1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/remoteproc.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_clock.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_cmd.h" 27 #include "ipa_reg.h" 28 #include "ipa_mem.h" 29 #include "ipa_table.h" 30 #include "ipa_modem.h" 31 #include "ipa_uc.h" 32 #include "ipa_interrupt.h" 33 #include "gsi_trans.h" 34 35 /** 36 * DOC: The IP Accelerator 37 * 38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 39 * networking component found in many Qualcomm SoCs. The IPA is connected 40 * to the application processor (AP), but is also connected (and partially 41 * controlled by) other "execution environments" (EEs), such as a modem. 42 * 43 * The IPA is the conduit between the AP and the modem that carries network 44 * traffic. This driver presents a network interface representing the 45 * connection of the modem to external (e.g. LTE) networks. 46 * 47 * The IPA provides protocol checksum calculation, offloading this work 48 * from the AP. The IPA offers additional functionality, including routing, 49 * filtering, and NAT support, but that more advanced functionality is not 50 * currently supported. Despite that, some resources--including routing 51 * tables and filter tables--are defined in this driver because they must 52 * be initialized even when the advanced hardware features are not used. 53 * 54 * There are two distinct layers that implement the IPA hardware, and this 55 * is reflected in the organization of the driver. The generic software 56 * interface (GSI) is an integral component of the IPA, providing a 57 * well-defined communication layer between the AP subsystem and the IPA 58 * core. The GSI implements a set of "channels" used for communication 59 * between the AP and the IPA. 60 * 61 * The IPA layer uses GSI channels to implement its "endpoints". And while 62 * a GSI channel carries data between the AP and the IPA, a pair of IPA 63 * endpoints is used to carry traffic between two EEs. Specifically, the main 64 * modem network interface is implemented by two pairs of endpoints: a TX 65 * endpoint on the AP coupled with an RX endpoint on the modem; and another 66 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 67 */ 68 69 /* The name of the GSI firmware file relative to /lib/firmware */ 70 #define IPA_FWS_PATH "ipa_fws.mdt" 71 #define IPA_PAS_ID 15 72 73 /** 74 * ipa_suspend_handler() - Handle the suspend IPA interrupt 75 * @ipa: IPA pointer 76 * @irq_id: IPA interrupt type (unused) 77 * 78 * If an RX endpoint is in suspend state, and the IPA has a packet 79 * destined for that endpoint, the IPA generates a SUSPEND interrupt 80 * to inform the AP that it should resume the endpoint. If we get 81 * one of these interrupts we just resume everything. 82 */ 83 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 84 { 85 /* Just report the event, and let system resume handle the rest. 86 * More than one endpoint could signal this; if so, ignore 87 * all but the first. 88 */ 89 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) 90 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 91 92 /* Acknowledge/clear the suspend interrupt on all endpoints */ 93 ipa_interrupt_suspend_clear_all(ipa->interrupt); 94 } 95 96 /** 97 * ipa_setup() - Set up IPA hardware 98 * @ipa: IPA pointer 99 * 100 * Perform initialization that requires issuing immediate commands on 101 * the command TX endpoint. If the modem is doing GSI firmware load 102 * and initialization, this function will be called when an SMP2P 103 * interrupt has been signaled by the modem. Otherwise it will be 104 * called from ipa_probe() after GSI firmware has been successfully 105 * loaded, authenticated, and started by Trust Zone. 106 */ 107 int ipa_setup(struct ipa *ipa) 108 { 109 struct ipa_endpoint *exception_endpoint; 110 struct ipa_endpoint *command_endpoint; 111 struct device *dev = &ipa->pdev->dev; 112 int ret; 113 114 /* Setup for IPA v3.5.1 has some slight differences */ 115 ret = gsi_setup(&ipa->gsi, ipa->version == IPA_VERSION_3_5_1); 116 if (ret) 117 return ret; 118 119 ipa->interrupt = ipa_interrupt_setup(ipa); 120 if (IS_ERR(ipa->interrupt)) { 121 ret = PTR_ERR(ipa->interrupt); 122 goto err_gsi_teardown; 123 } 124 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 125 ipa_suspend_handler); 126 127 ipa_uc_setup(ipa); 128 129 ret = device_init_wakeup(dev, true); 130 if (ret) 131 goto err_uc_teardown; 132 133 ipa_endpoint_setup(ipa); 134 135 /* We need to use the AP command TX endpoint to perform other 136 * initialization, so we enable first. 137 */ 138 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 139 ret = ipa_endpoint_enable_one(command_endpoint); 140 if (ret) 141 goto err_endpoint_teardown; 142 143 ret = ipa_mem_setup(ipa); 144 if (ret) 145 goto err_command_disable; 146 147 ret = ipa_table_setup(ipa); 148 if (ret) 149 goto err_mem_teardown; 150 151 /* Enable the exception handling endpoint, and tell the hardware 152 * to use it by default. 153 */ 154 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 155 ret = ipa_endpoint_enable_one(exception_endpoint); 156 if (ret) 157 goto err_table_teardown; 158 159 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 160 161 /* We're all set. Now prepare for communication with the modem */ 162 ret = ipa_modem_setup(ipa); 163 if (ret) 164 goto err_default_route_clear; 165 166 ipa->setup_complete = true; 167 168 dev_info(dev, "IPA driver setup completed successfully\n"); 169 170 return 0; 171 172 err_default_route_clear: 173 ipa_endpoint_default_route_clear(ipa); 174 ipa_endpoint_disable_one(exception_endpoint); 175 err_table_teardown: 176 ipa_table_teardown(ipa); 177 err_mem_teardown: 178 ipa_mem_teardown(ipa); 179 err_command_disable: 180 ipa_endpoint_disable_one(command_endpoint); 181 err_endpoint_teardown: 182 ipa_endpoint_teardown(ipa); 183 (void)device_init_wakeup(dev, false); 184 err_uc_teardown: 185 ipa_uc_teardown(ipa); 186 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 187 ipa_interrupt_teardown(ipa->interrupt); 188 err_gsi_teardown: 189 gsi_teardown(&ipa->gsi); 190 191 return ret; 192 } 193 194 /** 195 * ipa_teardown() - Inverse of ipa_setup() 196 * @ipa: IPA pointer 197 */ 198 static void ipa_teardown(struct ipa *ipa) 199 { 200 struct ipa_endpoint *exception_endpoint; 201 struct ipa_endpoint *command_endpoint; 202 203 ipa_modem_teardown(ipa); 204 ipa_endpoint_default_route_clear(ipa); 205 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 206 ipa_endpoint_disable_one(exception_endpoint); 207 ipa_table_teardown(ipa); 208 ipa_mem_teardown(ipa); 209 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 210 ipa_endpoint_disable_one(command_endpoint); 211 ipa_endpoint_teardown(ipa); 212 (void)device_init_wakeup(&ipa->pdev->dev, false); 213 ipa_uc_teardown(ipa); 214 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 215 ipa_interrupt_teardown(ipa->interrupt); 216 gsi_teardown(&ipa->gsi); 217 } 218 219 /* Configure QMB Core Master Port selection */ 220 static void ipa_hardware_config_comp(struct ipa *ipa) 221 { 222 u32 val; 223 224 /* Nothing to configure for IPA v3.5.1 */ 225 if (ipa->version == IPA_VERSION_3_5_1) 226 return; 227 228 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 229 230 if (ipa->version == IPA_VERSION_4_0) { 231 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 232 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 233 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 234 } else { 235 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 236 } 237 238 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 239 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 240 241 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 242 } 243 244 /* Configure DDR and PCIe max read/write QSB values */ 245 static void ipa_hardware_config_qsb(struct ipa *ipa) 246 { 247 u32 val; 248 249 /* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */ 250 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); 251 if (ipa->version == IPA_VERSION_4_2) 252 val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK); 253 else 254 val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK); 255 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 256 257 if (ipa->version == IPA_VERSION_3_5_1) { 258 val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK); 259 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 260 } else { 261 val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK); 262 if (ipa->version == IPA_VERSION_4_2) 263 val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK); 264 else 265 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); 266 /* GEN_QMB_0_MAX_READS_BEATS is 0 */ 267 /* GEN_QMB_1_MAX_READS_BEATS is 0 */ 268 } 269 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 270 } 271 272 static void ipa_idle_indication_cfg(struct ipa *ipa, 273 u32 enter_idle_debounce_thresh, 274 bool const_non_idle_enable) 275 { 276 u32 offset; 277 u32 val; 278 279 val = u32_encode_bits(enter_idle_debounce_thresh, 280 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 281 if (const_non_idle_enable) 282 val |= CONST_NON_IDLE_ENABLE_FMASK; 283 284 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 285 iowrite32(val, ipa->reg_virt + offset); 286 } 287 288 /** 289 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 290 * @ipa: IPA pointer 291 * 292 * Configures when the IPA signals it is idle to the global clock 293 * controller, which can respond by scalling down the clock to 294 * save power. 295 */ 296 static void ipa_hardware_dcd_config(struct ipa *ipa) 297 { 298 /* Recommended values for IPA 3.5 according to IPA HPG */ 299 ipa_idle_indication_cfg(ipa, 256, false); 300 } 301 302 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 303 { 304 /* Power-on reset values */ 305 ipa_idle_indication_cfg(ipa, 0, true); 306 } 307 308 /** 309 * ipa_hardware_config() - Primitive hardware initialization 310 * @ipa: IPA pointer 311 */ 312 static void ipa_hardware_config(struct ipa *ipa) 313 { 314 u32 granularity; 315 u32 val; 316 317 /* Fill in backward-compatibility register, based on version */ 318 val = ipa_reg_bcr_val(ipa->version); 319 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 320 321 if (ipa->version != IPA_VERSION_3_5_1) { 322 /* Enable open global clocks (hardware workaround) */ 323 val = GLOBAL_FMASK; 324 val |= GLOBAL_2X_CLK_FMASK; 325 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 326 327 /* Disable PA mask to allow HOLB drop (hardware workaround) */ 328 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 329 val &= ~PA_MASK_EN; 330 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 331 } 332 333 ipa_hardware_config_comp(ipa); 334 335 /* Configure system bus limits */ 336 ipa_hardware_config_qsb(ipa); 337 338 /* Configure aggregation granularity */ 339 val = ioread32(ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 340 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 341 val = u32_encode_bits(granularity, AGGR_GRANULARITY); 342 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 343 344 /* Disable hashed IPv4 and IPv6 routing and filtering for IPA v4.2 */ 345 if (ipa->version == IPA_VERSION_4_2) 346 iowrite32(0, ipa->reg_virt + IPA_REG_FILT_ROUT_HASH_EN_OFFSET); 347 348 /* Enable dynamic clock division */ 349 ipa_hardware_dcd_config(ipa); 350 } 351 352 /** 353 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 354 * @ipa: IPA pointer 355 * 356 * This restores the power-on reset values (even if they aren't different) 357 */ 358 static void ipa_hardware_deconfig(struct ipa *ipa) 359 { 360 /* Mostly we just leave things as we set them. */ 361 ipa_hardware_dcd_deconfig(ipa); 362 } 363 364 #ifdef IPA_VALIDATION 365 366 static bool ipa_resource_limits_valid(struct ipa *ipa, 367 const struct ipa_resource_data *data) 368 { 369 u32 group_count; 370 u32 i; 371 u32 j; 372 373 /* We program at most 6 source or destination resource group limits */ 374 BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6); 375 376 group_count = ipa_resource_group_src_count(ipa->version); 377 if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX) 378 return false; 379 380 /* Return an error if a non-zero resource limit is specified 381 * for a resource group not supported by hardware. 382 */ 383 for (i = 0; i < data->resource_src_count; i++) { 384 const struct ipa_resource_src *resource; 385 386 resource = &data->resource_src[i]; 387 for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++) 388 if (resource->limits[j].min || resource->limits[j].max) 389 return false; 390 } 391 392 group_count = ipa_resource_group_dst_count(ipa->version); 393 if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX) 394 return false; 395 396 for (i = 0; i < data->resource_dst_count; i++) { 397 const struct ipa_resource_dst *resource; 398 399 resource = &data->resource_dst[i]; 400 for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++) 401 if (resource->limits[j].min || resource->limits[j].max) 402 return false; 403 } 404 405 return true; 406 } 407 408 #else /* !IPA_VALIDATION */ 409 410 static bool ipa_resource_limits_valid(struct ipa *ipa, 411 const struct ipa_resource_data *data) 412 { 413 return true; 414 } 415 416 #endif /* !IPA_VALIDATION */ 417 418 static void 419 ipa_resource_config_common(struct ipa *ipa, u32 offset, 420 const struct ipa_resource_limits *xlimits, 421 const struct ipa_resource_limits *ylimits) 422 { 423 u32 val; 424 425 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); 426 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); 427 if (ylimits) { 428 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); 429 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); 430 } 431 432 iowrite32(val, ipa->reg_virt + offset); 433 } 434 435 static void ipa_resource_config_src(struct ipa *ipa, 436 const struct ipa_resource_src *resource) 437 { 438 u32 group_count = ipa_resource_group_src_count(ipa->version); 439 const struct ipa_resource_limits *ylimits; 440 u32 offset; 441 442 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 443 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 444 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 445 446 if (group_count < 2) 447 return; 448 449 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 450 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 451 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 452 453 if (group_count < 4) 454 return; 455 456 offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 457 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 458 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 459 } 460 461 static void ipa_resource_config_dst(struct ipa *ipa, 462 const struct ipa_resource_dst *resource) 463 { 464 u32 group_count = ipa_resource_group_dst_count(ipa->version); 465 const struct ipa_resource_limits *ylimits; 466 u32 offset; 467 468 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 469 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 470 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 471 472 if (group_count < 2) 473 return; 474 475 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 476 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 477 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 478 479 if (group_count < 4) 480 return; 481 482 offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 483 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 484 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 485 } 486 487 static int 488 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) 489 { 490 u32 i; 491 492 if (!ipa_resource_limits_valid(ipa, data)) 493 return -EINVAL; 494 495 for (i = 0; i < data->resource_src_count; i++) 496 ipa_resource_config_src(ipa, data->resource_src); 497 498 for (i = 0; i < data->resource_dst_count; i++) 499 ipa_resource_config_dst(ipa, data->resource_dst); 500 501 return 0; 502 } 503 504 static void ipa_resource_deconfig(struct ipa *ipa) 505 { 506 /* Nothing to do */ 507 } 508 509 /** 510 * ipa_config() - Configure IPA hardware 511 * @ipa: IPA pointer 512 * @data: IPA configuration data 513 * 514 * Perform initialization requiring IPA clock to be enabled. 515 */ 516 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 517 { 518 int ret; 519 520 /* Get a clock reference to allow initialization. This reference 521 * is held after initialization completes, and won't get dropped 522 * unless/until a system suspend request arrives. 523 */ 524 ipa_clock_get(ipa); 525 526 ipa_hardware_config(ipa); 527 528 ret = ipa_endpoint_config(ipa); 529 if (ret) 530 goto err_hardware_deconfig; 531 532 ret = ipa_mem_config(ipa); 533 if (ret) 534 goto err_endpoint_deconfig; 535 536 ipa_table_config(ipa); 537 538 /* Assign resource limitation to each group */ 539 ret = ipa_resource_config(ipa, data->resource_data); 540 if (ret) 541 goto err_table_deconfig; 542 543 ret = ipa_modem_config(ipa); 544 if (ret) 545 goto err_resource_deconfig; 546 547 return 0; 548 549 err_resource_deconfig: 550 ipa_resource_deconfig(ipa); 551 err_table_deconfig: 552 ipa_table_deconfig(ipa); 553 ipa_mem_deconfig(ipa); 554 err_endpoint_deconfig: 555 ipa_endpoint_deconfig(ipa); 556 err_hardware_deconfig: 557 ipa_hardware_deconfig(ipa); 558 ipa_clock_put(ipa); 559 560 return ret; 561 } 562 563 /** 564 * ipa_deconfig() - Inverse of ipa_config() 565 * @ipa: IPA pointer 566 */ 567 static void ipa_deconfig(struct ipa *ipa) 568 { 569 ipa_modem_deconfig(ipa); 570 ipa_resource_deconfig(ipa); 571 ipa_table_deconfig(ipa); 572 ipa_mem_deconfig(ipa); 573 ipa_endpoint_deconfig(ipa); 574 ipa_hardware_deconfig(ipa); 575 ipa_clock_put(ipa); 576 } 577 578 static int ipa_firmware_load(struct device *dev) 579 { 580 const struct firmware *fw; 581 struct device_node *node; 582 struct resource res; 583 phys_addr_t phys; 584 ssize_t size; 585 void *virt; 586 int ret; 587 588 node = of_parse_phandle(dev->of_node, "memory-region", 0); 589 if (!node) { 590 dev_err(dev, "DT error getting \"memory-region\" property\n"); 591 return -EINVAL; 592 } 593 594 ret = of_address_to_resource(node, 0, &res); 595 if (ret) { 596 dev_err(dev, "error %d getting \"memory-region\" resource\n", 597 ret); 598 return ret; 599 } 600 601 ret = request_firmware(&fw, IPA_FWS_PATH, dev); 602 if (ret) { 603 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); 604 return ret; 605 } 606 607 phys = res.start; 608 size = (size_t)resource_size(&res); 609 virt = memremap(phys, size, MEMREMAP_WC); 610 if (!virt) { 611 dev_err(dev, "unable to remap firmware memory\n"); 612 ret = -ENOMEM; 613 goto out_release_firmware; 614 } 615 616 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, 617 virt, phys, size, NULL); 618 if (ret) 619 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); 620 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 621 dev_err(dev, "error %d authenticating \"%s\"\n", ret, 622 IPA_FWS_PATH); 623 624 memunmap(virt); 625 out_release_firmware: 626 release_firmware(fw); 627 628 return ret; 629 } 630 631 static const struct of_device_id ipa_match[] = { 632 { 633 .compatible = "qcom,sdm845-ipa", 634 .data = &ipa_data_sdm845, 635 }, 636 { 637 .compatible = "qcom,sc7180-ipa", 638 .data = &ipa_data_sc7180, 639 }, 640 { }, 641 }; 642 MODULE_DEVICE_TABLE(of, ipa_match); 643 644 static phandle of_property_read_phandle(const struct device_node *np, 645 const char *name) 646 { 647 struct property *prop; 648 int len = 0; 649 650 prop = of_find_property(np, name, &len); 651 if (!prop || len != sizeof(__be32)) 652 return 0; 653 654 return be32_to_cpup(prop->value); 655 } 656 657 /* Check things that can be validated at build time. This just 658 * groups these things BUILD_BUG_ON() calls don't clutter the rest 659 * of the code. 660 * */ 661 static void ipa_validate_build(void) 662 { 663 #ifdef IPA_VALIDATE 664 /* We assume we're working on 64-bit hardware */ 665 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); 666 667 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 668 BUILD_BUG_ON(GSI_EE_AP != 0); 669 670 /* There's no point if we have no channels or event rings */ 671 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 672 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 673 674 /* GSI hardware design limits */ 675 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 676 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 677 678 /* The number of TREs in a transaction is limited by the channel's 679 * TLV FIFO size. A transaction structure uses 8-bit fields 680 * to represents the number of TREs it has allocated and used. 681 */ 682 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 683 684 /* Exceeding 128 bytes makes the transaction pool *much* larger */ 685 BUILD_BUG_ON(sizeof(struct gsi_trans) > 128); 686 687 /* This is used as a divisor */ 688 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 689 690 /* Aggregation granularity value can't be 0, and must fit */ 691 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 692 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 693 field_max(AGGR_GRANULARITY)); 694 #endif /* IPA_VALIDATE */ 695 } 696 697 /** 698 * ipa_probe() - IPA platform driver probe function 699 * @pdev: Platform device pointer 700 * 701 * Return: 0 if successful, or a negative error code (possibly 702 * EPROBE_DEFER) 703 * 704 * This is the main entry point for the IPA driver. Initialization proceeds 705 * in several stages: 706 * - The "init" stage involves activities that can be initialized without 707 * access to the IPA hardware. 708 * - The "config" stage requires the IPA clock to be active so IPA registers 709 * can be accessed, but does not require the use of IPA immediate commands. 710 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 711 * layer to be initialized. 712 * 713 * A Boolean Device Tree "modem-init" property determines whether GSI 714 * initialization will be performed by the AP (Trust Zone) or the modem. 715 * If the AP does GSI initialization, the setup phase is entered after 716 * this has completed successfully. Otherwise the modem initializes 717 * the GSI layer and signals it has finished by sending an SMP2P interrupt 718 * to the AP; this triggers the start if IPA setup. 719 */ 720 static int ipa_probe(struct platform_device *pdev) 721 { 722 struct device *dev = &pdev->dev; 723 const struct ipa_data *data; 724 struct ipa_clock *clock; 725 struct rproc *rproc; 726 bool modem_alloc; 727 bool modem_init; 728 struct ipa *ipa; 729 bool prefetch; 730 phandle ph; 731 int ret; 732 733 ipa_validate_build(); 734 735 /* If we need Trust Zone, make sure it's available */ 736 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 737 if (!modem_init) 738 if (!qcom_scm_is_available()) 739 return -EPROBE_DEFER; 740 741 /* We rely on remoteproc to tell us about modem state changes */ 742 ph = of_property_read_phandle(dev->of_node, "modem-remoteproc"); 743 if (!ph) { 744 dev_err(dev, "DT missing \"modem-remoteproc\" property\n"); 745 return -EINVAL; 746 } 747 748 rproc = rproc_get_by_phandle(ph); 749 if (!rproc) 750 return -EPROBE_DEFER; 751 752 /* The clock and interconnects might not be ready when we're 753 * probed, so might return -EPROBE_DEFER. 754 */ 755 clock = ipa_clock_init(dev); 756 if (IS_ERR(clock)) { 757 ret = PTR_ERR(clock); 758 goto err_rproc_put; 759 } 760 761 /* No more EPROBE_DEFER. Get our configuration data */ 762 data = of_device_get_match_data(dev); 763 if (!data) { 764 /* This is really IPA_VALIDATE (should never happen) */ 765 dev_err(dev, "matched hardware not supported\n"); 766 ret = -ENOTSUPP; 767 goto err_clock_exit; 768 } 769 770 /* Allocate and initialize the IPA structure */ 771 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 772 if (!ipa) { 773 ret = -ENOMEM; 774 goto err_clock_exit; 775 } 776 777 ipa->pdev = pdev; 778 dev_set_drvdata(dev, ipa); 779 ipa->modem_rproc = rproc; 780 ipa->clock = clock; 781 ipa->version = data->version; 782 783 ret = ipa_reg_init(ipa); 784 if (ret) 785 goto err_kfree_ipa; 786 787 ret = ipa_mem_init(ipa, data->mem_data); 788 if (ret) 789 goto err_reg_exit; 790 791 /* GSI v2.0+ (IPA v4.0+) uses prefetch for the command channel */ 792 prefetch = ipa->version != IPA_VERSION_3_5_1; 793 /* IPA v4.2 requires the AP to allocate channels for the modem */ 794 modem_alloc = ipa->version == IPA_VERSION_4_2; 795 796 ret = gsi_init(&ipa->gsi, pdev, prefetch, data->endpoint_count, 797 data->endpoint_data, modem_alloc); 798 if (ret) 799 goto err_mem_exit; 800 801 /* Result is a non-zero mask endpoints that support filtering */ 802 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 803 data->endpoint_data); 804 if (!ipa->filter_map) { 805 ret = -EINVAL; 806 goto err_gsi_exit; 807 } 808 809 ret = ipa_table_init(ipa); 810 if (ret) 811 goto err_endpoint_exit; 812 813 ret = ipa_modem_init(ipa, modem_init); 814 if (ret) 815 goto err_table_exit; 816 817 ret = ipa_config(ipa, data); 818 if (ret) 819 goto err_modem_exit; 820 821 dev_info(dev, "IPA driver initialized"); 822 823 /* If the modem is doing early initialization, it will trigger a 824 * call to ipa_setup() call when it has finished. In that case 825 * we're done here. 826 */ 827 if (modem_init) 828 return 0; 829 830 /* Otherwise we need to load the firmware and have Trust Zone validate 831 * and install it. If that succeeds we can proceed with setup. 832 */ 833 ret = ipa_firmware_load(dev); 834 if (ret) 835 goto err_deconfig; 836 837 ret = ipa_setup(ipa); 838 if (ret) 839 goto err_deconfig; 840 841 return 0; 842 843 err_deconfig: 844 ipa_deconfig(ipa); 845 err_modem_exit: 846 ipa_modem_exit(ipa); 847 err_table_exit: 848 ipa_table_exit(ipa); 849 err_endpoint_exit: 850 ipa_endpoint_exit(ipa); 851 err_gsi_exit: 852 gsi_exit(&ipa->gsi); 853 err_mem_exit: 854 ipa_mem_exit(ipa); 855 err_reg_exit: 856 ipa_reg_exit(ipa); 857 err_kfree_ipa: 858 kfree(ipa); 859 err_clock_exit: 860 ipa_clock_exit(clock); 861 err_rproc_put: 862 rproc_put(rproc); 863 864 return ret; 865 } 866 867 static int ipa_remove(struct platform_device *pdev) 868 { 869 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 870 struct rproc *rproc = ipa->modem_rproc; 871 struct ipa_clock *clock = ipa->clock; 872 int ret; 873 874 if (ipa->setup_complete) { 875 ret = ipa_modem_stop(ipa); 876 if (ret) 877 return ret; 878 879 ipa_teardown(ipa); 880 } 881 882 ipa_deconfig(ipa); 883 ipa_modem_exit(ipa); 884 ipa_table_exit(ipa); 885 ipa_endpoint_exit(ipa); 886 gsi_exit(&ipa->gsi); 887 ipa_mem_exit(ipa); 888 ipa_reg_exit(ipa); 889 kfree(ipa); 890 ipa_clock_exit(clock); 891 rproc_put(rproc); 892 893 return 0; 894 } 895 896 /** 897 * ipa_suspend() - Power management system suspend callback 898 * @dev: IPA device structure 899 * 900 * Return: Always returns zero 901 * 902 * Called by the PM framework when a system suspend operation is invoked. 903 * Suspends endpoints and releases the clock reference held to keep 904 * the IPA clock running until this point. 905 */ 906 static int ipa_suspend(struct device *dev) 907 { 908 struct ipa *ipa = dev_get_drvdata(dev); 909 910 /* When a suspended RX endpoint has a packet ready to receive, we 911 * get an IPA SUSPEND interrupt. We trigger a system resume in 912 * that case, but only on the first such interrupt since suspend. 913 */ 914 __clear_bit(IPA_FLAG_RESUMED, ipa->flags); 915 916 ipa_endpoint_suspend(ipa); 917 918 ipa_clock_put(ipa); 919 920 return 0; 921 } 922 923 /** 924 * ipa_resume() - Power management system resume callback 925 * @dev: IPA device structure 926 * 927 * Return: Always returns 0 928 * 929 * Called by the PM framework when a system resume operation is invoked. 930 * Takes an IPA clock reference to keep the clock running until suspend, 931 * and resumes endpoints. 932 */ 933 static int ipa_resume(struct device *dev) 934 { 935 struct ipa *ipa = dev_get_drvdata(dev); 936 937 /* This clock reference will keep the IPA out of suspend 938 * until we get a power management suspend request. 939 */ 940 ipa_clock_get(ipa); 941 942 ipa_endpoint_resume(ipa); 943 944 return 0; 945 } 946 947 static const struct dev_pm_ops ipa_pm_ops = { 948 .suspend = ipa_suspend, 949 .resume = ipa_resume, 950 }; 951 952 static struct platform_driver ipa_driver = { 953 .probe = ipa_probe, 954 .remove = ipa_remove, 955 .driver = { 956 .name = "ipa", 957 .pm = &ipa_pm_ops, 958 .of_match_table = ipa_match, 959 }, 960 }; 961 962 module_platform_driver(ipa_driver); 963 964 MODULE_LICENSE("GPL v2"); 965 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 966