1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2022 Meta Platforms Inc. 4 * Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com> 5 */ 6 7 #include <asm/unaligned.h> 8 #include <linux/mii.h> 9 #include <linux/phy.h> 10 #include <linux/ptp_classify.h> 11 #include <linux/ptp_clock_kernel.h> 12 #include <linux/net_tstamp.h> 13 #include <linux/netdevice.h> 14 #include <linux/workqueue.h> 15 16 #include "bcm-phy-lib.h" 17 18 /* IEEE 1588 Expansion registers */ 19 #define SLICE_CTRL 0x0810 20 #define SLICE_TX_EN BIT(0) 21 #define SLICE_RX_EN BIT(8) 22 #define TX_EVENT_MODE 0x0811 23 #define MODE_TX_UPDATE_CF BIT(0) 24 #define MODE_TX_REPLACE_TS_CF BIT(1) 25 #define MODE_TX_REPLACE_TS GENMASK(1, 0) 26 #define RX_EVENT_MODE 0x0819 27 #define MODE_RX_UPDATE_CF BIT(0) 28 #define MODE_RX_INSERT_TS_48 BIT(1) 29 #define MODE_RX_INSERT_TS_64 GENMASK(1, 0) 30 31 #define MODE_EVT_SHIFT_SYNC 0 32 #define MODE_EVT_SHIFT_DELAY_REQ 2 33 #define MODE_EVT_SHIFT_PDELAY_REQ 4 34 #define MODE_EVT_SHIFT_PDELAY_RESP 6 35 36 #define MODE_SEL_SHIFT_PORT 0 37 #define MODE_SEL_SHIFT_CPU 8 38 39 #define RX_MODE_SEL(sel, evt, act) \ 40 (((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel)) 41 42 #define TX_MODE_SEL(sel, evt, act) \ 43 (((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel)) 44 45 /* needs global TS capture first */ 46 #define TX_TS_CAPTURE 0x0821 47 #define TX_TS_CAP_EN BIT(0) 48 #define RX_TS_CAPTURE 0x0822 49 #define RX_TS_CAP_EN BIT(0) 50 51 #define TIME_CODE_0 0x0854 52 #define TIME_CODE_1 0x0855 53 #define TIME_CODE_2 0x0856 54 #define TIME_CODE_3 0x0857 55 #define TIME_CODE_4 0x0858 56 57 #define DPLL_SELECT 0x085b 58 #define DPLL_HB_MODE2 BIT(6) 59 60 #define SHADOW_CTRL 0x085c 61 #define SHADOW_LOAD 0x085d 62 #define TIME_CODE_LOAD BIT(10) 63 #define SYNC_OUT_LOAD BIT(9) 64 #define NCO_TIME_LOAD BIT(7) 65 #define FREQ_LOAD BIT(6) 66 #define INTR_MASK 0x085e 67 #define INTR_STATUS 0x085f 68 #define INTC_FSYNC BIT(0) 69 #define INTC_SOP BIT(1) 70 71 #define NCO_FREQ_LSB 0x0873 72 #define NCO_FREQ_MSB 0x0874 73 74 #define NCO_TIME_0 0x0875 75 #define NCO_TIME_1 0x0876 76 #define NCO_TIME_2_CTRL 0x0877 77 #define FREQ_MDIO_SEL BIT(14) 78 79 #define SYNC_OUT_0 0x0878 80 #define SYNC_OUT_1 0x0879 81 #define SYNC_OUT_2 0x087a 82 83 #define SYNC_IN_DIVIDER 0x087b 84 85 #define SYNOUT_TS_0 0x087c 86 #define SYNOUT_TS_1 0x087d 87 #define SYNOUT_TS_2 0x087e 88 89 #define NSE_CTRL 0x087f 90 #define NSE_GMODE_EN GENMASK(15, 14) 91 #define NSE_CAPTURE_EN BIT(13) 92 #define NSE_INIT BIT(12) 93 #define NSE_CPU_FRAMESYNC BIT(5) 94 #define NSE_SYNC1_FRAMESYNC BIT(3) 95 #define NSE_FRAMESYNC_MASK GENMASK(5, 2) 96 #define NSE_PEROUT_EN BIT(1) 97 #define NSE_ONESHOT_EN BIT(0) 98 #define NSE_SYNC_OUT_MASK GENMASK(1, 0) 99 100 #define TS_READ_CTRL 0x0885 101 #define TS_READ_START BIT(0) 102 #define TS_READ_END BIT(1) 103 104 #define HB_REG_0 0x0886 105 #define HB_REG_1 0x0887 106 #define HB_REG_2 0x0888 107 #define HB_REG_3 0x08ec 108 #define HB_REG_4 0x08ed 109 #define HB_STAT_CTRL 0x088e 110 #define HB_READ_START BIT(10) 111 #define HB_READ_END BIT(11) 112 #define HB_READ_MASK GENMASK(11, 10) 113 114 #define TS_REG_0 0x0889 115 #define TS_REG_1 0x088a 116 #define TS_REG_2 0x088b 117 #define TS_REG_3 0x08c4 118 119 #define TS_INFO_0 0x088c 120 #define TS_INFO_1 0x088d 121 122 #define TIMECODE_CTRL 0x08c3 123 #define TX_TIMECODE_SEL GENMASK(7, 0) 124 #define RX_TIMECODE_SEL GENMASK(15, 8) 125 126 #define TIME_SYNC 0x0ff5 127 #define TIME_SYNC_EN BIT(0) 128 129 struct bcm_ptp_private { 130 struct phy_device *phydev; 131 struct mii_timestamper mii_ts; 132 struct ptp_clock *ptp_clock; 133 struct ptp_clock_info ptp_info; 134 struct ptp_pin_desc pin; 135 struct mutex mutex; 136 struct sk_buff_head tx_queue; 137 int tx_type; 138 bool hwts_rx; 139 u16 nse_ctrl; 140 bool pin_active; 141 struct delayed_work pin_work; 142 }; 143 144 struct bcm_ptp_skb_cb { 145 unsigned long timeout; 146 u16 seq_id; 147 u8 msgtype; 148 bool discard; 149 }; 150 151 struct bcm_ptp_capture { 152 ktime_t hwtstamp; 153 u16 seq_id; 154 u8 msgtype; 155 bool tx_dir; 156 }; 157 158 #define BCM_SKB_CB(skb) ((struct bcm_ptp_skb_cb *)(skb)->cb) 159 #define SKB_TS_TIMEOUT 10 /* jiffies */ 160 161 #define BCM_MAX_PULSE_8NS ((1U << 9) - 1) 162 #define BCM_MAX_PERIOD_8NS ((1U << 30) - 1) 163 164 #define BRCM_PHY_MODEL(phydev) \ 165 ((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask) 166 167 static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts) 168 { 169 return container_of(mii_ts, struct bcm_ptp_private, mii_ts); 170 } 171 172 static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info) 173 { 174 return container_of(info, struct bcm_ptp_private, ptp_info); 175 } 176 177 static void bcm_ptp_get_framesync_ts(struct phy_device *phydev, 178 struct timespec64 *ts) 179 { 180 u16 hb[4]; 181 182 bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START); 183 184 hb[0] = bcm_phy_read_exp(phydev, HB_REG_0); 185 hb[1] = bcm_phy_read_exp(phydev, HB_REG_1); 186 hb[2] = bcm_phy_read_exp(phydev, HB_REG_2); 187 hb[3] = bcm_phy_read_exp(phydev, HB_REG_3); 188 189 bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END); 190 bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0); 191 192 ts->tv_sec = (hb[3] << 16) | hb[2]; 193 ts->tv_nsec = (hb[1] << 16) | hb[0]; 194 } 195 196 static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl) 197 { 198 u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN); 199 200 bcm_phy_write_exp(phydev, NSE_CTRL, ctrl); 201 202 return ctrl; 203 } 204 205 static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl) 206 { 207 if (orig_ctrl & NSE_FRAMESYNC_MASK) 208 bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl); 209 } 210 211 static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl) 212 { 213 /* trigger framesync - must have 0->1 transition. */ 214 bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC); 215 } 216 217 static int bcm_ptp_framesync_ts(struct phy_device *phydev, 218 struct ptp_system_timestamp *sts, 219 struct timespec64 *ts, 220 u16 orig_ctrl) 221 { 222 u16 ctrl, reg; 223 int i; 224 225 ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl); 226 227 ptp_read_system_prets(sts); 228 229 /* trigger framesync + capture */ 230 bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN); 231 232 ptp_read_system_postts(sts); 233 234 /* poll for FSYNC interrupt from TS capture */ 235 for (i = 0; i < 10; i++) { 236 reg = bcm_phy_read_exp(phydev, INTR_STATUS); 237 if (reg & INTC_FSYNC) { 238 bcm_ptp_get_framesync_ts(phydev, ts); 239 break; 240 } 241 } 242 243 bcm_ptp_framesync_restore(phydev, orig_ctrl); 244 245 return reg & INTC_FSYNC ? 0 : -ETIMEDOUT; 246 } 247 248 static int bcm_ptp_gettimex(struct ptp_clock_info *info, 249 struct timespec64 *ts, 250 struct ptp_system_timestamp *sts) 251 { 252 struct bcm_ptp_private *priv = ptp2priv(info); 253 int err; 254 255 mutex_lock(&priv->mutex); 256 err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl); 257 mutex_unlock(&priv->mutex); 258 259 return err; 260 } 261 262 static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv, 263 const struct timespec64 *ts) 264 { 265 struct phy_device *phydev = priv->phydev; 266 u16 ctrl; 267 u64 ns; 268 269 ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl); 270 271 /* set up time code */ 272 bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec); 273 bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16); 274 bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec); 275 bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16); 276 bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32); 277 278 /* set NCO counter to match */ 279 ns = timespec64_to_ns(ts); 280 bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4); 281 bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20); 282 bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff); 283 284 /* set up load on next frame sync (auto-clears due to NSE_INIT) */ 285 bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD); 286 287 /* must have NSE_INIT in order to write time code */ 288 bcm_ptp_framesync(phydev, ctrl | NSE_INIT); 289 290 bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); 291 292 return 0; 293 } 294 295 static int bcm_ptp_settime(struct ptp_clock_info *info, 296 const struct timespec64 *ts) 297 { 298 struct bcm_ptp_private *priv = ptp2priv(info); 299 int err; 300 301 mutex_lock(&priv->mutex); 302 err = bcm_ptp_settime_locked(priv, ts); 303 mutex_unlock(&priv->mutex); 304 305 return err; 306 } 307 308 static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv, 309 s64 delta_ns) 310 { 311 struct timespec64 ts; 312 int err; 313 s64 ns; 314 315 err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl); 316 if (!err) { 317 ns = timespec64_to_ns(&ts) + delta_ns; 318 ts = ns_to_timespec64(ns); 319 err = bcm_ptp_settime_locked(priv, &ts); 320 } 321 return err; 322 } 323 324 static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns) 325 { 326 struct bcm_ptp_private *priv = ptp2priv(info); 327 int err; 328 329 mutex_lock(&priv->mutex); 330 err = bcm_ptp_adjtime_locked(priv, delta_ns); 331 mutex_unlock(&priv->mutex); 332 333 return err; 334 } 335 336 /* A 125Mhz clock should adjust 8ns per pulse. 337 * The frequency adjustment base is 0x8000 0000, or 8*2^28. 338 * 339 * Frequency adjustment is 340 * adj = scaled_ppm * 8*2^28 / (10^6 * 2^16) 341 * which simplifies to: 342 * adj = scaled_ppm * 2^9 / 5^6 343 */ 344 static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 345 { 346 struct bcm_ptp_private *priv = ptp2priv(info); 347 int neg_adj = 0; 348 u32 diff, freq; 349 u16 ctrl; 350 u64 adj; 351 352 if (scaled_ppm < 0) { 353 neg_adj = 1; 354 scaled_ppm = -scaled_ppm; 355 } 356 357 adj = scaled_ppm << 9; 358 diff = div_u64(adj, 15625); 359 freq = (8 << 28) + (neg_adj ? -diff : diff); 360 361 mutex_lock(&priv->mutex); 362 363 ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl); 364 365 bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq); 366 bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16); 367 368 bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL); 369 370 /* load on next framesync */ 371 bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD); 372 373 bcm_ptp_framesync(priv->phydev, ctrl); 374 375 /* clear load */ 376 bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0); 377 378 bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl); 379 380 mutex_unlock(&priv->mutex); 381 382 return 0; 383 } 384 385 static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts, 386 struct sk_buff *skb, int type) 387 { 388 struct bcm_ptp_private *priv = mii2priv(mii_ts); 389 struct skb_shared_hwtstamps *hwts; 390 struct ptp_header *header; 391 u32 sec, nsec; 392 u8 *data; 393 int off; 394 395 if (!priv->hwts_rx) 396 return false; 397 398 header = ptp_parse_header(skb, type); 399 if (!header) 400 return false; 401 402 data = (u8 *)(header + 1); 403 sec = get_unaligned_be32(data); 404 nsec = get_unaligned_be32(data + 4); 405 406 hwts = skb_hwtstamps(skb); 407 hwts->hwtstamp = ktime_set(sec, nsec); 408 409 off = data - skb->data + 8; 410 if (off < skb->len) { 411 memmove(data, data + 8, skb->len - off); 412 __pskb_trim(skb, skb->len - 8); 413 } 414 415 return false; 416 } 417 418 static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv, 419 struct bcm_ptp_capture *capts) 420 { 421 struct phy_device *phydev = priv->phydev; 422 u16 ts[4], reg; 423 u32 sec, nsec; 424 425 mutex_lock(&priv->mutex); 426 427 reg = bcm_phy_read_exp(phydev, INTR_STATUS); 428 if ((reg & INTC_SOP) == 0) { 429 mutex_unlock(&priv->mutex); 430 return false; 431 } 432 433 bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START); 434 435 ts[0] = bcm_phy_read_exp(phydev, TS_REG_0); 436 ts[1] = bcm_phy_read_exp(phydev, TS_REG_1); 437 ts[2] = bcm_phy_read_exp(phydev, TS_REG_2); 438 ts[3] = bcm_phy_read_exp(phydev, TS_REG_3); 439 440 /* not in be32 format for some reason */ 441 capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0); 442 443 reg = bcm_phy_read_exp(phydev, TS_INFO_1); 444 capts->msgtype = reg >> 12; 445 capts->tx_dir = !!(reg & BIT(11)); 446 447 bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END); 448 bcm_phy_write_exp(phydev, TS_READ_CTRL, 0); 449 450 mutex_unlock(&priv->mutex); 451 452 sec = (ts[3] << 16) | ts[2]; 453 nsec = (ts[1] << 16) | ts[0]; 454 capts->hwtstamp = ktime_set(sec, nsec); 455 456 return true; 457 } 458 459 static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv, 460 struct bcm_ptp_capture *capts) 461 { 462 struct skb_shared_hwtstamps hwts; 463 struct sk_buff *skb, *ts_skb; 464 unsigned long flags; 465 bool first = false; 466 467 ts_skb = NULL; 468 spin_lock_irqsave(&priv->tx_queue.lock, flags); 469 skb_queue_walk(&priv->tx_queue, skb) { 470 if (BCM_SKB_CB(skb)->seq_id == capts->seq_id && 471 BCM_SKB_CB(skb)->msgtype == capts->msgtype) { 472 first = skb_queue_is_first(&priv->tx_queue, skb); 473 __skb_unlink(skb, &priv->tx_queue); 474 ts_skb = skb; 475 break; 476 } 477 } 478 spin_unlock_irqrestore(&priv->tx_queue.lock, flags); 479 480 /* TX captures one-step packets, discard them if needed. */ 481 if (ts_skb) { 482 if (BCM_SKB_CB(ts_skb)->discard) { 483 kfree_skb(ts_skb); 484 } else { 485 memset(&hwts, 0, sizeof(hwts)); 486 hwts.hwtstamp = capts->hwtstamp; 487 skb_complete_tx_timestamp(ts_skb, &hwts); 488 } 489 } 490 491 /* not first match, try and expire entries */ 492 if (!first) { 493 while ((skb = skb_dequeue(&priv->tx_queue))) { 494 if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) { 495 skb_queue_head(&priv->tx_queue, skb); 496 break; 497 } 498 kfree_skb(skb); 499 } 500 } 501 } 502 503 static long bcm_ptp_do_aux_work(struct ptp_clock_info *info) 504 { 505 struct bcm_ptp_private *priv = ptp2priv(info); 506 struct bcm_ptp_capture capts; 507 bool reschedule = false; 508 509 while (!skb_queue_empty_lockless(&priv->tx_queue)) { 510 if (!bcm_ptp_get_tstamp(priv, &capts)) { 511 reschedule = true; 512 break; 513 } 514 bcm_ptp_match_tstamp(priv, &capts); 515 } 516 517 return reschedule ? 1 : -1; 518 } 519 520 static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv) 521 { 522 if (!priv->pin_active) 523 return 0; 524 525 priv->pin_active = false; 526 527 priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC | 528 NSE_CAPTURE_EN); 529 bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl); 530 531 cancel_delayed_work_sync(&priv->pin_work); 532 533 return 0; 534 } 535 536 static void bcm_ptp_perout_work(struct work_struct *pin_work) 537 { 538 struct bcm_ptp_private *priv = 539 container_of(pin_work, struct bcm_ptp_private, pin_work.work); 540 struct phy_device *phydev = priv->phydev; 541 struct timespec64 ts; 542 u64 ns, next; 543 u16 ctrl; 544 545 mutex_lock(&priv->mutex); 546 547 /* no longer running */ 548 if (!priv->pin_active) { 549 mutex_unlock(&priv->mutex); 550 return; 551 } 552 553 bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl); 554 555 /* this is 1PPS only */ 556 next = NSEC_PER_SEC - ts.tv_nsec; 557 ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1; 558 ts.tv_nsec = 0; 559 560 ns = timespec64_to_ns(&ts); 561 562 /* force 0->1 transition for ONESHOT */ 563 ctrl = bcm_ptp_framesync_disable(phydev, 564 priv->nse_ctrl & ~NSE_ONESHOT_EN); 565 566 bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0); 567 bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16); 568 bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32); 569 570 /* load values on next framesync */ 571 bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD); 572 573 bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT); 574 575 priv->nse_ctrl |= NSE_ONESHOT_EN; 576 bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); 577 578 mutex_unlock(&priv->mutex); 579 580 next = next + NSEC_PER_MSEC; 581 schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next)); 582 } 583 584 static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv, 585 struct ptp_perout_request *req, int on) 586 { 587 struct phy_device *phydev = priv->phydev; 588 u64 period, pulse; 589 u16 val; 590 591 if (!on) 592 return bcm_ptp_cancel_func(priv); 593 594 /* 1PPS */ 595 if (req->period.sec != 1 || req->period.nsec != 0) 596 return -EINVAL; 597 598 period = BCM_MAX_PERIOD_8NS; /* write nonzero value */ 599 600 if (req->flags & PTP_PEROUT_PHASE) 601 return -EOPNOTSUPP; 602 603 if (req->flags & PTP_PEROUT_DUTY_CYCLE) 604 pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec)); 605 else 606 pulse = (u64)BCM_MAX_PULSE_8NS << 3; 607 608 /* convert to 8ns units */ 609 pulse >>= 3; 610 611 if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS) 612 return -EINVAL; 613 614 bcm_phy_write_exp(phydev, SYNC_OUT_0, period); 615 616 val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff); 617 bcm_phy_write_exp(phydev, SYNC_OUT_1, val); 618 619 val = ((pulse >> 2) & 0x7f) | (pulse << 7); 620 bcm_phy_write_exp(phydev, SYNC_OUT_2, val); 621 622 if (priv->pin_active) 623 cancel_delayed_work_sync(&priv->pin_work); 624 625 priv->pin_active = true; 626 INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work); 627 schedule_delayed_work(&priv->pin_work, 0); 628 629 return 0; 630 } 631 632 static void bcm_ptp_extts_work(struct work_struct *pin_work) 633 { 634 struct bcm_ptp_private *priv = 635 container_of(pin_work, struct bcm_ptp_private, pin_work.work); 636 struct phy_device *phydev = priv->phydev; 637 struct ptp_clock_event event; 638 struct timespec64 ts; 639 u16 reg; 640 641 mutex_lock(&priv->mutex); 642 643 /* no longer running */ 644 if (!priv->pin_active) { 645 mutex_unlock(&priv->mutex); 646 return; 647 } 648 649 reg = bcm_phy_read_exp(phydev, INTR_STATUS); 650 if ((reg & INTC_FSYNC) == 0) 651 goto out; 652 653 bcm_ptp_get_framesync_ts(phydev, &ts); 654 655 event.index = 0; 656 event.type = PTP_CLOCK_EXTTS; 657 event.timestamp = timespec64_to_ns(&ts); 658 ptp_clock_event(priv->ptp_clock, &event); 659 660 out: 661 mutex_unlock(&priv->mutex); 662 schedule_delayed_work(&priv->pin_work, HZ / 4); 663 } 664 665 static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on) 666 { 667 struct phy_device *phydev = priv->phydev; 668 669 if (!on) 670 return bcm_ptp_cancel_func(priv); 671 672 if (priv->pin_active) 673 cancel_delayed_work_sync(&priv->pin_work); 674 675 bcm_ptp_framesync_disable(phydev, priv->nse_ctrl); 676 677 priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN; 678 679 bcm_ptp_framesync_restore(phydev, priv->nse_ctrl); 680 681 priv->pin_active = true; 682 INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work); 683 schedule_delayed_work(&priv->pin_work, 0); 684 685 return 0; 686 } 687 688 static int bcm_ptp_enable(struct ptp_clock_info *info, 689 struct ptp_clock_request *rq, int on) 690 { 691 struct bcm_ptp_private *priv = ptp2priv(info); 692 int err = -EBUSY; 693 694 mutex_lock(&priv->mutex); 695 696 switch (rq->type) { 697 case PTP_CLK_REQ_PEROUT: 698 if (priv->pin.func == PTP_PF_PEROUT) 699 err = bcm_ptp_perout_locked(priv, &rq->perout, on); 700 break; 701 case PTP_CLK_REQ_EXTTS: 702 if (priv->pin.func == PTP_PF_EXTTS) 703 err = bcm_ptp_extts_locked(priv, on); 704 break; 705 default: 706 err = -EOPNOTSUPP; 707 break; 708 } 709 710 mutex_unlock(&priv->mutex); 711 712 return err; 713 } 714 715 static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin, 716 enum ptp_pin_function func, unsigned int chan) 717 { 718 switch (func) { 719 case PTP_PF_NONE: 720 case PTP_PF_EXTTS: 721 case PTP_PF_PEROUT: 722 break; 723 default: 724 return -EOPNOTSUPP; 725 } 726 return 0; 727 } 728 729 static const struct ptp_clock_info bcm_ptp_clock_info = { 730 .owner = THIS_MODULE, 731 .name = KBUILD_MODNAME, 732 .max_adj = 100000000, 733 .gettimex64 = bcm_ptp_gettimex, 734 .settime64 = bcm_ptp_settime, 735 .adjtime = bcm_ptp_adjtime, 736 .adjfine = bcm_ptp_adjfine, 737 .enable = bcm_ptp_enable, 738 .verify = bcm_ptp_verify, 739 .do_aux_work = bcm_ptp_do_aux_work, 740 .n_pins = 1, 741 .n_per_out = 1, 742 .n_ext_ts = 1, 743 }; 744 745 static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts, 746 struct sk_buff *skb, int type) 747 { 748 struct bcm_ptp_private *priv = mii2priv(mii_ts); 749 struct ptp_header *hdr; 750 bool discard = false; 751 int msgtype; 752 753 hdr = ptp_parse_header(skb, type); 754 if (!hdr) 755 goto out; 756 msgtype = ptp_get_msgtype(hdr, type); 757 758 switch (priv->tx_type) { 759 case HWTSTAMP_TX_ONESTEP_P2P: 760 if (msgtype == PTP_MSGTYPE_PDELAY_RESP) 761 discard = true; 762 fallthrough; 763 case HWTSTAMP_TX_ONESTEP_SYNC: 764 if (msgtype == PTP_MSGTYPE_SYNC) 765 discard = true; 766 fallthrough; 767 case HWTSTAMP_TX_ON: 768 BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT; 769 BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id); 770 BCM_SKB_CB(skb)->msgtype = msgtype; 771 BCM_SKB_CB(skb)->discard = discard; 772 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 773 skb_queue_tail(&priv->tx_queue, skb); 774 ptp_schedule_worker(priv->ptp_clock, 0); 775 return; 776 default: 777 break; 778 } 779 780 out: 781 kfree_skb(skb); 782 } 783 784 static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts, 785 struct ifreq *ifr) 786 { 787 struct bcm_ptp_private *priv = mii2priv(mii_ts); 788 struct hwtstamp_config cfg; 789 u16 mode, ctrl; 790 791 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 792 return -EFAULT; 793 794 switch (cfg.rx_filter) { 795 case HWTSTAMP_FILTER_NONE: 796 priv->hwts_rx = false; 797 break; 798 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 799 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 800 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 801 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 802 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 803 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 804 case HWTSTAMP_FILTER_PTP_V2_EVENT: 805 case HWTSTAMP_FILTER_PTP_V2_SYNC: 806 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 807 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 808 priv->hwts_rx = true; 809 break; 810 default: 811 return -ERANGE; 812 } 813 814 priv->tx_type = cfg.tx_type; 815 816 ctrl = priv->hwts_rx ? SLICE_RX_EN : 0; 817 ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0; 818 819 mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) | 820 TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) | 821 TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) | 822 TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS); 823 824 bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode); 825 826 mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) | 827 RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) | 828 RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) | 829 RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64); 830 831 bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode); 832 833 bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl); 834 835 if (ctrl & SLICE_TX_EN) 836 bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN); 837 else 838 ptp_cancel_worker_sync(priv->ptp_clock); 839 840 /* purge existing data */ 841 skb_queue_purge(&priv->tx_queue); 842 843 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 844 } 845 846 static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts, 847 struct ethtool_ts_info *ts_info) 848 { 849 struct bcm_ptp_private *priv = mii2priv(mii_ts); 850 851 ts_info->phc_index = ptp_clock_index(priv->ptp_clock); 852 ts_info->so_timestamping = 853 SOF_TIMESTAMPING_TX_HARDWARE | 854 SOF_TIMESTAMPING_RX_HARDWARE | 855 SOF_TIMESTAMPING_RAW_HARDWARE; 856 ts_info->tx_types = 857 BIT(HWTSTAMP_TX_ON) | 858 BIT(HWTSTAMP_TX_OFF) | 859 BIT(HWTSTAMP_TX_ONESTEP_SYNC) | 860 BIT(HWTSTAMP_TX_ONESTEP_P2P); 861 ts_info->rx_filters = 862 BIT(HWTSTAMP_FILTER_NONE) | 863 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); 864 865 return 0; 866 } 867 868 void bcm_ptp_stop(struct bcm_ptp_private *priv) 869 { 870 ptp_cancel_worker_sync(priv->ptp_clock); 871 bcm_ptp_cancel_func(priv); 872 } 873 EXPORT_SYMBOL_GPL(bcm_ptp_stop); 874 875 void bcm_ptp_config_init(struct phy_device *phydev) 876 { 877 /* init network sync engine */ 878 bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT); 879 880 /* enable time sync (TX/RX SOP capture) */ 881 bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN); 882 883 /* use sec.nsec heartbeat capture */ 884 bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2); 885 886 /* use 64 bit timecode for TX */ 887 bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL); 888 889 /* always allow FREQ_LOAD on framesync */ 890 bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD); 891 892 bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1); 893 } 894 EXPORT_SYMBOL_GPL(bcm_ptp_config_init); 895 896 static void bcm_ptp_init(struct bcm_ptp_private *priv) 897 { 898 priv->nse_ctrl = NSE_GMODE_EN; 899 900 mutex_init(&priv->mutex); 901 skb_queue_head_init(&priv->tx_queue); 902 903 priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp; 904 priv->mii_ts.txtstamp = bcm_ptp_txtstamp; 905 priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp; 906 priv->mii_ts.ts_info = bcm_ptp_ts_info; 907 908 priv->phydev->mii_ts = &priv->mii_ts; 909 } 910 911 struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev) 912 { 913 struct bcm_ptp_private *priv; 914 struct ptp_clock *clock; 915 916 switch (BRCM_PHY_MODEL(phydev)) { 917 case PHY_ID_BCM54210E: 918 break; 919 default: 920 return NULL; 921 } 922 923 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 924 if (!priv) 925 return ERR_PTR(-ENOMEM); 926 927 priv->ptp_info = bcm_ptp_clock_info; 928 929 snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT"); 930 priv->ptp_info.pin_config = &priv->pin; 931 932 clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev); 933 if (IS_ERR(clock)) 934 return ERR_CAST(clock); 935 priv->ptp_clock = clock; 936 937 priv->phydev = phydev; 938 bcm_ptp_init(priv); 939 940 return priv; 941 } 942 EXPORT_SYMBOL_GPL(bcm_ptp_probe); 943 944 MODULE_LICENSE("GPL"); 945 MODULE_DESCRIPTION("Broadcom PHY PTP driver"); 946