1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2024 Linaro Ltd. 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/firmware.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/platform_device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/types.h> 16 17 #include <linux/firmware/qcom/qcom_scm.h> 18 #include <linux/soc/qcom/mdt_loader.h> 19 20 #include "ipa.h" 21 #include "ipa_cmd.h" 22 #include "ipa_data.h" 23 #include "ipa_endpoint.h" 24 #include "ipa_interrupt.h" 25 #include "ipa_mem.h" 26 #include "ipa_modem.h" 27 #include "ipa_power.h" 28 #include "ipa_reg.h" 29 #include "ipa_resource.h" 30 #include "ipa_smp2p.h" 31 #include "ipa_sysfs.h" 32 #include "ipa_table.h" 33 #include "ipa_uc.h" 34 #include "ipa_version.h" 35 36 /** 37 * DOC: The IP Accelerator 38 * 39 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 40 * networking component found in many Qualcomm SoCs. The IPA is connected 41 * to the application processor (AP), but is also connected (and partially 42 * controlled by) other "execution environments" (EEs), such as a modem. 43 * 44 * The IPA is the conduit between the AP and the modem that carries network 45 * traffic. This driver presents a network interface representing the 46 * connection of the modem to external (e.g. LTE) networks. 47 * 48 * The IPA provides protocol checksum calculation, offloading this work 49 * from the AP. The IPA offers additional functionality, including routing, 50 * filtering, and NAT support, but that more advanced functionality is not 51 * currently supported. Despite that, some resources--including routing 52 * tables and filter tables--are defined in this driver because they must 53 * be initialized even when the advanced hardware features are not used. 54 * 55 * There are two distinct layers that implement the IPA hardware, and this 56 * is reflected in the organization of the driver. The generic software 57 * interface (GSI) is an integral component of the IPA, providing a 58 * well-defined communication layer between the AP subsystem and the IPA 59 * core. The GSI implements a set of "channels" used for communication 60 * between the AP and the IPA. 61 * 62 * The IPA layer uses GSI channels to implement its "endpoints". And while 63 * a GSI channel carries data between the AP and the IPA, a pair of IPA 64 * endpoints is used to carry traffic between two EEs. Specifically, the main 65 * modem network interface is implemented by two pairs of endpoints: a TX 66 * endpoint on the AP coupled with an RX endpoint on the modem; and another 67 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 68 */ 69 70 /* The name of the GSI firmware file relative to /lib/firmware */ 71 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 72 #define IPA_PAS_ID 15 73 74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */ 76 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 77 #define TAG_TIMESTAMP_SHIFT 14 78 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 79 80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 81 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 82 83 /** 84 * enum ipa_firmware_loader: How GSI firmware gets loaded 85 * 86 * @IPA_LOADER_DEFER: System not ready; try again later 87 * @IPA_LOADER_SELF: AP loads GSI firmware 88 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done 89 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware 90 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid 91 */ 92 enum ipa_firmware_loader { 93 IPA_LOADER_DEFER, 94 IPA_LOADER_SELF, 95 IPA_LOADER_MODEM, 96 IPA_LOADER_SKIP, 97 IPA_LOADER_INVALID, 98 }; 99 100 /** 101 * ipa_setup() - Set up IPA hardware 102 * @ipa: IPA pointer 103 * 104 * Perform initialization that requires issuing immediate commands on 105 * the command TX endpoint. If the modem is doing GSI firmware load 106 * and initialization, this function will be called when an SMP2P 107 * interrupt has been signaled by the modem. Otherwise it will be 108 * called from ipa_probe() after GSI firmware has been successfully 109 * loaded, authenticated, and started by Trust Zone. 110 */ 111 int ipa_setup(struct ipa *ipa) 112 { 113 struct ipa_endpoint *exception_endpoint; 114 struct ipa_endpoint *command_endpoint; 115 struct device *dev = ipa->dev; 116 int ret; 117 118 ret = gsi_setup(&ipa->gsi); 119 if (ret) 120 return ret; 121 122 ret = ipa_power_setup(ipa); 123 if (ret) 124 goto err_gsi_teardown; 125 126 ipa_endpoint_setup(ipa); 127 128 /* We need to use the AP command TX endpoint to perform other 129 * initialization, so we enable first. 130 */ 131 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 132 ret = ipa_endpoint_enable_one(command_endpoint); 133 if (ret) 134 goto err_endpoint_teardown; 135 136 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 137 if (ret) 138 goto err_command_disable; 139 140 ret = ipa_table_setup(ipa); /* No matching teardown required */ 141 if (ret) 142 goto err_command_disable; 143 144 /* Enable the exception handling endpoint, and tell the hardware 145 * to use it by default. 146 */ 147 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 148 ret = ipa_endpoint_enable_one(exception_endpoint); 149 if (ret) 150 goto err_command_disable; 151 152 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 153 154 /* We're all set. Now prepare for communication with the modem */ 155 ret = ipa_qmi_setup(ipa); 156 if (ret) 157 goto err_default_route_clear; 158 159 ipa->setup_complete = true; 160 161 dev_info(dev, "IPA driver setup completed successfully\n"); 162 163 return 0; 164 165 err_default_route_clear: 166 ipa_endpoint_default_route_clear(ipa); 167 ipa_endpoint_disable_one(exception_endpoint); 168 err_command_disable: 169 ipa_endpoint_disable_one(command_endpoint); 170 err_endpoint_teardown: 171 ipa_endpoint_teardown(ipa); 172 ipa_power_teardown(ipa); 173 err_gsi_teardown: 174 gsi_teardown(&ipa->gsi); 175 176 return ret; 177 } 178 179 /** 180 * ipa_teardown() - Inverse of ipa_setup() 181 * @ipa: IPA pointer 182 */ 183 static void ipa_teardown(struct ipa *ipa) 184 { 185 struct ipa_endpoint *exception_endpoint; 186 struct ipa_endpoint *command_endpoint; 187 188 /* We're going to tear everything down, as if setup never completed */ 189 ipa->setup_complete = false; 190 191 ipa_qmi_teardown(ipa); 192 ipa_endpoint_default_route_clear(ipa); 193 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 194 ipa_endpoint_disable_one(exception_endpoint); 195 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 196 ipa_endpoint_disable_one(command_endpoint); 197 ipa_endpoint_teardown(ipa); 198 ipa_power_teardown(ipa); 199 gsi_teardown(&ipa->gsi); 200 } 201 202 static void 203 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) 204 { 205 const struct reg *reg; 206 u32 val; 207 208 /* IPA v4.5+ has no backward compatibility register */ 209 if (ipa->version >= IPA_VERSION_4_5) 210 return; 211 212 reg = ipa_reg(ipa, IPA_BCR); 213 val = data->backward_compat; 214 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 215 } 216 217 static void ipa_hardware_config_tx(struct ipa *ipa) 218 { 219 enum ipa_version version = ipa->version; 220 const struct reg *reg; 221 u32 offset; 222 u32 val; 223 224 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) 225 return; 226 227 /* Disable PA mask to allow HOLB drop */ 228 reg = ipa_reg(ipa, IPA_TX_CFG); 229 offset = reg_offset(reg); 230 231 val = ioread32(ipa->reg_virt + offset); 232 233 val &= ~reg_bit(reg, PA_MASK_EN); 234 235 iowrite32(val, ipa->reg_virt + offset); 236 } 237 238 static void ipa_hardware_config_clkon(struct ipa *ipa) 239 { 240 enum ipa_version version = ipa->version; 241 const struct reg *reg; 242 u32 val; 243 244 if (version >= IPA_VERSION_4_5) 245 return; 246 247 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) 248 return; 249 250 /* Implement some hardware workarounds */ 251 reg = ipa_reg(ipa, CLKON_CFG); 252 if (version == IPA_VERSION_3_1) { 253 /* Disable MISC clock gating */ 254 val = reg_bit(reg, CLKON_MISC); 255 } else { /* IPA v4.0+ */ 256 /* Enable open global clocks in the CLKON configuration */ 257 val = reg_bit(reg, CLKON_GLOBAL); 258 val |= reg_bit(reg, GLOBAL_2X_CLK); 259 } 260 261 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 262 } 263 264 /* Configure bus access behavior for IPA components */ 265 static void ipa_hardware_config_comp(struct ipa *ipa) 266 { 267 const struct reg *reg; 268 u32 offset; 269 u32 val; 270 271 /* Nothing to configure prior to IPA v4.0 */ 272 if (ipa->version < IPA_VERSION_4_0) 273 return; 274 275 reg = ipa_reg(ipa, COMP_CFG); 276 offset = reg_offset(reg); 277 278 val = ioread32(ipa->reg_virt + offset); 279 280 if (ipa->version == IPA_VERSION_4_0) { 281 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN); 282 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN); 283 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); 284 } else if (ipa->version < IPA_VERSION_4_5) { 285 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); 286 } else { 287 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ 288 } 289 290 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); 291 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); 292 293 iowrite32(val, ipa->reg_virt + offset); 294 } 295 296 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 297 static void 298 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 299 { 300 const struct ipa_qsb_data *data0; 301 const struct ipa_qsb_data *data1; 302 const struct reg *reg; 303 u32 val; 304 305 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 306 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 307 if (data->qsb_count > 1) 308 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 309 310 /* Max outstanding write accesses for QSB masters */ 311 reg = ipa_reg(ipa, QSB_MAX_WRITES); 312 313 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); 314 if (data->qsb_count > 1) 315 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); 316 317 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 318 319 /* Max outstanding read accesses for QSB masters */ 320 reg = ipa_reg(ipa, QSB_MAX_READS); 321 322 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); 323 if (ipa->version >= IPA_VERSION_4_0) 324 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, 325 data0->max_reads_beats); 326 if (data->qsb_count > 1) { 327 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); 328 if (ipa->version >= IPA_VERSION_4_0) 329 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, 330 data1->max_reads_beats); 331 } 332 333 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 334 } 335 336 /* The internal inactivity timer clock is used for the aggregation timer */ 337 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 338 339 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 340 * field to represent the given number of microseconds. The value is one 341 * less than the number of timer ticks in the requested period. 0 is not 342 * a valid granularity value (so for example @usec must be at least 16 for 343 * a TIMER_FREQUENCY of 32000). 344 */ 345 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 346 { 347 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 348 } 349 350 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 351 * timestamps and timers independent of the IPA core clock rate. The 352 * Qtimer is based on a 56-bit timestamp incremented at each tick of 353 * a 19.2 MHz SoC crystal oscillator (XO clock). 354 * 355 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 356 * timestamp is achieved by shifting the Qtimer timestamp value right 357 * some number of bits to produce the low-order bits of the coarser 358 * granularity timestamp. 359 * 360 * For timers, a common timer clock is derived from the XO clock using 361 * a divider (we use 192, to produce a 100kHz timer clock). From 362 * this common clock, three "pulse generators" are used to produce 363 * timer ticks at a configurable frequency. IPA timers (such as 364 * those used for aggregation or head-of-line block handling) now 365 * define their period based on one of these pulse generators. 366 */ 367 static void ipa_qtime_config(struct ipa *ipa) 368 { 369 const struct reg *reg; 370 u32 offset; 371 u32 val; 372 373 /* Timer clock divider must be disabled when we change the rate */ 374 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 375 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 376 377 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); 378 if (ipa->version < IPA_VERSION_5_5) { 379 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */ 380 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); 381 val |= reg_bit(reg, DPL_TIMESTAMP_SEL); 382 } 383 /* Configure tag and NAT Qtime timestamp resolution as well */ 384 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); 385 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); 386 387 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 388 389 /* Set granularity of pulse generators used for other timers */ 390 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); 391 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); 392 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); 393 if (ipa->version >= IPA_VERSION_5_0) { 394 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS); 395 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS); 396 } else { 397 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); 398 } 399 400 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 401 402 /* Actual divider is 1 more than value supplied here */ 403 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 404 offset = reg_offset(reg); 405 406 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); 407 408 iowrite32(val, ipa->reg_virt + offset); 409 410 /* Divider value is set; re-enable the common timer clock divider */ 411 val |= reg_bit(reg, DIV_ENABLE); 412 413 iowrite32(val, ipa->reg_virt + offset); 414 } 415 416 /* Before IPA v4.5 timing is controlled by a counter register */ 417 static void ipa_hardware_config_counter(struct ipa *ipa) 418 { 419 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 420 const struct reg *reg; 421 u32 val; 422 423 reg = ipa_reg(ipa, COUNTER_CFG); 424 /* If defined, EOT_COAL_GRANULARITY is 0 */ 425 val = reg_encode(reg, AGGR_GRANULARITY, granularity); 426 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 427 } 428 429 static void ipa_hardware_config_timing(struct ipa *ipa) 430 { 431 if (ipa->version < IPA_VERSION_4_5) 432 ipa_hardware_config_counter(ipa); 433 else 434 ipa_qtime_config(ipa); 435 } 436 437 static void ipa_hardware_config_hashing(struct ipa *ipa) 438 { 439 const struct reg *reg; 440 441 /* Other than IPA v4.2, all versions enable "hashing". Starting 442 * with IPA v5.0, the filter and router tables are implemented 443 * differently, but the default configuration enables this feature 444 * (now referred to as "cacheing"), so there's nothing to do here. 445 */ 446 if (ipa->version != IPA_VERSION_4_2) 447 return; 448 449 /* IPA v4.2 does not support hashed tables, so disable them */ 450 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); 451 452 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, 453 * IPV4_FILTER_HASH are all zero. 454 */ 455 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 456 } 457 458 static void ipa_idle_indication_cfg(struct ipa *ipa, 459 u32 enter_idle_debounce_thresh, 460 bool const_non_idle_enable) 461 { 462 const struct reg *reg; 463 u32 val; 464 465 if (ipa->version < IPA_VERSION_3_5_1) 466 return; 467 468 reg = ipa_reg(ipa, IDLE_INDICATION_CFG); 469 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, 470 enter_idle_debounce_thresh); 471 if (const_non_idle_enable) 472 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE); 473 474 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 475 } 476 477 /** 478 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 479 * @ipa: IPA pointer 480 * 481 * Configures when the IPA signals it is idle to the global clock 482 * controller, which can respond by scaling down the clock to save 483 * power. 484 */ 485 static void ipa_hardware_dcd_config(struct ipa *ipa) 486 { 487 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 488 ipa_idle_indication_cfg(ipa, 256, false); 489 } 490 491 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 492 { 493 /* Power-on reset values */ 494 ipa_idle_indication_cfg(ipa, 0, true); 495 } 496 497 /** 498 * ipa_hardware_config() - Primitive hardware initialization 499 * @ipa: IPA pointer 500 * @data: IPA configuration data 501 */ 502 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 503 { 504 ipa_hardware_config_bcr(ipa, data); 505 ipa_hardware_config_tx(ipa); 506 ipa_hardware_config_clkon(ipa); 507 ipa_hardware_config_comp(ipa); 508 ipa_hardware_config_qsb(ipa, data); 509 ipa_hardware_config_timing(ipa); 510 ipa_hardware_config_hashing(ipa); 511 ipa_hardware_dcd_config(ipa); 512 } 513 514 /** 515 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 516 * @ipa: IPA pointer 517 * 518 * This restores the power-on reset values (even if they aren't different) 519 */ 520 static void ipa_hardware_deconfig(struct ipa *ipa) 521 { 522 /* Mostly we just leave things as we set them. */ 523 ipa_hardware_dcd_deconfig(ipa); 524 } 525 526 /** 527 * ipa_config() - Configure IPA hardware 528 * @ipa: IPA pointer 529 * @data: IPA configuration data 530 * 531 * Perform initialization requiring IPA power to be enabled. 532 */ 533 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 534 { 535 int ret; 536 537 ipa_hardware_config(ipa, data); 538 539 ret = ipa_mem_config(ipa); 540 if (ret) 541 goto err_hardware_deconfig; 542 543 ret = ipa_interrupt_config(ipa); 544 if (ret) 545 goto err_mem_deconfig; 546 547 ipa_uc_config(ipa); 548 549 ret = ipa_endpoint_config(ipa); 550 if (ret) 551 goto err_uc_deconfig; 552 553 ipa_table_config(ipa); /* No deconfig required */ 554 555 /* Assign resource limitation to each group; no deconfig required */ 556 ret = ipa_resource_config(ipa, data->resource_data); 557 if (ret) 558 goto err_endpoint_deconfig; 559 560 ret = ipa_modem_config(ipa); 561 if (ret) 562 goto err_endpoint_deconfig; 563 564 return 0; 565 566 err_endpoint_deconfig: 567 ipa_endpoint_deconfig(ipa); 568 err_uc_deconfig: 569 ipa_uc_deconfig(ipa); 570 ipa_interrupt_deconfig(ipa); 571 err_mem_deconfig: 572 ipa_mem_deconfig(ipa); 573 err_hardware_deconfig: 574 ipa_hardware_deconfig(ipa); 575 576 return ret; 577 } 578 579 /** 580 * ipa_deconfig() - Inverse of ipa_config() 581 * @ipa: IPA pointer 582 */ 583 static void ipa_deconfig(struct ipa *ipa) 584 { 585 ipa_modem_deconfig(ipa); 586 ipa_endpoint_deconfig(ipa); 587 ipa_uc_deconfig(ipa); 588 ipa_interrupt_deconfig(ipa); 589 ipa_mem_deconfig(ipa); 590 ipa_hardware_deconfig(ipa); 591 } 592 593 static int ipa_firmware_load(struct device *dev) 594 { 595 const struct firmware *fw; 596 struct device_node *node; 597 struct resource res; 598 phys_addr_t phys; 599 const char *path; 600 ssize_t size; 601 void *virt; 602 int ret; 603 604 node = of_parse_phandle(dev->of_node, "memory-region", 0); 605 if (!node) { 606 dev_err(dev, "DT error getting \"memory-region\" property\n"); 607 return -EINVAL; 608 } 609 610 ret = of_address_to_resource(node, 0, &res); 611 of_node_put(node); 612 if (ret) { 613 dev_err(dev, "error %d getting \"memory-region\" resource\n", 614 ret); 615 return ret; 616 } 617 618 /* Use name from DTB if specified; use default for *any* error */ 619 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 620 if (ret) { 621 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 622 ret); 623 path = IPA_FW_PATH_DEFAULT; 624 } 625 626 ret = request_firmware(&fw, path, dev); 627 if (ret) { 628 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 629 return ret; 630 } 631 632 phys = res.start; 633 size = (size_t)resource_size(&res); 634 virt = memremap(phys, size, MEMREMAP_WC); 635 if (!virt) { 636 dev_err(dev, "unable to remap firmware memory\n"); 637 ret = -ENOMEM; 638 goto out_release_firmware; 639 } 640 641 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 642 if (ret) 643 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 644 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 645 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 646 647 memunmap(virt); 648 out_release_firmware: 649 release_firmware(fw); 650 651 return ret; 652 } 653 654 static const struct of_device_id ipa_match[] = { 655 { 656 .compatible = "qcom,msm8998-ipa", 657 .data = &ipa_data_v3_1, 658 }, 659 { 660 .compatible = "qcom,sdm845-ipa", 661 .data = &ipa_data_v3_5_1, 662 }, 663 { 664 .compatible = "qcom,sc7180-ipa", 665 .data = &ipa_data_v4_2, 666 }, 667 { 668 .compatible = "qcom,sdx55-ipa", 669 .data = &ipa_data_v4_5, 670 }, 671 { 672 .compatible = "qcom,sm6350-ipa", 673 .data = &ipa_data_v4_7, 674 }, 675 { 676 .compatible = "qcom,sm8350-ipa", 677 .data = &ipa_data_v4_9, 678 }, 679 { 680 .compatible = "qcom,sc7280-ipa", 681 .data = &ipa_data_v4_11, 682 }, 683 { 684 .compatible = "qcom,sdx65-ipa", 685 .data = &ipa_data_v5_0, 686 }, 687 { 688 .compatible = "qcom,sm8550-ipa", 689 .data = &ipa_data_v5_5, 690 }, 691 { }, 692 }; 693 MODULE_DEVICE_TABLE(of, ipa_match); 694 695 /* Check things that can be validated at build time. This just 696 * groups these things BUILD_BUG_ON() calls don't clutter the rest 697 * of the code. 698 * */ 699 static void ipa_validate_build(void) 700 { 701 /* At one time we assumed a 64-bit build, allowing some do_div() 702 * calls to be replaced by simple division or modulo operations. 703 * We currently only perform divide and modulo operations on u32, 704 * u16, or size_t objects, and of those only size_t has any chance 705 * of being a 64-bit value. (It should be guaranteed 32 bits wide 706 * on a 32-bit build, but there is no harm in verifying that.) 707 */ 708 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 709 710 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 711 BUILD_BUG_ON(GSI_EE_AP != 0); 712 713 /* There's no point if we have no channels or event rings */ 714 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 715 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 716 717 /* GSI hardware design limits */ 718 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 719 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 720 721 /* The number of TREs in a transaction is limited by the channel's 722 * TLV FIFO size. A transaction structure uses 8-bit fields 723 * to represents the number of TREs it has allocated and used. 724 */ 725 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 726 727 /* This is used as a divisor */ 728 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 729 730 /* Aggregation granularity value can't be 0, and must fit */ 731 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 732 } 733 734 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) 735 { 736 bool modem_init; 737 const char *str; 738 int ret; 739 740 /* Look up the old and new properties by name */ 741 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 742 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); 743 744 /* If the new property doesn't exist, it's legacy behavior */ 745 if (ret == -EINVAL) { 746 if (modem_init) 747 return IPA_LOADER_MODEM; 748 goto out_self; 749 } 750 751 /* Any other error on the new property means it's poorly defined */ 752 if (ret) 753 return IPA_LOADER_INVALID; 754 755 /* New property value exists; if old one does too, that's invalid */ 756 if (modem_init) 757 return IPA_LOADER_INVALID; 758 759 /* Modem loads GSI firmware for "modem" */ 760 if (!strcmp(str, "modem")) 761 return IPA_LOADER_MODEM; 762 763 /* No GSI firmware load is needed for "skip" */ 764 if (!strcmp(str, "skip")) 765 return IPA_LOADER_SKIP; 766 767 /* Any value other than "self" is an error */ 768 if (strcmp(str, "self")) 769 return IPA_LOADER_INVALID; 770 out_self: 771 /* We need Trust Zone to load firmware; make sure it's available */ 772 if (qcom_scm_is_available()) 773 return IPA_LOADER_SELF; 774 775 return IPA_LOADER_DEFER; 776 } 777 778 /** 779 * ipa_probe() - IPA platform driver probe function 780 * @pdev: Platform device pointer 781 * 782 * Return: 0 if successful, or a negative error code (possibly 783 * EPROBE_DEFER) 784 * 785 * This is the main entry point for the IPA driver. Initialization proceeds 786 * in several stages: 787 * - The "init" stage involves activities that can be initialized without 788 * access to the IPA hardware. 789 * - The "config" stage requires IPA power to be active so IPA registers 790 * can be accessed, but does not require the use of IPA immediate commands. 791 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 792 * layer to be initialized. 793 * 794 * A Boolean Device Tree "modem-init" property determines whether GSI 795 * initialization will be performed by the AP (Trust Zone) or the modem. 796 * If the AP does GSI initialization, the setup phase is entered after 797 * this has completed successfully. Otherwise the modem initializes 798 * the GSI layer and signals it has finished by sending an SMP2P interrupt 799 * to the AP; this triggers the start if IPA setup. 800 */ 801 static int ipa_probe(struct platform_device *pdev) 802 { 803 struct device *dev = &pdev->dev; 804 struct ipa_interrupt *interrupt; 805 enum ipa_firmware_loader loader; 806 const struct ipa_data *data; 807 struct ipa_power *power; 808 struct ipa *ipa; 809 int ret; 810 811 ipa_validate_build(); 812 813 /* Get configuration data early; needed for power initialization */ 814 data = of_device_get_match_data(dev); 815 if (!data) { 816 dev_err(dev, "matched hardware not supported\n"); 817 return -ENODEV; 818 } 819 820 if (!ipa_version_supported(data->version)) { 821 dev_err(dev, "unsupported IPA version %u\n", data->version); 822 return -EINVAL; 823 } 824 825 if (!data->modem_route_count) { 826 dev_err(dev, "modem_route_count cannot be zero\n"); 827 return -EINVAL; 828 } 829 830 loader = ipa_firmware_loader(dev); 831 if (loader == IPA_LOADER_INVALID) 832 return -EINVAL; 833 if (loader == IPA_LOADER_DEFER) 834 return -EPROBE_DEFER; 835 836 /* The IPA interrupt might not be ready when we're probed, so this 837 * might return -EPROBE_DEFER. 838 */ 839 interrupt = ipa_interrupt_init(pdev); 840 if (IS_ERR(interrupt)) 841 return PTR_ERR(interrupt); 842 843 /* The clock and interconnects might not be ready when we're probed, 844 * so this might return -EPROBE_DEFER. 845 */ 846 power = ipa_power_init(dev, data->power_data); 847 if (IS_ERR(power)) { 848 ret = PTR_ERR(power); 849 goto err_interrupt_exit; 850 } 851 852 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 853 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 854 if (!ipa) { 855 ret = -ENOMEM; 856 goto err_power_exit; 857 } 858 859 ipa->dev = dev; 860 dev_set_drvdata(dev, ipa); 861 ipa->interrupt = interrupt; 862 ipa->power = power; 863 ipa->version = data->version; 864 ipa->modem_route_count = data->modem_route_count; 865 init_completion(&ipa->completion); 866 867 ret = ipa_reg_init(ipa, pdev); 868 if (ret) 869 goto err_kfree_ipa; 870 871 ret = ipa_mem_init(ipa, pdev, data->mem_data); 872 if (ret) 873 goto err_reg_exit; 874 875 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 876 data->endpoint_data); 877 if (ret) 878 goto err_mem_exit; 879 880 /* Result is a non-zero mask of endpoints that support filtering */ 881 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); 882 if (ret) 883 goto err_gsi_exit; 884 885 ret = ipa_table_init(ipa); 886 if (ret) 887 goto err_endpoint_exit; 888 889 ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM); 890 if (ret) 891 goto err_table_exit; 892 893 /* Power needs to be active for config and setup */ 894 ret = pm_runtime_get_sync(dev); 895 if (WARN_ON(ret < 0)) 896 goto err_power_put; 897 898 ret = ipa_config(ipa, data); 899 if (ret) 900 goto err_power_put; 901 902 dev_info(dev, "IPA driver initialized"); 903 904 /* If the modem is loading GSI firmware, it will trigger a call to 905 * ipa_setup() when it has finished. In that case we're done here. 906 */ 907 if (loader == IPA_LOADER_MODEM) 908 goto done; 909 910 if (loader == IPA_LOADER_SELF) { 911 /* The AP is loading GSI firmware; do so now */ 912 ret = ipa_firmware_load(dev); 913 if (ret) 914 goto err_deconfig; 915 } /* Otherwise loader == IPA_LOADER_SKIP */ 916 917 /* GSI firmware is loaded; proceed to setup */ 918 ret = ipa_setup(ipa); 919 if (ret) 920 goto err_deconfig; 921 done: 922 pm_runtime_mark_last_busy(dev); 923 (void)pm_runtime_put_autosuspend(dev); 924 925 return 0; 926 927 err_deconfig: 928 ipa_deconfig(ipa); 929 err_power_put: 930 pm_runtime_put_noidle(dev); 931 ipa_smp2p_exit(ipa); 932 err_table_exit: 933 ipa_table_exit(ipa); 934 err_endpoint_exit: 935 ipa_endpoint_exit(ipa); 936 err_gsi_exit: 937 gsi_exit(&ipa->gsi); 938 err_mem_exit: 939 ipa_mem_exit(ipa); 940 err_reg_exit: 941 ipa_reg_exit(ipa); 942 err_kfree_ipa: 943 kfree(ipa); 944 err_power_exit: 945 ipa_power_exit(power); 946 err_interrupt_exit: 947 ipa_interrupt_exit(interrupt); 948 949 return ret; 950 } 951 952 static void ipa_remove(struct platform_device *pdev) 953 { 954 struct ipa_interrupt *interrupt; 955 struct ipa_power *power; 956 struct device *dev; 957 struct ipa *ipa; 958 int ret; 959 960 ipa = dev_get_drvdata(&pdev->dev); 961 dev = ipa->dev; 962 WARN_ON(dev != &pdev->dev); 963 964 power = ipa->power; 965 interrupt = ipa->interrupt; 966 967 /* Prevent the modem from triggering a call to ipa_setup(). This 968 * also ensures a modem-initiated setup that's underway completes. 969 */ 970 ipa_smp2p_irq_disable_setup(ipa); 971 972 ret = pm_runtime_get_sync(dev); 973 if (WARN_ON(ret < 0)) 974 goto out_power_put; 975 976 if (ipa->setup_complete) { 977 ret = ipa_modem_stop(ipa); 978 /* If starting or stopping is in progress, try once more */ 979 if (ret == -EBUSY) { 980 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 981 ret = ipa_modem_stop(ipa); 982 } 983 if (ret) { 984 /* 985 * Not cleaning up here properly might also yield a 986 * crash later on. As the device is still unregistered 987 * in this case, this might even yield a crash later on. 988 */ 989 dev_err(dev, "Failed to stop modem (%pe), leaking resources\n", 990 ERR_PTR(ret)); 991 return; 992 } 993 994 ipa_teardown(ipa); 995 } 996 997 ipa_deconfig(ipa); 998 out_power_put: 999 pm_runtime_put_noidle(dev); 1000 ipa_smp2p_exit(ipa); 1001 ipa_table_exit(ipa); 1002 ipa_endpoint_exit(ipa); 1003 gsi_exit(&ipa->gsi); 1004 ipa_mem_exit(ipa); 1005 ipa_reg_exit(ipa); 1006 kfree(ipa); 1007 ipa_power_exit(power); 1008 ipa_interrupt_exit(interrupt); 1009 1010 dev_info(dev, "IPA driver removed"); 1011 } 1012 1013 static const struct attribute_group *ipa_attribute_groups[] = { 1014 &ipa_attribute_group, 1015 &ipa_feature_attribute_group, 1016 &ipa_endpoint_id_attribute_group, 1017 &ipa_modem_attribute_group, 1018 NULL, 1019 }; 1020 1021 static struct platform_driver ipa_driver = { 1022 .probe = ipa_probe, 1023 .remove_new = ipa_remove, 1024 .shutdown = ipa_remove, 1025 .driver = { 1026 .name = "ipa", 1027 .pm = &ipa_pm_ops, 1028 .of_match_table = ipa_match, 1029 .dev_groups = ipa_attribute_groups, 1030 }, 1031 }; 1032 1033 module_platform_driver(ipa_driver); 1034 1035 MODULE_LICENSE("GPL v2"); 1036 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1037