xref: /linux/drivers/net/ipa/ipa_main.c (revision 9fc31a9251de4acaab2d0704450d70ddc99f5ea2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2024 Linaro Ltd.
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/firmware.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/types.h>
16 
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/soc/qcom/mdt_loader.h>
19 
20 #include "ipa.h"
21 #include "ipa_cmd.h"
22 #include "ipa_data.h"
23 #include "ipa_endpoint.h"
24 #include "ipa_interrupt.h"
25 #include "ipa_mem.h"
26 #include "ipa_modem.h"
27 #include "ipa_power.h"
28 #include "ipa_reg.h"
29 #include "ipa_resource.h"
30 #include "ipa_smp2p.h"
31 #include "ipa_sysfs.h"
32 #include "ipa_table.h"
33 #include "ipa_uc.h"
34 #include "ipa_version.h"
35 
36 /**
37  * DOC: The IP Accelerator
38  *
39  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40  * networking component found in many Qualcomm SoCs.  The IPA is connected
41  * to the application processor (AP), but is also connected (and partially
42  * controlled by) other "execution environments" (EEs), such as a modem.
43  *
44  * The IPA is the conduit between the AP and the modem that carries network
45  * traffic.  This driver presents a network interface representing the
46  * connection of the modem to external (e.g. LTE) networks.
47  *
48  * The IPA provides protocol checksum calculation, offloading this work
49  * from the AP.  The IPA offers additional functionality, including routing,
50  * filtering, and NAT support, but that more advanced functionality is not
51  * currently supported.  Despite that, some resources--including routing
52  * tables and filter tables--are defined in this driver because they must
53  * be initialized even when the advanced hardware features are not used.
54  *
55  * There are two distinct layers that implement the IPA hardware, and this
56  * is reflected in the organization of the driver.  The generic software
57  * interface (GSI) is an integral component of the IPA, providing a
58  * well-defined communication layer between the AP subsystem and the IPA
59  * core.  The GSI implements a set of "channels" used for communication
60  * between the AP and the IPA.
61  *
62  * The IPA layer uses GSI channels to implement its "endpoints".  And while
63  * a GSI channel carries data between the AP and the IPA, a pair of IPA
64  * endpoints is used to carry traffic between two EEs.  Specifically, the main
65  * modem network interface is implemented by two pairs of endpoints:  a TX
66  * endpoint on the AP coupled with an RX endpoint on the modem; and another
67  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
68  */
69 
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
72 #define IPA_PAS_ID		15
73 
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
76 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
77 #define TAG_TIMESTAMP_SHIFT	14
78 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
79 
80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
81 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
82 
83 /**
84  * enum ipa_firmware_loader: How GSI firmware gets loaded
85  *
86  * @IPA_LOADER_DEFER:		System not ready; try again later
87  * @IPA_LOADER_SELF:		AP loads GSI firmware
88  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
89  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
90  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
91  */
92 enum ipa_firmware_loader {
93 	IPA_LOADER_DEFER,
94 	IPA_LOADER_SELF,
95 	IPA_LOADER_MODEM,
96 	IPA_LOADER_SKIP,
97 	IPA_LOADER_INVALID,
98 };
99 
100 /**
101  * ipa_setup() - Set up IPA hardware
102  * @ipa:	IPA pointer
103  *
104  * Perform initialization that requires issuing immediate commands on
105  * the command TX endpoint.  If the modem is doing GSI firmware load
106  * and initialization, this function will be called when an SMP2P
107  * interrupt has been signaled by the modem.  Otherwise it will be
108  * called from ipa_probe() after GSI firmware has been successfully
109  * loaded, authenticated, and started by Trust Zone.
110  */
111 int ipa_setup(struct ipa *ipa)
112 {
113 	struct ipa_endpoint *exception_endpoint;
114 	struct ipa_endpoint *command_endpoint;
115 	struct device *dev = ipa->dev;
116 	int ret;
117 
118 	ret = gsi_setup(&ipa->gsi);
119 	if (ret)
120 		return ret;
121 
122 	ret = ipa_power_setup(ipa);
123 	if (ret)
124 		goto err_gsi_teardown;
125 
126 	ipa_endpoint_setup(ipa);
127 
128 	/* We need to use the AP command TX endpoint to perform other
129 	 * initialization, so we enable first.
130 	 */
131 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
132 	ret = ipa_endpoint_enable_one(command_endpoint);
133 	if (ret)
134 		goto err_endpoint_teardown;
135 
136 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
137 	if (ret)
138 		goto err_command_disable;
139 
140 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
141 	if (ret)
142 		goto err_command_disable;
143 
144 	/* Enable the exception handling endpoint, and tell the hardware
145 	 * to use it by default.
146 	 */
147 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
148 	ret = ipa_endpoint_enable_one(exception_endpoint);
149 	if (ret)
150 		goto err_command_disable;
151 
152 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
153 
154 	/* We're all set.  Now prepare for communication with the modem */
155 	ret = ipa_qmi_setup(ipa);
156 	if (ret)
157 		goto err_default_route_clear;
158 
159 	ipa->setup_complete = true;
160 
161 	dev_info(dev, "IPA driver setup completed successfully\n");
162 
163 	return 0;
164 
165 err_default_route_clear:
166 	ipa_endpoint_default_route_clear(ipa);
167 	ipa_endpoint_disable_one(exception_endpoint);
168 err_command_disable:
169 	ipa_endpoint_disable_one(command_endpoint);
170 err_endpoint_teardown:
171 	ipa_endpoint_teardown(ipa);
172 	ipa_power_teardown(ipa);
173 err_gsi_teardown:
174 	gsi_teardown(&ipa->gsi);
175 
176 	return ret;
177 }
178 
179 /**
180  * ipa_teardown() - Inverse of ipa_setup()
181  * @ipa:	IPA pointer
182  */
183 static void ipa_teardown(struct ipa *ipa)
184 {
185 	struct ipa_endpoint *exception_endpoint;
186 	struct ipa_endpoint *command_endpoint;
187 
188 	/* We're going to tear everything down, as if setup never completed */
189 	ipa->setup_complete = false;
190 
191 	ipa_qmi_teardown(ipa);
192 	ipa_endpoint_default_route_clear(ipa);
193 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
194 	ipa_endpoint_disable_one(exception_endpoint);
195 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
196 	ipa_endpoint_disable_one(command_endpoint);
197 	ipa_endpoint_teardown(ipa);
198 	ipa_power_teardown(ipa);
199 	gsi_teardown(&ipa->gsi);
200 }
201 
202 static void
203 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
204 {
205 	const struct reg *reg;
206 	u32 val;
207 
208 	/* IPA v4.5+ has no backward compatibility register */
209 	if (ipa->version >= IPA_VERSION_4_5)
210 		return;
211 
212 	reg = ipa_reg(ipa, IPA_BCR);
213 	val = data->backward_compat;
214 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
215 }
216 
217 static void ipa_hardware_config_tx(struct ipa *ipa)
218 {
219 	enum ipa_version version = ipa->version;
220 	const struct reg *reg;
221 	u32 offset;
222 	u32 val;
223 
224 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
225 		return;
226 
227 	/* Disable PA mask to allow HOLB drop */
228 	reg = ipa_reg(ipa, IPA_TX_CFG);
229 	offset = reg_offset(reg);
230 
231 	val = ioread32(ipa->reg_virt + offset);
232 
233 	val &= ~reg_bit(reg, PA_MASK_EN);
234 
235 	iowrite32(val, ipa->reg_virt + offset);
236 }
237 
238 static void ipa_hardware_config_clkon(struct ipa *ipa)
239 {
240 	enum ipa_version version = ipa->version;
241 	const struct reg *reg;
242 	u32 val;
243 
244 	if (version >= IPA_VERSION_4_5)
245 		return;
246 
247 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
248 		return;
249 
250 	/* Implement some hardware workarounds */
251 	reg = ipa_reg(ipa, CLKON_CFG);
252 	if (version == IPA_VERSION_3_1) {
253 		/* Disable MISC clock gating */
254 		val = reg_bit(reg, CLKON_MISC);
255 	} else {	/* IPA v4.0+ */
256 		/* Enable open global clocks in the CLKON configuration */
257 		val = reg_bit(reg, CLKON_GLOBAL);
258 		val |= reg_bit(reg, GLOBAL_2X_CLK);
259 	}
260 
261 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
262 }
263 
264 /* Configure bus access behavior for IPA components */
265 static void ipa_hardware_config_comp(struct ipa *ipa)
266 {
267 	const struct reg *reg;
268 	u32 offset;
269 	u32 val;
270 
271 	/* Nothing to configure prior to IPA v4.0 */
272 	if (ipa->version < IPA_VERSION_4_0)
273 		return;
274 
275 	reg = ipa_reg(ipa, COMP_CFG);
276 	offset = reg_offset(reg);
277 
278 	val = ioread32(ipa->reg_virt + offset);
279 
280 	if (ipa->version == IPA_VERSION_4_0) {
281 		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
282 		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
283 		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
284 	} else if (ipa->version < IPA_VERSION_4_5) {
285 		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
286 	} else {
287 		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
288 	}
289 
290 	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
291 	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
292 
293 	iowrite32(val, ipa->reg_virt + offset);
294 }
295 
296 /* Configure DDR and (possibly) PCIe max read/write QSB values */
297 static void
298 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
299 {
300 	const struct ipa_qsb_data *data0;
301 	const struct ipa_qsb_data *data1;
302 	const struct reg *reg;
303 	u32 val;
304 
305 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
306 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
307 	if (data->qsb_count > 1)
308 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
309 
310 	/* Max outstanding write accesses for QSB masters */
311 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
312 
313 	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
314 	if (data->qsb_count > 1)
315 		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
316 
317 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
318 
319 	/* Max outstanding read accesses for QSB masters */
320 	reg = ipa_reg(ipa, QSB_MAX_READS);
321 
322 	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
323 	if (ipa->version >= IPA_VERSION_4_0)
324 		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
325 				  data0->max_reads_beats);
326 	if (data->qsb_count > 1) {
327 		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
328 		if (ipa->version >= IPA_VERSION_4_0)
329 			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
330 					  data1->max_reads_beats);
331 	}
332 
333 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
334 }
335 
336 /* The internal inactivity timer clock is used for the aggregation timer */
337 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
338 
339 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
340  * field to represent the given number of microseconds.  The value is one
341  * less than the number of timer ticks in the requested period.  0 is not
342  * a valid granularity value (so for example @usec must be at least 16 for
343  * a TIMER_FREQUENCY of 32000).
344  */
345 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
346 {
347 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
348 }
349 
350 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
351  * timestamps and timers independent of the IPA core clock rate.  The
352  * Qtimer is based on a 56-bit timestamp incremented at each tick of
353  * a 19.2 MHz SoC crystal oscillator (XO clock).
354  *
355  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
356  * timestamp is achieved by shifting the Qtimer timestamp value right
357  * some number of bits to produce the low-order bits of the coarser
358  * granularity timestamp.
359  *
360  * For timers, a common timer clock is derived from the XO clock using
361  * a divider (we use 192, to produce a 100kHz timer clock).  From
362  * this common clock, three "pulse generators" are used to produce
363  * timer ticks at a configurable frequency.  IPA timers (such as
364  * those used for aggregation or head-of-line block handling) now
365  * define their period based on one of these pulse generators.
366  */
367 static void ipa_qtime_config(struct ipa *ipa)
368 {
369 	const struct reg *reg;
370 	u32 offset;
371 	u32 val;
372 
373 	/* Timer clock divider must be disabled when we change the rate */
374 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
375 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
376 
377 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
378 	if (ipa->version < IPA_VERSION_5_5) {
379 		/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
380 		val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
381 		val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
382 	}
383 	/* Configure tag and NAT Qtime timestamp resolution as well */
384 	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
385 	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
386 
387 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
388 
389 	/* Set granularity of pulse generators used for other timers */
390 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
391 	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
392 	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
393 	if (ipa->version >= IPA_VERSION_5_0) {
394 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
395 		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
396 	} else {
397 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
398 	}
399 
400 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
401 
402 	/* Actual divider is 1 more than value supplied here */
403 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
404 	offset = reg_offset(reg);
405 
406 	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
407 
408 	iowrite32(val, ipa->reg_virt + offset);
409 
410 	/* Divider value is set; re-enable the common timer clock divider */
411 	val |= reg_bit(reg, DIV_ENABLE);
412 
413 	iowrite32(val, ipa->reg_virt + offset);
414 }
415 
416 /* Before IPA v4.5 timing is controlled by a counter register */
417 static void ipa_hardware_config_counter(struct ipa *ipa)
418 {
419 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
420 	const struct reg *reg;
421 	u32 val;
422 
423 	reg = ipa_reg(ipa, COUNTER_CFG);
424 	/* If defined, EOT_COAL_GRANULARITY is 0 */
425 	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
426 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
427 }
428 
429 static void ipa_hardware_config_timing(struct ipa *ipa)
430 {
431 	if (ipa->version < IPA_VERSION_4_5)
432 		ipa_hardware_config_counter(ipa);
433 	else
434 		ipa_qtime_config(ipa);
435 }
436 
437 static void ipa_hardware_config_hashing(struct ipa *ipa)
438 {
439 	const struct reg *reg;
440 
441 	/* Other than IPA v4.2, all versions enable "hashing".  Starting
442 	 * with IPA v5.0, the filter and router tables are implemented
443 	 * differently, but the default configuration enables this feature
444 	 * (now referred to as "cacheing"), so there's nothing to do here.
445 	 */
446 	if (ipa->version != IPA_VERSION_4_2)
447 		return;
448 
449 	/* IPA v4.2 does not support hashed tables, so disable them */
450 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
451 
452 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
453 	 * IPV4_FILTER_HASH are all zero.
454 	 */
455 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
456 }
457 
458 static void ipa_idle_indication_cfg(struct ipa *ipa,
459 				    u32 enter_idle_debounce_thresh,
460 				    bool const_non_idle_enable)
461 {
462 	const struct reg *reg;
463 	u32 val;
464 
465 	if (ipa->version < IPA_VERSION_3_5_1)
466 		return;
467 
468 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
469 	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
470 			 enter_idle_debounce_thresh);
471 	if (const_non_idle_enable)
472 		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
473 
474 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
475 }
476 
477 /**
478  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
479  * @ipa:	IPA pointer
480  *
481  * Configures when the IPA signals it is idle to the global clock
482  * controller, which can respond by scaling down the clock to save
483  * power.
484  */
485 static void ipa_hardware_dcd_config(struct ipa *ipa)
486 {
487 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
488 	ipa_idle_indication_cfg(ipa, 256, false);
489 }
490 
491 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
492 {
493 	/* Power-on reset values */
494 	ipa_idle_indication_cfg(ipa, 0, true);
495 }
496 
497 /**
498  * ipa_hardware_config() - Primitive hardware initialization
499  * @ipa:	IPA pointer
500  * @data:	IPA configuration data
501  */
502 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
503 {
504 	ipa_hardware_config_bcr(ipa, data);
505 	ipa_hardware_config_tx(ipa);
506 	ipa_hardware_config_clkon(ipa);
507 	ipa_hardware_config_comp(ipa);
508 	ipa_hardware_config_qsb(ipa, data);
509 	ipa_hardware_config_timing(ipa);
510 	ipa_hardware_config_hashing(ipa);
511 	ipa_hardware_dcd_config(ipa);
512 }
513 
514 /**
515  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
516  * @ipa:	IPA pointer
517  *
518  * This restores the power-on reset values (even if they aren't different)
519  */
520 static void ipa_hardware_deconfig(struct ipa *ipa)
521 {
522 	/* Mostly we just leave things as we set them. */
523 	ipa_hardware_dcd_deconfig(ipa);
524 }
525 
526 /**
527  * ipa_config() - Configure IPA hardware
528  * @ipa:	IPA pointer
529  * @data:	IPA configuration data
530  *
531  * Perform initialization requiring IPA power to be enabled.
532  */
533 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
534 {
535 	int ret;
536 
537 	ipa_hardware_config(ipa, data);
538 
539 	ret = ipa_mem_config(ipa);
540 	if (ret)
541 		goto err_hardware_deconfig;
542 
543 	ret = ipa_interrupt_config(ipa);
544 	if (ret)
545 		goto err_mem_deconfig;
546 
547 	ipa_uc_config(ipa);
548 
549 	ret = ipa_endpoint_config(ipa);
550 	if (ret)
551 		goto err_uc_deconfig;
552 
553 	ipa_table_config(ipa);		/* No deconfig required */
554 
555 	/* Assign resource limitation to each group; no deconfig required */
556 	ret = ipa_resource_config(ipa, data->resource_data);
557 	if (ret)
558 		goto err_endpoint_deconfig;
559 
560 	ret = ipa_modem_config(ipa);
561 	if (ret)
562 		goto err_endpoint_deconfig;
563 
564 	return 0;
565 
566 err_endpoint_deconfig:
567 	ipa_endpoint_deconfig(ipa);
568 err_uc_deconfig:
569 	ipa_uc_deconfig(ipa);
570 	ipa_interrupt_deconfig(ipa);
571 err_mem_deconfig:
572 	ipa_mem_deconfig(ipa);
573 err_hardware_deconfig:
574 	ipa_hardware_deconfig(ipa);
575 
576 	return ret;
577 }
578 
579 /**
580  * ipa_deconfig() - Inverse of ipa_config()
581  * @ipa:	IPA pointer
582  */
583 static void ipa_deconfig(struct ipa *ipa)
584 {
585 	ipa_modem_deconfig(ipa);
586 	ipa_endpoint_deconfig(ipa);
587 	ipa_uc_deconfig(ipa);
588 	ipa_interrupt_deconfig(ipa);
589 	ipa_mem_deconfig(ipa);
590 	ipa_hardware_deconfig(ipa);
591 }
592 
593 static int ipa_firmware_load(struct device *dev)
594 {
595 	const struct firmware *fw;
596 	struct device_node *node;
597 	struct resource res;
598 	phys_addr_t phys;
599 	const char *path;
600 	ssize_t size;
601 	void *virt;
602 	int ret;
603 
604 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
605 	if (!node) {
606 		dev_err(dev, "DT error getting \"memory-region\" property\n");
607 		return -EINVAL;
608 	}
609 
610 	ret = of_address_to_resource(node, 0, &res);
611 	of_node_put(node);
612 	if (ret) {
613 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
614 			ret);
615 		return ret;
616 	}
617 
618 	/* Use name from DTB if specified; use default for *any* error */
619 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
620 	if (ret) {
621 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
622 			ret);
623 		path = IPA_FW_PATH_DEFAULT;
624 	}
625 
626 	ret = request_firmware(&fw, path, dev);
627 	if (ret) {
628 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
629 		return ret;
630 	}
631 
632 	phys = res.start;
633 	size = (size_t)resource_size(&res);
634 	virt = memremap(phys, size, MEMREMAP_WC);
635 	if (!virt) {
636 		dev_err(dev, "unable to remap firmware memory\n");
637 		ret = -ENOMEM;
638 		goto out_release_firmware;
639 	}
640 
641 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
642 	if (ret)
643 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
644 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
645 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
646 
647 	memunmap(virt);
648 out_release_firmware:
649 	release_firmware(fw);
650 
651 	return ret;
652 }
653 
654 static const struct of_device_id ipa_match[] = {
655 	{
656 		.compatible	= "qcom,msm8998-ipa",
657 		.data		= &ipa_data_v3_1,
658 	},
659 	{
660 		.compatible	= "qcom,sdm845-ipa",
661 		.data		= &ipa_data_v3_5_1,
662 	},
663 	{
664 		.compatible	= "qcom,sc7180-ipa",
665 		.data		= &ipa_data_v4_2,
666 	},
667 	{
668 		.compatible	= "qcom,sdx55-ipa",
669 		.data		= &ipa_data_v4_5,
670 	},
671 	{
672 		.compatible	= "qcom,sm6350-ipa",
673 		.data		= &ipa_data_v4_7,
674 	},
675 	{
676 		.compatible	= "qcom,sm8350-ipa",
677 		.data		= &ipa_data_v4_9,
678 	},
679 	{
680 		.compatible	= "qcom,sc7280-ipa",
681 		.data		= &ipa_data_v4_11,
682 	},
683 	{
684 		.compatible	= "qcom,sdx65-ipa",
685 		.data		= &ipa_data_v5_0,
686 	},
687 	{
688 		.compatible	= "qcom,sm8550-ipa",
689 		.data		= &ipa_data_v5_5,
690 	},
691 	{ },
692 };
693 MODULE_DEVICE_TABLE(of, ipa_match);
694 
695 /* Check things that can be validated at build time.  This just
696  * groups these things BUILD_BUG_ON() calls don't clutter the rest
697  * of the code.
698  * */
699 static void ipa_validate_build(void)
700 {
701 	/* At one time we assumed a 64-bit build, allowing some do_div()
702 	 * calls to be replaced by simple division or modulo operations.
703 	 * We currently only perform divide and modulo operations on u32,
704 	 * u16, or size_t objects, and of those only size_t has any chance
705 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
706 	 * on a 32-bit build, but there is no harm in verifying that.)
707 	 */
708 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
709 
710 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
711 	BUILD_BUG_ON(GSI_EE_AP != 0);
712 
713 	/* There's no point if we have no channels or event rings */
714 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
715 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
716 
717 	/* GSI hardware design limits */
718 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
719 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
720 
721 	/* The number of TREs in a transaction is limited by the channel's
722 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
723 	 * to represents the number of TREs it has allocated and used.
724 	 */
725 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
726 
727 	/* This is used as a divisor */
728 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
729 
730 	/* Aggregation granularity value can't be 0, and must fit */
731 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
732 }
733 
734 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
735 {
736 	bool modem_init;
737 	const char *str;
738 	int ret;
739 
740 	/* Look up the old and new properties by name */
741 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
742 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
743 
744 	/* If the new property doesn't exist, it's legacy behavior */
745 	if (ret == -EINVAL) {
746 		if (modem_init)
747 			return IPA_LOADER_MODEM;
748 		goto out_self;
749 	}
750 
751 	/* Any other error on the new property means it's poorly defined */
752 	if (ret)
753 		return IPA_LOADER_INVALID;
754 
755 	/* New property value exists; if old one does too, that's invalid */
756 	if (modem_init)
757 		return IPA_LOADER_INVALID;
758 
759 	/* Modem loads GSI firmware for "modem" */
760 	if (!strcmp(str, "modem"))
761 		return IPA_LOADER_MODEM;
762 
763 	/* No GSI firmware load is needed for "skip" */
764 	if (!strcmp(str, "skip"))
765 		return IPA_LOADER_SKIP;
766 
767 	/* Any value other than "self" is an error */
768 	if (strcmp(str, "self"))
769 		return IPA_LOADER_INVALID;
770 out_self:
771 	/* We need Trust Zone to load firmware; make sure it's available */
772 	if (qcom_scm_is_available())
773 		return IPA_LOADER_SELF;
774 
775 	return IPA_LOADER_DEFER;
776 }
777 
778 /**
779  * ipa_probe() - IPA platform driver probe function
780  * @pdev:	Platform device pointer
781  *
782  * Return:	0 if successful, or a negative error code (possibly
783  *		EPROBE_DEFER)
784  *
785  * This is the main entry point for the IPA driver.  Initialization proceeds
786  * in several stages:
787  *   - The "init" stage involves activities that can be initialized without
788  *     access to the IPA hardware.
789  *   - The "config" stage requires IPA power to be active so IPA registers
790  *     can be accessed, but does not require the use of IPA immediate commands.
791  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
792  *     layer to be initialized.
793  *
794  * A Boolean Device Tree "modem-init" property determines whether GSI
795  * initialization will be performed by the AP (Trust Zone) or the modem.
796  * If the AP does GSI initialization, the setup phase is entered after
797  * this has completed successfully.  Otherwise the modem initializes
798  * the GSI layer and signals it has finished by sending an SMP2P interrupt
799  * to the AP; this triggers the start if IPA setup.
800  */
801 static int ipa_probe(struct platform_device *pdev)
802 {
803 	struct device *dev = &pdev->dev;
804 	struct ipa_interrupt *interrupt;
805 	enum ipa_firmware_loader loader;
806 	const struct ipa_data *data;
807 	struct ipa_power *power;
808 	struct ipa *ipa;
809 	int ret;
810 
811 	ipa_validate_build();
812 
813 	/* Get configuration data early; needed for power initialization */
814 	data = of_device_get_match_data(dev);
815 	if (!data) {
816 		dev_err(dev, "matched hardware not supported\n");
817 		return -ENODEV;
818 	}
819 
820 	if (!ipa_version_supported(data->version)) {
821 		dev_err(dev, "unsupported IPA version %u\n", data->version);
822 		return -EINVAL;
823 	}
824 
825 	if (!data->modem_route_count) {
826 		dev_err(dev, "modem_route_count cannot be zero\n");
827 		return -EINVAL;
828 	}
829 
830 	loader = ipa_firmware_loader(dev);
831 	if (loader == IPA_LOADER_INVALID)
832 		return -EINVAL;
833 	if (loader == IPA_LOADER_DEFER)
834 		return -EPROBE_DEFER;
835 
836 	/* The IPA interrupt might not be ready when we're probed, so this
837 	 * might return -EPROBE_DEFER.
838 	 */
839 	interrupt = ipa_interrupt_init(pdev);
840 	if (IS_ERR(interrupt))
841 		return PTR_ERR(interrupt);
842 
843 	/* The clock and interconnects might not be ready when we're probed,
844 	 * so this might return -EPROBE_DEFER.
845 	 */
846 	power = ipa_power_init(dev, data->power_data);
847 	if (IS_ERR(power)) {
848 		ret = PTR_ERR(power);
849 		goto err_interrupt_exit;
850 	}
851 
852 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
853 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
854 	if (!ipa) {
855 		ret = -ENOMEM;
856 		goto err_power_exit;
857 	}
858 
859 	ipa->dev = dev;
860 	dev_set_drvdata(dev, ipa);
861 	ipa->interrupt = interrupt;
862 	ipa->power = power;
863 	ipa->version = data->version;
864 	ipa->modem_route_count = data->modem_route_count;
865 	init_completion(&ipa->completion);
866 
867 	ret = ipa_reg_init(ipa, pdev);
868 	if (ret)
869 		goto err_kfree_ipa;
870 
871 	ret = ipa_mem_init(ipa, pdev, data->mem_data);
872 	if (ret)
873 		goto err_reg_exit;
874 
875 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
876 		       data->endpoint_data);
877 	if (ret)
878 		goto err_mem_exit;
879 
880 	/* Result is a non-zero mask of endpoints that support filtering */
881 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
882 	if (ret)
883 		goto err_gsi_exit;
884 
885 	ret = ipa_table_init(ipa);
886 	if (ret)
887 		goto err_endpoint_exit;
888 
889 	ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
890 	if (ret)
891 		goto err_table_exit;
892 
893 	/* Power needs to be active for config and setup */
894 	ret = pm_runtime_get_sync(dev);
895 	if (WARN_ON(ret < 0))
896 		goto err_power_put;
897 
898 	ret = ipa_config(ipa, data);
899 	if (ret)
900 		goto err_power_put;
901 
902 	dev_info(dev, "IPA driver initialized");
903 
904 	/* If the modem is loading GSI firmware, it will trigger a call to
905 	 * ipa_setup() when it has finished.  In that case we're done here.
906 	 */
907 	if (loader == IPA_LOADER_MODEM)
908 		goto done;
909 
910 	if (loader == IPA_LOADER_SELF) {
911 		/* The AP is loading GSI firmware; do so now */
912 		ret = ipa_firmware_load(dev);
913 		if (ret)
914 			goto err_deconfig;
915 	} /* Otherwise loader == IPA_LOADER_SKIP */
916 
917 	/* GSI firmware is loaded; proceed to setup */
918 	ret = ipa_setup(ipa);
919 	if (ret)
920 		goto err_deconfig;
921 done:
922 	pm_runtime_mark_last_busy(dev);
923 	(void)pm_runtime_put_autosuspend(dev);
924 
925 	return 0;
926 
927 err_deconfig:
928 	ipa_deconfig(ipa);
929 err_power_put:
930 	pm_runtime_put_noidle(dev);
931 	ipa_smp2p_exit(ipa);
932 err_table_exit:
933 	ipa_table_exit(ipa);
934 err_endpoint_exit:
935 	ipa_endpoint_exit(ipa);
936 err_gsi_exit:
937 	gsi_exit(&ipa->gsi);
938 err_mem_exit:
939 	ipa_mem_exit(ipa);
940 err_reg_exit:
941 	ipa_reg_exit(ipa);
942 err_kfree_ipa:
943 	kfree(ipa);
944 err_power_exit:
945 	ipa_power_exit(power);
946 err_interrupt_exit:
947 	ipa_interrupt_exit(interrupt);
948 
949 	return ret;
950 }
951 
952 static void ipa_remove(struct platform_device *pdev)
953 {
954 	struct ipa_interrupt *interrupt;
955 	struct ipa_power *power;
956 	struct device *dev;
957 	struct ipa *ipa;
958 	int ret;
959 
960 	ipa = dev_get_drvdata(&pdev->dev);
961 	dev = ipa->dev;
962 	WARN_ON(dev != &pdev->dev);
963 
964 	power = ipa->power;
965 	interrupt = ipa->interrupt;
966 
967 	/* Prevent the modem from triggering a call to ipa_setup().  This
968 	 * also ensures a modem-initiated setup that's underway completes.
969 	 */
970 	ipa_smp2p_irq_disable_setup(ipa);
971 
972 	ret = pm_runtime_get_sync(dev);
973 	if (WARN_ON(ret < 0))
974 		goto out_power_put;
975 
976 	if (ipa->setup_complete) {
977 		ret = ipa_modem_stop(ipa);
978 		/* If starting or stopping is in progress, try once more */
979 		if (ret == -EBUSY) {
980 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
981 			ret = ipa_modem_stop(ipa);
982 		}
983 		if (ret) {
984 			/*
985 			 * Not cleaning up here properly might also yield a
986 			 * crash later on. As the device is still unregistered
987 			 * in this case, this might even yield a crash later on.
988 			 */
989 			dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
990 				ERR_PTR(ret));
991 			return;
992 		}
993 
994 		ipa_teardown(ipa);
995 	}
996 
997 	ipa_deconfig(ipa);
998 out_power_put:
999 	pm_runtime_put_noidle(dev);
1000 	ipa_smp2p_exit(ipa);
1001 	ipa_table_exit(ipa);
1002 	ipa_endpoint_exit(ipa);
1003 	gsi_exit(&ipa->gsi);
1004 	ipa_mem_exit(ipa);
1005 	ipa_reg_exit(ipa);
1006 	kfree(ipa);
1007 	ipa_power_exit(power);
1008 	ipa_interrupt_exit(interrupt);
1009 
1010 	dev_info(dev, "IPA driver removed");
1011 }
1012 
1013 static const struct attribute_group *ipa_attribute_groups[] = {
1014 	&ipa_attribute_group,
1015 	&ipa_feature_attribute_group,
1016 	&ipa_endpoint_id_attribute_group,
1017 	&ipa_modem_attribute_group,
1018 	NULL,
1019 };
1020 
1021 static struct platform_driver ipa_driver = {
1022 	.probe		= ipa_probe,
1023 	.remove_new	= ipa_remove,
1024 	.shutdown	= ipa_remove,
1025 	.driver	= {
1026 		.name		= "ipa",
1027 		.pm		= &ipa_pm_ops,
1028 		.of_match_table	= ipa_match,
1029 		.dev_groups	= ipa_attribute_groups,
1030 	},
1031 };
1032 
1033 module_platform_driver(ipa_driver);
1034 
1035 MODULE_LICENSE("GPL v2");
1036 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1037