1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_power.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_resource.h" 27 #include "ipa_cmd.h" 28 #include "ipa_reg.h" 29 #include "ipa_mem.h" 30 #include "ipa_table.h" 31 #include "ipa_modem.h" 32 #include "ipa_uc.h" 33 #include "ipa_interrupt.h" 34 #include "gsi_trans.h" 35 #include "ipa_sysfs.h" 36 37 /** 38 * DOC: The IP Accelerator 39 * 40 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 41 * networking component found in many Qualcomm SoCs. The IPA is connected 42 * to the application processor (AP), but is also connected (and partially 43 * controlled by) other "execution environments" (EEs), such as a modem. 44 * 45 * The IPA is the conduit between the AP and the modem that carries network 46 * traffic. This driver presents a network interface representing the 47 * connection of the modem to external (e.g. LTE) networks. 48 * 49 * The IPA provides protocol checksum calculation, offloading this work 50 * from the AP. The IPA offers additional functionality, including routing, 51 * filtering, and NAT support, but that more advanced functionality is not 52 * currently supported. Despite that, some resources--including routing 53 * tables and filter tables--are defined in this driver because they must 54 * be initialized even when the advanced hardware features are not used. 55 * 56 * There are two distinct layers that implement the IPA hardware, and this 57 * is reflected in the organization of the driver. The generic software 58 * interface (GSI) is an integral component of the IPA, providing a 59 * well-defined communication layer between the AP subsystem and the IPA 60 * core. The GSI implements a set of "channels" used for communication 61 * between the AP and the IPA. 62 * 63 * The IPA layer uses GSI channels to implement its "endpoints". And while 64 * a GSI channel carries data between the AP and the IPA, a pair of IPA 65 * endpoints is used to carry traffic between two EEs. Specifically, the main 66 * modem network interface is implemented by two pairs of endpoints: a TX 67 * endpoint on the AP coupled with an RX endpoint on the modem; and another 68 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 69 */ 70 71 /* The name of the GSI firmware file relative to /lib/firmware */ 72 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 73 #define IPA_PAS_ID 15 74 75 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 76 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 77 #define TAG_TIMESTAMP_SHIFT 14 78 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 79 80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 81 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 82 83 /** 84 * ipa_setup() - Set up IPA hardware 85 * @ipa: IPA pointer 86 * 87 * Perform initialization that requires issuing immediate commands on 88 * the command TX endpoint. If the modem is doing GSI firmware load 89 * and initialization, this function will be called when an SMP2P 90 * interrupt has been signaled by the modem. Otherwise it will be 91 * called from ipa_probe() after GSI firmware has been successfully 92 * loaded, authenticated, and started by Trust Zone. 93 */ 94 int ipa_setup(struct ipa *ipa) 95 { 96 struct ipa_endpoint *exception_endpoint; 97 struct ipa_endpoint *command_endpoint; 98 struct device *dev = &ipa->pdev->dev; 99 int ret; 100 101 ret = gsi_setup(&ipa->gsi); 102 if (ret) 103 return ret; 104 105 ret = ipa_power_setup(ipa); 106 if (ret) 107 goto err_gsi_teardown; 108 109 ipa_endpoint_setup(ipa); 110 111 /* We need to use the AP command TX endpoint to perform other 112 * initialization, so we enable first. 113 */ 114 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 115 ret = ipa_endpoint_enable_one(command_endpoint); 116 if (ret) 117 goto err_endpoint_teardown; 118 119 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 120 if (ret) 121 goto err_command_disable; 122 123 ret = ipa_table_setup(ipa); /* No matching teardown required */ 124 if (ret) 125 goto err_command_disable; 126 127 /* Enable the exception handling endpoint, and tell the hardware 128 * to use it by default. 129 */ 130 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 131 ret = ipa_endpoint_enable_one(exception_endpoint); 132 if (ret) 133 goto err_command_disable; 134 135 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 136 137 /* We're all set. Now prepare for communication with the modem */ 138 ret = ipa_qmi_setup(ipa); 139 if (ret) 140 goto err_default_route_clear; 141 142 ipa->setup_complete = true; 143 144 dev_info(dev, "IPA driver setup completed successfully\n"); 145 146 return 0; 147 148 err_default_route_clear: 149 ipa_endpoint_default_route_clear(ipa); 150 ipa_endpoint_disable_one(exception_endpoint); 151 err_command_disable: 152 ipa_endpoint_disable_one(command_endpoint); 153 err_endpoint_teardown: 154 ipa_endpoint_teardown(ipa); 155 ipa_power_teardown(ipa); 156 err_gsi_teardown: 157 gsi_teardown(&ipa->gsi); 158 159 return ret; 160 } 161 162 /** 163 * ipa_teardown() - Inverse of ipa_setup() 164 * @ipa: IPA pointer 165 */ 166 static void ipa_teardown(struct ipa *ipa) 167 { 168 struct ipa_endpoint *exception_endpoint; 169 struct ipa_endpoint *command_endpoint; 170 171 /* We're going to tear everything down, as if setup never completed */ 172 ipa->setup_complete = false; 173 174 ipa_qmi_teardown(ipa); 175 ipa_endpoint_default_route_clear(ipa); 176 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 177 ipa_endpoint_disable_one(exception_endpoint); 178 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 179 ipa_endpoint_disable_one(command_endpoint); 180 ipa_endpoint_teardown(ipa); 181 ipa_power_teardown(ipa); 182 gsi_teardown(&ipa->gsi); 183 } 184 185 /* Configure bus access behavior for IPA components */ 186 static void ipa_hardware_config_comp(struct ipa *ipa) 187 { 188 u32 val; 189 190 /* Nothing to configure prior to IPA v4.0 */ 191 if (ipa->version < IPA_VERSION_4_0) 192 return; 193 194 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 195 196 if (ipa->version == IPA_VERSION_4_0) { 197 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 198 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 199 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 200 } else if (ipa->version < IPA_VERSION_4_5) { 201 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 202 } else { 203 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ 204 } 205 206 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 207 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 208 209 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 210 } 211 212 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 213 static void 214 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 215 { 216 const struct ipa_qsb_data *data0; 217 const struct ipa_qsb_data *data1; 218 u32 val; 219 220 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 221 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 222 if (data->qsb_count > 1) 223 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 224 225 /* Max outstanding write accesses for QSB masters */ 226 val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK); 227 if (data->qsb_count > 1) 228 val |= u32_encode_bits(data1->max_writes, 229 GEN_QMB_1_MAX_WRITES_FMASK); 230 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 231 232 /* Max outstanding read accesses for QSB masters */ 233 val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK); 234 if (ipa->version >= IPA_VERSION_4_0) 235 val |= u32_encode_bits(data0->max_reads_beats, 236 GEN_QMB_0_MAX_READS_BEATS_FMASK); 237 if (data->qsb_count > 1) { 238 val |= u32_encode_bits(data1->max_reads, 239 GEN_QMB_1_MAX_READS_FMASK); 240 if (ipa->version >= IPA_VERSION_4_0) 241 val |= u32_encode_bits(data1->max_reads_beats, 242 GEN_QMB_1_MAX_READS_BEATS_FMASK); 243 } 244 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 245 } 246 247 /* The internal inactivity timer clock is used for the aggregation timer */ 248 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 249 250 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 251 * field to represent the given number of microseconds. The value is one 252 * less than the number of timer ticks in the requested period. 0 is not 253 * a valid granularity value (so for example @usec must be at least 16 for 254 * a TIMER_FREQUENCY of 32000). 255 */ 256 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 257 { 258 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 259 } 260 261 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 262 * timestamps and timers independent of the IPA core clock rate. The 263 * Qtimer is based on a 56-bit timestamp incremented at each tick of 264 * a 19.2 MHz SoC crystal oscillator (XO clock). 265 * 266 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 267 * timestamp is achieved by shifting the Qtimer timestamp value right 268 * some number of bits to produce the low-order bits of the coarser 269 * granularity timestamp. 270 * 271 * For timers, a common timer clock is derived from the XO clock using 272 * a divider (we use 192, to produce a 100kHz timer clock). From 273 * this common clock, three "pulse generators" are used to produce 274 * timer ticks at a configurable frequency. IPA timers (such as 275 * those used for aggregation or head-of-line block handling) now 276 * define their period based on one of these pulse generators. 277 */ 278 static void ipa_qtime_config(struct ipa *ipa) 279 { 280 u32 val; 281 282 /* Timer clock divider must be disabled when we change the rate */ 283 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 284 285 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 286 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); 287 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); 288 /* Configure tag and NAT Qtime timestamp resolution as well */ 289 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); 290 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); 291 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); 292 293 /* Set granularity of pulse generators used for other timers */ 294 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); 295 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); 296 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); 297 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); 298 299 /* Actual divider is 1 more than value supplied here */ 300 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); 301 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 302 303 /* Divider value is set; re-enable the common timer clock divider */ 304 val |= u32_encode_bits(1, DIV_ENABLE_FMASK); 305 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 306 } 307 308 static void ipa_idle_indication_cfg(struct ipa *ipa, 309 u32 enter_idle_debounce_thresh, 310 bool const_non_idle_enable) 311 { 312 u32 offset; 313 u32 val; 314 315 val = u32_encode_bits(enter_idle_debounce_thresh, 316 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 317 if (const_non_idle_enable) 318 val |= CONST_NON_IDLE_ENABLE_FMASK; 319 320 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 321 iowrite32(val, ipa->reg_virt + offset); 322 } 323 324 /** 325 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 326 * @ipa: IPA pointer 327 * 328 * Configures when the IPA signals it is idle to the global clock 329 * controller, which can respond by scaling down the clock to save 330 * power. 331 */ 332 static void ipa_hardware_dcd_config(struct ipa *ipa) 333 { 334 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 335 ipa_idle_indication_cfg(ipa, 256, false); 336 } 337 338 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 339 { 340 /* Power-on reset values */ 341 ipa_idle_indication_cfg(ipa, 0, true); 342 } 343 344 /** 345 * ipa_hardware_config() - Primitive hardware initialization 346 * @ipa: IPA pointer 347 * @data: IPA configuration data 348 */ 349 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 350 { 351 enum ipa_version version = ipa->version; 352 u32 granularity; 353 u32 val; 354 355 /* IPA v4.5+ has no backward compatibility register */ 356 if (version < IPA_VERSION_4_5) { 357 val = data->backward_compat; 358 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 359 } 360 361 /* Implement some hardware workarounds */ 362 if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) { 363 /* Disable PA mask to allow HOLB drop */ 364 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 365 val &= ~PA_MASK_EN_FMASK; 366 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 367 368 /* Enable open global clocks in the CLKON configuration */ 369 val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK; 370 } else if (version == IPA_VERSION_3_1) { 371 val = MISC_FMASK; /* Disable MISC clock gating */ 372 } else { 373 val = 0; /* No CLKON configuration needed */ 374 } 375 if (val) 376 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 377 378 ipa_hardware_config_comp(ipa); 379 380 /* Configure system bus limits */ 381 ipa_hardware_config_qsb(ipa, data); 382 383 if (version < IPA_VERSION_4_5) { 384 /* Configure aggregation timer granularity */ 385 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 386 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); 387 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 388 } else { 389 ipa_qtime_config(ipa); 390 } 391 392 /* IPA v4.2 does not support hashed tables, so disable them */ 393 if (version == IPA_VERSION_4_2) { 394 u32 offset = ipa_reg_filt_rout_hash_en_offset(version); 395 396 iowrite32(0, ipa->reg_virt + offset); 397 } 398 399 /* Enable dynamic clock division */ 400 ipa_hardware_dcd_config(ipa); 401 } 402 403 /** 404 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 405 * @ipa: IPA pointer 406 * 407 * This restores the power-on reset values (even if they aren't different) 408 */ 409 static void ipa_hardware_deconfig(struct ipa *ipa) 410 { 411 /* Mostly we just leave things as we set them. */ 412 ipa_hardware_dcd_deconfig(ipa); 413 } 414 415 /** 416 * ipa_config() - Configure IPA hardware 417 * @ipa: IPA pointer 418 * @data: IPA configuration data 419 * 420 * Perform initialization requiring IPA power to be enabled. 421 */ 422 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 423 { 424 int ret; 425 426 ipa_hardware_config(ipa, data); 427 428 ret = ipa_mem_config(ipa); 429 if (ret) 430 goto err_hardware_deconfig; 431 432 ipa->interrupt = ipa_interrupt_config(ipa); 433 if (IS_ERR(ipa->interrupt)) { 434 ret = PTR_ERR(ipa->interrupt); 435 ipa->interrupt = NULL; 436 goto err_mem_deconfig; 437 } 438 439 ipa_uc_config(ipa); 440 441 ret = ipa_endpoint_config(ipa); 442 if (ret) 443 goto err_uc_deconfig; 444 445 ipa_table_config(ipa); /* No deconfig required */ 446 447 /* Assign resource limitation to each group; no deconfig required */ 448 ret = ipa_resource_config(ipa, data->resource_data); 449 if (ret) 450 goto err_endpoint_deconfig; 451 452 ret = ipa_modem_config(ipa); 453 if (ret) 454 goto err_endpoint_deconfig; 455 456 return 0; 457 458 err_endpoint_deconfig: 459 ipa_endpoint_deconfig(ipa); 460 err_uc_deconfig: 461 ipa_uc_deconfig(ipa); 462 ipa_interrupt_deconfig(ipa->interrupt); 463 ipa->interrupt = NULL; 464 err_mem_deconfig: 465 ipa_mem_deconfig(ipa); 466 err_hardware_deconfig: 467 ipa_hardware_deconfig(ipa); 468 469 return ret; 470 } 471 472 /** 473 * ipa_deconfig() - Inverse of ipa_config() 474 * @ipa: IPA pointer 475 */ 476 static void ipa_deconfig(struct ipa *ipa) 477 { 478 ipa_modem_deconfig(ipa); 479 ipa_endpoint_deconfig(ipa); 480 ipa_uc_deconfig(ipa); 481 ipa_interrupt_deconfig(ipa->interrupt); 482 ipa->interrupt = NULL; 483 ipa_mem_deconfig(ipa); 484 ipa_hardware_deconfig(ipa); 485 } 486 487 static int ipa_firmware_load(struct device *dev) 488 { 489 const struct firmware *fw; 490 struct device_node *node; 491 struct resource res; 492 phys_addr_t phys; 493 const char *path; 494 ssize_t size; 495 void *virt; 496 int ret; 497 498 node = of_parse_phandle(dev->of_node, "memory-region", 0); 499 if (!node) { 500 dev_err(dev, "DT error getting \"memory-region\" property\n"); 501 return -EINVAL; 502 } 503 504 ret = of_address_to_resource(node, 0, &res); 505 of_node_put(node); 506 if (ret) { 507 dev_err(dev, "error %d getting \"memory-region\" resource\n", 508 ret); 509 return ret; 510 } 511 512 /* Use name from DTB if specified; use default for *any* error */ 513 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 514 if (ret) { 515 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 516 ret); 517 path = IPA_FW_PATH_DEFAULT; 518 } 519 520 ret = request_firmware(&fw, path, dev); 521 if (ret) { 522 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 523 return ret; 524 } 525 526 phys = res.start; 527 size = (size_t)resource_size(&res); 528 virt = memremap(phys, size, MEMREMAP_WC); 529 if (!virt) { 530 dev_err(dev, "unable to remap firmware memory\n"); 531 ret = -ENOMEM; 532 goto out_release_firmware; 533 } 534 535 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 536 if (ret) 537 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 538 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 539 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 540 541 memunmap(virt); 542 out_release_firmware: 543 release_firmware(fw); 544 545 return ret; 546 } 547 548 static const struct of_device_id ipa_match[] = { 549 { 550 .compatible = "qcom,msm8998-ipa", 551 .data = &ipa_data_v3_1, 552 }, 553 { 554 .compatible = "qcom,sdm845-ipa", 555 .data = &ipa_data_v3_5_1, 556 }, 557 { 558 .compatible = "qcom,sc7180-ipa", 559 .data = &ipa_data_v4_2, 560 }, 561 { 562 .compatible = "qcom,sdx55-ipa", 563 .data = &ipa_data_v4_5, 564 }, 565 { 566 .compatible = "qcom,sm8350-ipa", 567 .data = &ipa_data_v4_9, 568 }, 569 { 570 .compatible = "qcom,sc7280-ipa", 571 .data = &ipa_data_v4_11, 572 }, 573 { }, 574 }; 575 MODULE_DEVICE_TABLE(of, ipa_match); 576 577 /* Check things that can be validated at build time. This just 578 * groups these things BUILD_BUG_ON() calls don't clutter the rest 579 * of the code. 580 * */ 581 static void ipa_validate_build(void) 582 { 583 /* At one time we assumed a 64-bit build, allowing some do_div() 584 * calls to be replaced by simple division or modulo operations. 585 * We currently only perform divide and modulo operations on u32, 586 * u16, or size_t objects, and of those only size_t has any chance 587 * of being a 64-bit value. (It should be guaranteed 32 bits wide 588 * on a 32-bit build, but there is no harm in verifying that.) 589 */ 590 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 591 592 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 593 BUILD_BUG_ON(GSI_EE_AP != 0); 594 595 /* There's no point if we have no channels or event rings */ 596 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 597 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 598 599 /* GSI hardware design limits */ 600 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 601 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 602 603 /* The number of TREs in a transaction is limited by the channel's 604 * TLV FIFO size. A transaction structure uses 8-bit fields 605 * to represents the number of TREs it has allocated and used. 606 */ 607 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 608 609 /* This is used as a divisor */ 610 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 611 612 /* Aggregation granularity value can't be 0, and must fit */ 613 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 614 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 615 field_max(AGGR_GRANULARITY_FMASK)); 616 } 617 618 static bool ipa_version_valid(enum ipa_version version) 619 { 620 switch (version) { 621 case IPA_VERSION_3_0: 622 case IPA_VERSION_3_1: 623 case IPA_VERSION_3_5: 624 case IPA_VERSION_3_5_1: 625 case IPA_VERSION_4_0: 626 case IPA_VERSION_4_1: 627 case IPA_VERSION_4_2: 628 case IPA_VERSION_4_5: 629 case IPA_VERSION_4_7: 630 case IPA_VERSION_4_9: 631 case IPA_VERSION_4_11: 632 return true; 633 634 default: 635 return false; 636 } 637 } 638 639 /** 640 * ipa_probe() - IPA platform driver probe function 641 * @pdev: Platform device pointer 642 * 643 * Return: 0 if successful, or a negative error code (possibly 644 * EPROBE_DEFER) 645 * 646 * This is the main entry point for the IPA driver. Initialization proceeds 647 * in several stages: 648 * - The "init" stage involves activities that can be initialized without 649 * access to the IPA hardware. 650 * - The "config" stage requires IPA power to be active so IPA registers 651 * can be accessed, but does not require the use of IPA immediate commands. 652 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 653 * layer to be initialized. 654 * 655 * A Boolean Device Tree "modem-init" property determines whether GSI 656 * initialization will be performed by the AP (Trust Zone) or the modem. 657 * If the AP does GSI initialization, the setup phase is entered after 658 * this has completed successfully. Otherwise the modem initializes 659 * the GSI layer and signals it has finished by sending an SMP2P interrupt 660 * to the AP; this triggers the start if IPA setup. 661 */ 662 static int ipa_probe(struct platform_device *pdev) 663 { 664 struct device *dev = &pdev->dev; 665 const struct ipa_data *data; 666 struct ipa_power *power; 667 bool modem_init; 668 struct ipa *ipa; 669 int ret; 670 671 ipa_validate_build(); 672 673 /* Get configuration data early; needed for power initialization */ 674 data = of_device_get_match_data(dev); 675 if (!data) { 676 dev_err(dev, "matched hardware not supported\n"); 677 return -ENODEV; 678 } 679 680 if (!ipa_version_valid(data->version)) { 681 dev_err(dev, "invalid IPA version\n"); 682 return -EINVAL; 683 } 684 685 /* If we need Trust Zone, make sure it's available */ 686 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 687 if (!modem_init) 688 if (!qcom_scm_is_available()) 689 return -EPROBE_DEFER; 690 691 /* The clock and interconnects might not be ready when we're 692 * probed, so might return -EPROBE_DEFER. 693 */ 694 power = ipa_power_init(dev, data->power_data); 695 if (IS_ERR(power)) 696 return PTR_ERR(power); 697 698 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 699 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 700 if (!ipa) { 701 ret = -ENOMEM; 702 goto err_power_exit; 703 } 704 705 ipa->pdev = pdev; 706 dev_set_drvdata(dev, ipa); 707 ipa->power = power; 708 ipa->version = data->version; 709 init_completion(&ipa->completion); 710 711 ret = ipa_reg_init(ipa); 712 if (ret) 713 goto err_kfree_ipa; 714 715 ret = ipa_mem_init(ipa, data->mem_data); 716 if (ret) 717 goto err_reg_exit; 718 719 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 720 data->endpoint_data); 721 if (ret) 722 goto err_mem_exit; 723 724 /* Result is a non-zero mask of endpoints that support filtering */ 725 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 726 data->endpoint_data); 727 if (!ipa->filter_map) { 728 ret = -EINVAL; 729 goto err_gsi_exit; 730 } 731 732 ret = ipa_table_init(ipa); 733 if (ret) 734 goto err_endpoint_exit; 735 736 ret = ipa_modem_init(ipa, modem_init); 737 if (ret) 738 goto err_table_exit; 739 740 /* Power needs to be active for config and setup */ 741 ret = pm_runtime_get_sync(dev); 742 if (WARN_ON(ret < 0)) 743 goto err_power_put; 744 745 ret = ipa_config(ipa, data); 746 if (ret) 747 goto err_power_put; 748 749 dev_info(dev, "IPA driver initialized"); 750 751 /* If the modem is doing early initialization, it will trigger a 752 * call to ipa_setup() when it has finished. In that case we're 753 * done here. 754 */ 755 if (modem_init) 756 goto done; 757 758 /* Otherwise we need to load the firmware and have Trust Zone validate 759 * and install it. If that succeeds we can proceed with setup. 760 */ 761 ret = ipa_firmware_load(dev); 762 if (ret) 763 goto err_deconfig; 764 765 ret = ipa_setup(ipa); 766 if (ret) 767 goto err_deconfig; 768 done: 769 pm_runtime_mark_last_busy(dev); 770 (void)pm_runtime_put_autosuspend(dev); 771 772 return 0; 773 774 err_deconfig: 775 ipa_deconfig(ipa); 776 err_power_put: 777 pm_runtime_put_noidle(dev); 778 ipa_modem_exit(ipa); 779 err_table_exit: 780 ipa_table_exit(ipa); 781 err_endpoint_exit: 782 ipa_endpoint_exit(ipa); 783 err_gsi_exit: 784 gsi_exit(&ipa->gsi); 785 err_mem_exit: 786 ipa_mem_exit(ipa); 787 err_reg_exit: 788 ipa_reg_exit(ipa); 789 err_kfree_ipa: 790 kfree(ipa); 791 err_power_exit: 792 ipa_power_exit(power); 793 794 return ret; 795 } 796 797 static int ipa_remove(struct platform_device *pdev) 798 { 799 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 800 struct ipa_power *power = ipa->power; 801 struct device *dev = &pdev->dev; 802 int ret; 803 804 ret = pm_runtime_get_sync(dev); 805 if (WARN_ON(ret < 0)) 806 goto out_power_put; 807 808 if (ipa->setup_complete) { 809 ret = ipa_modem_stop(ipa); 810 /* If starting or stopping is in progress, try once more */ 811 if (ret == -EBUSY) { 812 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 813 ret = ipa_modem_stop(ipa); 814 } 815 if (ret) 816 return ret; 817 818 ipa_teardown(ipa); 819 } 820 821 ipa_deconfig(ipa); 822 out_power_put: 823 pm_runtime_put_noidle(dev); 824 ipa_modem_exit(ipa); 825 ipa_table_exit(ipa); 826 ipa_endpoint_exit(ipa); 827 gsi_exit(&ipa->gsi); 828 ipa_mem_exit(ipa); 829 ipa_reg_exit(ipa); 830 kfree(ipa); 831 ipa_power_exit(power); 832 833 return 0; 834 } 835 836 static void ipa_shutdown(struct platform_device *pdev) 837 { 838 int ret; 839 840 ret = ipa_remove(pdev); 841 if (ret) 842 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 843 } 844 845 static const struct attribute_group *ipa_attribute_groups[] = { 846 &ipa_attribute_group, 847 &ipa_feature_attribute_group, 848 &ipa_modem_attribute_group, 849 NULL, 850 }; 851 852 static struct platform_driver ipa_driver = { 853 .probe = ipa_probe, 854 .remove = ipa_remove, 855 .shutdown = ipa_shutdown, 856 .driver = { 857 .name = "ipa", 858 .pm = &ipa_pm_ops, 859 .of_match_table = ipa_match, 860 .dev_groups = ipa_attribute_groups, 861 }, 862 }; 863 864 module_platform_driver(ipa_driver); 865 866 MODULE_LICENSE("GPL v2"); 867 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 868