xref: /linux/drivers/net/phy/bcm-phy-ptp.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2022 Meta Platforms Inc.
4  * Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com>
5  */
6 
7 #include <asm/unaligned.h>
8 #include <linux/mii.h>
9 #include <linux/phy.h>
10 #include <linux/ptp_classify.h>
11 #include <linux/ptp_clock_kernel.h>
12 #include <linux/net_tstamp.h>
13 #include <linux/netdevice.h>
14 #include <linux/workqueue.h>
15 
16 #include "bcm-phy-lib.h"
17 
18 /* IEEE 1588 Expansion registers */
19 #define SLICE_CTRL		0x0810
20 #define  SLICE_TX_EN			BIT(0)
21 #define  SLICE_RX_EN			BIT(8)
22 #define TX_EVENT_MODE		0x0811
23 #define  MODE_TX_UPDATE_CF		BIT(0)
24 #define  MODE_TX_REPLACE_TS_CF		BIT(1)
25 #define  MODE_TX_REPLACE_TS		GENMASK(1, 0)
26 #define RX_EVENT_MODE		0x0819
27 #define  MODE_RX_UPDATE_CF		BIT(0)
28 #define  MODE_RX_INSERT_TS_48		BIT(1)
29 #define  MODE_RX_INSERT_TS_64		GENMASK(1, 0)
30 
31 #define MODE_EVT_SHIFT_SYNC		0
32 #define MODE_EVT_SHIFT_DELAY_REQ	2
33 #define MODE_EVT_SHIFT_PDELAY_REQ	4
34 #define MODE_EVT_SHIFT_PDELAY_RESP	6
35 
36 #define MODE_SEL_SHIFT_PORT		0
37 #define MODE_SEL_SHIFT_CPU		8
38 
39 #define RX_MODE_SEL(sel, evt, act) \
40 	(((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
41 
42 #define TX_MODE_SEL(sel, evt, act) \
43 	(((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
44 
45 /* needs global TS capture first */
46 #define TX_TS_CAPTURE		0x0821
47 #define  TX_TS_CAP_EN			BIT(0)
48 #define RX_TS_CAPTURE		0x0822
49 #define  RX_TS_CAP_EN			BIT(0)
50 
51 #define TIME_CODE_0		0x0854
52 #define TIME_CODE_1		0x0855
53 #define TIME_CODE_2		0x0856
54 #define TIME_CODE_3		0x0857
55 #define TIME_CODE_4		0x0858
56 
57 #define DPLL_SELECT		0x085b
58 #define  DPLL_HB_MODE2			BIT(6)
59 
60 #define SHADOW_CTRL		0x085c
61 #define SHADOW_LOAD		0x085d
62 #define  TIME_CODE_LOAD			BIT(10)
63 #define  SYNC_OUT_LOAD			BIT(9)
64 #define  NCO_TIME_LOAD			BIT(7)
65 #define  FREQ_LOAD			BIT(6)
66 #define INTR_MASK		0x085e
67 #define INTR_STATUS		0x085f
68 #define  INTC_FSYNC			BIT(0)
69 #define  INTC_SOP			BIT(1)
70 
71 #define NCO_FREQ_LSB		0x0873
72 #define NCO_FREQ_MSB		0x0874
73 
74 #define NCO_TIME_0		0x0875
75 #define NCO_TIME_1		0x0876
76 #define NCO_TIME_2_CTRL		0x0877
77 #define  FREQ_MDIO_SEL			BIT(14)
78 
79 #define SYNC_OUT_0		0x0878
80 #define SYNC_OUT_1		0x0879
81 #define SYNC_OUT_2		0x087a
82 
83 #define SYNC_IN_DIVIDER		0x087b
84 
85 #define SYNOUT_TS_0		0x087c
86 #define SYNOUT_TS_1		0x087d
87 #define SYNOUT_TS_2		0x087e
88 
89 #define NSE_CTRL		0x087f
90 #define  NSE_GMODE_EN			GENMASK(15, 14)
91 #define  NSE_CAPTURE_EN			BIT(13)
92 #define  NSE_INIT			BIT(12)
93 #define  NSE_CPU_FRAMESYNC		BIT(5)
94 #define  NSE_SYNC1_FRAMESYNC		BIT(3)
95 #define  NSE_FRAMESYNC_MASK		GENMASK(5, 2)
96 #define  NSE_PEROUT_EN			BIT(1)
97 #define  NSE_ONESHOT_EN			BIT(0)
98 #define  NSE_SYNC_OUT_MASK		GENMASK(1, 0)
99 
100 #define TS_READ_CTRL		0x0885
101 #define  TS_READ_START			BIT(0)
102 #define  TS_READ_END			BIT(1)
103 
104 #define HB_REG_0		0x0886
105 #define HB_REG_1		0x0887
106 #define HB_REG_2		0x0888
107 #define HB_REG_3		0x08ec
108 #define HB_REG_4		0x08ed
109 #define HB_STAT_CTRL		0x088e
110 #define  HB_READ_START			BIT(10)
111 #define  HB_READ_END			BIT(11)
112 #define  HB_READ_MASK			GENMASK(11, 10)
113 
114 #define TS_REG_0		0x0889
115 #define TS_REG_1		0x088a
116 #define TS_REG_2		0x088b
117 #define TS_REG_3		0x08c4
118 
119 #define TS_INFO_0		0x088c
120 #define TS_INFO_1		0x088d
121 
122 #define TIMECODE_CTRL		0x08c3
123 #define  TX_TIMECODE_SEL		GENMASK(7, 0)
124 #define  RX_TIMECODE_SEL		GENMASK(15, 8)
125 
126 #define TIME_SYNC		0x0ff5
127 #define  TIME_SYNC_EN			BIT(0)
128 
129 struct bcm_ptp_private {
130 	struct phy_device *phydev;
131 	struct mii_timestamper mii_ts;
132 	struct ptp_clock *ptp_clock;
133 	struct ptp_clock_info ptp_info;
134 	struct ptp_pin_desc pin;
135 	struct mutex mutex;
136 	struct sk_buff_head tx_queue;
137 	int tx_type;
138 	bool hwts_rx;
139 	u16 nse_ctrl;
140 	bool pin_active;
141 	struct delayed_work pin_work;
142 };
143 
144 struct bcm_ptp_skb_cb {
145 	unsigned long timeout;
146 	u16 seq_id;
147 	u8 msgtype;
148 	bool discard;
149 };
150 
151 struct bcm_ptp_capture {
152 	ktime_t	hwtstamp;
153 	u16 seq_id;
154 	u8 msgtype;
155 	bool tx_dir;
156 };
157 
158 #define BCM_SKB_CB(skb)		((struct bcm_ptp_skb_cb *)(skb)->cb)
159 #define SKB_TS_TIMEOUT		10			/* jiffies */
160 
161 #define BCM_MAX_PULSE_8NS	((1U << 9) - 1)
162 #define BCM_MAX_PERIOD_8NS	((1U << 30) - 1)
163 
164 #define BRCM_PHY_MODEL(phydev) \
165 	((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)
166 
167 static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts)
168 {
169 	return container_of(mii_ts, struct bcm_ptp_private, mii_ts);
170 }
171 
172 static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info)
173 {
174 	return container_of(info, struct bcm_ptp_private, ptp_info);
175 }
176 
177 static void bcm_ptp_get_framesync_ts(struct phy_device *phydev,
178 				     struct timespec64 *ts)
179 {
180 	u16 hb[4];
181 
182 	bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START);
183 
184 	hb[0] = bcm_phy_read_exp(phydev, HB_REG_0);
185 	hb[1] = bcm_phy_read_exp(phydev, HB_REG_1);
186 	hb[2] = bcm_phy_read_exp(phydev, HB_REG_2);
187 	hb[3] = bcm_phy_read_exp(phydev, HB_REG_3);
188 
189 	bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END);
190 	bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0);
191 
192 	ts->tv_sec = (hb[3] << 16) | hb[2];
193 	ts->tv_nsec = (hb[1] << 16) | hb[0];
194 }
195 
196 static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl)
197 {
198 	u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN);
199 
200 	bcm_phy_write_exp(phydev, NSE_CTRL, ctrl);
201 
202 	return ctrl;
203 }
204 
205 static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl)
206 {
207 	if (orig_ctrl & NSE_FRAMESYNC_MASK)
208 		bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl);
209 }
210 
211 static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl)
212 {
213 	/* trigger framesync - must have 0->1 transition. */
214 	bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC);
215 }
216 
217 static int bcm_ptp_framesync_ts(struct phy_device *phydev,
218 				struct ptp_system_timestamp *sts,
219 				struct timespec64 *ts,
220 				u16 orig_ctrl)
221 {
222 	u16 ctrl, reg;
223 	int i;
224 
225 	ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl);
226 
227 	ptp_read_system_prets(sts);
228 
229 	/* trigger framesync + capture */
230 	bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN);
231 
232 	ptp_read_system_postts(sts);
233 
234 	/* poll for FSYNC interrupt from TS capture */
235 	for (i = 0; i < 10; i++) {
236 		reg = bcm_phy_read_exp(phydev, INTR_STATUS);
237 		if (reg & INTC_FSYNC) {
238 			bcm_ptp_get_framesync_ts(phydev, ts);
239 			break;
240 		}
241 	}
242 
243 	bcm_ptp_framesync_restore(phydev, orig_ctrl);
244 
245 	return reg & INTC_FSYNC ? 0 : -ETIMEDOUT;
246 }
247 
248 static int bcm_ptp_gettimex(struct ptp_clock_info *info,
249 			    struct timespec64 *ts,
250 			    struct ptp_system_timestamp *sts)
251 {
252 	struct bcm_ptp_private *priv = ptp2priv(info);
253 	int err;
254 
255 	mutex_lock(&priv->mutex);
256 	err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl);
257 	mutex_unlock(&priv->mutex);
258 
259 	return err;
260 }
261 
262 static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv,
263 				  const struct timespec64 *ts)
264 {
265 	struct phy_device *phydev = priv->phydev;
266 	u16 ctrl;
267 	u64 ns;
268 
269 	ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
270 
271 	/* set up time code */
272 	bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec);
273 	bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16);
274 	bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec);
275 	bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16);
276 	bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32);
277 
278 	/* set NCO counter to match */
279 	ns = timespec64_to_ns(ts);
280 	bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4);
281 	bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20);
282 	bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff);
283 
284 	/* set up load on next frame sync (auto-clears due to NSE_INIT) */
285 	bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD);
286 
287 	/* must have NSE_INIT in order to write time code */
288 	bcm_ptp_framesync(phydev, ctrl | NSE_INIT);
289 
290 	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
291 
292 	return 0;
293 }
294 
295 static int bcm_ptp_settime(struct ptp_clock_info *info,
296 			   const struct timespec64 *ts)
297 {
298 	struct bcm_ptp_private *priv = ptp2priv(info);
299 	int err;
300 
301 	mutex_lock(&priv->mutex);
302 	err = bcm_ptp_settime_locked(priv, ts);
303 	mutex_unlock(&priv->mutex);
304 
305 	return err;
306 }
307 
308 static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv,
309 				  s64 delta_ns)
310 {
311 	struct timespec64 ts;
312 	int err;
313 	s64 ns;
314 
315 	err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl);
316 	if (!err) {
317 		ns = timespec64_to_ns(&ts) + delta_ns;
318 		ts = ns_to_timespec64(ns);
319 		err = bcm_ptp_settime_locked(priv, &ts);
320 	}
321 	return err;
322 }
323 
324 static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns)
325 {
326 	struct bcm_ptp_private *priv = ptp2priv(info);
327 	int err;
328 
329 	mutex_lock(&priv->mutex);
330 	err = bcm_ptp_adjtime_locked(priv, delta_ns);
331 	mutex_unlock(&priv->mutex);
332 
333 	return err;
334 }
335 
336 /* A 125Mhz clock should adjust 8ns per pulse.
337  * The frequency adjustment base is 0x8000 0000, or 8*2^28.
338  *
339  * Frequency adjustment is
340  * adj = scaled_ppm * 8*2^28 / (10^6 * 2^16)
341  *   which simplifies to:
342  * adj = scaled_ppm * 2^9 / 5^6
343  */
344 static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
345 {
346 	struct bcm_ptp_private *priv = ptp2priv(info);
347 	int neg_adj = 0;
348 	u32 diff, freq;
349 	u16 ctrl;
350 	u64 adj;
351 
352 	if (scaled_ppm < 0) {
353 		neg_adj = 1;
354 		scaled_ppm = -scaled_ppm;
355 	}
356 
357 	adj = scaled_ppm << 9;
358 	diff = div_u64(adj, 15625);
359 	freq = (8 << 28) + (neg_adj ? -diff : diff);
360 
361 	mutex_lock(&priv->mutex);
362 
363 	ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl);
364 
365 	bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq);
366 	bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16);
367 
368 	bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL);
369 
370 	/* load on next framesync */
371 	bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD);
372 
373 	bcm_ptp_framesync(priv->phydev, ctrl);
374 
375 	/* clear load */
376 	bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0);
377 
378 	bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl);
379 
380 	mutex_unlock(&priv->mutex);
381 
382 	return 0;
383 }
384 
385 static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts,
386 			     struct sk_buff *skb, int type)
387 {
388 	struct bcm_ptp_private *priv = mii2priv(mii_ts);
389 	struct skb_shared_hwtstamps *hwts;
390 	struct ptp_header *header;
391 	u32 sec, nsec;
392 	u8 *data;
393 	int off;
394 
395 	if (!priv->hwts_rx)
396 		return false;
397 
398 	header = ptp_parse_header(skb, type);
399 	if (!header)
400 		return false;
401 
402 	data = (u8 *)(header + 1);
403 	sec = get_unaligned_be32(data);
404 	nsec = get_unaligned_be32(data + 4);
405 
406 	hwts = skb_hwtstamps(skb);
407 	hwts->hwtstamp = ktime_set(sec, nsec);
408 
409 	off = data - skb->data + 8;
410 	if (off < skb->len) {
411 		memmove(data, data + 8, skb->len - off);
412 		__pskb_trim(skb, skb->len - 8);
413 	}
414 
415 	return false;
416 }
417 
418 static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv,
419 			       struct bcm_ptp_capture *capts)
420 {
421 	struct phy_device *phydev = priv->phydev;
422 	u16 ts[4], reg;
423 	u32 sec, nsec;
424 
425 	mutex_lock(&priv->mutex);
426 
427 	reg = bcm_phy_read_exp(phydev, INTR_STATUS);
428 	if ((reg & INTC_SOP) == 0) {
429 		mutex_unlock(&priv->mutex);
430 		return false;
431 	}
432 
433 	bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START);
434 
435 	ts[0] = bcm_phy_read_exp(phydev, TS_REG_0);
436 	ts[1] = bcm_phy_read_exp(phydev, TS_REG_1);
437 	ts[2] = bcm_phy_read_exp(phydev, TS_REG_2);
438 	ts[3] = bcm_phy_read_exp(phydev, TS_REG_3);
439 
440 	/* not in be32 format for some reason */
441 	capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0);
442 
443 	reg = bcm_phy_read_exp(phydev, TS_INFO_1);
444 	capts->msgtype = reg >> 12;
445 	capts->tx_dir = !!(reg & BIT(11));
446 
447 	bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END);
448 	bcm_phy_write_exp(phydev, TS_READ_CTRL, 0);
449 
450 	mutex_unlock(&priv->mutex);
451 
452 	sec = (ts[3] << 16) | ts[2];
453 	nsec = (ts[1] << 16) | ts[0];
454 	capts->hwtstamp = ktime_set(sec, nsec);
455 
456 	return true;
457 }
458 
459 static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv,
460 				 struct bcm_ptp_capture *capts)
461 {
462 	struct skb_shared_hwtstamps hwts;
463 	struct sk_buff *skb, *ts_skb;
464 	unsigned long flags;
465 	bool first = false;
466 
467 	ts_skb = NULL;
468 	spin_lock_irqsave(&priv->tx_queue.lock, flags);
469 	skb_queue_walk(&priv->tx_queue, skb) {
470 		if (BCM_SKB_CB(skb)->seq_id == capts->seq_id &&
471 		    BCM_SKB_CB(skb)->msgtype == capts->msgtype) {
472 			first = skb_queue_is_first(&priv->tx_queue, skb);
473 			__skb_unlink(skb, &priv->tx_queue);
474 			ts_skb = skb;
475 			break;
476 		}
477 	}
478 	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
479 
480 	/* TX captures one-step packets, discard them if needed. */
481 	if (ts_skb) {
482 		if (BCM_SKB_CB(ts_skb)->discard) {
483 			kfree_skb(ts_skb);
484 		} else {
485 			memset(&hwts, 0, sizeof(hwts));
486 			hwts.hwtstamp = capts->hwtstamp;
487 			skb_complete_tx_timestamp(ts_skb, &hwts);
488 		}
489 	}
490 
491 	/* not first match, try and expire entries */
492 	if (!first) {
493 		while ((skb = skb_dequeue(&priv->tx_queue))) {
494 			if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) {
495 				skb_queue_head(&priv->tx_queue, skb);
496 				break;
497 			}
498 			kfree_skb(skb);
499 		}
500 	}
501 }
502 
503 static long bcm_ptp_do_aux_work(struct ptp_clock_info *info)
504 {
505 	struct bcm_ptp_private *priv = ptp2priv(info);
506 	struct bcm_ptp_capture capts;
507 	bool reschedule = false;
508 
509 	while (!skb_queue_empty_lockless(&priv->tx_queue)) {
510 		if (!bcm_ptp_get_tstamp(priv, &capts)) {
511 			reschedule = true;
512 			break;
513 		}
514 		bcm_ptp_match_tstamp(priv, &capts);
515 	}
516 
517 	return reschedule ? 1 : -1;
518 }
519 
520 static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv)
521 {
522 	if (!priv->pin_active)
523 		return 0;
524 
525 	priv->pin_active = false;
526 
527 	priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC |
528 			    NSE_CAPTURE_EN);
529 	bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl);
530 
531 	cancel_delayed_work_sync(&priv->pin_work);
532 
533 	return 0;
534 }
535 
536 static void bcm_ptp_perout_work(struct work_struct *pin_work)
537 {
538 	struct bcm_ptp_private *priv =
539 		container_of(pin_work, struct bcm_ptp_private, pin_work.work);
540 	struct phy_device *phydev = priv->phydev;
541 	struct timespec64 ts;
542 	u64 ns, next;
543 	u16 ctrl;
544 
545 	mutex_lock(&priv->mutex);
546 
547 	/* no longer running */
548 	if (!priv->pin_active) {
549 		mutex_unlock(&priv->mutex);
550 		return;
551 	}
552 
553 	bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl);
554 
555 	/* this is 1PPS only */
556 	next = NSEC_PER_SEC - ts.tv_nsec;
557 	ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1;
558 	ts.tv_nsec = 0;
559 
560 	ns = timespec64_to_ns(&ts);
561 
562 	/* force 0->1 transition for ONESHOT */
563 	ctrl = bcm_ptp_framesync_disable(phydev,
564 					 priv->nse_ctrl & ~NSE_ONESHOT_EN);
565 
566 	bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0);
567 	bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16);
568 	bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32);
569 
570 	/* load values on next framesync */
571 	bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD);
572 
573 	bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT);
574 
575 	priv->nse_ctrl |= NSE_ONESHOT_EN;
576 	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
577 
578 	mutex_unlock(&priv->mutex);
579 
580 	next = next + NSEC_PER_MSEC;
581 	schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next));
582 }
583 
584 static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv,
585 				 struct ptp_perout_request *req, int on)
586 {
587 	struct phy_device *phydev = priv->phydev;
588 	u64 period, pulse;
589 	u16 val;
590 
591 	if (!on)
592 		return bcm_ptp_cancel_func(priv);
593 
594 	/* 1PPS */
595 	if (req->period.sec != 1 || req->period.nsec != 0)
596 		return -EINVAL;
597 
598 	period = BCM_MAX_PERIOD_8NS;	/* write nonzero value */
599 
600 	if (req->flags & PTP_PEROUT_PHASE)
601 		return -EOPNOTSUPP;
602 
603 	if (req->flags & PTP_PEROUT_DUTY_CYCLE)
604 		pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec));
605 	else
606 		pulse = (u64)BCM_MAX_PULSE_8NS << 3;
607 
608 	/* convert to 8ns units */
609 	pulse >>= 3;
610 
611 	if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS)
612 		return -EINVAL;
613 
614 	bcm_phy_write_exp(phydev, SYNC_OUT_0, period);
615 
616 	val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff);
617 	bcm_phy_write_exp(phydev, SYNC_OUT_1, val);
618 
619 	val = ((pulse >> 2) & 0x7f) | (pulse << 7);
620 	bcm_phy_write_exp(phydev, SYNC_OUT_2, val);
621 
622 	if (priv->pin_active)
623 		cancel_delayed_work_sync(&priv->pin_work);
624 
625 	priv->pin_active = true;
626 	INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work);
627 	schedule_delayed_work(&priv->pin_work, 0);
628 
629 	return 0;
630 }
631 
632 static void bcm_ptp_extts_work(struct work_struct *pin_work)
633 {
634 	struct bcm_ptp_private *priv =
635 		container_of(pin_work, struct bcm_ptp_private, pin_work.work);
636 	struct phy_device *phydev = priv->phydev;
637 	struct ptp_clock_event event;
638 	struct timespec64 ts;
639 	u16 reg;
640 
641 	mutex_lock(&priv->mutex);
642 
643 	/* no longer running */
644 	if (!priv->pin_active) {
645 		mutex_unlock(&priv->mutex);
646 		return;
647 	}
648 
649 	reg = bcm_phy_read_exp(phydev, INTR_STATUS);
650 	if ((reg & INTC_FSYNC) == 0)
651 		goto out;
652 
653 	bcm_ptp_get_framesync_ts(phydev, &ts);
654 
655 	event.index = 0;
656 	event.type = PTP_CLOCK_EXTTS;
657 	event.timestamp = timespec64_to_ns(&ts);
658 	ptp_clock_event(priv->ptp_clock, &event);
659 
660 out:
661 	mutex_unlock(&priv->mutex);
662 	schedule_delayed_work(&priv->pin_work, HZ / 4);
663 }
664 
665 static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on)
666 {
667 	struct phy_device *phydev = priv->phydev;
668 
669 	if (!on)
670 		return bcm_ptp_cancel_func(priv);
671 
672 	if (priv->pin_active)
673 		cancel_delayed_work_sync(&priv->pin_work);
674 
675 	bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
676 
677 	priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN;
678 
679 	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
680 
681 	priv->pin_active = true;
682 	INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work);
683 	schedule_delayed_work(&priv->pin_work, 0);
684 
685 	return 0;
686 }
687 
688 static int bcm_ptp_enable(struct ptp_clock_info *info,
689 			  struct ptp_clock_request *rq, int on)
690 {
691 	struct bcm_ptp_private *priv = ptp2priv(info);
692 	int err = -EBUSY;
693 
694 	mutex_lock(&priv->mutex);
695 
696 	switch (rq->type) {
697 	case PTP_CLK_REQ_PEROUT:
698 		if (priv->pin.func == PTP_PF_PEROUT)
699 			err = bcm_ptp_perout_locked(priv, &rq->perout, on);
700 		break;
701 	case PTP_CLK_REQ_EXTTS:
702 		if (priv->pin.func == PTP_PF_EXTTS)
703 			err = bcm_ptp_extts_locked(priv, on);
704 		break;
705 	default:
706 		err = -EOPNOTSUPP;
707 		break;
708 	}
709 
710 	mutex_unlock(&priv->mutex);
711 
712 	return err;
713 }
714 
715 static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin,
716 			  enum ptp_pin_function func, unsigned int chan)
717 {
718 	switch (func) {
719 	case PTP_PF_NONE:
720 	case PTP_PF_EXTTS:
721 	case PTP_PF_PEROUT:
722 		break;
723 	default:
724 		return -EOPNOTSUPP;
725 	}
726 	return 0;
727 }
728 
729 static const struct ptp_clock_info bcm_ptp_clock_info = {
730 	.owner		= THIS_MODULE,
731 	.name		= KBUILD_MODNAME,
732 	.max_adj	= 100000000,
733 	.gettimex64	= bcm_ptp_gettimex,
734 	.settime64	= bcm_ptp_settime,
735 	.adjtime	= bcm_ptp_adjtime,
736 	.adjfine	= bcm_ptp_adjfine,
737 	.enable		= bcm_ptp_enable,
738 	.verify		= bcm_ptp_verify,
739 	.do_aux_work	= bcm_ptp_do_aux_work,
740 	.n_pins		= 1,
741 	.n_per_out	= 1,
742 	.n_ext_ts	= 1,
743 };
744 
745 static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts,
746 			     struct sk_buff *skb, int type)
747 {
748 	struct bcm_ptp_private *priv = mii2priv(mii_ts);
749 	struct ptp_header *hdr;
750 	bool discard = false;
751 	int msgtype;
752 
753 	hdr = ptp_parse_header(skb, type);
754 	if (!hdr)
755 		goto out;
756 	msgtype = ptp_get_msgtype(hdr, type);
757 
758 	switch (priv->tx_type) {
759 	case HWTSTAMP_TX_ONESTEP_P2P:
760 		if (msgtype == PTP_MSGTYPE_PDELAY_RESP)
761 			discard = true;
762 		fallthrough;
763 	case HWTSTAMP_TX_ONESTEP_SYNC:
764 		if (msgtype == PTP_MSGTYPE_SYNC)
765 			discard = true;
766 		fallthrough;
767 	case HWTSTAMP_TX_ON:
768 		BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT;
769 		BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id);
770 		BCM_SKB_CB(skb)->msgtype = msgtype;
771 		BCM_SKB_CB(skb)->discard = discard;
772 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
773 		skb_queue_tail(&priv->tx_queue, skb);
774 		ptp_schedule_worker(priv->ptp_clock, 0);
775 		return;
776 	default:
777 		break;
778 	}
779 
780 out:
781 	kfree_skb(skb);
782 }
783 
784 static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts,
785 			    struct kernel_hwtstamp_config *cfg,
786 			    struct netlink_ext_ack *extack)
787 {
788 	struct bcm_ptp_private *priv = mii2priv(mii_ts);
789 	u16 mode, ctrl;
790 
791 	switch (cfg->rx_filter) {
792 	case HWTSTAMP_FILTER_NONE:
793 		priv->hwts_rx = false;
794 		break;
795 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
796 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
797 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
798 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
799 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
800 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
801 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
802 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
803 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
804 		cfg->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
805 		priv->hwts_rx = true;
806 		break;
807 	default:
808 		return -ERANGE;
809 	}
810 
811 	priv->tx_type = cfg->tx_type;
812 
813 	ctrl  = priv->hwts_rx ? SLICE_RX_EN : 0;
814 	ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0;
815 
816 	mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) |
817 	       TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) |
818 	       TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) |
819 	       TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS);
820 
821 	bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode);
822 
823 	mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) |
824 	       RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) |
825 	       RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) |
826 	       RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64);
827 
828 	bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode);
829 
830 	bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl);
831 
832 	if (ctrl & SLICE_TX_EN)
833 		bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN);
834 	else
835 		ptp_cancel_worker_sync(priv->ptp_clock);
836 
837 	/* purge existing data */
838 	skb_queue_purge(&priv->tx_queue);
839 
840 	return 0;
841 }
842 
843 static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts,
844 			   struct ethtool_ts_info *ts_info)
845 {
846 	struct bcm_ptp_private *priv = mii2priv(mii_ts);
847 
848 	ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
849 	ts_info->so_timestamping =
850 		SOF_TIMESTAMPING_TX_HARDWARE |
851 		SOF_TIMESTAMPING_RX_HARDWARE |
852 		SOF_TIMESTAMPING_RAW_HARDWARE;
853 	ts_info->tx_types =
854 		BIT(HWTSTAMP_TX_ON) |
855 		BIT(HWTSTAMP_TX_OFF) |
856 		BIT(HWTSTAMP_TX_ONESTEP_SYNC) |
857 		BIT(HWTSTAMP_TX_ONESTEP_P2P);
858 	ts_info->rx_filters =
859 		BIT(HWTSTAMP_FILTER_NONE) |
860 		BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
861 
862 	return 0;
863 }
864 
865 void bcm_ptp_stop(struct bcm_ptp_private *priv)
866 {
867 	ptp_cancel_worker_sync(priv->ptp_clock);
868 	bcm_ptp_cancel_func(priv);
869 }
870 EXPORT_SYMBOL_GPL(bcm_ptp_stop);
871 
872 void bcm_ptp_config_init(struct phy_device *phydev)
873 {
874 	/* init network sync engine */
875 	bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT);
876 
877 	/* enable time sync (TX/RX SOP capture) */
878 	bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN);
879 
880 	/* use sec.nsec heartbeat capture */
881 	bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2);
882 
883 	/* use 64 bit timecode for TX */
884 	bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL);
885 
886 	/* always allow FREQ_LOAD on framesync */
887 	bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD);
888 
889 	bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1);
890 }
891 EXPORT_SYMBOL_GPL(bcm_ptp_config_init);
892 
893 static void bcm_ptp_init(struct bcm_ptp_private *priv)
894 {
895 	priv->nse_ctrl = NSE_GMODE_EN;
896 
897 	mutex_init(&priv->mutex);
898 	skb_queue_head_init(&priv->tx_queue);
899 
900 	priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp;
901 	priv->mii_ts.txtstamp = bcm_ptp_txtstamp;
902 	priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp;
903 	priv->mii_ts.ts_info = bcm_ptp_ts_info;
904 
905 	priv->phydev->mii_ts = &priv->mii_ts;
906 }
907 
908 struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev)
909 {
910 	struct bcm_ptp_private *priv;
911 	struct ptp_clock *clock;
912 
913 	switch (BRCM_PHY_MODEL(phydev)) {
914 	case PHY_ID_BCM54210E:
915 		break;
916 	default:
917 		return NULL;
918 	}
919 
920 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
921 	if (!priv)
922 		return ERR_PTR(-ENOMEM);
923 
924 	priv->ptp_info = bcm_ptp_clock_info;
925 
926 	snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT");
927 	priv->ptp_info.pin_config = &priv->pin;
928 
929 	clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev);
930 	if (IS_ERR(clock))
931 		return ERR_CAST(clock);
932 	priv->ptp_clock = clock;
933 
934 	priv->phydev = phydev;
935 	bcm_ptp_init(priv);
936 
937 	return priv;
938 }
939 EXPORT_SYMBOL_GPL(bcm_ptp_probe);
940 
941 MODULE_LICENSE("GPL");
942 MODULE_DESCRIPTION("Broadcom PHY PTP driver");
943