xref: /linux/drivers/net/ipa/ipa_main.c (revision f60e5fb6dfafef0bcf32b4bc7f4fc2f5f1285815)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2024 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bug.h>
9 #include <linux/io.h>
10 #include <linux/firmware.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/soc/qcom/mdt_loader.h>
18 
19 #include "ipa.h"
20 #include "ipa_power.h"
21 #include "ipa_data.h"
22 #include "ipa_endpoint.h"
23 #include "ipa_resource.h"
24 #include "ipa_cmd.h"
25 #include "ipa_reg.h"
26 #include "ipa_mem.h"
27 #include "ipa_table.h"
28 #include "ipa_smp2p.h"
29 #include "ipa_modem.h"
30 #include "ipa_uc.h"
31 #include "ipa_interrupt.h"
32 #include "ipa_sysfs.h"
33 #include "ipa_version.h"
34 
35 /**
36  * DOC: The IP Accelerator
37  *
38  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39  * networking component found in many Qualcomm SoCs.  The IPA is connected
40  * to the application processor (AP), but is also connected (and partially
41  * controlled by) other "execution environments" (EEs), such as a modem.
42  *
43  * The IPA is the conduit between the AP and the modem that carries network
44  * traffic.  This driver presents a network interface representing the
45  * connection of the modem to external (e.g. LTE) networks.
46  *
47  * The IPA provides protocol checksum calculation, offloading this work
48  * from the AP.  The IPA offers additional functionality, including routing,
49  * filtering, and NAT support, but that more advanced functionality is not
50  * currently supported.  Despite that, some resources--including routing
51  * tables and filter tables--are defined in this driver because they must
52  * be initialized even when the advanced hardware features are not used.
53  *
54  * There are two distinct layers that implement the IPA hardware, and this
55  * is reflected in the organization of the driver.  The generic software
56  * interface (GSI) is an integral component of the IPA, providing a
57  * well-defined communication layer between the AP subsystem and the IPA
58  * core.  The GSI implements a set of "channels" used for communication
59  * between the AP and the IPA.
60  *
61  * The IPA layer uses GSI channels to implement its "endpoints".  And while
62  * a GSI channel carries data between the AP and the IPA, a pair of IPA
63  * endpoints is used to carry traffic between two EEs.  Specifically, the main
64  * modem network interface is implemented by two pairs of endpoints:  a TX
65  * endpoint on the AP coupled with an RX endpoint on the modem; and another
66  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
67  */
68 
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
71 #define IPA_PAS_ID		15
72 
73 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
74 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
75 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
76 #define TAG_TIMESTAMP_SHIFT	14
77 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
78 
79 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
80 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
81 
82 /**
83  * enum ipa_firmware_loader: How GSI firmware gets loaded
84  *
85  * @IPA_LOADER_DEFER:		System not ready; try again later
86  * @IPA_LOADER_SELF:		AP loads GSI firmware
87  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
88  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
89  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
90  */
91 enum ipa_firmware_loader {
92 	IPA_LOADER_DEFER,
93 	IPA_LOADER_SELF,
94 	IPA_LOADER_MODEM,
95 	IPA_LOADER_SKIP,
96 	IPA_LOADER_INVALID,
97 };
98 
99 /**
100  * ipa_setup() - Set up IPA hardware
101  * @ipa:	IPA pointer
102  *
103  * Perform initialization that requires issuing immediate commands on
104  * the command TX endpoint.  If the modem is doing GSI firmware load
105  * and initialization, this function will be called when an SMP2P
106  * interrupt has been signaled by the modem.  Otherwise it will be
107  * called from ipa_probe() after GSI firmware has been successfully
108  * loaded, authenticated, and started by Trust Zone.
109  */
110 int ipa_setup(struct ipa *ipa)
111 {
112 	struct ipa_endpoint *exception_endpoint;
113 	struct ipa_endpoint *command_endpoint;
114 	struct device *dev = ipa->dev;
115 	int ret;
116 
117 	ret = gsi_setup(&ipa->gsi);
118 	if (ret)
119 		return ret;
120 
121 	ret = ipa_power_setup(ipa);
122 	if (ret)
123 		goto err_gsi_teardown;
124 
125 	ipa_endpoint_setup(ipa);
126 
127 	/* We need to use the AP command TX endpoint to perform other
128 	 * initialization, so we enable first.
129 	 */
130 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
131 	ret = ipa_endpoint_enable_one(command_endpoint);
132 	if (ret)
133 		goto err_endpoint_teardown;
134 
135 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
136 	if (ret)
137 		goto err_command_disable;
138 
139 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
140 	if (ret)
141 		goto err_command_disable;
142 
143 	/* Enable the exception handling endpoint, and tell the hardware
144 	 * to use it by default.
145 	 */
146 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
147 	ret = ipa_endpoint_enable_one(exception_endpoint);
148 	if (ret)
149 		goto err_command_disable;
150 
151 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
152 
153 	/* We're all set.  Now prepare for communication with the modem */
154 	ret = ipa_qmi_setup(ipa);
155 	if (ret)
156 		goto err_default_route_clear;
157 
158 	ipa->setup_complete = true;
159 
160 	dev_info(dev, "IPA driver setup completed successfully\n");
161 
162 	return 0;
163 
164 err_default_route_clear:
165 	ipa_endpoint_default_route_clear(ipa);
166 	ipa_endpoint_disable_one(exception_endpoint);
167 err_command_disable:
168 	ipa_endpoint_disable_one(command_endpoint);
169 err_endpoint_teardown:
170 	ipa_endpoint_teardown(ipa);
171 	ipa_power_teardown(ipa);
172 err_gsi_teardown:
173 	gsi_teardown(&ipa->gsi);
174 
175 	return ret;
176 }
177 
178 /**
179  * ipa_teardown() - Inverse of ipa_setup()
180  * @ipa:	IPA pointer
181  */
182 static void ipa_teardown(struct ipa *ipa)
183 {
184 	struct ipa_endpoint *exception_endpoint;
185 	struct ipa_endpoint *command_endpoint;
186 
187 	/* We're going to tear everything down, as if setup never completed */
188 	ipa->setup_complete = false;
189 
190 	ipa_qmi_teardown(ipa);
191 	ipa_endpoint_default_route_clear(ipa);
192 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
193 	ipa_endpoint_disable_one(exception_endpoint);
194 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
195 	ipa_endpoint_disable_one(command_endpoint);
196 	ipa_endpoint_teardown(ipa);
197 	ipa_power_teardown(ipa);
198 	gsi_teardown(&ipa->gsi);
199 }
200 
201 static void
202 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
203 {
204 	const struct reg *reg;
205 	u32 val;
206 
207 	/* IPA v4.5+ has no backward compatibility register */
208 	if (ipa->version >= IPA_VERSION_4_5)
209 		return;
210 
211 	reg = ipa_reg(ipa, IPA_BCR);
212 	val = data->backward_compat;
213 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
214 }
215 
216 static void ipa_hardware_config_tx(struct ipa *ipa)
217 {
218 	enum ipa_version version = ipa->version;
219 	const struct reg *reg;
220 	u32 offset;
221 	u32 val;
222 
223 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
224 		return;
225 
226 	/* Disable PA mask to allow HOLB drop */
227 	reg = ipa_reg(ipa, IPA_TX_CFG);
228 	offset = reg_offset(reg);
229 
230 	val = ioread32(ipa->reg_virt + offset);
231 
232 	val &= ~reg_bit(reg, PA_MASK_EN);
233 
234 	iowrite32(val, ipa->reg_virt + offset);
235 }
236 
237 static void ipa_hardware_config_clkon(struct ipa *ipa)
238 {
239 	enum ipa_version version = ipa->version;
240 	const struct reg *reg;
241 	u32 val;
242 
243 	if (version >= IPA_VERSION_4_5)
244 		return;
245 
246 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
247 		return;
248 
249 	/* Implement some hardware workarounds */
250 	reg = ipa_reg(ipa, CLKON_CFG);
251 	if (version == IPA_VERSION_3_1) {
252 		/* Disable MISC clock gating */
253 		val = reg_bit(reg, CLKON_MISC);
254 	} else {	/* IPA v4.0+ */
255 		/* Enable open global clocks in the CLKON configuration */
256 		val = reg_bit(reg, CLKON_GLOBAL);
257 		val |= reg_bit(reg, GLOBAL_2X_CLK);
258 	}
259 
260 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
261 }
262 
263 /* Configure bus access behavior for IPA components */
264 static void ipa_hardware_config_comp(struct ipa *ipa)
265 {
266 	const struct reg *reg;
267 	u32 offset;
268 	u32 val;
269 
270 	/* Nothing to configure prior to IPA v4.0 */
271 	if (ipa->version < IPA_VERSION_4_0)
272 		return;
273 
274 	reg = ipa_reg(ipa, COMP_CFG);
275 	offset = reg_offset(reg);
276 
277 	val = ioread32(ipa->reg_virt + offset);
278 
279 	if (ipa->version == IPA_VERSION_4_0) {
280 		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
281 		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
282 		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
283 	} else if (ipa->version < IPA_VERSION_4_5) {
284 		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
285 	} else {
286 		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
287 	}
288 
289 	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
290 	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
291 
292 	iowrite32(val, ipa->reg_virt + offset);
293 }
294 
295 /* Configure DDR and (possibly) PCIe max read/write QSB values */
296 static void
297 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
298 {
299 	const struct ipa_qsb_data *data0;
300 	const struct ipa_qsb_data *data1;
301 	const struct reg *reg;
302 	u32 val;
303 
304 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
305 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
306 	if (data->qsb_count > 1)
307 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
308 
309 	/* Max outstanding write accesses for QSB masters */
310 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
311 
312 	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
313 	if (data->qsb_count > 1)
314 		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
315 
316 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
317 
318 	/* Max outstanding read accesses for QSB masters */
319 	reg = ipa_reg(ipa, QSB_MAX_READS);
320 
321 	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
322 	if (ipa->version >= IPA_VERSION_4_0)
323 		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
324 				  data0->max_reads_beats);
325 	if (data->qsb_count > 1) {
326 		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
327 		if (ipa->version >= IPA_VERSION_4_0)
328 			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
329 					  data1->max_reads_beats);
330 	}
331 
332 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
333 }
334 
335 /* The internal inactivity timer clock is used for the aggregation timer */
336 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
337 
338 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
339  * field to represent the given number of microseconds.  The value is one
340  * less than the number of timer ticks in the requested period.  0 is not
341  * a valid granularity value (so for example @usec must be at least 16 for
342  * a TIMER_FREQUENCY of 32000).
343  */
344 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
345 {
346 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
347 }
348 
349 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
350  * timestamps and timers independent of the IPA core clock rate.  The
351  * Qtimer is based on a 56-bit timestamp incremented at each tick of
352  * a 19.2 MHz SoC crystal oscillator (XO clock).
353  *
354  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
355  * timestamp is achieved by shifting the Qtimer timestamp value right
356  * some number of bits to produce the low-order bits of the coarser
357  * granularity timestamp.
358  *
359  * For timers, a common timer clock is derived from the XO clock using
360  * a divider (we use 192, to produce a 100kHz timer clock).  From
361  * this common clock, three "pulse generators" are used to produce
362  * timer ticks at a configurable frequency.  IPA timers (such as
363  * those used for aggregation or head-of-line block handling) now
364  * define their period based on one of these pulse generators.
365  */
366 static void ipa_qtime_config(struct ipa *ipa)
367 {
368 	const struct reg *reg;
369 	u32 offset;
370 	u32 val;
371 
372 	/* Timer clock divider must be disabled when we change the rate */
373 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
374 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
375 
376 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
377 	if (ipa->version < IPA_VERSION_5_5) {
378 		/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
379 		val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
380 		val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
381 	}
382 	/* Configure tag and NAT Qtime timestamp resolution as well */
383 	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
384 	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
385 
386 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
387 
388 	/* Set granularity of pulse generators used for other timers */
389 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
390 	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
391 	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
392 	if (ipa->version >= IPA_VERSION_5_0) {
393 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
394 		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
395 	} else {
396 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
397 	}
398 
399 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
400 
401 	/* Actual divider is 1 more than value supplied here */
402 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
403 	offset = reg_offset(reg);
404 
405 	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
406 
407 	iowrite32(val, ipa->reg_virt + offset);
408 
409 	/* Divider value is set; re-enable the common timer clock divider */
410 	val |= reg_bit(reg, DIV_ENABLE);
411 
412 	iowrite32(val, ipa->reg_virt + offset);
413 }
414 
415 /* Before IPA v4.5 timing is controlled by a counter register */
416 static void ipa_hardware_config_counter(struct ipa *ipa)
417 {
418 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
419 	const struct reg *reg;
420 	u32 val;
421 
422 	reg = ipa_reg(ipa, COUNTER_CFG);
423 	/* If defined, EOT_COAL_GRANULARITY is 0 */
424 	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
425 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
426 }
427 
428 static void ipa_hardware_config_timing(struct ipa *ipa)
429 {
430 	if (ipa->version < IPA_VERSION_4_5)
431 		ipa_hardware_config_counter(ipa);
432 	else
433 		ipa_qtime_config(ipa);
434 }
435 
436 static void ipa_hardware_config_hashing(struct ipa *ipa)
437 {
438 	const struct reg *reg;
439 
440 	/* Other than IPA v4.2, all versions enable "hashing".  Starting
441 	 * with IPA v5.0, the filter and router tables are implemented
442 	 * differently, but the default configuration enables this feature
443 	 * (now referred to as "cacheing"), so there's nothing to do here.
444 	 */
445 	if (ipa->version != IPA_VERSION_4_2)
446 		return;
447 
448 	/* IPA v4.2 does not support hashed tables, so disable them */
449 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
450 
451 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
452 	 * IPV4_FILTER_HASH are all zero.
453 	 */
454 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
455 }
456 
457 static void ipa_idle_indication_cfg(struct ipa *ipa,
458 				    u32 enter_idle_debounce_thresh,
459 				    bool const_non_idle_enable)
460 {
461 	const struct reg *reg;
462 	u32 val;
463 
464 	if (ipa->version < IPA_VERSION_3_5_1)
465 		return;
466 
467 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
468 	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
469 			 enter_idle_debounce_thresh);
470 	if (const_non_idle_enable)
471 		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
472 
473 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
474 }
475 
476 /**
477  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
478  * @ipa:	IPA pointer
479  *
480  * Configures when the IPA signals it is idle to the global clock
481  * controller, which can respond by scaling down the clock to save
482  * power.
483  */
484 static void ipa_hardware_dcd_config(struct ipa *ipa)
485 {
486 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
487 	ipa_idle_indication_cfg(ipa, 256, false);
488 }
489 
490 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
491 {
492 	/* Power-on reset values */
493 	ipa_idle_indication_cfg(ipa, 0, true);
494 }
495 
496 /**
497  * ipa_hardware_config() - Primitive hardware initialization
498  * @ipa:	IPA pointer
499  * @data:	IPA configuration data
500  */
501 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
502 {
503 	ipa_hardware_config_bcr(ipa, data);
504 	ipa_hardware_config_tx(ipa);
505 	ipa_hardware_config_clkon(ipa);
506 	ipa_hardware_config_comp(ipa);
507 	ipa_hardware_config_qsb(ipa, data);
508 	ipa_hardware_config_timing(ipa);
509 	ipa_hardware_config_hashing(ipa);
510 	ipa_hardware_dcd_config(ipa);
511 }
512 
513 /**
514  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
515  * @ipa:	IPA pointer
516  *
517  * This restores the power-on reset values (even if they aren't different)
518  */
519 static void ipa_hardware_deconfig(struct ipa *ipa)
520 {
521 	/* Mostly we just leave things as we set them. */
522 	ipa_hardware_dcd_deconfig(ipa);
523 }
524 
525 /**
526  * ipa_config() - Configure IPA hardware
527  * @ipa:	IPA pointer
528  * @data:	IPA configuration data
529  *
530  * Perform initialization requiring IPA power to be enabled.
531  */
532 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
533 {
534 	int ret;
535 
536 	ipa_hardware_config(ipa, data);
537 
538 	ret = ipa_mem_config(ipa);
539 	if (ret)
540 		goto err_hardware_deconfig;
541 
542 	ret = ipa_interrupt_config(ipa);
543 	if (ret)
544 		goto err_mem_deconfig;
545 
546 	ipa_uc_config(ipa);
547 
548 	ret = ipa_endpoint_config(ipa);
549 	if (ret)
550 		goto err_uc_deconfig;
551 
552 	ipa_table_config(ipa);		/* No deconfig required */
553 
554 	/* Assign resource limitation to each group; no deconfig required */
555 	ret = ipa_resource_config(ipa, data->resource_data);
556 	if (ret)
557 		goto err_endpoint_deconfig;
558 
559 	ret = ipa_modem_config(ipa);
560 	if (ret)
561 		goto err_endpoint_deconfig;
562 
563 	return 0;
564 
565 err_endpoint_deconfig:
566 	ipa_endpoint_deconfig(ipa);
567 err_uc_deconfig:
568 	ipa_uc_deconfig(ipa);
569 	ipa_interrupt_deconfig(ipa);
570 err_mem_deconfig:
571 	ipa_mem_deconfig(ipa);
572 err_hardware_deconfig:
573 	ipa_hardware_deconfig(ipa);
574 
575 	return ret;
576 }
577 
578 /**
579  * ipa_deconfig() - Inverse of ipa_config()
580  * @ipa:	IPA pointer
581  */
582 static void ipa_deconfig(struct ipa *ipa)
583 {
584 	ipa_modem_deconfig(ipa);
585 	ipa_endpoint_deconfig(ipa);
586 	ipa_uc_deconfig(ipa);
587 	ipa_interrupt_deconfig(ipa);
588 	ipa_mem_deconfig(ipa);
589 	ipa_hardware_deconfig(ipa);
590 }
591 
592 static int ipa_firmware_load(struct device *dev)
593 {
594 	const struct firmware *fw;
595 	struct device_node *node;
596 	struct resource res;
597 	phys_addr_t phys;
598 	const char *path;
599 	ssize_t size;
600 	void *virt;
601 	int ret;
602 
603 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
604 	if (!node) {
605 		dev_err(dev, "DT error getting \"memory-region\" property\n");
606 		return -EINVAL;
607 	}
608 
609 	ret = of_address_to_resource(node, 0, &res);
610 	of_node_put(node);
611 	if (ret) {
612 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
613 			ret);
614 		return ret;
615 	}
616 
617 	/* Use name from DTB if specified; use default for *any* error */
618 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
619 	if (ret) {
620 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
621 			ret);
622 		path = IPA_FW_PATH_DEFAULT;
623 	}
624 
625 	ret = request_firmware(&fw, path, dev);
626 	if (ret) {
627 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
628 		return ret;
629 	}
630 
631 	phys = res.start;
632 	size = (size_t)resource_size(&res);
633 	virt = memremap(phys, size, MEMREMAP_WC);
634 	if (!virt) {
635 		dev_err(dev, "unable to remap firmware memory\n");
636 		ret = -ENOMEM;
637 		goto out_release_firmware;
638 	}
639 
640 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
641 	if (ret)
642 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
643 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
644 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
645 
646 	memunmap(virt);
647 out_release_firmware:
648 	release_firmware(fw);
649 
650 	return ret;
651 }
652 
653 static const struct of_device_id ipa_match[] = {
654 	{
655 		.compatible	= "qcom,msm8998-ipa",
656 		.data		= &ipa_data_v3_1,
657 	},
658 	{
659 		.compatible	= "qcom,sdm845-ipa",
660 		.data		= &ipa_data_v3_5_1,
661 	},
662 	{
663 		.compatible	= "qcom,sc7180-ipa",
664 		.data		= &ipa_data_v4_2,
665 	},
666 	{
667 		.compatible	= "qcom,sdx55-ipa",
668 		.data		= &ipa_data_v4_5,
669 	},
670 	{
671 		.compatible	= "qcom,sm6350-ipa",
672 		.data		= &ipa_data_v4_7,
673 	},
674 	{
675 		.compatible	= "qcom,sm8350-ipa",
676 		.data		= &ipa_data_v4_9,
677 	},
678 	{
679 		.compatible	= "qcom,sc7280-ipa",
680 		.data		= &ipa_data_v4_11,
681 	},
682 	{
683 		.compatible	= "qcom,sdx65-ipa",
684 		.data		= &ipa_data_v5_0,
685 	},
686 	{
687 		.compatible	= "qcom,sm8550-ipa",
688 		.data		= &ipa_data_v5_5,
689 	},
690 	{ },
691 };
692 MODULE_DEVICE_TABLE(of, ipa_match);
693 
694 /* Check things that can be validated at build time.  This just
695  * groups these things BUILD_BUG_ON() calls don't clutter the rest
696  * of the code.
697  * */
698 static void ipa_validate_build(void)
699 {
700 	/* At one time we assumed a 64-bit build, allowing some do_div()
701 	 * calls to be replaced by simple division or modulo operations.
702 	 * We currently only perform divide and modulo operations on u32,
703 	 * u16, or size_t objects, and of those only size_t has any chance
704 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
705 	 * on a 32-bit build, but there is no harm in verifying that.)
706 	 */
707 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
708 
709 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
710 	BUILD_BUG_ON(GSI_EE_AP != 0);
711 
712 	/* There's no point if we have no channels or event rings */
713 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
714 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
715 
716 	/* GSI hardware design limits */
717 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
718 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
719 
720 	/* The number of TREs in a transaction is limited by the channel's
721 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
722 	 * to represents the number of TREs it has allocated and used.
723 	 */
724 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
725 
726 	/* This is used as a divisor */
727 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
728 
729 	/* Aggregation granularity value can't be 0, and must fit */
730 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
731 }
732 
733 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
734 {
735 	bool modem_init;
736 	const char *str;
737 	int ret;
738 
739 	/* Look up the old and new properties by name */
740 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
741 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
742 
743 	/* If the new property doesn't exist, it's legacy behavior */
744 	if (ret == -EINVAL) {
745 		if (modem_init)
746 			return IPA_LOADER_MODEM;
747 		goto out_self;
748 	}
749 
750 	/* Any other error on the new property means it's poorly defined */
751 	if (ret)
752 		return IPA_LOADER_INVALID;
753 
754 	/* New property value exists; if old one does too, that's invalid */
755 	if (modem_init)
756 		return IPA_LOADER_INVALID;
757 
758 	/* Modem loads GSI firmware for "modem" */
759 	if (!strcmp(str, "modem"))
760 		return IPA_LOADER_MODEM;
761 
762 	/* No GSI firmware load is needed for "skip" */
763 	if (!strcmp(str, "skip"))
764 		return IPA_LOADER_SKIP;
765 
766 	/* Any value other than "self" is an error */
767 	if (strcmp(str, "self"))
768 		return IPA_LOADER_INVALID;
769 out_self:
770 	/* We need Trust Zone to load firmware; make sure it's available */
771 	if (qcom_scm_is_available())
772 		return IPA_LOADER_SELF;
773 
774 	return IPA_LOADER_DEFER;
775 }
776 
777 /**
778  * ipa_probe() - IPA platform driver probe function
779  * @pdev:	Platform device pointer
780  *
781  * Return:	0 if successful, or a negative error code (possibly
782  *		EPROBE_DEFER)
783  *
784  * This is the main entry point for the IPA driver.  Initialization proceeds
785  * in several stages:
786  *   - The "init" stage involves activities that can be initialized without
787  *     access to the IPA hardware.
788  *   - The "config" stage requires IPA power to be active so IPA registers
789  *     can be accessed, but does not require the use of IPA immediate commands.
790  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
791  *     layer to be initialized.
792  *
793  * A Boolean Device Tree "modem-init" property determines whether GSI
794  * initialization will be performed by the AP (Trust Zone) or the modem.
795  * If the AP does GSI initialization, the setup phase is entered after
796  * this has completed successfully.  Otherwise the modem initializes
797  * the GSI layer and signals it has finished by sending an SMP2P interrupt
798  * to the AP; this triggers the start if IPA setup.
799  */
800 static int ipa_probe(struct platform_device *pdev)
801 {
802 	struct device *dev = &pdev->dev;
803 	struct ipa_interrupt *interrupt;
804 	enum ipa_firmware_loader loader;
805 	const struct ipa_data *data;
806 	struct ipa_power *power;
807 	struct ipa *ipa;
808 	int ret;
809 
810 	ipa_validate_build();
811 
812 	/* Get configuration data early; needed for power initialization */
813 	data = of_device_get_match_data(dev);
814 	if (!data) {
815 		dev_err(dev, "matched hardware not supported\n");
816 		return -ENODEV;
817 	}
818 
819 	if (!ipa_version_supported(data->version)) {
820 		dev_err(dev, "unsupported IPA version %u\n", data->version);
821 		return -EINVAL;
822 	}
823 
824 	if (!data->modem_route_count) {
825 		dev_err(dev, "modem_route_count cannot be zero\n");
826 		return -EINVAL;
827 	}
828 
829 	loader = ipa_firmware_loader(dev);
830 	if (loader == IPA_LOADER_INVALID)
831 		return -EINVAL;
832 	if (loader == IPA_LOADER_DEFER)
833 		return -EPROBE_DEFER;
834 
835 	/* The IPA interrupt might not be ready when we're probed, so this
836 	 * might return -EPROBE_DEFER.
837 	 */
838 	interrupt = ipa_interrupt_init(pdev);
839 	if (IS_ERR(interrupt))
840 		return PTR_ERR(interrupt);
841 
842 	/* The clock and interconnects might not be ready when we're probed,
843 	 * so this might return -EPROBE_DEFER.
844 	 */
845 	power = ipa_power_init(dev, data->power_data);
846 	if (IS_ERR(power)) {
847 		ret = PTR_ERR(power);
848 		goto err_interrupt_exit;
849 	}
850 
851 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
852 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
853 	if (!ipa) {
854 		ret = -ENOMEM;
855 		goto err_power_exit;
856 	}
857 
858 	ipa->dev = dev;
859 	dev_set_drvdata(dev, ipa);
860 	ipa->interrupt = interrupt;
861 	ipa->power = power;
862 	ipa->version = data->version;
863 	ipa->modem_route_count = data->modem_route_count;
864 	init_completion(&ipa->completion);
865 
866 	ret = ipa_reg_init(ipa, pdev);
867 	if (ret)
868 		goto err_kfree_ipa;
869 
870 	ret = ipa_mem_init(ipa, pdev, data->mem_data);
871 	if (ret)
872 		goto err_reg_exit;
873 
874 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
875 		       data->endpoint_data);
876 	if (ret)
877 		goto err_mem_exit;
878 
879 	/* Result is a non-zero mask of endpoints that support filtering */
880 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
881 	if (ret)
882 		goto err_gsi_exit;
883 
884 	ret = ipa_table_init(ipa);
885 	if (ret)
886 		goto err_endpoint_exit;
887 
888 	ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
889 	if (ret)
890 		goto err_table_exit;
891 
892 	/* Power needs to be active for config and setup */
893 	ret = pm_runtime_get_sync(dev);
894 	if (WARN_ON(ret < 0))
895 		goto err_power_put;
896 
897 	ret = ipa_config(ipa, data);
898 	if (ret)
899 		goto err_power_put;
900 
901 	dev_info(dev, "IPA driver initialized");
902 
903 	/* If the modem is loading GSI firmware, it will trigger a call to
904 	 * ipa_setup() when it has finished.  In that case we're done here.
905 	 */
906 	if (loader == IPA_LOADER_MODEM)
907 		goto done;
908 
909 	if (loader == IPA_LOADER_SELF) {
910 		/* The AP is loading GSI firmware; do so now */
911 		ret = ipa_firmware_load(dev);
912 		if (ret)
913 			goto err_deconfig;
914 	} /* Otherwise loader == IPA_LOADER_SKIP */
915 
916 	/* GSI firmware is loaded; proceed to setup */
917 	ret = ipa_setup(ipa);
918 	if (ret)
919 		goto err_deconfig;
920 done:
921 	pm_runtime_mark_last_busy(dev);
922 	(void)pm_runtime_put_autosuspend(dev);
923 
924 	return 0;
925 
926 err_deconfig:
927 	ipa_deconfig(ipa);
928 err_power_put:
929 	pm_runtime_put_noidle(dev);
930 	ipa_smp2p_exit(ipa);
931 err_table_exit:
932 	ipa_table_exit(ipa);
933 err_endpoint_exit:
934 	ipa_endpoint_exit(ipa);
935 err_gsi_exit:
936 	gsi_exit(&ipa->gsi);
937 err_mem_exit:
938 	ipa_mem_exit(ipa);
939 err_reg_exit:
940 	ipa_reg_exit(ipa);
941 err_kfree_ipa:
942 	kfree(ipa);
943 err_power_exit:
944 	ipa_power_exit(power);
945 err_interrupt_exit:
946 	ipa_interrupt_exit(interrupt);
947 
948 	return ret;
949 }
950 
951 static void ipa_remove(struct platform_device *pdev)
952 {
953 	struct ipa_interrupt *interrupt;
954 	struct ipa_power *power;
955 	struct device *dev;
956 	struct ipa *ipa;
957 	int ret;
958 
959 	ipa = dev_get_drvdata(&pdev->dev);
960 	dev = ipa->dev;
961 	WARN_ON(dev != &pdev->dev);
962 
963 	power = ipa->power;
964 	interrupt = ipa->interrupt;
965 
966 	/* Prevent the modem from triggering a call to ipa_setup().  This
967 	 * also ensures a modem-initiated setup that's underway completes.
968 	 */
969 	ipa_smp2p_irq_disable_setup(ipa);
970 
971 	ret = pm_runtime_get_sync(dev);
972 	if (WARN_ON(ret < 0))
973 		goto out_power_put;
974 
975 	if (ipa->setup_complete) {
976 		ret = ipa_modem_stop(ipa);
977 		/* If starting or stopping is in progress, try once more */
978 		if (ret == -EBUSY) {
979 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
980 			ret = ipa_modem_stop(ipa);
981 		}
982 		if (ret) {
983 			/*
984 			 * Not cleaning up here properly might also yield a
985 			 * crash later on. As the device is still unregistered
986 			 * in this case, this might even yield a crash later on.
987 			 */
988 			dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
989 				ERR_PTR(ret));
990 			return;
991 		}
992 
993 		ipa_teardown(ipa);
994 	}
995 
996 	ipa_deconfig(ipa);
997 out_power_put:
998 	pm_runtime_put_noidle(dev);
999 	ipa_smp2p_exit(ipa);
1000 	ipa_table_exit(ipa);
1001 	ipa_endpoint_exit(ipa);
1002 	gsi_exit(&ipa->gsi);
1003 	ipa_mem_exit(ipa);
1004 	ipa_reg_exit(ipa);
1005 	kfree(ipa);
1006 	ipa_power_exit(power);
1007 	ipa_interrupt_exit(interrupt);
1008 
1009 	dev_info(dev, "IPA driver removed");
1010 }
1011 
1012 static const struct attribute_group *ipa_attribute_groups[] = {
1013 	&ipa_attribute_group,
1014 	&ipa_feature_attribute_group,
1015 	&ipa_endpoint_id_attribute_group,
1016 	&ipa_modem_attribute_group,
1017 	NULL,
1018 };
1019 
1020 static struct platform_driver ipa_driver = {
1021 	.probe		= ipa_probe,
1022 	.remove_new	= ipa_remove,
1023 	.shutdown	= ipa_remove,
1024 	.driver	= {
1025 		.name		= "ipa",
1026 		.pm		= &ipa_pm_ops,
1027 		.of_match_table	= ipa_match,
1028 		.dev_groups	= ipa_attribute_groups,
1029 	},
1030 };
1031 
1032 module_platform_driver(ipa_driver);
1033 
1034 MODULE_LICENSE("GPL v2");
1035 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1036