xref: /linux/drivers/net/ipa/ipa_main.c (revision d8d9ba8dc9c77358cd7ea73e4e44e8952c9baf35)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/qcom_scm.h>
19 #include <linux/soc/qcom/mdt_loader.h>
20 
21 #include "ipa.h"
22 #include "ipa_clock.h"
23 #include "ipa_data.h"
24 #include "ipa_endpoint.h"
25 #include "ipa_resource.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34 #include "ipa_sysfs.h"
35 
36 /**
37  * DOC: The IP Accelerator
38  *
39  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40  * networking component found in many Qualcomm SoCs.  The IPA is connected
41  * to the application processor (AP), but is also connected (and partially
42  * controlled by) other "execution environments" (EEs), such as a modem.
43  *
44  * The IPA is the conduit between the AP and the modem that carries network
45  * traffic.  This driver presents a network interface representing the
46  * connection of the modem to external (e.g. LTE) networks.
47  *
48  * The IPA provides protocol checksum calculation, offloading this work
49  * from the AP.  The IPA offers additional functionality, including routing,
50  * filtering, and NAT support, but that more advanced functionality is not
51  * currently supported.  Despite that, some resources--including routing
52  * tables and filter tables--are defined in this driver because they must
53  * be initialized even when the advanced hardware features are not used.
54  *
55  * There are two distinct layers that implement the IPA hardware, and this
56  * is reflected in the organization of the driver.  The generic software
57  * interface (GSI) is an integral component of the IPA, providing a
58  * well-defined communication layer between the AP subsystem and the IPA
59  * core.  The GSI implements a set of "channels" used for communication
60  * between the AP and the IPA.
61  *
62  * The IPA layer uses GSI channels to implement its "endpoints".  And while
63  * a GSI channel carries data between the AP and the IPA, a pair of IPA
64  * endpoints is used to carry traffic between two EEs.  Specifically, the main
65  * modem network interface is implemented by two pairs of endpoints:  a TX
66  * endpoint on the AP coupled with an RX endpoint on the modem; and another
67  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
68  */
69 
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
72 #define IPA_PAS_ID		15
73 
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
76 #define TAG_TIMESTAMP_SHIFT	14
77 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
78 
79 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
80 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
81 
82 /**
83  * ipa_setup() - Set up IPA hardware
84  * @ipa:	IPA pointer
85  *
86  * Perform initialization that requires issuing immediate commands on
87  * the command TX endpoint.  If the modem is doing GSI firmware load
88  * and initialization, this function will be called when an SMP2P
89  * interrupt has been signaled by the modem.  Otherwise it will be
90  * called from ipa_probe() after GSI firmware has been successfully
91  * loaded, authenticated, and started by Trust Zone.
92  */
93 int ipa_setup(struct ipa *ipa)
94 {
95 	struct ipa_endpoint *exception_endpoint;
96 	struct ipa_endpoint *command_endpoint;
97 	struct device *dev = &ipa->pdev->dev;
98 	int ret;
99 
100 	ret = gsi_setup(&ipa->gsi);
101 	if (ret)
102 		return ret;
103 
104 	ipa_power_setup(ipa);
105 
106 	ret = device_init_wakeup(dev, true);
107 	if (ret)
108 		goto err_gsi_teardown;
109 
110 	ipa_endpoint_setup(ipa);
111 
112 	/* We need to use the AP command TX endpoint to perform other
113 	 * initialization, so we enable first.
114 	 */
115 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
116 	ret = ipa_endpoint_enable_one(command_endpoint);
117 	if (ret)
118 		goto err_endpoint_teardown;
119 
120 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
121 	if (ret)
122 		goto err_command_disable;
123 
124 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
125 	if (ret)
126 		goto err_command_disable;
127 
128 	/* Enable the exception handling endpoint, and tell the hardware
129 	 * to use it by default.
130 	 */
131 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
132 	ret = ipa_endpoint_enable_one(exception_endpoint);
133 	if (ret)
134 		goto err_command_disable;
135 
136 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
137 
138 	/* We're all set.  Now prepare for communication with the modem */
139 	ret = ipa_qmi_setup(ipa);
140 	if (ret)
141 		goto err_default_route_clear;
142 
143 	ipa->setup_complete = true;
144 
145 	dev_info(dev, "IPA driver setup completed successfully\n");
146 
147 	return 0;
148 
149 err_default_route_clear:
150 	ipa_endpoint_default_route_clear(ipa);
151 	ipa_endpoint_disable_one(exception_endpoint);
152 err_command_disable:
153 	ipa_endpoint_disable_one(command_endpoint);
154 err_endpoint_teardown:
155 	ipa_endpoint_teardown(ipa);
156 	ipa_power_teardown(ipa);
157 	(void)device_init_wakeup(dev, false);
158 err_gsi_teardown:
159 	gsi_teardown(&ipa->gsi);
160 
161 	return ret;
162 }
163 
164 /**
165  * ipa_teardown() - Inverse of ipa_setup()
166  * @ipa:	IPA pointer
167  */
168 static void ipa_teardown(struct ipa *ipa)
169 {
170 	struct ipa_endpoint *exception_endpoint;
171 	struct ipa_endpoint *command_endpoint;
172 
173 	/* We're going to tear everything down, as if setup never completed */
174 	ipa->setup_complete = false;
175 
176 	ipa_qmi_teardown(ipa);
177 	ipa_endpoint_default_route_clear(ipa);
178 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
179 	ipa_endpoint_disable_one(exception_endpoint);
180 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
181 	ipa_endpoint_disable_one(command_endpoint);
182 	ipa_endpoint_teardown(ipa);
183 	ipa_power_teardown(ipa);
184 	(void)device_init_wakeup(&ipa->pdev->dev, false);
185 	gsi_teardown(&ipa->gsi);
186 }
187 
188 /* Configure bus access behavior for IPA components */
189 static void ipa_hardware_config_comp(struct ipa *ipa)
190 {
191 	u32 val;
192 
193 	/* Nothing to configure prior to IPA v4.0 */
194 	if (ipa->version < IPA_VERSION_4_0)
195 		return;
196 
197 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
198 
199 	if (ipa->version == IPA_VERSION_4_0) {
200 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
201 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
202 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
203 	} else if (ipa->version < IPA_VERSION_4_5) {
204 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
205 	} else {
206 		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
207 	}
208 
209 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
210 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
211 
212 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
213 }
214 
215 /* Configure DDR and (possibly) PCIe max read/write QSB values */
216 static void
217 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
218 {
219 	const struct ipa_qsb_data *data0;
220 	const struct ipa_qsb_data *data1;
221 	u32 val;
222 
223 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
224 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
225 	if (data->qsb_count > 1)
226 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
227 
228 	/* Max outstanding write accesses for QSB masters */
229 	val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
230 	if (data->qsb_count > 1)
231 		val |= u32_encode_bits(data1->max_writes,
232 				       GEN_QMB_1_MAX_WRITES_FMASK);
233 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
234 
235 	/* Max outstanding read accesses for QSB masters */
236 	val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
237 	if (ipa->version >= IPA_VERSION_4_0)
238 		val |= u32_encode_bits(data0->max_reads_beats,
239 				       GEN_QMB_0_MAX_READS_BEATS_FMASK);
240 	if (data->qsb_count > 1) {
241 		val |= u32_encode_bits(data1->max_reads,
242 				       GEN_QMB_1_MAX_READS_FMASK);
243 		if (ipa->version >= IPA_VERSION_4_0)
244 			val |= u32_encode_bits(data1->max_reads_beats,
245 					       GEN_QMB_1_MAX_READS_BEATS_FMASK);
246 	}
247 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
248 }
249 
250 /* The internal inactivity timer clock is used for the aggregation timer */
251 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
252 
253 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
254  * field to represent the given number of microseconds.  The value is one
255  * less than the number of timer ticks in the requested period.  0 is not
256  * a valid granularity value (so for example @usec must be at least 16 for
257  * a TIMER_FREQUENCY of 32000).
258  */
259 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
260 {
261 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
262 }
263 
264 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
265  * timestamps and timers independent of the IPA core clock rate.  The
266  * Qtimer is based on a 56-bit timestamp incremented at each tick of
267  * a 19.2 MHz SoC crystal oscillator (XO clock).
268  *
269  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
270  * timestamp is achieved by shifting the Qtimer timestamp value right
271  * some number of bits to produce the low-order bits of the coarser
272  * granularity timestamp.
273  *
274  * For timers, a common timer clock is derived from the XO clock using
275  * a divider (we use 192, to produce a 100kHz timer clock).  From
276  * this common clock, three "pulse generators" are used to produce
277  * timer ticks at a configurable frequency.  IPA timers (such as
278  * those used for aggregation or head-of-line block handling) now
279  * define their period based on one of these pulse generators.
280  */
281 static void ipa_qtime_config(struct ipa *ipa)
282 {
283 	u32 val;
284 
285 	/* Timer clock divider must be disabled when we change the rate */
286 	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
287 
288 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
289 	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
290 	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
291 	/* Configure tag and NAT Qtime timestamp resolution as well */
292 	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
293 	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
294 	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
295 
296 	/* Set granularity of pulse generators used for other timers */
297 	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
298 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
299 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
300 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
301 
302 	/* Actual divider is 1 more than value supplied here */
303 	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
304 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
305 
306 	/* Divider value is set; re-enable the common timer clock divider */
307 	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
308 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
309 }
310 
311 static void ipa_idle_indication_cfg(struct ipa *ipa,
312 				    u32 enter_idle_debounce_thresh,
313 				    bool const_non_idle_enable)
314 {
315 	u32 offset;
316 	u32 val;
317 
318 	val = u32_encode_bits(enter_idle_debounce_thresh,
319 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
320 	if (const_non_idle_enable)
321 		val |= CONST_NON_IDLE_ENABLE_FMASK;
322 
323 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
324 	iowrite32(val, ipa->reg_virt + offset);
325 }
326 
327 /**
328  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
329  * @ipa:	IPA pointer
330  *
331  * Configures when the IPA signals it is idle to the global clock
332  * controller, which can respond by scalling down the clock to
333  * save power.
334  */
335 static void ipa_hardware_dcd_config(struct ipa *ipa)
336 {
337 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
338 	ipa_idle_indication_cfg(ipa, 256, false);
339 }
340 
341 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
342 {
343 	/* Power-on reset values */
344 	ipa_idle_indication_cfg(ipa, 0, true);
345 }
346 
347 /**
348  * ipa_hardware_config() - Primitive hardware initialization
349  * @ipa:	IPA pointer
350  * @data:	IPA configuration data
351  */
352 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
353 {
354 	enum ipa_version version = ipa->version;
355 	u32 granularity;
356 	u32 val;
357 
358 	/* IPA v4.5+ has no backward compatibility register */
359 	if (version < IPA_VERSION_4_5) {
360 		val = data->backward_compat;
361 		iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
362 	}
363 
364 	/* Implement some hardware workarounds */
365 	if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
366 		/* Disable PA mask to allow HOLB drop */
367 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
368 		val &= ~PA_MASK_EN_FMASK;
369 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
370 
371 		/* Enable open global clocks in the CLKON configuration */
372 		val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
373 	} else if (version == IPA_VERSION_3_1) {
374 		val = MISC_FMASK;	/* Disable MISC clock gating */
375 	} else {
376 		val = 0;		/* No CLKON configuration needed */
377 	}
378 	if (val)
379 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
380 
381 	ipa_hardware_config_comp(ipa);
382 
383 	/* Configure system bus limits */
384 	ipa_hardware_config_qsb(ipa, data);
385 
386 	if (version < IPA_VERSION_4_5) {
387 		/* Configure aggregation timer granularity */
388 		granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
389 		val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
390 		iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
391 	} else {
392 		ipa_qtime_config(ipa);
393 	}
394 
395 	/* IPA v4.2 does not support hashed tables, so disable them */
396 	if (version == IPA_VERSION_4_2) {
397 		u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
398 
399 		iowrite32(0, ipa->reg_virt + offset);
400 	}
401 
402 	/* Enable dynamic clock division */
403 	ipa_hardware_dcd_config(ipa);
404 }
405 
406 /**
407  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
408  * @ipa:	IPA pointer
409  *
410  * This restores the power-on reset values (even if they aren't different)
411  */
412 static void ipa_hardware_deconfig(struct ipa *ipa)
413 {
414 	/* Mostly we just leave things as we set them. */
415 	ipa_hardware_dcd_deconfig(ipa);
416 }
417 
418 /**
419  * ipa_config() - Configure IPA hardware
420  * @ipa:	IPA pointer
421  * @data:	IPA configuration data
422  *
423  * Perform initialization requiring IPA clock to be enabled.
424  */
425 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
426 {
427 	int ret;
428 
429 	ipa_hardware_config(ipa, data);
430 
431 	ret = ipa_mem_config(ipa);
432 	if (ret)
433 		goto err_hardware_deconfig;
434 
435 	ipa->interrupt = ipa_interrupt_config(ipa);
436 	if (IS_ERR(ipa->interrupt)) {
437 		ret = PTR_ERR(ipa->interrupt);
438 		ipa->interrupt = NULL;
439 		goto err_mem_deconfig;
440 	}
441 
442 	ipa_uc_config(ipa);
443 
444 	ret = ipa_endpoint_config(ipa);
445 	if (ret)
446 		goto err_uc_deconfig;
447 
448 	ipa_table_config(ipa);		/* No deconfig required */
449 
450 	/* Assign resource limitation to each group; no deconfig required */
451 	ret = ipa_resource_config(ipa, data->resource_data);
452 	if (ret)
453 		goto err_endpoint_deconfig;
454 
455 	ret = ipa_modem_config(ipa);
456 	if (ret)
457 		goto err_endpoint_deconfig;
458 
459 	return 0;
460 
461 err_endpoint_deconfig:
462 	ipa_endpoint_deconfig(ipa);
463 err_uc_deconfig:
464 	ipa_uc_deconfig(ipa);
465 	ipa_interrupt_deconfig(ipa->interrupt);
466 	ipa->interrupt = NULL;
467 err_mem_deconfig:
468 	ipa_mem_deconfig(ipa);
469 err_hardware_deconfig:
470 	ipa_hardware_deconfig(ipa);
471 
472 	return ret;
473 }
474 
475 /**
476  * ipa_deconfig() - Inverse of ipa_config()
477  * @ipa:	IPA pointer
478  */
479 static void ipa_deconfig(struct ipa *ipa)
480 {
481 	ipa_modem_deconfig(ipa);
482 	ipa_endpoint_deconfig(ipa);
483 	ipa_uc_deconfig(ipa);
484 	ipa_interrupt_deconfig(ipa->interrupt);
485 	ipa->interrupt = NULL;
486 	ipa_mem_deconfig(ipa);
487 	ipa_hardware_deconfig(ipa);
488 }
489 
490 static int ipa_firmware_load(struct device *dev)
491 {
492 	const struct firmware *fw;
493 	struct device_node *node;
494 	struct resource res;
495 	phys_addr_t phys;
496 	const char *path;
497 	ssize_t size;
498 	void *virt;
499 	int ret;
500 
501 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
502 	if (!node) {
503 		dev_err(dev, "DT error getting \"memory-region\" property\n");
504 		return -EINVAL;
505 	}
506 
507 	ret = of_address_to_resource(node, 0, &res);
508 	of_node_put(node);
509 	if (ret) {
510 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
511 			ret);
512 		return ret;
513 	}
514 
515 	/* Use name from DTB if specified; use default for *any* error */
516 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
517 	if (ret) {
518 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
519 			ret);
520 		path = IPA_FW_PATH_DEFAULT;
521 	}
522 
523 	ret = request_firmware(&fw, path, dev);
524 	if (ret) {
525 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
526 		return ret;
527 	}
528 
529 	phys = res.start;
530 	size = (size_t)resource_size(&res);
531 	virt = memremap(phys, size, MEMREMAP_WC);
532 	if (!virt) {
533 		dev_err(dev, "unable to remap firmware memory\n");
534 		ret = -ENOMEM;
535 		goto out_release_firmware;
536 	}
537 
538 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
539 	if (ret)
540 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
541 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
542 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
543 
544 	memunmap(virt);
545 out_release_firmware:
546 	release_firmware(fw);
547 
548 	return ret;
549 }
550 
551 static const struct of_device_id ipa_match[] = {
552 	{
553 		.compatible	= "qcom,msm8998-ipa",
554 		.data		= &ipa_data_v3_1,
555 	},
556 	{
557 		.compatible	= "qcom,sdm845-ipa",
558 		.data		= &ipa_data_v3_5_1,
559 	},
560 	{
561 		.compatible	= "qcom,sc7180-ipa",
562 		.data		= &ipa_data_v4_2,
563 	},
564 	{
565 		.compatible	= "qcom,sdx55-ipa",
566 		.data		= &ipa_data_v4_5,
567 	},
568 	{
569 		.compatible	= "qcom,sm8350-ipa",
570 		.data		= &ipa_data_v4_9,
571 	},
572 	{
573 		.compatible	= "qcom,sc7280-ipa",
574 		.data		= &ipa_data_v4_11,
575 	},
576 	{ },
577 };
578 MODULE_DEVICE_TABLE(of, ipa_match);
579 
580 /* Check things that can be validated at build time.  This just
581  * groups these things BUILD_BUG_ON() calls don't clutter the rest
582  * of the code.
583  * */
584 static void ipa_validate_build(void)
585 {
586 	/* At one time we assumed a 64-bit build, allowing some do_div()
587 	 * calls to be replaced by simple division or modulo operations.
588 	 * We currently only perform divide and modulo operations on u32,
589 	 * u16, or size_t objects, and of those only size_t has any chance
590 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
591 	 * on a 32-bit build, but there is no harm in verifying that.)
592 	 */
593 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
594 
595 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
596 	BUILD_BUG_ON(GSI_EE_AP != 0);
597 
598 	/* There's no point if we have no channels or event rings */
599 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
600 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
601 
602 	/* GSI hardware design limits */
603 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
604 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
605 
606 	/* The number of TREs in a transaction is limited by the channel's
607 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
608 	 * to represents the number of TREs it has allocated and used.
609 	 */
610 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
611 
612 	/* This is used as a divisor */
613 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
614 
615 	/* Aggregation granularity value can't be 0, and must fit */
616 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
617 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
618 			field_max(AGGR_GRANULARITY_FMASK));
619 }
620 
621 static bool ipa_version_valid(enum ipa_version version)
622 {
623 	switch (version) {
624 	case IPA_VERSION_3_0:
625 	case IPA_VERSION_3_1:
626 	case IPA_VERSION_3_5:
627 	case IPA_VERSION_3_5_1:
628 	case IPA_VERSION_4_0:
629 	case IPA_VERSION_4_1:
630 	case IPA_VERSION_4_2:
631 	case IPA_VERSION_4_5:
632 	case IPA_VERSION_4_7:
633 	case IPA_VERSION_4_9:
634 	case IPA_VERSION_4_11:
635 		return true;
636 
637 	default:
638 		return false;
639 	}
640 }
641 
642 /**
643  * ipa_probe() - IPA platform driver probe function
644  * @pdev:	Platform device pointer
645  *
646  * Return:	0 if successful, or a negative error code (possibly
647  *		EPROBE_DEFER)
648  *
649  * This is the main entry point for the IPA driver.  Initialization proceeds
650  * in several stages:
651  *   - The "init" stage involves activities that can be initialized without
652  *     access to the IPA hardware.
653  *   - The "config" stage requires the IPA clock to be active so IPA registers
654  *     can be accessed, but does not require the use of IPA immediate commands.
655  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
656  *     layer to be initialized.
657  *
658  * A Boolean Device Tree "modem-init" property determines whether GSI
659  * initialization will be performed by the AP (Trust Zone) or the modem.
660  * If the AP does GSI initialization, the setup phase is entered after
661  * this has completed successfully.  Otherwise the modem initializes
662  * the GSI layer and signals it has finished by sending an SMP2P interrupt
663  * to the AP; this triggers the start if IPA setup.
664  */
665 static int ipa_probe(struct platform_device *pdev)
666 {
667 	struct device *dev = &pdev->dev;
668 	const struct ipa_data *data;
669 	struct ipa_clock *clock;
670 	bool modem_init;
671 	struct ipa *ipa;
672 	int ret;
673 
674 	ipa_validate_build();
675 
676 	/* Get configuration data early; needed for clock initialization */
677 	data = of_device_get_match_data(dev);
678 	if (!data) {
679 		dev_err(dev, "matched hardware not supported\n");
680 		return -ENODEV;
681 	}
682 
683 	if (!ipa_version_valid(data->version)) {
684 		dev_err(dev, "invalid IPA version\n");
685 		return -EINVAL;
686 	}
687 
688 	/* If we need Trust Zone, make sure it's available */
689 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
690 	if (!modem_init)
691 		if (!qcom_scm_is_available())
692 			return -EPROBE_DEFER;
693 
694 	/* The clock and interconnects might not be ready when we're
695 	 * probed, so might return -EPROBE_DEFER.
696 	 */
697 	clock = ipa_clock_init(dev, data->clock_data);
698 	if (IS_ERR(clock))
699 		return PTR_ERR(clock);
700 
701 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
702 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
703 	if (!ipa) {
704 		ret = -ENOMEM;
705 		goto err_clock_exit;
706 	}
707 
708 	ipa->pdev = pdev;
709 	dev_set_drvdata(dev, ipa);
710 	ipa->clock = clock;
711 	ipa->version = data->version;
712 	init_completion(&ipa->completion);
713 
714 	ret = ipa_reg_init(ipa);
715 	if (ret)
716 		goto err_kfree_ipa;
717 
718 	ret = ipa_mem_init(ipa, data->mem_data);
719 	if (ret)
720 		goto err_reg_exit;
721 
722 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
723 		       data->endpoint_data);
724 	if (ret)
725 		goto err_mem_exit;
726 
727 	/* Result is a non-zero mask of endpoints that support filtering */
728 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
729 					    data->endpoint_data);
730 	if (!ipa->filter_map) {
731 		ret = -EINVAL;
732 		goto err_gsi_exit;
733 	}
734 
735 	ret = ipa_table_init(ipa);
736 	if (ret)
737 		goto err_endpoint_exit;
738 
739 	ret = ipa_modem_init(ipa, modem_init);
740 	if (ret)
741 		goto err_table_exit;
742 
743 	/* The clock needs to be active for config and setup */
744 	ret = ipa_clock_get(ipa);
745 	if (WARN_ON(ret < 0))
746 		goto err_clock_put;
747 
748 	ret = ipa_config(ipa, data);
749 	if (ret)
750 		goto err_clock_put;
751 
752 	dev_info(dev, "IPA driver initialized");
753 
754 	/* If the modem is doing early initialization, it will trigger a
755 	 * call to ipa_setup() when it has finished.  In that case we're
756 	 * done here.
757 	 */
758 	if (modem_init)
759 		goto done;
760 
761 	/* Otherwise we need to load the firmware and have Trust Zone validate
762 	 * and install it.  If that succeeds we can proceed with setup.
763 	 */
764 	ret = ipa_firmware_load(dev);
765 	if (ret)
766 		goto err_deconfig;
767 
768 	ret = ipa_setup(ipa);
769 	if (ret)
770 		goto err_deconfig;
771 done:
772 	(void)ipa_clock_put(ipa);
773 
774 	return 0;
775 
776 err_deconfig:
777 	ipa_deconfig(ipa);
778 err_clock_put:
779 	(void)ipa_clock_put(ipa);
780 	ipa_modem_exit(ipa);
781 err_table_exit:
782 	ipa_table_exit(ipa);
783 err_endpoint_exit:
784 	ipa_endpoint_exit(ipa);
785 err_gsi_exit:
786 	gsi_exit(&ipa->gsi);
787 err_mem_exit:
788 	ipa_mem_exit(ipa);
789 err_reg_exit:
790 	ipa_reg_exit(ipa);
791 err_kfree_ipa:
792 	kfree(ipa);
793 err_clock_exit:
794 	ipa_clock_exit(clock);
795 
796 	return ret;
797 }
798 
799 static int ipa_remove(struct platform_device *pdev)
800 {
801 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
802 	struct ipa_clock *clock = ipa->clock;
803 	int ret;
804 
805 	ret = ipa_clock_get(ipa);
806 	if (WARN_ON(ret < 0))
807 		goto out_clock_put;
808 
809 	if (ipa->setup_complete) {
810 		ret = ipa_modem_stop(ipa);
811 		/* If starting or stopping is in progress, try once more */
812 		if (ret == -EBUSY) {
813 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
814 			ret = ipa_modem_stop(ipa);
815 		}
816 		if (ret)
817 			return ret;
818 
819 		ipa_teardown(ipa);
820 	}
821 
822 	ipa_deconfig(ipa);
823 out_clock_put:
824 	(void)ipa_clock_put(ipa);
825 
826 	ipa_modem_exit(ipa);
827 	ipa_table_exit(ipa);
828 	ipa_endpoint_exit(ipa);
829 	gsi_exit(&ipa->gsi);
830 	ipa_mem_exit(ipa);
831 	ipa_reg_exit(ipa);
832 	kfree(ipa);
833 	ipa_clock_exit(clock);
834 
835 	return 0;
836 }
837 
838 static void ipa_shutdown(struct platform_device *pdev)
839 {
840 	int ret;
841 
842 	ret = ipa_remove(pdev);
843 	if (ret)
844 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
845 }
846 
847 static const struct attribute_group *ipa_attribute_groups[] = {
848 	&ipa_attribute_group,
849 	&ipa_feature_attribute_group,
850 	&ipa_modem_attribute_group,
851 	NULL,
852 };
853 
854 static struct platform_driver ipa_driver = {
855 	.probe		= ipa_probe,
856 	.remove		= ipa_remove,
857 	.shutdown	= ipa_shutdown,
858 	.driver	= {
859 		.name		= "ipa",
860 		.pm		= &ipa_pm_ops,
861 		.of_match_table	= ipa_match,
862 		.dev_groups	= ipa_attribute_groups,
863 	},
864 };
865 
866 module_platform_driver(ipa_driver);
867 
868 MODULE_LICENSE("GPL v2");
869 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
870