1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2022 Linaro Ltd. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/device.h> 9 #include <linux/interconnect.h> 10 #include <linux/pm.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/bitops.h> 13 14 #include "linux/soc/qcom/qcom_aoss.h" 15 16 #include "ipa.h" 17 #include "ipa_power.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_modem.h" 20 #include "ipa_data.h" 21 22 /** 23 * DOC: IPA Power Management 24 * 25 * The IPA hardware is enabled when the IPA core clock and all the 26 * interconnects (buses) it depends on are enabled. Runtime power 27 * management is used to determine whether the core clock and 28 * interconnects are enabled, and if not in use to be suspended 29 * automatically. 30 * 31 * The core clock currently runs at a fixed clock rate when enabled, 32 * an all interconnects use a fixed average and peak bandwidth. 33 */ 34 35 #define IPA_AUTOSUSPEND_DELAY 500 /* milliseconds */ 36 37 /** 38 * enum ipa_power_flag - IPA power flags 39 * @IPA_POWER_FLAG_RESUMED: Whether resume from suspend has been signaled 40 * @IPA_POWER_FLAG_SYSTEM: Hardware is system (not runtime) suspended 41 * @IPA_POWER_FLAG_STOPPED: Modem TX is disabled by ipa_start_xmit() 42 * @IPA_POWER_FLAG_STARTED: Modem TX was enabled by ipa_runtime_resume() 43 * @IPA_POWER_FLAG_COUNT: Number of defined power flags 44 */ 45 enum ipa_power_flag { 46 IPA_POWER_FLAG_RESUMED, 47 IPA_POWER_FLAG_SYSTEM, 48 IPA_POWER_FLAG_STOPPED, 49 IPA_POWER_FLAG_STARTED, 50 IPA_POWER_FLAG_COUNT, /* Last; not a flag */ 51 }; 52 53 /** 54 * struct ipa_power - IPA power management information 55 * @dev: IPA device pointer 56 * @core: IPA core clock 57 * @qmp: QMP handle for AOSS communication 58 * @spinlock: Protects modem TX queue enable/disable 59 * @flags: Boolean state flags 60 * @interconnect_count: Number of elements in interconnect[] 61 * @interconnect: Interconnect array 62 */ 63 struct ipa_power { 64 struct device *dev; 65 struct clk *core; 66 struct qmp *qmp; 67 spinlock_t spinlock; /* used with STOPPED/STARTED power flags */ 68 DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT); 69 u32 interconnect_count; 70 struct icc_bulk_data interconnect[]; 71 }; 72 73 /* Initialize interconnects required for IPA operation */ 74 static int ipa_interconnect_init(struct ipa_power *power, 75 const struct ipa_interconnect_data *data) 76 { 77 struct icc_bulk_data *interconnect; 78 int ret; 79 u32 i; 80 81 /* Initialize our interconnect data array for bulk operations */ 82 interconnect = &power->interconnect[0]; 83 for (i = 0; i < power->interconnect_count; i++) { 84 /* interconnect->path is filled in by of_icc_bulk_get() */ 85 interconnect->name = data->name; 86 interconnect->avg_bw = data->average_bandwidth; 87 interconnect->peak_bw = data->peak_bandwidth; 88 data++; 89 interconnect++; 90 } 91 92 ret = of_icc_bulk_get(power->dev, power->interconnect_count, 93 power->interconnect); 94 if (ret) 95 return ret; 96 97 /* All interconnects are initially disabled */ 98 icc_bulk_disable(power->interconnect_count, power->interconnect); 99 100 /* Set the bandwidth values to be used when enabled */ 101 ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect); 102 if (ret) 103 icc_bulk_put(power->interconnect_count, power->interconnect); 104 105 return ret; 106 } 107 108 /* Inverse of ipa_interconnect_init() */ 109 static void ipa_interconnect_exit(struct ipa_power *power) 110 { 111 icc_bulk_put(power->interconnect_count, power->interconnect); 112 } 113 114 /* Enable IPA power, enabling interconnects and the core clock */ 115 static int ipa_power_enable(struct ipa *ipa) 116 { 117 struct ipa_power *power = ipa->power; 118 int ret; 119 120 ret = icc_bulk_enable(power->interconnect_count, power->interconnect); 121 if (ret) 122 return ret; 123 124 ret = clk_prepare_enable(power->core); 125 if (ret) { 126 dev_err(power->dev, "error %d enabling core clock\n", ret); 127 icc_bulk_disable(power->interconnect_count, 128 power->interconnect); 129 } 130 131 return ret; 132 } 133 134 /* Inverse of ipa_power_enable() */ 135 static void ipa_power_disable(struct ipa *ipa) 136 { 137 struct ipa_power *power = ipa->power; 138 139 clk_disable_unprepare(power->core); 140 141 icc_bulk_disable(power->interconnect_count, power->interconnect); 142 } 143 144 static int ipa_runtime_suspend(struct device *dev) 145 { 146 struct ipa *ipa = dev_get_drvdata(dev); 147 148 /* Endpoints aren't usable until setup is complete */ 149 if (ipa->setup_complete) { 150 __clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags); 151 ipa_endpoint_suspend(ipa); 152 gsi_suspend(&ipa->gsi); 153 } 154 155 ipa_power_disable(ipa); 156 157 return 0; 158 } 159 160 static int ipa_runtime_resume(struct device *dev) 161 { 162 struct ipa *ipa = dev_get_drvdata(dev); 163 int ret; 164 165 ret = ipa_power_enable(ipa); 166 if (WARN_ON(ret < 0)) 167 return ret; 168 169 /* Endpoints aren't usable until setup is complete */ 170 if (ipa->setup_complete) { 171 gsi_resume(&ipa->gsi); 172 ipa_endpoint_resume(ipa); 173 } 174 175 return 0; 176 } 177 178 static int ipa_suspend(struct device *dev) 179 { 180 struct ipa *ipa = dev_get_drvdata(dev); 181 182 __set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags); 183 184 /* Increment the disable depth to ensure that the IRQ won't 185 * be re-enabled until the matching _enable call in 186 * ipa_resume(). We do this to ensure that the interrupt 187 * handler won't run whilst PM runtime is disabled. 188 * 189 * Note that disabling the IRQ is NOT the same as disabling 190 * irq wake. If wakeup is enabled for the IPA then the IRQ 191 * will still cause the system to wake up, see irq_set_irq_wake(). 192 */ 193 ipa_interrupt_irq_disable(ipa); 194 195 return pm_runtime_force_suspend(dev); 196 } 197 198 static int ipa_resume(struct device *dev) 199 { 200 struct ipa *ipa = dev_get_drvdata(dev); 201 int ret; 202 203 ret = pm_runtime_force_resume(dev); 204 205 __clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags); 206 207 /* Now that PM runtime is enabled again it's safe 208 * to turn the IRQ back on and process any data 209 * that was received during suspend. 210 */ 211 ipa_interrupt_irq_enable(ipa); 212 213 return ret; 214 } 215 216 /* Return the current IPA core clock rate */ 217 u32 ipa_core_clock_rate(struct ipa *ipa) 218 { 219 return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0; 220 } 221 222 /** 223 * ipa_suspend_handler() - Handle the suspend IPA interrupt 224 * @ipa: IPA pointer 225 * @irq_id: IPA interrupt type (unused) 226 * 227 * If an RX endpoint is suspended, and the IPA has a packet destined for 228 * that endpoint, the IPA generates a SUSPEND interrupt to inform the AP 229 * that it should resume the endpoint. If we get one of these interrupts 230 * we just wake up the system. 231 */ 232 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 233 { 234 /* To handle an IPA interrupt we will have resumed the hardware 235 * just to handle the interrupt, so we're done. If we are in a 236 * system suspend, trigger a system resume. 237 */ 238 if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags)) 239 if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags)) 240 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 241 242 /* Acknowledge/clear the suspend interrupt on all endpoints */ 243 ipa_interrupt_suspend_clear_all(ipa->interrupt); 244 } 245 246 /* The next few functions coordinate stopping and starting the modem 247 * network device transmit queue. 248 * 249 * Transmit can be running concurrent with power resume, and there's a 250 * chance the resume completes before the transmit path stops the queue, 251 * leaving the queue in a stopped state. The next two functions are used 252 * to avoid this: ipa_power_modem_queue_stop() is used by ipa_start_xmit() 253 * to conditionally stop the TX queue; and ipa_power_modem_queue_start() 254 * is used by ipa_runtime_resume() to conditionally restart it. 255 * 256 * Two flags and a spinlock are used. If the queue is stopped, the STOPPED 257 * power flag is set. And if the queue is started, the STARTED flag is set. 258 * The queue is only started on resume if the STOPPED flag is set. And the 259 * queue is only started in ipa_start_xmit() if the STARTED flag is *not* 260 * set. As a result, the queue remains operational if the two activites 261 * happen concurrently regardless of the order they complete. The spinlock 262 * ensures the flag and TX queue operations are done atomically. 263 * 264 * The first function stops the modem netdev transmit queue, but only if 265 * the STARTED flag is *not* set. That flag is cleared if it was set. 266 * If the queue is stopped, the STOPPED flag is set. This is called only 267 * from the power ->runtime_resume operation. 268 */ 269 void ipa_power_modem_queue_stop(struct ipa *ipa) 270 { 271 struct ipa_power *power = ipa->power; 272 unsigned long flags; 273 274 spin_lock_irqsave(&power->spinlock, flags); 275 276 if (!__test_and_clear_bit(IPA_POWER_FLAG_STARTED, power->flags)) { 277 netif_stop_queue(ipa->modem_netdev); 278 __set_bit(IPA_POWER_FLAG_STOPPED, power->flags); 279 } 280 281 spin_unlock_irqrestore(&power->spinlock, flags); 282 } 283 284 /* This function starts the modem netdev transmit queue, but only if the 285 * STOPPED flag is set. That flag is cleared if it was set. If the queue 286 * was restarted, the STARTED flag is set; this allows ipa_start_xmit() 287 * to skip stopping the queue in the event of a race. 288 */ 289 void ipa_power_modem_queue_wake(struct ipa *ipa) 290 { 291 struct ipa_power *power = ipa->power; 292 unsigned long flags; 293 294 spin_lock_irqsave(&power->spinlock, flags); 295 296 if (__test_and_clear_bit(IPA_POWER_FLAG_STOPPED, power->flags)) { 297 __set_bit(IPA_POWER_FLAG_STARTED, power->flags); 298 netif_wake_queue(ipa->modem_netdev); 299 } 300 301 spin_unlock_irqrestore(&power->spinlock, flags); 302 } 303 304 /* This function clears the STARTED flag once the TX queue is operating */ 305 void ipa_power_modem_queue_active(struct ipa *ipa) 306 { 307 clear_bit(IPA_POWER_FLAG_STARTED, ipa->power->flags); 308 } 309 310 static int ipa_power_retention_init(struct ipa_power *power) 311 { 312 struct qmp *qmp = qmp_get(power->dev); 313 314 if (IS_ERR(qmp)) { 315 if (PTR_ERR(qmp) == -EPROBE_DEFER) 316 return -EPROBE_DEFER; 317 318 /* We assume any other error means it's not defined/needed */ 319 qmp = NULL; 320 } 321 power->qmp = qmp; 322 323 return 0; 324 } 325 326 static void ipa_power_retention_exit(struct ipa_power *power) 327 { 328 qmp_put(power->qmp); 329 power->qmp = NULL; 330 } 331 332 /* Control register retention on power collapse */ 333 void ipa_power_retention(struct ipa *ipa, bool enable) 334 { 335 static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }"; 336 struct ipa_power *power = ipa->power; 337 char buf[36]; /* Exactly enough for fmt[]; size a multiple of 4 */ 338 int ret; 339 340 if (!power->qmp) 341 return; /* Not needed on this platform */ 342 343 (void)snprintf(buf, sizeof(buf), fmt, enable ? '1' : '0'); 344 345 ret = qmp_send(power->qmp, buf, sizeof(buf)); 346 if (ret) 347 dev_err(power->dev, "error %d sending QMP %sable request\n", 348 ret, enable ? "en" : "dis"); 349 } 350 351 int ipa_power_setup(struct ipa *ipa) 352 { 353 int ret; 354 355 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 356 ipa_suspend_handler); 357 358 ret = device_init_wakeup(&ipa->pdev->dev, true); 359 if (ret) 360 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 361 362 return ret; 363 } 364 365 void ipa_power_teardown(struct ipa *ipa) 366 { 367 (void)device_init_wakeup(&ipa->pdev->dev, false); 368 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 369 } 370 371 /* Initialize IPA power management */ 372 struct ipa_power * 373 ipa_power_init(struct device *dev, const struct ipa_power_data *data) 374 { 375 struct ipa_power *power; 376 struct clk *clk; 377 size_t size; 378 int ret; 379 380 clk = clk_get(dev, "core"); 381 if (IS_ERR(clk)) { 382 dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n"); 383 384 return ERR_CAST(clk); 385 } 386 387 ret = clk_set_rate(clk, data->core_clock_rate); 388 if (ret) { 389 dev_err(dev, "error %d setting core clock rate to %u\n", 390 ret, data->core_clock_rate); 391 goto err_clk_put; 392 } 393 394 size = struct_size(power, interconnect, data->interconnect_count); 395 power = kzalloc(size, GFP_KERNEL); 396 if (!power) { 397 ret = -ENOMEM; 398 goto err_clk_put; 399 } 400 power->dev = dev; 401 power->core = clk; 402 spin_lock_init(&power->spinlock); 403 power->interconnect_count = data->interconnect_count; 404 405 ret = ipa_interconnect_init(power, data->interconnect_data); 406 if (ret) 407 goto err_kfree; 408 409 ret = ipa_power_retention_init(power); 410 if (ret) 411 goto err_interconnect_exit; 412 413 pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY); 414 pm_runtime_use_autosuspend(dev); 415 pm_runtime_enable(dev); 416 417 return power; 418 419 err_interconnect_exit: 420 ipa_interconnect_exit(power); 421 err_kfree: 422 kfree(power); 423 err_clk_put: 424 clk_put(clk); 425 426 return ERR_PTR(ret); 427 } 428 429 /* Inverse of ipa_power_init() */ 430 void ipa_power_exit(struct ipa_power *power) 431 { 432 struct device *dev = power->dev; 433 struct clk *clk = power->core; 434 435 pm_runtime_disable(dev); 436 pm_runtime_dont_use_autosuspend(dev); 437 ipa_power_retention_exit(power); 438 ipa_interconnect_exit(power); 439 kfree(power); 440 clk_put(clk); 441 } 442 443 const struct dev_pm_ops ipa_pm_ops = { 444 .suspend = ipa_suspend, 445 .resume = ipa_resume, 446 .runtime_suspend = ipa_runtime_suspend, 447 .runtime_resume = ipa_runtime_resume, 448 }; 449