN 0x10 63 #define MII_DP83640_MISR_LINK_INT_EN 0x20 64 #define MII_DP83640_MISR_ED_INT_EN 0x40 65 #define MII_DP83640_MISR_LQ_INT_EN 0x80 66 67 /* phyter seems to miss the mark by 16 ns */ 68 #define ADJTIME_FIX 16 69 70 #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */ 71 72 #if defined(__BIG_ENDIAN) 73 #define ENDIAN_FLAG 0 74 #elif defined(__LITTLE_ENDIAN) 75 #define ENDIAN_FLAG PSF_ENDIAN 76 #endif 77 78 struct dp83640_skb_info { 79 int ptp_type; 80 unsigned long tmo; 81 }; 82 83 struct phy_rxts { 84 u16 ns_lo; /* ns[15:0] */ 85 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 86 u16 sec_lo; /* sec[15:0] */ 87 u16 sec_hi; /* sec[31:16] */ 88 u16 seqid; /* sequenceId[15:0] */ 89 u16 msgtype; /* messageType[3:0], hash[11:0] */ 90 }; 91 92 struct phy_txts { 93 u16 ns_lo; /* ns[15:0] */ 94 u16 ns_hi; /* overflow[1:0], ns[29:16] */ 95 u16 sec_lo; /* sec[15:0] */ 96 u16 sec_hi; /* sec[31:16] */ 97 }; 98 99 struct rxts { 100 struct list_head list; 101 unsigned long tmo; 102 u64 ns; 103 u16 seqid; 104 u8 msgtype; 105 u16 hash; 106 }; 107 108 struct dp83640_clock; 109 110 struct dp83640_private { 111 struct list_head list; 112 struct dp83640_clock *clock; 113 struct phy_device *phydev; 114 struct delayed_work ts_work; 115 int hwts_tx_en; 116 int hwts_rx_en; 117 int layer; 118 int version; 119 /* remember state of cfg0 during calibration */ 120 int cfg0; 121 /* remember the last event time stamp */ 122 struct phy_txts edata; 123 /* list of rx timestamps */ 124 struct list_head rxts; 125 struct list_head rxpool; 126 struct rxts rx_pool_data[MAX_RXTS]; 127 /* protects above three fields from concurrent access */ 128 spinlock_t rx_lock; 129 /* queues of incoming and outgoing packets */ 130 struct sk_buff_head rx_queue; 131 struct sk_buff_head tx_queue; 132 }; 133 134 struct dp83640_clock { 135 /* keeps the instance in the 'phyter_clocks' list */ 136 struct list_head list; 137 /* we create one clock instance per MII bus */ 138 struct mii_bus *bus; 139 /* protects extended registers from concurrent access */ 140 struct mutex extreg_lock; 141 /* remembers which page was last selected */ 142 int page; 143 /* our advertised capabilities */ 144 struct ptp_clock_info caps; 145 /* protects the three fields below from concurrent access */ 146 struct mutex clock_lock; 147 /* the one phyter from which we shall read */ 148 struct dp83640_private *chosen; 149 /* list of the other attached phyters, not chosen */ 150 struct list_head phylist; 151 /* reference to our PTP hardware clock */ 152 struct ptp_clock *ptp_clock; 153 }; 154 155 /* globals */ 156 157 enum { 158 CALIBRATE_GPIO, 159 PEROUT_GPIO, 160 EXTTS0_GPIO, 161 EXTTS1_GPIO, 162 EXTTS2_GPIO, 163 EXTTS3_GPIO, 164 EXTTS4_GPIO, 165 EXTTS5_GPIO, 166 GPIO_TABLE_SIZE 167 }; 168 169 static int chosen_phy = -1; 170 static ushort gpio_tab[GPIO_TABLE_SIZE] = { 171 1, 2, 3, 4, 8, 9, 10, 11 172 }; 173 174 module_param(chosen_phy, int, 0444); 175 module_param_array(gpio_tab, ushort, NULL, 0444); 176 177 MODULE_PARM_DESC(chosen_phy, \ 178 "The address of the PHY to use for the ancillary clock features"); 179 MODULE_PARM_DESC(gpio_tab, \ 180 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); 181 182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd) 183 { 184 int i, index; 185 186 for (i = 0; i < DP83640_N_PINS; i++) { 187 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i); 188 pd[i].index = i; 189 } 190 191 for (i = 0; i < GPIO_TABLE_SIZE; i++) { 192 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) { 193 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]); 194 return; 195 } 196 } 197 198 index = gpio_tab[CALIBRATE_GPIO] - 1; 199 pd[index].func = PTP_PF_PHYSYNC; 200 pd[index].chan = 0; 201 202 index = gpio_tab[PEROUT_GPIO] - 1; 203 pd[index].func = PTP_PF_PEROUT; 204 pd[index].chan = 0; 205 206 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) { 207 index = gpio_tab[i] - 1; 208 pd[index].func = PTP_PF_EXTTS; 209 pd[index].chan = i - EXTTS0_GPIO; 210 } 211 } 212 213 /* a list of clocks and a mutex to protect it */ 214 static LIST_HEAD(phyter_clocks); 215 static DEFINE_MUTEX(phyter_clocks_lock); 216 217 static void rx_timestamp_work(struct work_struct *work); 218 219 /* extended register access functions */ 220 221 #define BROADCAST_ADDR 31 222 223 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val) 224 { 225 return mdiobus_write(bus, BROADCAST_ADDR, regnum, val); 226 } 227 228 /* Caller must hold extreg_lock. */ 229 static int ext_read(struct phy_device *phydev, int page, u32 regnum) 230 { 231 struct dp83640_private *dp83640 = phydev->priv; 232 int val; 233 234 if (dp83640->clock->page != page) { 235 broadcast_write(phydev->bus, PAGESEL, page); 236 dp83640->clock->page = page; 237 } 238 val = phy_read(phydev, regnum); 239 240 return val; 241 } 242 243 /* Caller must hold extreg_lock. */ 244 static void ext_write(int broadcast, struct phy_device *phydev, 245 int page, u32 regnum, u16 val) 246 { 247 struct dp83640_private *dp83640 = phydev->priv; 248 249 if (dp83640->clock->page != page) { 250 broadcast_write(phydev->bus, PAGESEL, page); 251 dp83640->clock->page = page; 252 } 253 if (broadcast) 254 broadcast_write(phydev->bus, regnum, val); 255 else 256 phy_write(phydev, regnum, val); 257 } 258 259 /* Caller must hold extreg_lock. */ 260 static int tdr_write(int bc, struct phy_device *dev, 261 const struct timespec64 *ts, u16 cmd) 262 { 263 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ 264 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ 265 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ 266 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ 267 268 ext_write(bc, dev, PAGE4, PTP_CTL, cmd); 269 270 return 0; 271 } 272 273 /* convert phy timestamps into driver timestamps */ 274 275 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) 276 { 277 u32 sec; 278 279 sec = p->sec_lo; 280 sec |= p->sec_hi << 16; 281 282 rxts->ns = p->ns_lo; 283 rxts->ns |= (p->ns_hi & 0x3fff) << 16; 284 rxts->ns += ((u64)sec) * 1000000000ULL; 285 rxts->seqid = p->seqid; 286 rxts->msgtype = (p->msgtype >> 12) & 0xf; 287 rxts->hash = p->msgtype & 0x0fff; 288 rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 289 } 290 291 static u64 phy2txts(struct phy_txts *p) 292 { 293 u64 ns; 294 u32 sec; 295 296 sec = p->sec_lo; 297 sec |= p->sec_hi << 16; 298 299 ns = p->ns_lo; 300 ns |= (p->ns_hi & 0x3fff) << 16; 301 ns += ((u64)sec) * 1000000000ULL; 302 303 return ns; 304 } 305 306 static int periodic_output(struct dp83640_clock *clock, 307 struct ptp_clock_request *clkreq, bool on, 308 int trigger) 309 { 310 struct dp83640_private *dp83640 = clock->chosen; 311 struct phy_device *phydev = dp83640->phydev; 312 u32 sec, nsec, pwidth; 313 u16 gpio, ptp_trig, val; 314 315 if (on) { 316 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 317 trigger); 318 if (gpio < 1) 319 return -EINVAL; 320 } else { 321 gpio = 0; 322 } 323 324 ptp_trig = TRIG_WR | 325 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | 326 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | 327 TRIG_PER | 328 TRIG_PULSE; 329 330 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 331 332 if (!on) { 333 val |= TRIG_DIS; 334 mutex_lock(&clock->extreg_lock); 335 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 336 ext_write(0, phydev, PAGE4, PTP_CTL, val); 337 mutex_unlock(&clock->extreg_lock); 338 return 0; 339 } 340 341 sec = clkreq->perout.start.sec; 342 nsec = clkreq->perout.start.nsec; 343 pwidth = clkreq->perout.period.sec * 1000000000UL; 344 pwidth += clkreq->perout.period.nsec; 345 pwidth /= 2; 346 347 mutex_lock(&clock->extreg_lock); 348 349 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); 350 351 /*load trigger*/ 352 val |= TRIG_LOAD; 353 ext_write(0, phydev, PAGE4, PTP_CTL, val); 354 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ 355 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ 356 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ 357 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ 358 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */ 359 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */ 360 /* Triggers 0 and 1 has programmable pulsewidth2 */ 361 if (trigger < 2) { 362 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); 363 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); 364 } 365 366 /*enable trigger*/ 367 val &= ~TRIG_LOAD; 368 val |= TRIG_EN; 369 ext_write(0, phydev, PAGE4, PTP_CTL, val); 370 371 mutex_unlock(&clock->extreg_lock); 372 return 0; 373 } 374 375 /* ptp clock methods */ 376 377 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 378 { 379 struct dp83640_clock *clock = 380 container_of(ptp, struct dp83640_clock, caps); 381 struct phy_device *phydev = clock->chosen->phydev; 382 u64 rate; 383 int neg_adj = 0; 384 u16 hi, lo; 385 386 if (ppb < 0) { 387 neg_adj = 1; 388 ppb = -ppb; 389 } 390 rate = ppb; 391 rate <<= 26; 392 rate = div_u64(rate, 1953125); 393 394 hi = (rate >> 16) & PTP_RATE_HI_MASK; 395 if (neg_adj) 396 hi |= PTP_RATE_DIR; 397 398 lo = rate & 0xffff; 399 400 mutex_lock(&clock->extreg_lock); 401 402 ext_write(1, phydev, PAGE4, PTP_RATEH, hi); 403 ext_write(1, phydev, PAGE4, PTP_RATEL, lo); 404 405 mutex_unlock(&clock->extreg_lock); 406 407 return 0; 408 } 409 410 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) 411 { 412 struct dp83640_clock *clock = 413 container_of(ptp, struct dp83640_clock, caps); 414 struct phy_device *phydev = clock->chosen->phydev; 415 struct timespec64 ts; 416 int err; 417 418 delta += ADJTIME_FIX; 419 420 ts = ns_to_timespec64(delta); 421 422 mutex_lock(&clock->extreg_lock); 423 424 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); 425 426 mutex_unlock(&clock->extreg_lock); 427 428 return err; 429 } 430 431 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, 432 struct timespec64 *ts) 433 { 434 struct dp83640_clock *clock = 435 container_of(ptp, struct dp83640_clock, caps); 436 struct phy_device *phydev = clock->chosen->phydev; 437 unsigned int val[4]; 438 439 mutex_lock(&clock->extreg_lock); 440 441 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); 442 443 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ 444 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ 445 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ 446 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ 447 448 mutex_unlock(&clock->extreg_lock); 449 450 ts->tv_nsec = val[0] | (val[1] << 16); 451 ts->tv_sec = val[2] | (val[3] << 16); 452 453 return 0; 454 } 455 456 static int ptp_dp83640_settime(struct ptp_clock_info *ptp, 457 const struct timespec64 *ts) 458 { 459 struct dp83640_clock *clock = 460 container_of(ptp, struct dp83640_clock, caps); 461 struct phy_device *phydev = clock->chosen->phydev; 462 int err; 463 464 mutex_lock(&clock->extreg_lock); 465 466 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); 467 468 mutex_unlock(&clock->extreg_lock); 469 470 return err; 471 } 472 473 static int ptp_dp83640_enable(struct ptp_clock_info *ptp, 474 struct ptp_clock_request *rq, int on) 475 { 476 struct dp83640_clock *clock = 477 container_of(ptp, struct dp83640_clock, caps); 478 struct phy_device *phydev = clock->chosen->phydev; 479 unsigned int index; 480 u16 evnt, event_num, gpio_num; 481 482 switch (rq->type) { 483 case PTP_CLK_REQ_EXTTS: 484 index = rq->extts.index; 485 if (index >= N_EXT_TS) 486 return -EINVAL; 487 event_num = EXT_EVENT + index; 488 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 489 if (on) { 490 gpio_num = 1 + ptp_find_pin(clock->ptp_clock, 491 PTP_PF_EXTTS, index); 492 if (gpio_num < 1) 493 return -EINVAL; 494 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 495 if (rq->extts.flags & PTP_FALLING_EDGE) 496 evnt |= EVNT_FALL; 497 else 498 evnt |= EVNT_RISE; 499 } 500 mutex_lock(&clock->extreg_lock); 501 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); 502 mutex_unlock(&clock->extreg_lock); 503 return 0; 504 505 case PTP_CLK_REQ_PEROUT: 506 if (rq->perout.index >= N_PER_OUT) 507 return -EINVAL; 508 return periodic_output(clock, rq, on, rq->perout.index); 509 510 default: 511 break; 512 } 513 514 return -EOPNOTSUPP; 515 } 516 517 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin, 518 enum ptp_pin_function func, unsigned int chan) 519 { 520 struct dp83640_clock *clock = 521 container_of(ptp, struct dp83640_clock, caps); 522 523 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC && 524 !list_empty(&clock->phylist)) 525 return 1; 526 527 if (func == PTP_PF_PHYSYNC) 528 return 1; 529 530 return 0; 531 } 532 533 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; 534 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; 535 536 static void enable_status_frames(struct phy_device *phydev, bool on) 537 { 538 struct dp83640_private *dp83640 = phydev->priv; 539 struct dp83640_clock *clock = dp83640->clock; 540 u16 cfg0 = 0, ver; 541 542 if (on) 543 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; 544 545 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; 546 547 mutex_lock(&clock->extreg_lock); 548 549 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); 550 ext_write(0, phydev, PAGE6, PSF_CFG1, ver); 551 552 mutex_unlock(&clock->extreg_lock); 553 554 if (!phydev->attached_dev) { 555 pr_warn("expected to find an attached netdevice\n"); 556 return; 557 } 558 559 if (on) { 560 if (dev_mc_add(phydev->attached_dev, status_frame_dst)) 561 pr_warn("failed to add mc address\n"); 562 } else { 563 if (dev_mc_del(phydev->attached_dev, status_frame_dst)) 564 pr_warn("failed to delete mc address\n"); 565 } 566 } 567 568 static bool is_status_frame(struct sk_buff *skb, int type) 569 { 570 struct ethhdr *h = eth_hdr(skb); 571 572 if (PTP_CLASS_V2_L2 == type && 573 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) 574 return true; 575 else 576 return false; 577 } 578 579 static int expired(struct rxts *rxts) 580 { 581 return time_after(jiffies, rxts->tmo); 582 } 583 584 /* Caller must hold rx_lock. */ 585 static void prune_rx_ts(struct dp83640_private *dp83640) 586 { 587 struct list_head *this, *next; 588 struct rxts *rxts; 589 590 list_for_each_safe(this, next, &dp83640->rxts) { 591 rxts = list_entry(this, struct rxts, list); 592 if (expired(rxts)) { 593 list_del_init(&rxts->list); 594 list_add(&rxts->list, &dp83640->rxpool); 595 } 596 } 597 } 598 599 /* synchronize the phyters so they act as one clock */ 600 601 static void enable_broadcast(struct phy_device *phydev, int init_page, int on) 602 { 603 int val; 604 phy_write(phydev, PAGESEL, 0); 605 val = phy_read(phydev, PHYCR2); 606 if (on) 607 val |= BC_WRITE; 608 else 609 val &= ~BC_WRITE; 610 phy_write(phydev, PHYCR2, val); 611 phy_write(phydev, PAGESEL, init_page); 612 } 613 614 static void recalibrate(struct dp83640_clock *clock) 615 { 616 s64 now, diff; 617 struct phy_txts event_ts; 618 struct timespec64 ts; 619 struct list_head *this; 620 struct dp83640_private *tmp; 621 struct phy_device *master = clock->chosen->phydev; 622 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; 623 624 trigger = CAL_TRIGGER; 625 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0); 626 if (cal_gpio < 1) { 627 pr_err("PHY calibration pin not available - PHY is not calibrated."); 628 return; 629 } 630 631 mutex_lock(&clock->extreg_lock); 632 633 /* 634 * enable broadcast, disable status frames, enable ptp clock 635 */ 636 list_for_each(this, &clock->phylist) { 637 tmp = list_entry(this, struct dp83640_private, list); 638 enable_broadcast(tmp->phydev, clock->page, 1); 639 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); 640 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); 641 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); 642 } 643 enable_broadcast(master, clock->page, 1); 644 cfg0 = ext_read(master, PAGE5, PSF_CFG0); 645 ext_write(0, master, PAGE5, PSF_CFG0, 0); 646 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); 647 648 /* 649 * enable an event timestamp 650 */ 651 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; 652 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; 653 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; 654 655 list_for_each(this, &clock->phylist) { 656 tmp = list_entry(this, struct dp83640_private, list); 657 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); 658 } 659 ext_write(0, master, PAGE5, PTP_EVNT, evnt); 660 661 /* 662 * configure a trigger 663 */ 664 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; 665 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; 666 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; 667 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); 668 669 /* load trigger */ 670 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 671 val |= TRIG_LOAD; 672 ext_write(0, master, PAGE4, PTP_CTL, val); 673 674 /* enable trigger */ 675 val &= ~TRIG_LOAD; 676 val |= TRIG_EN; 677 ext_write(0, master, PAGE4, PTP_CTL, val); 678 679 /* disable trigger */ 680 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; 681 val |= TRIG_DIS; 682 ext_write(0, master, PAGE4, PTP_CTL, val); 683 684 /* 685 * read out and correct offsets 686 */ 687 val = ext_read(master, PAGE4, PTP_STS); 688 pr_info("master PTP_STS 0x%04hx\n", val); 689 val = ext_read(master, PAGE4, PTP_ESTS); 690 pr_info("master PTP_ESTS 0x%04hx\n", val); 691 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); 692 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); 693 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); 694 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); 695 now = phy2txts(&event_ts); 696 697 list_for_each(this, &clock->phylist) { 698 tmp = list_entry(this, struct dp83640_private, list); 699 val = ext_read(tmp->phydev, PAGE4, PTP_STS); 700 pr_info("slave PTP_STS 0x%04hx\n", val); 701 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); 702 pr_info("slave PTP_ESTS 0x%04hx\n", val); 703 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 704 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 705 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 706 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); 707 diff = now - (s64) phy2txts(&event_ts); 708 pr_info("slave offset %lld nanoseconds\n", diff); 709 diff += ADJTIME_FIX; 710 ts = ns_to_timespec64(diff); 711 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); 712 } 713 714 /* 715 * restore status frames 716 */ 717 list_for_each(this, &clock->phylist) { 718 tmp = list_entry(this, struct dp83640_private, list); 719 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); 720 } 721 ext_write(0, master, PAGE5, PSF_CFG0, cfg0); 722 723 mutex_unlock(&clock->extreg_lock); 724 } 725 726 /* time stamping methods */ 727 728 static inline u16 exts_chan_to_edata(int ch) 729 { 730 return 1 << ((ch + EXT_EVENT) * 2); 731 } 732 733 static int decode_evnt(struct dp83640_private *dp83640, 734 void *data, int len, u16 ests) 735 { 736 struct phy_txts *phy_txts; 737 struct ptp_clock_event event; 738 int i, parsed; 739 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; 740 u16 ext_status = 0; 741 742 /* calculate length of the event timestamp status message */ 743 if (ests & MULT_EVNT) 744 parsed = (words + 2) * sizeof(u16); 745 else 746 parsed = (words + 1) * sizeof(u16); 747 748 /* check if enough data is available */ 749 if (len < parsed) 750 return len; 751 752 if (ests & MULT_EVNT) { 753 ext_status = *(u16 *) data; 754 data += sizeof(ext_status); 755 } 756 757 phy_txts = data; 758 759 switch (words) { /* fall through in every case */ 760 case 3: 761 dp83640->edata.sec_hi = phy_txts->sec_hi; 762 case 2: 763 dp83640->edata.sec_lo = phy_txts->sec_lo; 764 case 1: 765 dp83640->edata.ns_hi = phy_txts->ns_hi; 766 case 0: 767 dp83640->edata.ns_lo = phy_txts->ns_lo; 768 } 769 770 if (!ext_status) { 771 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; 772 ext_status = exts_chan_to_edata(i); 773 } 774 775 event.type = PTP_CLOCK_EXTTS; 776 event.timestamp = phy2txts(&dp83640->edata); 777 778 /* Compensate for input path and synchronization delays */ 779 event.timestamp -= 35; 780 781 for (i = 0; i < N_EXT_TS; i++) { 782 if (ext_status & exts_chan_to_edata(i)) { 783 event.index = i; 784 ptp_clock_event(dp83640->clock->ptp_clock, &event); 785 } 786 } 787 788 return parsed; 789 } 790 791 #define DP83640_PACKET_HASH_OFFSET 20 792 #define DP83640_PACKET_HASH_LEN 10 793 794 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) 795 { 796 u16 *seqid, hash; 797 unsigned int offset = 0; 798 u8 *msgtype, *data = skb_mac_header(skb); 799 800 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ 801 802 if (type & PTP_CLASS_VLAN) 803 offset += VLAN_HLEN; 804 805 switch (type & PTP_CLASS_PMASK) { 806 case PTP_CLASS_IPV4: 807 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 808 break; 809 case PTP_CLASS_IPV6: 810 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 811 break; 812 case PTP_CLASS_L2: 813 offset += ETH_HLEN; 814 break; 815 default: 816 return 0; 817 } 818 819 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) 820 return 0; 821 822 if (unlikely(type & PTP_CLASS_V1)) 823 msgtype = data + offset + OFF_PTP_CONTROL; 824 else 825 msgtype = data + offset; 826 if (rxts->msgtype != (*msgtype & 0xf)) 827 return 0; 828 829 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 830 if (rxts->seqid != ntohs(*seqid)) 831 return 0; 832 833 hash = ether_crc(DP83640_PACKET_HASH_LEN, 834 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20; 835 if (rxts->hash != hash) 836 return 0; 837 838 return 1; 839 } 840 841 static void decode_rxts(struct dp83640_private *dp83640, 842 struct phy_rxts *phy_rxts) 843 { 844 struct rxts *rxts; 845 struct skb_shared_hwtstamps *shhwtstamps = NULL; 846 struct sk_buff *skb; 847 unsigned long flags; 848 849 spin_lock_irqsave(&dp83640->rx_lock, flags); 850 851 prune_rx_ts(dp83640); 852 853 if (list_empty(&dp83640->rxpool)) { 854 pr_debug("rx timestamp pool is empty\n"); 855 goto out; 856 } 857 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); 858 list_del_init(&rxts->list); 859 phy2rxts(phy_rxts, rxts); 860 861 spin_lock(&dp83640->rx_queue.lock); 862 skb_queue_walk(&dp83640->rx_queue, skb) { 863 struct dp83640_skb_info *skb_info; 864 865 skb_info = (struct dp83640_skb_info *)skb->cb; 866 if (match(skb, skb_info->ptp_type, rxts)) { 867 __skb_unlink(skb, &dp83640->rx_queue); 868 shhwtstamps = skb_hwtstamps(skb); 869 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 870 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 871 netif_rx_ni(skb); 872 list_add(&rxts->list, &dp83640->rxpool); 873 break; 874 } 875 } 876 spin_unlock(&dp83640->rx_queue.lock); 877 878 if (!shhwtstamps) 879 list_add_tail(&rxts->list, &dp83640->rxts); 880 out: 881 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 882 } 883 884 static void decode_txts(struct dp83640_private *dp83640, 885 struct phy_txts *phy_txts) 886 { 887 struct skb_shared_hwtstamps shhwtstamps; 888 struct sk_buff *skb; 889 u64 ns; 890 891 /* We must already have the skb that triggered this. */ 892 893 skb = skb_dequeue(&dp83640->tx_queue); 894 895 if (!skb) { 896 pr_debug("have timestamp but tx_queue empty\n"); 897 return; 898 } 899 ns = phy2txts(phy_txts); 900 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 901 shhwtstamps.hwtstamp = ns_to_ktime(ns); 902 skb_complete_tx_timestamp(skb, &shhwtstamps); 903 } 904 905 static void decode_status_frame(struct dp83640_private *dp83640, 906 struct sk_buff *skb) 907 { 908 struct phy_rxts *phy_rxts; 909 struct phy_txts *phy_txts; 910 u8 *ptr; 911 int len, size; 912 u16 ests, type; 913 914 ptr = skb->data + 2; 915 916 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { 917 918 type = *(u16 *)ptr; 919 ests = type & 0x0fff; 920 type = type & 0xf000; 921 len -= sizeof(type); 922 ptr += sizeof(type); 923 924 if (PSF_RX == type && len >= sizeof(*phy_rxts)) { 925 926 phy_rxts = (struct phy_rxts *) ptr; 927 decode_rxts(dp83640, phy_rxts); 928 size = sizeof(*phy_rxts); 929 930 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { 931 932 phy_txts = (struct phy_txts *) ptr; 933 decode_txts(dp83640, phy_txts); 934 size = sizeof(*phy_txts); 935 936 } else if (PSF_EVNT == type) { 937 938 size = decode_evnt(dp83640, ptr, len, ests); 939 940 } else { 941 size = 0; 942 break; 943 } 944 ptr += size; 945 } 946 } 947 948 static int is_sync(struct sk_buff *skb, int type) 949 { 950 u8 *data = skb->data, *msgtype; 951 unsigned int offset = 0; 952 953 if (type & PTP_CLASS_VLAN) 954 offset += VLAN_HLEN; 955 956 switch (type & PTP_CLASS_PMASK) { 957 case PTP_CLASS_IPV4: 958 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; 959 break; 960 case PTP_CLASS_IPV6: 961 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; 962 break; 963 case PTP_CLASS_L2: 964 offset += ETH_HLEN; 965 break; 966 default: 967 return 0; 968 } 969 970 if (type & PTP_CLASS_V1) 971 offset += OFF_PTP_CONTROL; 972 973 if (skb->len < offset + 1) 974 return 0; 975 976 msgtype = data + offset; 977 978 return (*msgtype & 0xf) == 0; 979 } 980 981 static void dp83640_free_clocks(void) 982 { 983 struct dp83640_clock *clock; 984 struct list_head *this, *next; 985 986 mutex_lock(&phyter_clocks_lock); 987 988 list_for_each_safe(this, next, &phyter_clocks) { 989 clock = list_entry(this, struct dp83640_clock, list); 990 if (!list_empty(&clock->phylist)) { 991 pr_warn("phy list non-empty while unloading\n"); 992 BUG(); 993 } 994 list_del(&clock->list); 995 mutex_destroy(&clock->extreg_lock); 996 mutex_destroy(&clock->clock_lock); 997 put_device(&clock->bus->dev); 998 kfree(clock->caps.pin_config); 999 kfree(clock); 1000 } 1001 1002 mutex_unlock(&phyter_clocks_lock); 1003 } 1004 1005 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) 1006 { 1007 INIT_LIST_HEAD(&clock->list); 1008 clock->bus = bus; 1009 mutex_init(&clock->extreg_lock); 1010 mutex_init(&clock->clock_lock); 1011 INIT_LIST_HEAD(&clock->phylist); 1012 clock->caps.owner = THIS_MODULE; 1013 sprintf(clock->caps.name, "dp83640 timer"); 1014 clock->caps.max_adj = 1953124; 1015 clock->caps.n_alarm = 0; 1016 clock->caps.n_ext_ts = N_EXT_TS; 1017 clock->caps.n_per_out = N_PER_OUT; 1018 clock->caps.n_pins = DP83640_N_PINS; 1019 clock->caps.pps = 0; 1020 clock->caps.adjfreq = ptp_dp83640_adjfreq; 1021 clock->caps.adjtime = ptp_dp83640_adjtime; 1022 clock->caps.gettime64 = ptp_dp83640_gettime; 1023 clock->caps.settime64 = ptp_dp83640_settime; 1024 clock->caps.enable = ptp_dp83640_enable; 1025 clock->caps.verify = ptp_dp83640_verify; 1026 /* 1027 * Convert the module param defaults into a dynamic pin configuration. 1028 */ 1029 dp83640_gpio_defaults(clock->caps.pin_config); 1030 /* 1031 * Get a reference to this bus instance. 1032 */ 1033 get_device(&bus->dev); 1034 } 1035 1036 static int choose_this_phy(struct dp83640_clock *clock, 1037 struct phy_device *phydev) 1038 { 1039 if (chosen_phy == -1 && !clock->chosen) 1040 return 1; 1041 1042 if (chosen_phy == phydev->addr) 1043 return 1; 1044 1045 return 0; 1046 } 1047 1048 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) 1049 { 1050 if (clock) 1051 mutex_lock(&clock->clock_lock); 1052 return clock; 1053 } 1054 1055 /* 1056 * Look up and lock a clock by bus instance. 1057 * If there is no clock for this bus, then create it first. 1058 */ 1059 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) 1060 { 1061 struct dp83640_clock *clock = NULL, *tmp; 1062 struct list_head *this; 1063 1064 mutex_lock(&phyter_clocks_lock); 1065 1066 list_for_each(this, &phyter_clocks) { 1067 tmp = list_entry(this, struct dp83640_clock, list); 1068 if (tmp->bus == bus) { 1069 clock = tmp; 1070 break; 1071 } 1072 } 1073 if (clock) 1074 goto out; 1075 1076 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); 1077 if (!clock) 1078 goto out; 1079 1080 clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) * 1081 DP83640_N_PINS, GFP_KERNEL); 1082 if (!clock->caps.pin_config) { 1083 kfree(clock); 1084 clock = NULL; 1085 goto out; 1086 } 1087 dp83640_clock_init(clock, bus); 1088 list_add_tail(&phyter_clocks, &clock->list); 1089 out: 1090 mutex_unlock(&phyter_clocks_lock); 1091 1092 return dp83640_clock_get(clock); 1093 } 1094 1095 static void dp83640_clock_put(struct dp83640_clock *clock) 1096 { 1097 mutex_unlock(&clock->clock_lock); 1098 } 1099 1100 static int dp83640_probe(struct phy_device *phydev) 1101 { 1102 struct dp83640_clock *clock; 1103 struct dp83640_private *dp83640; 1104 int err = -ENOMEM, i; 1105 1106 if (phydev->addr == BROADCAST_ADDR) 1107 return 0; 1108 1109 clock = dp83640_clock_get_bus(phydev->bus); 1110 if (!clock) 1111 goto no_clock; 1112 1113 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); 1114 if (!dp83640) 1115 goto no_memory; 1116 1117 dp83640->phydev = phydev; 1118 INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work); 1119 1120 INIT_LIST_HEAD(&dp83640->rxts); 1121 INIT_LIST_HEAD(&dp83640->rxpool); 1122 for (i = 0; i < MAX_RXTS; i++) 1123 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); 1124 1125 phydev->priv = dp83640; 1126 1127 spin_lock_init(&dp83640->rx_lock); 1128 skb_queue_head_init(&dp83640->rx_queue); 1129 skb_queue_head_init(&dp83640->tx_queue); 1130 1131 dp83640->clock = clock; 1132 1133 if (choose_this_phy(clock, phydev)) { 1134 clock->chosen = dp83640; 1135 clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev); 1136 if (IS_ERR(clock->ptp_clock)) { 1137 err = PTR_ERR(clock->ptp_clock); 1138 goto no_register; 1139 } 1140 } else 1141 list_add_tail(&dp83640->list, &clock->phylist); 1142 1143 dp83640_clock_put(clock); 1144 return 0; 1145 1146 no_register: 1147 clock->chosen = NULL; 1148 kfree(dp83640); 1149 no_memory: 1150 dp83640_clock_put(clock); 1151 no_clock: 1152 return err; 1153 } 1154 1155 static void dp83640_remove(struct phy_device *phydev) 1156 { 1157 struct dp83640_clock *clock; 1158 struct list_head *this, *next; 1159 struct dp83640_private *tmp, *dp83640 = phydev->priv; 1160 1161 if (phydev->addr == BROADCAST_ADDR) 1162 return; 1163 1164 enable_status_frames(phydev, false); 1165 cancel_delayed_work_sync(&dp83640->ts_work); 1166 1167 skb_queue_purge(&dp83640->rx_queue); 1168 skb_queue_purge(&dp83640->tx_queue); 1169 1170 clock = dp83640_clock_get(dp83640->clock); 1171 1172 if (dp83640 == clock->chosen) { 1173 ptp_clock_unregister(clock->ptp_clock); 1174 clock->chosen = NULL; 1175 } else { 1176 list_for_each_safe(this, next, &clock->phylist) { 1177 tmp = list_entry(this, struct dp83640_private, list); 1178 if (tmp == dp83640) { 1179 list_del_init(&tmp->list); 1180 break; 1181 } 1182 } 1183 } 1184 1185 dp83640_clock_put(clock); 1186 kfree(dp83640); 1187 } 1188 1189 static int dp83640_config_init(struct phy_device *phydev) 1190 { 1191 struct dp83640_private *dp83640 = phydev->priv; 1192 struct dp83640_clock *clock = dp83640->clock; 1193 1194 if (clock->chosen && !list_empty(&clock->phylist)) 1195 recalibrate(clock); 1196 else { 1197 mutex_lock(&clock->extreg_lock); 1198 enable_broadcast(phydev, clock->page, 1); 1199 mutex_unlock(&clock->extreg_lock); 1200 } 1201 1202 enable_status_frames(phydev, true); 1203 1204 mutex_lock(&clock->extreg_lock); 1205 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); 1206 mutex_unlock(&clock->extreg_lock); 1207 1208 return 0; 1209 } 1210 1211 static int dp83640_ack_interrupt(struct phy_device *phydev) 1212 { 1213 int err = phy_read(phydev, MII_DP83640_MISR); 1214 1215 if (err < 0) 1216 return err; 1217 1218 return 0; 1219 } 1220 1221 static int dp83640_config_intr(struct phy_device *phydev) 1222 { 1223 int micr; 1224 int misr; 1225 int err; 1226 1227 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 1228 misr = phy_read(phydev, MII_DP83640_MISR); 1229 if (misr < 0) 1230 return misr; 1231 misr |= 1232 (MII_DP83640_MISR_ANC_INT_EN | 1233 MII_DP83640_MISR_DUP_INT_EN | 1234 MII_DP83640_MISR_SPD_INT_EN | 1235 MII_DP83640_MISR_LINK_INT_EN); 1236 err = phy_write(phydev, MII_DP83640_MISR, misr); 1237 if (err < 0) 1238 return err; 1239 1240 micr = phy_read(phydev, MII_DP83640_MICR); 1241 if (micr < 0) 1242 return micr; 1243 micr |= 1244 (MII_DP83640_MICR_OE | 1245 MII_DP83640_MICR_IE); 1246 return phy_write(phydev, MII_DP83640_MICR, micr); 1247 } else { 1248 micr = phy_read(phydev, MII_DP83640_MICR); 1249 if (micr < 0) 1250 return micr; 1251 micr &= 1252 ~(MII_DP83640_MICR_OE | 1253 MII_DP83640_MICR_IE); 1254 err = phy_write(phydev, MII_DP83640_MICR, micr); 1255 if (err < 0) 1256 return err; 1257 1258 misr = phy_read(phydev, MII_DP83640_MISR); 1259 if (misr < 0) 1260 return misr; 1261 misr &= 1262 ~(MII_DP83640_MISR_ANC_INT_EN | 1263 MII_DP83640_MISR_DUP_INT_EN | 1264 MII_DP83640_MISR_SPD_INT_EN | 1265 MII_DP83640_MISR_LINK_INT_EN); 1266 return phy_write(phydev, MII_DP83640_MISR, misr); 1267 } 1268 } 1269 1270 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) 1271 { 1272 struct dp83640_private *dp83640 = phydev->priv; 1273 struct hwtstamp_config cfg; 1274 u16 txcfg0, rxcfg0; 1275 1276 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1277 return -EFAULT; 1278 1279 if (cfg.flags) /* reserved for future extensions */ 1280 return -EINVAL; 1281 1282 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) 1283 return -ERANGE; 1284 1285 dp83640->hwts_tx_en = cfg.tx_type; 1286 1287 switch (cfg.rx_filter) { 1288 case HWTSTAMP_FILTER_NONE: 1289 dp83640->hwts_rx_en = 0; 1290 dp83640->layer = 0; 1291 dp83640->version = 0; 1292 break; 1293 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1294 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1295 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1296 dp83640->hwts_rx_en = 1; 1297 dp83640->layer = PTP_CLASS_L4; 1298 dp83640->version = PTP_CLASS_V1; 1299 break; 1300 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1301 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1302 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1303 dp83640->hwts_rx_en = 1; 1304 dp83640->layer = PTP_CLASS_L4; 1305 dp83640->version = PTP_CLASS_V2; 1306 break; 1307 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1308 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1309 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1310 dp83640->hwts_rx_en = 1; 1311 dp83640->layer = PTP_CLASS_L2; 1312 dp83640->version = PTP_CLASS_V2; 1313 break; 1314 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1315 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1316 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1317 dp83640->hwts_rx_en = 1; 1318 dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 1319 dp83640->version = PTP_CLASS_V2; 1320 break; 1321 default: 1322 return -ERANGE; 1323 } 1324 1325 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1326 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; 1327 1328 if (dp83640->layer & PTP_CLASS_L2) { 1329 txcfg0 |= TX_L2_EN; 1330 rxcfg0 |= RX_L2_EN; 1331 } 1332 if (dp83640->layer & PTP_CLASS_L4) { 1333 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; 1334 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; 1335 } 1336 1337 if (dp83640->hwts_tx_en) 1338 txcfg0 |= TX_TS_EN; 1339 1340 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) 1341 txcfg0 |= SYNC_1STEP | CHK_1STEP; 1342 1343 if (dp83640->hwts_rx_en) 1344 rxcfg0 |= RX_TS_EN; 1345 1346 mutex_lock(&dp83640->clock->extreg_lock); 1347 1348 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); 1349 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); 1350 1351 mutex_unlock(&dp83640->clock->extreg_lock); 1352 1353 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1354 } 1355 1356 static void rx_timestamp_work(struct work_struct *work) 1357 { 1358 struct dp83640_private *dp83640 = 1359 container_of(work, struct dp83640_private, ts_work.work); 1360 struct sk_buff *skb; 1361 1362 /* Deliver expired packets. */ 1363 while ((skb = skb_dequeue(&dp83640->rx_queue))) { 1364 struct dp83640_skb_info *skb_info; 1365 1366 skb_info = (struct dp83640_skb_info *)skb->cb; 1367 if (!time_after(jiffies, skb_info->tmo)) { 1368 skb_queue_head(&dp83640->rx_queue, skb); 1369 break; 1370 } 1371 1372 netif_rx_ni(skb); 1373 } 1374 1375 if (!skb_queue_empty(&dp83640->rx_queue)) 1376 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1377 } 1378 1379 static bool dp83640_rxtstamp(struct phy_device *phydev, 1380 struct sk_buff *skb, int type) 1381 { 1382 struct dp83640_private *dp83640 = phydev->priv; 1383 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb; 1384 struct list_head *this, *next; 1385 struct rxts *rxts; 1386 struct skb_shared_hwtstamps *shhwtstamps = NULL; 1387 unsigned long flags; 1388 1389 if (is_status_frame(skb, type)) { 1390 decode_status_frame(dp83640, skb); 1391 kfree_skb(skb); 1392 return true; 1393 } 1394 1395 if (!dp83640->hwts_rx_en) 1396 return false; 1397 1398 if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0) 1399 return false; 1400 1401 spin_lock_irqsave(&dp83640->rx_lock, flags); 1402 prune_rx_ts(dp83640); 1403 list_for_each_safe(this, next, &dp83640->rxts) { 1404 rxts = list_entry(this, struct rxts, list); 1405 if (match(skb, type, rxts)) { 1406 shhwtstamps = skb_hwtstamps(skb); 1407 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 1408 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); 1409 netif_rx_ni(skb); 1410 list_del_init(&rxts->list); 1411 list_add(&rxts->list, &dp83640->rxpool); 1412 break; 1413 } 1414 } 1415 spin_unlock_irqrestore(&dp83640->rx_lock, flags); 1416 1417 if (!shhwtstamps) { 1418 skb_info->ptp_type = type; 1419 skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT; 1420 skb_queue_tail(&dp83640->rx_queue, skb); 1421 schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT); 1422 } else { 1423 netif_rx_ni(skb); 1424 } 1425 1426 return true; 1427 } 1428 1429 static void dp83640_txtstamp(struct phy_device *phydev, 1430 struct sk_buff *skb, int type) 1431 { 1432 struct dp83640_private *dp83640 = phydev->priv; 1433 1434 switch (dp83640->hwts_tx_en) { 1435 1436 case HWTSTAMP_TX_ONESTEP_SYNC: 1437 if (is_sync(skb, type)) { 1438 kfree_skb(skb); 1439 return; 1440 } 1441 /* fall through */ 1442 case HWTSTAMP_TX_ON: 1443 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1444 skb_queue_tail(&dp83640->tx_queue, skb); 1445 break; 1446 1447 case HWTSTAMP_TX_OFF: 1448 default: 1449 kfree_skb(skb); 1450 break; 1451 } 1452 } 1453 1454 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info) 1455 { 1456 struct dp83640_private *dp83640 = dev->priv; 1457 1458 info->so_timestamping = 1459 SOF_TIMESTAMPING_TX_HARDWARE | 1460 SOF_TIMESTAMPING_RX_HARDWARE | 1461 SOF_TIMESTAMPING_RAW_HARDWARE; 1462 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); 1463 info->tx_types = 1464 (1 << HWTSTAMP_TX_OFF) | 1465 (1 << HWTSTAMP_TX_ON) | 1466 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1467 info->rx_filters = 1468 (1 << HWTSTAMP_FILTER_NONE) | 1469 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1470 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1471 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1472 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1473 return 0; 1474 } 1475 1476 static struct phy_driver dp83640_driver = { 1477 .phy_id = DP83640_PHY_ID, 1478 .phy_id_mask = 0xfffffff0, 1479 .name = "NatSemi DP83640", 1480 .features = PHY_BASIC_FEATURES, 1481 .flags = PHY_HAS_INTERRUPT, 1482 .probe = dp83640_probe, 1483 .remove = dp83640_remove, 1484 .config_init = dp83640_config_init, 1485 .config_aneg = genphy_config_aneg, 1486 .read_status = genphy_read_status, 1487 .ack_interrupt = dp83640_ack_interrupt, 1488 .config_intr = dp83640_config_intr, 1489 .ts_info = dp83640_ts_info, 1490 .hwtstamp = dp83640_hwtstamp, 1491 .rxtstamp = dp83640_rxtstamp, 1492 .txtstamp = dp83640_txtstamp, 1493 .driver = {.owner = THIS_MODULE,} 1494 }; 1495 1496 static int __init dp83640_init(void) 1497 { 1498 return phy_driver_register(&dp83640_driver); 1499 } 1500 1501 static void __exit dp83640_exit(void) 1502 { 1503 dp83640_free_clocks(); 1504 phy_driver_unregister(&dp83640_driver); 1505 } 1506 1507 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); 1508 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 1509 MODULE_LICENSE("GPL"); 1510 1511 module_init(dp83640_init); 1512 module_exit(dp83640_exit); 1513 1514 static struct mdio_device_id __maybe_unused dp83640_tbl[] = { 1515 { DP83640_PHY_ID, 0xfffffff0 }, 1516 { } 1517 }; 1518 1519 MODULE_DEVICE_TABLE(mdio, dp83640_tbl); 1520