xref: /linux/drivers/net/ipa/ipa_main.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2023 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/bug.h>
11 #include <linux/io.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/firmware/qcom/qcom_scm.h>
19 #include <linux/soc/qcom/mdt_loader.h>
20 
21 #include "ipa.h"
22 #include "ipa_power.h"
23 #include "ipa_data.h"
24 #include "ipa_endpoint.h"
25 #include "ipa_resource.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_smp2p.h"
31 #include "ipa_modem.h"
32 #include "ipa_uc.h"
33 #include "ipa_interrupt.h"
34 #include "gsi_trans.h"
35 #include "ipa_sysfs.h"
36 
37 /**
38  * DOC: The IP Accelerator
39  *
40  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
41  * networking component found in many Qualcomm SoCs.  The IPA is connected
42  * to the application processor (AP), but is also connected (and partially
43  * controlled by) other "execution environments" (EEs), such as a modem.
44  *
45  * The IPA is the conduit between the AP and the modem that carries network
46  * traffic.  This driver presents a network interface representing the
47  * connection of the modem to external (e.g. LTE) networks.
48  *
49  * The IPA provides protocol checksum calculation, offloading this work
50  * from the AP.  The IPA offers additional functionality, including routing,
51  * filtering, and NAT support, but that more advanced functionality is not
52  * currently supported.  Despite that, some resources--including routing
53  * tables and filter tables--are defined in this driver because they must
54  * be initialized even when the advanced hardware features are not used.
55  *
56  * There are two distinct layers that implement the IPA hardware, and this
57  * is reflected in the organization of the driver.  The generic software
58  * interface (GSI) is an integral component of the IPA, providing a
59  * well-defined communication layer between the AP subsystem and the IPA
60  * core.  The GSI implements a set of "channels" used for communication
61  * between the AP and the IPA.
62  *
63  * The IPA layer uses GSI channels to implement its "endpoints".  And while
64  * a GSI channel carries data between the AP and the IPA, a pair of IPA
65  * endpoints is used to carry traffic between two EEs.  Specifically, the main
66  * modem network interface is implemented by two pairs of endpoints:  a TX
67  * endpoint on the AP coupled with an RX endpoint on the modem; and another
68  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
69  */
70 
71 /* The name of the GSI firmware file relative to /lib/firmware */
72 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
73 #define IPA_PAS_ID		15
74 
75 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
76 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
77 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
78 #define TAG_TIMESTAMP_SHIFT	14
79 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
80 
81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
83 
84 /**
85  * enum ipa_firmware_loader: How GSI firmware gets loaded
86  *
87  * @IPA_LOADER_DEFER:		System not ready; try again later
88  * @IPA_LOADER_SELF:		AP loads GSI firmware
89  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
90  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
91  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
92  */
93 enum ipa_firmware_loader {
94 	IPA_LOADER_DEFER,
95 	IPA_LOADER_SELF,
96 	IPA_LOADER_MODEM,
97 	IPA_LOADER_SKIP,
98 	IPA_LOADER_INVALID,
99 };
100 
101 /**
102  * ipa_setup() - Set up IPA hardware
103  * @ipa:	IPA pointer
104  *
105  * Perform initialization that requires issuing immediate commands on
106  * the command TX endpoint.  If the modem is doing GSI firmware load
107  * and initialization, this function will be called when an SMP2P
108  * interrupt has been signaled by the modem.  Otherwise it will be
109  * called from ipa_probe() after GSI firmware has been successfully
110  * loaded, authenticated, and started by Trust Zone.
111  */
112 int ipa_setup(struct ipa *ipa)
113 {
114 	struct ipa_endpoint *exception_endpoint;
115 	struct ipa_endpoint *command_endpoint;
116 	struct device *dev = ipa->dev;
117 	int ret;
118 
119 	ret = gsi_setup(&ipa->gsi);
120 	if (ret)
121 		return ret;
122 
123 	ret = ipa_power_setup(ipa);
124 	if (ret)
125 		goto err_gsi_teardown;
126 
127 	ipa_endpoint_setup(ipa);
128 
129 	/* We need to use the AP command TX endpoint to perform other
130 	 * initialization, so we enable first.
131 	 */
132 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
133 	ret = ipa_endpoint_enable_one(command_endpoint);
134 	if (ret)
135 		goto err_endpoint_teardown;
136 
137 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
138 	if (ret)
139 		goto err_command_disable;
140 
141 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
142 	if (ret)
143 		goto err_command_disable;
144 
145 	/* Enable the exception handling endpoint, and tell the hardware
146 	 * to use it by default.
147 	 */
148 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
149 	ret = ipa_endpoint_enable_one(exception_endpoint);
150 	if (ret)
151 		goto err_command_disable;
152 
153 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
154 
155 	/* We're all set.  Now prepare for communication with the modem */
156 	ret = ipa_qmi_setup(ipa);
157 	if (ret)
158 		goto err_default_route_clear;
159 
160 	ipa->setup_complete = true;
161 
162 	dev_info(dev, "IPA driver setup completed successfully\n");
163 
164 	return 0;
165 
166 err_default_route_clear:
167 	ipa_endpoint_default_route_clear(ipa);
168 	ipa_endpoint_disable_one(exception_endpoint);
169 err_command_disable:
170 	ipa_endpoint_disable_one(command_endpoint);
171 err_endpoint_teardown:
172 	ipa_endpoint_teardown(ipa);
173 	ipa_power_teardown(ipa);
174 err_gsi_teardown:
175 	gsi_teardown(&ipa->gsi);
176 
177 	return ret;
178 }
179 
180 /**
181  * ipa_teardown() - Inverse of ipa_setup()
182  * @ipa:	IPA pointer
183  */
184 static void ipa_teardown(struct ipa *ipa)
185 {
186 	struct ipa_endpoint *exception_endpoint;
187 	struct ipa_endpoint *command_endpoint;
188 
189 	/* We're going to tear everything down, as if setup never completed */
190 	ipa->setup_complete = false;
191 
192 	ipa_qmi_teardown(ipa);
193 	ipa_endpoint_default_route_clear(ipa);
194 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
195 	ipa_endpoint_disable_one(exception_endpoint);
196 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
197 	ipa_endpoint_disable_one(command_endpoint);
198 	ipa_endpoint_teardown(ipa);
199 	ipa_power_teardown(ipa);
200 	gsi_teardown(&ipa->gsi);
201 }
202 
203 static void
204 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
205 {
206 	const struct reg *reg;
207 	u32 val;
208 
209 	/* IPA v4.5+ has no backward compatibility register */
210 	if (ipa->version >= IPA_VERSION_4_5)
211 		return;
212 
213 	reg = ipa_reg(ipa, IPA_BCR);
214 	val = data->backward_compat;
215 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
216 }
217 
218 static void ipa_hardware_config_tx(struct ipa *ipa)
219 {
220 	enum ipa_version version = ipa->version;
221 	const struct reg *reg;
222 	u32 offset;
223 	u32 val;
224 
225 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
226 		return;
227 
228 	/* Disable PA mask to allow HOLB drop */
229 	reg = ipa_reg(ipa, IPA_TX_CFG);
230 	offset = reg_offset(reg);
231 
232 	val = ioread32(ipa->reg_virt + offset);
233 
234 	val &= ~reg_bit(reg, PA_MASK_EN);
235 
236 	iowrite32(val, ipa->reg_virt + offset);
237 }
238 
239 static void ipa_hardware_config_clkon(struct ipa *ipa)
240 {
241 	enum ipa_version version = ipa->version;
242 	const struct reg *reg;
243 	u32 val;
244 
245 	if (version >= IPA_VERSION_4_5)
246 		return;
247 
248 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
249 		return;
250 
251 	/* Implement some hardware workarounds */
252 	reg = ipa_reg(ipa, CLKON_CFG);
253 	if (version == IPA_VERSION_3_1) {
254 		/* Disable MISC clock gating */
255 		val = reg_bit(reg, CLKON_MISC);
256 	} else {	/* IPA v4.0+ */
257 		/* Enable open global clocks in the CLKON configuration */
258 		val = reg_bit(reg, CLKON_GLOBAL);
259 		val |= reg_bit(reg, GLOBAL_2X_CLK);
260 	}
261 
262 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
263 }
264 
265 /* Configure bus access behavior for IPA components */
266 static void ipa_hardware_config_comp(struct ipa *ipa)
267 {
268 	const struct reg *reg;
269 	u32 offset;
270 	u32 val;
271 
272 	/* Nothing to configure prior to IPA v4.0 */
273 	if (ipa->version < IPA_VERSION_4_0)
274 		return;
275 
276 	reg = ipa_reg(ipa, COMP_CFG);
277 	offset = reg_offset(reg);
278 
279 	val = ioread32(ipa->reg_virt + offset);
280 
281 	if (ipa->version == IPA_VERSION_4_0) {
282 		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
283 		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
284 		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
285 	} else if (ipa->version < IPA_VERSION_4_5) {
286 		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
287 	} else {
288 		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
289 	}
290 
291 	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
292 	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
293 
294 	iowrite32(val, ipa->reg_virt + offset);
295 }
296 
297 /* Configure DDR and (possibly) PCIe max read/write QSB values */
298 static void
299 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
300 {
301 	const struct ipa_qsb_data *data0;
302 	const struct ipa_qsb_data *data1;
303 	const struct reg *reg;
304 	u32 val;
305 
306 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
307 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
308 	if (data->qsb_count > 1)
309 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
310 
311 	/* Max outstanding write accesses for QSB masters */
312 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
313 
314 	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
315 	if (data->qsb_count > 1)
316 		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
317 
318 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
319 
320 	/* Max outstanding read accesses for QSB masters */
321 	reg = ipa_reg(ipa, QSB_MAX_READS);
322 
323 	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
324 	if (ipa->version >= IPA_VERSION_4_0)
325 		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
326 				  data0->max_reads_beats);
327 	if (data->qsb_count > 1) {
328 		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
329 		if (ipa->version >= IPA_VERSION_4_0)
330 			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
331 					  data1->max_reads_beats);
332 	}
333 
334 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
335 }
336 
337 /* The internal inactivity timer clock is used for the aggregation timer */
338 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
339 
340 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
341  * field to represent the given number of microseconds.  The value is one
342  * less than the number of timer ticks in the requested period.  0 is not
343  * a valid granularity value (so for example @usec must be at least 16 for
344  * a TIMER_FREQUENCY of 32000).
345  */
346 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
347 {
348 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
349 }
350 
351 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
352  * timestamps and timers independent of the IPA core clock rate.  The
353  * Qtimer is based on a 56-bit timestamp incremented at each tick of
354  * a 19.2 MHz SoC crystal oscillator (XO clock).
355  *
356  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
357  * timestamp is achieved by shifting the Qtimer timestamp value right
358  * some number of bits to produce the low-order bits of the coarser
359  * granularity timestamp.
360  *
361  * For timers, a common timer clock is derived from the XO clock using
362  * a divider (we use 192, to produce a 100kHz timer clock).  From
363  * this common clock, three "pulse generators" are used to produce
364  * timer ticks at a configurable frequency.  IPA timers (such as
365  * those used for aggregation or head-of-line block handling) now
366  * define their period based on one of these pulse generators.
367  */
368 static void ipa_qtime_config(struct ipa *ipa)
369 {
370 	const struct reg *reg;
371 	u32 offset;
372 	u32 val;
373 
374 	/* Timer clock divider must be disabled when we change the rate */
375 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
376 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
377 
378 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
379 	if (ipa->version < IPA_VERSION_5_5) {
380 		/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
381 		val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
382 		val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
383 	}
384 	/* Configure tag and NAT Qtime timestamp resolution as well */
385 	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
386 	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
387 
388 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
389 
390 	/* Set granularity of pulse generators used for other timers */
391 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
392 	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
393 	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
394 	if (ipa->version >= IPA_VERSION_5_0) {
395 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
396 		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
397 	} else {
398 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
399 	}
400 
401 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
402 
403 	/* Actual divider is 1 more than value supplied here */
404 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
405 	offset = reg_offset(reg);
406 
407 	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
408 
409 	iowrite32(val, ipa->reg_virt + offset);
410 
411 	/* Divider value is set; re-enable the common timer clock divider */
412 	val |= reg_bit(reg, DIV_ENABLE);
413 
414 	iowrite32(val, ipa->reg_virt + offset);
415 }
416 
417 /* Before IPA v4.5 timing is controlled by a counter register */
418 static void ipa_hardware_config_counter(struct ipa *ipa)
419 {
420 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
421 	const struct reg *reg;
422 	u32 val;
423 
424 	reg = ipa_reg(ipa, COUNTER_CFG);
425 	/* If defined, EOT_COAL_GRANULARITY is 0 */
426 	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
427 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
428 }
429 
430 static void ipa_hardware_config_timing(struct ipa *ipa)
431 {
432 	if (ipa->version < IPA_VERSION_4_5)
433 		ipa_hardware_config_counter(ipa);
434 	else
435 		ipa_qtime_config(ipa);
436 }
437 
438 static void ipa_hardware_config_hashing(struct ipa *ipa)
439 {
440 	const struct reg *reg;
441 
442 	/* Other than IPA v4.2, all versions enable "hashing".  Starting
443 	 * with IPA v5.0, the filter and router tables are implemented
444 	 * differently, but the default configuration enables this feature
445 	 * (now referred to as "cacheing"), so there's nothing to do here.
446 	 */
447 	if (ipa->version != IPA_VERSION_4_2)
448 		return;
449 
450 	/* IPA v4.2 does not support hashed tables, so disable them */
451 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
452 
453 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
454 	 * IPV4_FILTER_HASH are all zero.
455 	 */
456 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
457 }
458 
459 static void ipa_idle_indication_cfg(struct ipa *ipa,
460 				    u32 enter_idle_debounce_thresh,
461 				    bool const_non_idle_enable)
462 {
463 	const struct reg *reg;
464 	u32 val;
465 
466 	if (ipa->version < IPA_VERSION_3_5_1)
467 		return;
468 
469 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
470 	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
471 			 enter_idle_debounce_thresh);
472 	if (const_non_idle_enable)
473 		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
474 
475 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
476 }
477 
478 /**
479  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
480  * @ipa:	IPA pointer
481  *
482  * Configures when the IPA signals it is idle to the global clock
483  * controller, which can respond by scaling down the clock to save
484  * power.
485  */
486 static void ipa_hardware_dcd_config(struct ipa *ipa)
487 {
488 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
489 	ipa_idle_indication_cfg(ipa, 256, false);
490 }
491 
492 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
493 {
494 	/* Power-on reset values */
495 	ipa_idle_indication_cfg(ipa, 0, true);
496 }
497 
498 /**
499  * ipa_hardware_config() - Primitive hardware initialization
500  * @ipa:	IPA pointer
501  * @data:	IPA configuration data
502  */
503 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
504 {
505 	ipa_hardware_config_bcr(ipa, data);
506 	ipa_hardware_config_tx(ipa);
507 	ipa_hardware_config_clkon(ipa);
508 	ipa_hardware_config_comp(ipa);
509 	ipa_hardware_config_qsb(ipa, data);
510 	ipa_hardware_config_timing(ipa);
511 	ipa_hardware_config_hashing(ipa);
512 	ipa_hardware_dcd_config(ipa);
513 }
514 
515 /**
516  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
517  * @ipa:	IPA pointer
518  *
519  * This restores the power-on reset values (even if they aren't different)
520  */
521 static void ipa_hardware_deconfig(struct ipa *ipa)
522 {
523 	/* Mostly we just leave things as we set them. */
524 	ipa_hardware_dcd_deconfig(ipa);
525 }
526 
527 /**
528  * ipa_config() - Configure IPA hardware
529  * @ipa:	IPA pointer
530  * @data:	IPA configuration data
531  *
532  * Perform initialization requiring IPA power to be enabled.
533  */
534 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
535 {
536 	int ret;
537 
538 	ipa_hardware_config(ipa, data);
539 
540 	ret = ipa_mem_config(ipa);
541 	if (ret)
542 		goto err_hardware_deconfig;
543 
544 	ret = ipa_interrupt_config(ipa);
545 	if (ret)
546 		goto err_mem_deconfig;
547 
548 	ipa_uc_config(ipa);
549 
550 	ret = ipa_endpoint_config(ipa);
551 	if (ret)
552 		goto err_uc_deconfig;
553 
554 	ipa_table_config(ipa);		/* No deconfig required */
555 
556 	/* Assign resource limitation to each group; no deconfig required */
557 	ret = ipa_resource_config(ipa, data->resource_data);
558 	if (ret)
559 		goto err_endpoint_deconfig;
560 
561 	ret = ipa_modem_config(ipa);
562 	if (ret)
563 		goto err_endpoint_deconfig;
564 
565 	return 0;
566 
567 err_endpoint_deconfig:
568 	ipa_endpoint_deconfig(ipa);
569 err_uc_deconfig:
570 	ipa_uc_deconfig(ipa);
571 	ipa_interrupt_deconfig(ipa);
572 err_mem_deconfig:
573 	ipa_mem_deconfig(ipa);
574 err_hardware_deconfig:
575 	ipa_hardware_deconfig(ipa);
576 
577 	return ret;
578 }
579 
580 /**
581  * ipa_deconfig() - Inverse of ipa_config()
582  * @ipa:	IPA pointer
583  */
584 static void ipa_deconfig(struct ipa *ipa)
585 {
586 	ipa_modem_deconfig(ipa);
587 	ipa_endpoint_deconfig(ipa);
588 	ipa_uc_deconfig(ipa);
589 	ipa_interrupt_deconfig(ipa);
590 	ipa_mem_deconfig(ipa);
591 	ipa_hardware_deconfig(ipa);
592 }
593 
594 static int ipa_firmware_load(struct device *dev)
595 {
596 	const struct firmware *fw;
597 	struct device_node *node;
598 	struct resource res;
599 	phys_addr_t phys;
600 	const char *path;
601 	ssize_t size;
602 	void *virt;
603 	int ret;
604 
605 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
606 	if (!node) {
607 		dev_err(dev, "DT error getting \"memory-region\" property\n");
608 		return -EINVAL;
609 	}
610 
611 	ret = of_address_to_resource(node, 0, &res);
612 	of_node_put(node);
613 	if (ret) {
614 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
615 			ret);
616 		return ret;
617 	}
618 
619 	/* Use name from DTB if specified; use default for *any* error */
620 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
621 	if (ret) {
622 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
623 			ret);
624 		path = IPA_FW_PATH_DEFAULT;
625 	}
626 
627 	ret = request_firmware(&fw, path, dev);
628 	if (ret) {
629 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
630 		return ret;
631 	}
632 
633 	phys = res.start;
634 	size = (size_t)resource_size(&res);
635 	virt = memremap(phys, size, MEMREMAP_WC);
636 	if (!virt) {
637 		dev_err(dev, "unable to remap firmware memory\n");
638 		ret = -ENOMEM;
639 		goto out_release_firmware;
640 	}
641 
642 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
643 	if (ret)
644 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
645 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
646 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
647 
648 	memunmap(virt);
649 out_release_firmware:
650 	release_firmware(fw);
651 
652 	return ret;
653 }
654 
655 static const struct of_device_id ipa_match[] = {
656 	{
657 		.compatible	= "qcom,msm8998-ipa",
658 		.data		= &ipa_data_v3_1,
659 	},
660 	{
661 		.compatible	= "qcom,sdm845-ipa",
662 		.data		= &ipa_data_v3_5_1,
663 	},
664 	{
665 		.compatible	= "qcom,sc7180-ipa",
666 		.data		= &ipa_data_v4_2,
667 	},
668 	{
669 		.compatible	= "qcom,sdx55-ipa",
670 		.data		= &ipa_data_v4_5,
671 	},
672 	{
673 		.compatible	= "qcom,sm6350-ipa",
674 		.data		= &ipa_data_v4_7,
675 	},
676 	{
677 		.compatible	= "qcom,sm8350-ipa",
678 		.data		= &ipa_data_v4_9,
679 	},
680 	{
681 		.compatible	= "qcom,sc7280-ipa",
682 		.data		= &ipa_data_v4_11,
683 	},
684 	{
685 		.compatible	= "qcom,sdx65-ipa",
686 		.data		= &ipa_data_v5_0,
687 	},
688 	{
689 		.compatible	= "qcom,sm8550-ipa",
690 		.data		= &ipa_data_v5_5,
691 	},
692 	{ },
693 };
694 MODULE_DEVICE_TABLE(of, ipa_match);
695 
696 /* Check things that can be validated at build time.  This just
697  * groups these things BUILD_BUG_ON() calls don't clutter the rest
698  * of the code.
699  * */
700 static void ipa_validate_build(void)
701 {
702 	/* At one time we assumed a 64-bit build, allowing some do_div()
703 	 * calls to be replaced by simple division or modulo operations.
704 	 * We currently only perform divide and modulo operations on u32,
705 	 * u16, or size_t objects, and of those only size_t has any chance
706 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
707 	 * on a 32-bit build, but there is no harm in verifying that.)
708 	 */
709 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
710 
711 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
712 	BUILD_BUG_ON(GSI_EE_AP != 0);
713 
714 	/* There's no point if we have no channels or event rings */
715 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
716 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
717 
718 	/* GSI hardware design limits */
719 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
720 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
721 
722 	/* The number of TREs in a transaction is limited by the channel's
723 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
724 	 * to represents the number of TREs it has allocated and used.
725 	 */
726 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
727 
728 	/* This is used as a divisor */
729 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
730 
731 	/* Aggregation granularity value can't be 0, and must fit */
732 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
733 }
734 
735 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
736 {
737 	bool modem_init;
738 	const char *str;
739 	int ret;
740 
741 	/* Look up the old and new properties by name */
742 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
743 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
744 
745 	/* If the new property doesn't exist, it's legacy behavior */
746 	if (ret == -EINVAL) {
747 		if (modem_init)
748 			return IPA_LOADER_MODEM;
749 		goto out_self;
750 	}
751 
752 	/* Any other error on the new property means it's poorly defined */
753 	if (ret)
754 		return IPA_LOADER_INVALID;
755 
756 	/* New property value exists; if old one does too, that's invalid */
757 	if (modem_init)
758 		return IPA_LOADER_INVALID;
759 
760 	/* Modem loads GSI firmware for "modem" */
761 	if (!strcmp(str, "modem"))
762 		return IPA_LOADER_MODEM;
763 
764 	/* No GSI firmware load is needed for "skip" */
765 	if (!strcmp(str, "skip"))
766 		return IPA_LOADER_SKIP;
767 
768 	/* Any value other than "self" is an error */
769 	if (strcmp(str, "self"))
770 		return IPA_LOADER_INVALID;
771 out_self:
772 	/* We need Trust Zone to load firmware; make sure it's available */
773 	if (qcom_scm_is_available())
774 		return IPA_LOADER_SELF;
775 
776 	return IPA_LOADER_DEFER;
777 }
778 
779 /**
780  * ipa_probe() - IPA platform driver probe function
781  * @pdev:	Platform device pointer
782  *
783  * Return:	0 if successful, or a negative error code (possibly
784  *		EPROBE_DEFER)
785  *
786  * This is the main entry point for the IPA driver.  Initialization proceeds
787  * in several stages:
788  *   - The "init" stage involves activities that can be initialized without
789  *     access to the IPA hardware.
790  *   - The "config" stage requires IPA power to be active so IPA registers
791  *     can be accessed, but does not require the use of IPA immediate commands.
792  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
793  *     layer to be initialized.
794  *
795  * A Boolean Device Tree "modem-init" property determines whether GSI
796  * initialization will be performed by the AP (Trust Zone) or the modem.
797  * If the AP does GSI initialization, the setup phase is entered after
798  * this has completed successfully.  Otherwise the modem initializes
799  * the GSI layer and signals it has finished by sending an SMP2P interrupt
800  * to the AP; this triggers the start if IPA setup.
801  */
802 static int ipa_probe(struct platform_device *pdev)
803 {
804 	struct device *dev = &pdev->dev;
805 	struct ipa_interrupt *interrupt;
806 	enum ipa_firmware_loader loader;
807 	const struct ipa_data *data;
808 	struct ipa_power *power;
809 	struct ipa *ipa;
810 	int ret;
811 
812 	ipa_validate_build();
813 
814 	/* Get configuration data early; needed for power initialization */
815 	data = of_device_get_match_data(dev);
816 	if (!data) {
817 		dev_err(dev, "matched hardware not supported\n");
818 		return -ENODEV;
819 	}
820 
821 	if (!ipa_version_supported(data->version)) {
822 		dev_err(dev, "unsupported IPA version %u\n", data->version);
823 		return -EINVAL;
824 	}
825 
826 	if (!data->modem_route_count) {
827 		dev_err(dev, "modem_route_count cannot be zero\n");
828 		return -EINVAL;
829 	}
830 
831 	loader = ipa_firmware_loader(dev);
832 	if (loader == IPA_LOADER_INVALID)
833 		return -EINVAL;
834 	if (loader == IPA_LOADER_DEFER)
835 		return -EPROBE_DEFER;
836 
837 	/* The IPA interrupt might not be ready when we're probed, so this
838 	 * might return -EPROBE_DEFER.
839 	 */
840 	interrupt = ipa_interrupt_init(pdev);
841 	if (IS_ERR(interrupt))
842 		return PTR_ERR(interrupt);
843 
844 	/* The clock and interconnects might not be ready when we're probed,
845 	 * so this might return -EPROBE_DEFER.
846 	 */
847 	power = ipa_power_init(dev, data->power_data);
848 	if (IS_ERR(power)) {
849 		ret = PTR_ERR(power);
850 		goto err_interrupt_exit;
851 	}
852 
853 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
854 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
855 	if (!ipa) {
856 		ret = -ENOMEM;
857 		goto err_power_exit;
858 	}
859 
860 	ipa->dev = dev;
861 	dev_set_drvdata(dev, ipa);
862 	ipa->interrupt = interrupt;
863 	ipa->power = power;
864 	ipa->version = data->version;
865 	ipa->modem_route_count = data->modem_route_count;
866 	init_completion(&ipa->completion);
867 
868 	ret = ipa_reg_init(ipa, pdev);
869 	if (ret)
870 		goto err_kfree_ipa;
871 
872 	ret = ipa_mem_init(ipa, pdev, data->mem_data);
873 	if (ret)
874 		goto err_reg_exit;
875 
876 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
877 		       data->endpoint_data);
878 	if (ret)
879 		goto err_mem_exit;
880 
881 	/* Result is a non-zero mask of endpoints that support filtering */
882 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
883 	if (ret)
884 		goto err_gsi_exit;
885 
886 	ret = ipa_table_init(ipa);
887 	if (ret)
888 		goto err_endpoint_exit;
889 
890 	ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
891 	if (ret)
892 		goto err_table_exit;
893 
894 	/* Power needs to be active for config and setup */
895 	ret = pm_runtime_get_sync(dev);
896 	if (WARN_ON(ret < 0))
897 		goto err_power_put;
898 
899 	ret = ipa_config(ipa, data);
900 	if (ret)
901 		goto err_power_put;
902 
903 	dev_info(dev, "IPA driver initialized");
904 
905 	/* If the modem is loading GSI firmware, it will trigger a call to
906 	 * ipa_setup() when it has finished.  In that case we're done here.
907 	 */
908 	if (loader == IPA_LOADER_MODEM)
909 		goto done;
910 
911 	if (loader == IPA_LOADER_SELF) {
912 		/* The AP is loading GSI firmware; do so now */
913 		ret = ipa_firmware_load(dev);
914 		if (ret)
915 			goto err_deconfig;
916 	} /* Otherwise loader == IPA_LOADER_SKIP */
917 
918 	/* GSI firmware is loaded; proceed to setup */
919 	ret = ipa_setup(ipa);
920 	if (ret)
921 		goto err_deconfig;
922 done:
923 	pm_runtime_mark_last_busy(dev);
924 	(void)pm_runtime_put_autosuspend(dev);
925 
926 	return 0;
927 
928 err_deconfig:
929 	ipa_deconfig(ipa);
930 err_power_put:
931 	pm_runtime_put_noidle(dev);
932 	ipa_smp2p_exit(ipa);
933 err_table_exit:
934 	ipa_table_exit(ipa);
935 err_endpoint_exit:
936 	ipa_endpoint_exit(ipa);
937 err_gsi_exit:
938 	gsi_exit(&ipa->gsi);
939 err_mem_exit:
940 	ipa_mem_exit(ipa);
941 err_reg_exit:
942 	ipa_reg_exit(ipa);
943 err_kfree_ipa:
944 	kfree(ipa);
945 err_power_exit:
946 	ipa_power_exit(power);
947 err_interrupt_exit:
948 	ipa_interrupt_exit(interrupt);
949 
950 	return ret;
951 }
952 
953 static void ipa_remove(struct platform_device *pdev)
954 {
955 	struct ipa_interrupt *interrupt;
956 	struct ipa_power *power;
957 	struct device *dev;
958 	struct ipa *ipa;
959 	int ret;
960 
961 	ipa = dev_get_drvdata(&pdev->dev);
962 	dev = ipa->dev;
963 	WARN_ON(dev != &pdev->dev);
964 
965 	power = ipa->power;
966 	interrupt = ipa->interrupt;
967 
968 	/* Prevent the modem from triggering a call to ipa_setup().  This
969 	 * also ensures a modem-initiated setup that's underway completes.
970 	 */
971 	ipa_smp2p_irq_disable_setup(ipa);
972 
973 	ret = pm_runtime_get_sync(dev);
974 	if (WARN_ON(ret < 0))
975 		goto out_power_put;
976 
977 	if (ipa->setup_complete) {
978 		ret = ipa_modem_stop(ipa);
979 		/* If starting or stopping is in progress, try once more */
980 		if (ret == -EBUSY) {
981 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
982 			ret = ipa_modem_stop(ipa);
983 		}
984 		if (ret) {
985 			/*
986 			 * Not cleaning up here properly might also yield a
987 			 * crash later on. As the device is still unregistered
988 			 * in this case, this might even yield a crash later on.
989 			 */
990 			dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
991 				ERR_PTR(ret));
992 			return;
993 		}
994 
995 		ipa_teardown(ipa);
996 	}
997 
998 	ipa_deconfig(ipa);
999 out_power_put:
1000 	pm_runtime_put_noidle(dev);
1001 	ipa_smp2p_exit(ipa);
1002 	ipa_table_exit(ipa);
1003 	ipa_endpoint_exit(ipa);
1004 	gsi_exit(&ipa->gsi);
1005 	ipa_mem_exit(ipa);
1006 	ipa_reg_exit(ipa);
1007 	kfree(ipa);
1008 	ipa_power_exit(power);
1009 	ipa_interrupt_exit(interrupt);
1010 
1011 	dev_info(dev, "IPA driver removed");
1012 }
1013 
1014 static const struct attribute_group *ipa_attribute_groups[] = {
1015 	&ipa_attribute_group,
1016 	&ipa_feature_attribute_group,
1017 	&ipa_endpoint_id_attribute_group,
1018 	&ipa_modem_attribute_group,
1019 	NULL,
1020 };
1021 
1022 static struct platform_driver ipa_driver = {
1023 	.probe		= ipa_probe,
1024 	.remove_new	= ipa_remove,
1025 	.shutdown	= ipa_remove,
1026 	.driver	= {
1027 		.name		= "ipa",
1028 		.pm		= &ipa_pm_ops,
1029 		.of_match_table	= ipa_match,
1030 		.dev_groups	= ipa_attribute_groups,
1031 	},
1032 };
1033 
1034 module_platform_driver(ipa_driver);
1035 
1036 MODULE_LICENSE("GPL v2");
1037 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1038