1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2024 Linaro Ltd. 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/firmware.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/platform_device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/types.h> 16 17 #include <linux/firmware/qcom/qcom_scm.h> 18 #include <linux/soc/qcom/mdt_loader.h> 19 20 #include "ipa.h" 21 #include "ipa_cmd.h" 22 #include "ipa_data.h" 23 #include "ipa_endpoint.h" 24 #include "ipa_interrupt.h" 25 #include "ipa_mem.h" 26 #include "ipa_modem.h" 27 #include "ipa_power.h" 28 #include "ipa_reg.h" 29 #include "ipa_resource.h" 30 #include "ipa_smp2p.h" 31 #include "ipa_sysfs.h" 32 #include "ipa_table.h" 33 #include "ipa_uc.h" 34 #include "ipa_version.h" 35 36 /** 37 * DOC: The IP Accelerator 38 * 39 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 40 * networking component found in many Qualcomm SoCs. The IPA is connected 41 * to the application processor (AP), but is also connected (and partially 42 * controlled by) other "execution environments" (EEs), such as a modem. 43 * 44 * The IPA is the conduit between the AP and the modem that carries network 45 * traffic. This driver presents a network interface representing the 46 * connection of the modem to external (e.g. LTE) networks. 47 * 48 * The IPA provides protocol checksum calculation, offloading this work 49 * from the AP. The IPA offers additional functionality, including routing, 50 * filtering, and NAT support, but that more advanced functionality is not 51 * currently supported. Despite that, some resources--including routing 52 * tables and filter tables--are defined in this driver because they must 53 * be initialized even when the advanced hardware features are not used. 54 * 55 * There are two distinct layers that implement the IPA hardware, and this 56 * is reflected in the organization of the driver. The generic software 57 * interface (GSI) is an integral component of the IPA, providing a 58 * well-defined communication layer between the AP subsystem and the IPA 59 * core. The GSI implements a set of "channels" used for communication 60 * between the AP and the IPA. 61 * 62 * The IPA layer uses GSI channels to implement its "endpoints". And while 63 * a GSI channel carries data between the AP and the IPA, a pair of IPA 64 * endpoints is used to carry traffic between two EEs. Specifically, the main 65 * modem network interface is implemented by two pairs of endpoints: a TX 66 * endpoint on the AP coupled with an RX endpoint on the modem; and another 67 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 68 */ 69 70 /* The name of the GSI firmware file relative to /lib/firmware */ 71 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 72 #define IPA_PAS_ID 15 73 74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */ 76 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 77 #define TAG_TIMESTAMP_SHIFT 14 78 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 79 80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 81 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 82 83 /** 84 * enum ipa_firmware_loader: How GSI firmware gets loaded 85 * 86 * @IPA_LOADER_DEFER: System not ready; try again later 87 * @IPA_LOADER_SELF: AP loads GSI firmware 88 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done 89 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware 90 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid 91 */ 92 enum ipa_firmware_loader { 93 IPA_LOADER_DEFER, 94 IPA_LOADER_SELF, 95 IPA_LOADER_MODEM, 96 IPA_LOADER_SKIP, 97 IPA_LOADER_INVALID, 98 }; 99 100 /** 101 * ipa_setup() - Set up IPA hardware 102 * @ipa: IPA pointer 103 * 104 * Perform initialization that requires issuing immediate commands on 105 * the command TX endpoint. If the modem is doing GSI firmware load 106 * and initialization, this function will be called when an SMP2P 107 * interrupt has been signaled by the modem. Otherwise it will be 108 * called from ipa_probe() after GSI firmware has been successfully 109 * loaded, authenticated, and started by Trust Zone. 110 */ 111 int ipa_setup(struct ipa *ipa) 112 { 113 struct ipa_endpoint *exception_endpoint; 114 struct ipa_endpoint *command_endpoint; 115 struct device *dev = ipa->dev; 116 int ret; 117 118 ret = gsi_setup(&ipa->gsi); 119 if (ret) 120 return ret; 121 122 ipa_endpoint_setup(ipa); 123 124 /* We need to use the AP command TX endpoint to perform other 125 * initialization, so we enable first. 126 */ 127 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 128 ret = ipa_endpoint_enable_one(command_endpoint); 129 if (ret) 130 goto err_endpoint_teardown; 131 132 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 133 if (ret) 134 goto err_command_disable; 135 136 ret = ipa_table_setup(ipa); /* No matching teardown required */ 137 if (ret) 138 goto err_command_disable; 139 140 /* Enable the exception handling endpoint, and tell the hardware 141 * to use it by default. 142 */ 143 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 144 ret = ipa_endpoint_enable_one(exception_endpoint); 145 if (ret) 146 goto err_command_disable; 147 148 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 149 150 /* We're all set. Now prepare for communication with the modem */ 151 ret = ipa_qmi_setup(ipa); 152 if (ret) 153 goto err_default_route_clear; 154 155 ipa->setup_complete = true; 156 157 dev_info(dev, "IPA driver setup completed successfully\n"); 158 159 return 0; 160 161 err_default_route_clear: 162 ipa_endpoint_default_route_clear(ipa); 163 ipa_endpoint_disable_one(exception_endpoint); 164 err_command_disable: 165 ipa_endpoint_disable_one(command_endpoint); 166 err_endpoint_teardown: 167 ipa_endpoint_teardown(ipa); 168 gsi_teardown(&ipa->gsi); 169 170 return ret; 171 } 172 173 /** 174 * ipa_teardown() - Inverse of ipa_setup() 175 * @ipa: IPA pointer 176 */ 177 static void ipa_teardown(struct ipa *ipa) 178 { 179 struct ipa_endpoint *exception_endpoint; 180 struct ipa_endpoint *command_endpoint; 181 182 /* We're going to tear everything down, as if setup never completed */ 183 ipa->setup_complete = false; 184 185 ipa_qmi_teardown(ipa); 186 ipa_endpoint_default_route_clear(ipa); 187 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 188 ipa_endpoint_disable_one(exception_endpoint); 189 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 190 ipa_endpoint_disable_one(command_endpoint); 191 ipa_endpoint_teardown(ipa); 192 gsi_teardown(&ipa->gsi); 193 } 194 195 static void 196 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) 197 { 198 const struct reg *reg; 199 u32 val; 200 201 /* IPA v4.5+ has no backward compatibility register */ 202 if (ipa->version >= IPA_VERSION_4_5) 203 return; 204 205 reg = ipa_reg(ipa, IPA_BCR); 206 val = data->backward_compat; 207 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 208 } 209 210 static void ipa_hardware_config_tx(struct ipa *ipa) 211 { 212 enum ipa_version version = ipa->version; 213 const struct reg *reg; 214 u32 offset; 215 u32 val; 216 217 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) 218 return; 219 220 /* Disable PA mask to allow HOLB drop */ 221 reg = ipa_reg(ipa, IPA_TX_CFG); 222 offset = reg_offset(reg); 223 224 val = ioread32(ipa->reg_virt + offset); 225 226 val &= ~reg_bit(reg, PA_MASK_EN); 227 228 iowrite32(val, ipa->reg_virt + offset); 229 } 230 231 static void ipa_hardware_config_clkon(struct ipa *ipa) 232 { 233 enum ipa_version version = ipa->version; 234 const struct reg *reg; 235 u32 val; 236 237 if (version >= IPA_VERSION_4_5) 238 return; 239 240 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) 241 return; 242 243 /* Implement some hardware workarounds */ 244 reg = ipa_reg(ipa, CLKON_CFG); 245 if (version == IPA_VERSION_3_1) { 246 /* Disable MISC clock gating */ 247 val = reg_bit(reg, CLKON_MISC); 248 } else { /* IPA v4.0+ */ 249 /* Enable open global clocks in the CLKON configuration */ 250 val = reg_bit(reg, CLKON_GLOBAL); 251 val |= reg_bit(reg, GLOBAL_2X_CLK); 252 } 253 254 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 255 } 256 257 /* Configure bus access behavior for IPA components */ 258 static void ipa_hardware_config_comp(struct ipa *ipa) 259 { 260 const struct reg *reg; 261 u32 offset; 262 u32 val; 263 264 /* Nothing to configure prior to IPA v4.0 */ 265 if (ipa->version < IPA_VERSION_4_0) 266 return; 267 268 reg = ipa_reg(ipa, COMP_CFG); 269 offset = reg_offset(reg); 270 271 val = ioread32(ipa->reg_virt + offset); 272 273 if (ipa->version == IPA_VERSION_4_0) { 274 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN); 275 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN); 276 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); 277 } else if (ipa->version < IPA_VERSION_4_5) { 278 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); 279 } else { 280 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ 281 } 282 283 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); 284 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); 285 286 iowrite32(val, ipa->reg_virt + offset); 287 } 288 289 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 290 static void 291 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 292 { 293 const struct ipa_qsb_data *data0; 294 const struct ipa_qsb_data *data1; 295 const struct reg *reg; 296 u32 val; 297 298 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 299 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 300 if (data->qsb_count > 1) 301 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 302 303 /* Max outstanding write accesses for QSB masters */ 304 reg = ipa_reg(ipa, QSB_MAX_WRITES); 305 306 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); 307 if (data->qsb_count > 1) 308 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); 309 310 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 311 312 /* Max outstanding read accesses for QSB masters */ 313 reg = ipa_reg(ipa, QSB_MAX_READS); 314 315 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); 316 if (ipa->version >= IPA_VERSION_4_0) 317 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, 318 data0->max_reads_beats); 319 if (data->qsb_count > 1) { 320 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); 321 if (ipa->version >= IPA_VERSION_4_0) 322 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, 323 data1->max_reads_beats); 324 } 325 326 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 327 } 328 329 /* The internal inactivity timer clock is used for the aggregation timer */ 330 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 331 332 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 333 * field to represent the given number of microseconds. The value is one 334 * less than the number of timer ticks in the requested period. 0 is not 335 * a valid granularity value (so for example @usec must be at least 16 for 336 * a TIMER_FREQUENCY of 32000). 337 */ 338 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 339 { 340 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 341 } 342 343 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 344 * timestamps and timers independent of the IPA core clock rate. The 345 * Qtimer is based on a 56-bit timestamp incremented at each tick of 346 * a 19.2 MHz SoC crystal oscillator (XO clock). 347 * 348 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 349 * timestamp is achieved by shifting the Qtimer timestamp value right 350 * some number of bits to produce the low-order bits of the coarser 351 * granularity timestamp. 352 * 353 * For timers, a common timer clock is derived from the XO clock using 354 * a divider (we use 192, to produce a 100kHz timer clock). From 355 * this common clock, three "pulse generators" are used to produce 356 * timer ticks at a configurable frequency. IPA timers (such as 357 * those used for aggregation or head-of-line block handling) now 358 * define their period based on one of these pulse generators. 359 */ 360 static void ipa_qtime_config(struct ipa *ipa) 361 { 362 const struct reg *reg; 363 u32 offset; 364 u32 val; 365 366 /* Timer clock divider must be disabled when we change the rate */ 367 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 368 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 369 370 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); 371 if (ipa->version < IPA_VERSION_5_5) { 372 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */ 373 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); 374 val |= reg_bit(reg, DPL_TIMESTAMP_SEL); 375 } 376 /* Configure tag and NAT Qtime timestamp resolution as well */ 377 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); 378 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); 379 380 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 381 382 /* Set granularity of pulse generators used for other timers */ 383 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); 384 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); 385 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); 386 if (ipa->version >= IPA_VERSION_5_0) { 387 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS); 388 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS); 389 } else { 390 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); 391 } 392 393 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 394 395 /* Actual divider is 1 more than value supplied here */ 396 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 397 offset = reg_offset(reg); 398 399 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); 400 401 iowrite32(val, ipa->reg_virt + offset); 402 403 /* Divider value is set; re-enable the common timer clock divider */ 404 val |= reg_bit(reg, DIV_ENABLE); 405 406 iowrite32(val, ipa->reg_virt + offset); 407 } 408 409 /* Before IPA v4.5 timing is controlled by a counter register */ 410 static void ipa_hardware_config_counter(struct ipa *ipa) 411 { 412 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 413 const struct reg *reg; 414 u32 val; 415 416 reg = ipa_reg(ipa, COUNTER_CFG); 417 /* If defined, EOT_COAL_GRANULARITY is 0 */ 418 val = reg_encode(reg, AGGR_GRANULARITY, granularity); 419 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 420 } 421 422 static void ipa_hardware_config_timing(struct ipa *ipa) 423 { 424 if (ipa->version < IPA_VERSION_4_5) 425 ipa_hardware_config_counter(ipa); 426 else 427 ipa_qtime_config(ipa); 428 } 429 430 static void ipa_hardware_config_hashing(struct ipa *ipa) 431 { 432 const struct reg *reg; 433 434 /* Other than IPA v4.2, all versions enable "hashing". Starting 435 * with IPA v5.0, the filter and router tables are implemented 436 * differently, but the default configuration enables this feature 437 * (now referred to as "cacheing"), so there's nothing to do here. 438 */ 439 if (ipa->version != IPA_VERSION_4_2) 440 return; 441 442 /* IPA v4.2 does not support hashed tables, so disable them */ 443 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); 444 445 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, 446 * IPV4_FILTER_HASH are all zero. 447 */ 448 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 449 } 450 451 static void ipa_idle_indication_cfg(struct ipa *ipa, 452 u32 enter_idle_debounce_thresh, 453 bool const_non_idle_enable) 454 { 455 const struct reg *reg; 456 u32 val; 457 458 if (ipa->version < IPA_VERSION_3_5_1) 459 return; 460 461 reg = ipa_reg(ipa, IDLE_INDICATION_CFG); 462 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, 463 enter_idle_debounce_thresh); 464 if (const_non_idle_enable) 465 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE); 466 467 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 468 } 469 470 /** 471 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 472 * @ipa: IPA pointer 473 * 474 * Configures when the IPA signals it is idle to the global clock 475 * controller, which can respond by scaling down the clock to save 476 * power. 477 */ 478 static void ipa_hardware_dcd_config(struct ipa *ipa) 479 { 480 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 481 ipa_idle_indication_cfg(ipa, 256, false); 482 } 483 484 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 485 { 486 /* Power-on reset values */ 487 ipa_idle_indication_cfg(ipa, 0, true); 488 } 489 490 /** 491 * ipa_hardware_config() - Primitive hardware initialization 492 * @ipa: IPA pointer 493 * @data: IPA configuration data 494 */ 495 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 496 { 497 ipa_hardware_config_bcr(ipa, data); 498 ipa_hardware_config_tx(ipa); 499 ipa_hardware_config_clkon(ipa); 500 ipa_hardware_config_comp(ipa); 501 ipa_hardware_config_qsb(ipa, data); 502 ipa_hardware_config_timing(ipa); 503 ipa_hardware_config_hashing(ipa); 504 ipa_hardware_dcd_config(ipa); 505 } 506 507 /** 508 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 509 * @ipa: IPA pointer 510 * 511 * This restores the power-on reset values (even if they aren't different) 512 */ 513 static void ipa_hardware_deconfig(struct ipa *ipa) 514 { 515 /* Mostly we just leave things as we set them. */ 516 ipa_hardware_dcd_deconfig(ipa); 517 } 518 519 /** 520 * ipa_config() - Configure IPA hardware 521 * @ipa: IPA pointer 522 * @data: IPA configuration data 523 * 524 * Perform initialization requiring IPA power to be enabled. 525 */ 526 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 527 { 528 int ret; 529 530 ipa_hardware_config(ipa, data); 531 532 ret = ipa_mem_config(ipa); 533 if (ret) 534 goto err_hardware_deconfig; 535 536 ret = ipa_interrupt_config(ipa); 537 if (ret) 538 goto err_mem_deconfig; 539 540 ipa_uc_config(ipa); 541 542 ret = ipa_endpoint_config(ipa); 543 if (ret) 544 goto err_uc_deconfig; 545 546 ipa_table_config(ipa); /* No deconfig required */ 547 548 /* Assign resource limitation to each group; no deconfig required */ 549 ret = ipa_resource_config(ipa, data->resource_data); 550 if (ret) 551 goto err_endpoint_deconfig; 552 553 ret = ipa_modem_config(ipa); 554 if (ret) 555 goto err_endpoint_deconfig; 556 557 return 0; 558 559 err_endpoint_deconfig: 560 ipa_endpoint_deconfig(ipa); 561 err_uc_deconfig: 562 ipa_uc_deconfig(ipa); 563 ipa_interrupt_deconfig(ipa); 564 err_mem_deconfig: 565 ipa_mem_deconfig(ipa); 566 err_hardware_deconfig: 567 ipa_hardware_deconfig(ipa); 568 569 return ret; 570 } 571 572 /** 573 * ipa_deconfig() - Inverse of ipa_config() 574 * @ipa: IPA pointer 575 */ 576 static void ipa_deconfig(struct ipa *ipa) 577 { 578 ipa_modem_deconfig(ipa); 579 ipa_endpoint_deconfig(ipa); 580 ipa_uc_deconfig(ipa); 581 ipa_interrupt_deconfig(ipa); 582 ipa_mem_deconfig(ipa); 583 ipa_hardware_deconfig(ipa); 584 } 585 586 static int ipa_firmware_load(struct device *dev) 587 { 588 const struct firmware *fw; 589 struct device_node *node; 590 struct resource res; 591 phys_addr_t phys; 592 const char *path; 593 ssize_t size; 594 void *virt; 595 int ret; 596 597 node = of_parse_phandle(dev->of_node, "memory-region", 0); 598 if (!node) { 599 dev_err(dev, "DT error getting \"memory-region\" property\n"); 600 return -EINVAL; 601 } 602 603 ret = of_address_to_resource(node, 0, &res); 604 of_node_put(node); 605 if (ret) { 606 dev_err(dev, "error %d getting \"memory-region\" resource\n", 607 ret); 608 return ret; 609 } 610 611 /* Use name from DTB if specified; use default for *any* error */ 612 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 613 if (ret) { 614 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 615 ret); 616 path = IPA_FW_PATH_DEFAULT; 617 } 618 619 ret = request_firmware(&fw, path, dev); 620 if (ret) { 621 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 622 return ret; 623 } 624 625 phys = res.start; 626 size = (size_t)resource_size(&res); 627 virt = memremap(phys, size, MEMREMAP_WC); 628 if (!virt) { 629 dev_err(dev, "unable to remap firmware memory\n"); 630 ret = -ENOMEM; 631 goto out_release_firmware; 632 } 633 634 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 635 if (ret) 636 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 637 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 638 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 639 640 memunmap(virt); 641 out_release_firmware: 642 release_firmware(fw); 643 644 return ret; 645 } 646 647 static const struct of_device_id ipa_match[] = { 648 { 649 .compatible = "qcom,msm8998-ipa", 650 .data = &ipa_data_v3_1, 651 }, 652 { 653 .compatible = "qcom,sdm845-ipa", 654 .data = &ipa_data_v3_5_1, 655 }, 656 { 657 .compatible = "qcom,sc7180-ipa", 658 .data = &ipa_data_v4_2, 659 }, 660 { 661 .compatible = "qcom,sdx55-ipa", 662 .data = &ipa_data_v4_5, 663 }, 664 { 665 .compatible = "qcom,sm6350-ipa", 666 .data = &ipa_data_v4_7, 667 }, 668 { 669 .compatible = "qcom,sm8350-ipa", 670 .data = &ipa_data_v4_9, 671 }, 672 { 673 .compatible = "qcom,sc7280-ipa", 674 .data = &ipa_data_v4_11, 675 }, 676 { 677 .compatible = "qcom,sdx65-ipa", 678 .data = &ipa_data_v5_0, 679 }, 680 { 681 .compatible = "qcom,sm8550-ipa", 682 .data = &ipa_data_v5_5, 683 }, 684 { }, 685 }; 686 MODULE_DEVICE_TABLE(of, ipa_match); 687 688 /* Check things that can be validated at build time. This just 689 * groups these things BUILD_BUG_ON() calls don't clutter the rest 690 * of the code. 691 * */ 692 static void ipa_validate_build(void) 693 { 694 /* At one time we assumed a 64-bit build, allowing some do_div() 695 * calls to be replaced by simple division or modulo operations. 696 * We currently only perform divide and modulo operations on u32, 697 * u16, or size_t objects, and of those only size_t has any chance 698 * of being a 64-bit value. (It should be guaranteed 32 bits wide 699 * on a 32-bit build, but there is no harm in verifying that.) 700 */ 701 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 702 703 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 704 BUILD_BUG_ON(GSI_EE_AP != 0); 705 706 /* There's no point if we have no channels or event rings */ 707 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 708 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 709 710 /* GSI hardware design limits */ 711 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 712 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 713 714 /* The number of TREs in a transaction is limited by the channel's 715 * TLV FIFO size. A transaction structure uses 8-bit fields 716 * to represents the number of TREs it has allocated and used. 717 */ 718 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 719 720 /* This is used as a divisor */ 721 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 722 723 /* Aggregation granularity value can't be 0, and must fit */ 724 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 725 } 726 727 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) 728 { 729 bool modem_init; 730 const char *str; 731 int ret; 732 733 /* Look up the old and new properties by name */ 734 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 735 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); 736 737 /* If the new property doesn't exist, it's legacy behavior */ 738 if (ret == -EINVAL) { 739 if (modem_init) 740 return IPA_LOADER_MODEM; 741 goto out_self; 742 } 743 744 /* Any other error on the new property means it's poorly defined */ 745 if (ret) 746 return IPA_LOADER_INVALID; 747 748 /* New property value exists; if old one does too, that's invalid */ 749 if (modem_init) 750 return IPA_LOADER_INVALID; 751 752 /* Modem loads GSI firmware for "modem" */ 753 if (!strcmp(str, "modem")) 754 return IPA_LOADER_MODEM; 755 756 /* No GSI firmware load is needed for "skip" */ 757 if (!strcmp(str, "skip")) 758 return IPA_LOADER_SKIP; 759 760 /* Any value other than "self" is an error */ 761 if (strcmp(str, "self")) 762 return IPA_LOADER_INVALID; 763 out_self: 764 /* We need Trust Zone to load firmware; make sure it's available */ 765 if (qcom_scm_is_available()) 766 return IPA_LOADER_SELF; 767 768 return IPA_LOADER_DEFER; 769 } 770 771 /** 772 * ipa_probe() - IPA platform driver probe function 773 * @pdev: Platform device pointer 774 * 775 * Return: 0 if successful, or a negative error code (possibly 776 * EPROBE_DEFER) 777 * 778 * This is the main entry point for the IPA driver. Initialization proceeds 779 * in several stages: 780 * - The "init" stage involves activities that can be initialized without 781 * access to the IPA hardware. 782 * - The "config" stage requires IPA power to be active so IPA registers 783 * can be accessed, but does not require the use of IPA immediate commands. 784 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 785 * layer to be initialized. 786 * 787 * A Boolean Device Tree "modem-init" property determines whether GSI 788 * initialization will be performed by the AP (Trust Zone) or the modem. 789 * If the AP does GSI initialization, the setup phase is entered after 790 * this has completed successfully. Otherwise the modem initializes 791 * the GSI layer and signals it has finished by sending an SMP2P interrupt 792 * to the AP; this triggers the start if IPA setup. 793 */ 794 static int ipa_probe(struct platform_device *pdev) 795 { 796 struct device *dev = &pdev->dev; 797 struct ipa_interrupt *interrupt; 798 enum ipa_firmware_loader loader; 799 const struct ipa_data *data; 800 struct ipa_power *power; 801 struct ipa *ipa; 802 int ret; 803 804 ipa_validate_build(); 805 806 /* Get configuration data early; needed for power initialization */ 807 data = of_device_get_match_data(dev); 808 if (!data) { 809 dev_err(dev, "matched hardware not supported\n"); 810 return -ENODEV; 811 } 812 813 if (!data->modem_route_count) { 814 dev_err(dev, "modem_route_count cannot be zero\n"); 815 return -EINVAL; 816 } 817 818 loader = ipa_firmware_loader(dev); 819 if (loader == IPA_LOADER_INVALID) 820 return -EINVAL; 821 if (loader == IPA_LOADER_DEFER) 822 return -EPROBE_DEFER; 823 824 /* The IPA interrupt might not be ready when we're probed, so this 825 * might return -EPROBE_DEFER. 826 */ 827 interrupt = ipa_interrupt_init(pdev); 828 if (IS_ERR(interrupt)) 829 return PTR_ERR(interrupt); 830 831 /* The clock and interconnects might not be ready when we're probed, 832 * so this might return -EPROBE_DEFER. 833 */ 834 power = ipa_power_init(dev, data->power_data); 835 if (IS_ERR(power)) { 836 ret = PTR_ERR(power); 837 goto err_interrupt_exit; 838 } 839 840 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 841 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 842 if (!ipa) { 843 ret = -ENOMEM; 844 goto err_power_exit; 845 } 846 847 ipa->dev = dev; 848 dev_set_drvdata(dev, ipa); 849 ipa->interrupt = interrupt; 850 ipa->power = power; 851 ipa->version = data->version; 852 ipa->modem_route_count = data->modem_route_count; 853 init_completion(&ipa->completion); 854 855 ret = ipa_reg_init(ipa, pdev); 856 if (ret) 857 goto err_kfree_ipa; 858 859 ret = ipa_mem_init(ipa, pdev, data->mem_data); 860 if (ret) 861 goto err_reg_exit; 862 863 ret = ipa_cmd_init(ipa); 864 if (ret) 865 goto err_mem_exit; 866 867 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 868 data->endpoint_data); 869 if (ret) 870 goto err_mem_exit; 871 872 /* Result is a non-zero mask of endpoints that support filtering */ 873 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); 874 if (ret) 875 goto err_gsi_exit; 876 877 ret = ipa_table_init(ipa); 878 if (ret) 879 goto err_endpoint_exit; 880 881 ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM); 882 if (ret) 883 goto err_table_exit; 884 885 /* Power needs to be active for config and setup */ 886 ret = pm_runtime_get_sync(dev); 887 if (WARN_ON(ret < 0)) 888 goto err_power_put; 889 890 ret = ipa_config(ipa, data); 891 if (ret) 892 goto err_power_put; 893 894 dev_info(dev, "IPA driver initialized"); 895 896 /* If the modem is loading GSI firmware, it will trigger a call to 897 * ipa_setup() when it has finished. In that case we're done here. 898 */ 899 if (loader == IPA_LOADER_MODEM) 900 goto done; 901 902 if (loader == IPA_LOADER_SELF) { 903 /* The AP is loading GSI firmware; do so now */ 904 ret = ipa_firmware_load(dev); 905 if (ret) 906 goto err_deconfig; 907 } /* Otherwise loader == IPA_LOADER_SKIP */ 908 909 /* GSI firmware is loaded; proceed to setup */ 910 ret = ipa_setup(ipa); 911 if (ret) 912 goto err_deconfig; 913 done: 914 pm_runtime_mark_last_busy(dev); 915 (void)pm_runtime_put_autosuspend(dev); 916 917 return 0; 918 919 err_deconfig: 920 ipa_deconfig(ipa); 921 err_power_put: 922 pm_runtime_put_noidle(dev); 923 ipa_smp2p_exit(ipa); 924 err_table_exit: 925 ipa_table_exit(ipa); 926 err_endpoint_exit: 927 ipa_endpoint_exit(ipa); 928 err_gsi_exit: 929 gsi_exit(&ipa->gsi); 930 err_mem_exit: 931 ipa_mem_exit(ipa); 932 err_reg_exit: 933 ipa_reg_exit(ipa); 934 err_kfree_ipa: 935 kfree(ipa); 936 err_power_exit: 937 ipa_power_exit(power); 938 err_interrupt_exit: 939 ipa_interrupt_exit(interrupt); 940 941 return ret; 942 } 943 944 static void ipa_remove(struct platform_device *pdev) 945 { 946 struct ipa_interrupt *interrupt; 947 struct ipa_power *power; 948 struct device *dev; 949 struct ipa *ipa; 950 int ret; 951 952 ipa = dev_get_drvdata(&pdev->dev); 953 dev = ipa->dev; 954 WARN_ON(dev != &pdev->dev); 955 956 power = ipa->power; 957 interrupt = ipa->interrupt; 958 959 /* Prevent the modem from triggering a call to ipa_setup(). This 960 * also ensures a modem-initiated setup that's underway completes. 961 */ 962 ipa_smp2p_irq_disable_setup(ipa); 963 964 ret = pm_runtime_get_sync(dev); 965 if (WARN_ON(ret < 0)) 966 goto out_power_put; 967 968 if (ipa->setup_complete) { 969 ret = ipa_modem_stop(ipa); 970 /* If starting or stopping is in progress, try once more */ 971 if (ret == -EBUSY) { 972 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 973 ret = ipa_modem_stop(ipa); 974 } 975 if (ret) { 976 /* 977 * Not cleaning up here properly might also yield a 978 * crash later on. As the device is still unregistered 979 * in this case, this might even yield a crash later on. 980 */ 981 dev_err(dev, "Failed to stop modem (%pe), leaking resources\n", 982 ERR_PTR(ret)); 983 return; 984 } 985 986 ipa_teardown(ipa); 987 } 988 989 ipa_deconfig(ipa); 990 out_power_put: 991 pm_runtime_put_noidle(dev); 992 ipa_smp2p_exit(ipa); 993 ipa_table_exit(ipa); 994 ipa_endpoint_exit(ipa); 995 gsi_exit(&ipa->gsi); 996 ipa_mem_exit(ipa); 997 ipa_reg_exit(ipa); 998 kfree(ipa); 999 ipa_power_exit(power); 1000 ipa_interrupt_exit(interrupt); 1001 1002 dev_info(dev, "IPA driver removed"); 1003 } 1004 1005 static const struct attribute_group *ipa_attribute_groups[] = { 1006 &ipa_attribute_group, 1007 &ipa_feature_attribute_group, 1008 &ipa_endpoint_id_attribute_group, 1009 &ipa_modem_attribute_group, 1010 NULL, 1011 }; 1012 1013 static struct platform_driver ipa_driver = { 1014 .probe = ipa_probe, 1015 .remove = ipa_remove, 1016 .shutdown = ipa_remove, 1017 .driver = { 1018 .name = "ipa", 1019 .pm = &ipa_pm_ops, 1020 .of_match_table = ipa_match, 1021 .dev_groups = ipa_attribute_groups, 1022 }, 1023 }; 1024 1025 module_platform_driver(ipa_driver); 1026 1027 MODULE_LICENSE("GPL v2"); 1028 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1029