1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/qcom_scm.h> 19 #include <linux/soc/qcom/mdt_loader.h> 20 21 #include "ipa.h" 22 #include "ipa_clock.h" 23 #include "ipa_data.h" 24 #include "ipa_endpoint.h" 25 #include "ipa_cmd.h" 26 #include "ipa_reg.h" 27 #include "ipa_mem.h" 28 #include "ipa_table.h" 29 #include "ipa_modem.h" 30 #include "ipa_uc.h" 31 #include "ipa_interrupt.h" 32 #include "gsi_trans.h" 33 34 /** 35 * DOC: The IP Accelerator 36 * 37 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 38 * networking component found in many Qualcomm SoCs. The IPA is connected 39 * to the application processor (AP), but is also connected (and partially 40 * controlled by) other "execution environments" (EEs), such as a modem. 41 * 42 * The IPA is the conduit between the AP and the modem that carries network 43 * traffic. This driver presents a network interface representing the 44 * connection of the modem to external (e.g. LTE) networks. 45 * 46 * The IPA provides protocol checksum calculation, offloading this work 47 * from the AP. The IPA offers additional functionality, including routing, 48 * filtering, and NAT support, but that more advanced functionality is not 49 * currently supported. Despite that, some resources--including routing 50 * tables and filter tables--are defined in this driver because they must 51 * be initialized even when the advanced hardware features are not used. 52 * 53 * There are two distinct layers that implement the IPA hardware, and this 54 * is reflected in the organization of the driver. The generic software 55 * interface (GSI) is an integral component of the IPA, providing a 56 * well-defined communication layer between the AP subsystem and the IPA 57 * core. The GSI implements a set of "channels" used for communication 58 * between the AP and the IPA. 59 * 60 * The IPA layer uses GSI channels to implement its "endpoints". And while 61 * a GSI channel carries data between the AP and the IPA, a pair of IPA 62 * endpoints is used to carry traffic between two EEs. Specifically, the main 63 * modem network interface is implemented by two pairs of endpoints: a TX 64 * endpoint on the AP coupled with an RX endpoint on the modem; and another 65 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 66 */ 67 68 /* The name of the GSI firmware file relative to /lib/firmware */ 69 #define IPA_FWS_PATH "ipa_fws.mdt" 70 #define IPA_PAS_ID 15 71 72 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 73 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 74 #define TAG_TIMESTAMP_SHIFT 14 75 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 76 77 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 78 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 79 80 /** 81 * ipa_suspend_handler() - Handle the suspend IPA interrupt 82 * @ipa: IPA pointer 83 * @irq_id: IPA interrupt type (unused) 84 * 85 * If an RX endpoint is in suspend state, and the IPA has a packet 86 * destined for that endpoint, the IPA generates a SUSPEND interrupt 87 * to inform the AP that it should resume the endpoint. If we get 88 * one of these interrupts we just resume everything. 89 */ 90 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) 91 { 92 /* Just report the event, and let system resume handle the rest. 93 * More than one endpoint could signal this; if so, ignore 94 * all but the first. 95 */ 96 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) 97 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); 98 99 /* Acknowledge/clear the suspend interrupt on all endpoints */ 100 ipa_interrupt_suspend_clear_all(ipa->interrupt); 101 } 102 103 /** 104 * ipa_setup() - Set up IPA hardware 105 * @ipa: IPA pointer 106 * 107 * Perform initialization that requires issuing immediate commands on 108 * the command TX endpoint. If the modem is doing GSI firmware load 109 * and initialization, this function will be called when an SMP2P 110 * interrupt has been signaled by the modem. Otherwise it will be 111 * called from ipa_probe() after GSI firmware has been successfully 112 * loaded, authenticated, and started by Trust Zone. 113 */ 114 int ipa_setup(struct ipa *ipa) 115 { 116 struct ipa_endpoint *exception_endpoint; 117 struct ipa_endpoint *command_endpoint; 118 struct device *dev = &ipa->pdev->dev; 119 int ret; 120 121 ret = gsi_setup(&ipa->gsi); 122 if (ret) 123 return ret; 124 125 ipa->interrupt = ipa_interrupt_setup(ipa); 126 if (IS_ERR(ipa->interrupt)) { 127 ret = PTR_ERR(ipa->interrupt); 128 goto err_gsi_teardown; 129 } 130 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, 131 ipa_suspend_handler); 132 133 ipa_uc_setup(ipa); 134 135 ret = device_init_wakeup(dev, true); 136 if (ret) 137 goto err_uc_teardown; 138 139 ipa_endpoint_setup(ipa); 140 141 /* We need to use the AP command TX endpoint to perform other 142 * initialization, so we enable first. 143 */ 144 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 145 ret = ipa_endpoint_enable_one(command_endpoint); 146 if (ret) 147 goto err_endpoint_teardown; 148 149 ret = ipa_mem_setup(ipa); 150 if (ret) 151 goto err_command_disable; 152 153 ret = ipa_table_setup(ipa); 154 if (ret) 155 goto err_mem_teardown; 156 157 /* Enable the exception handling endpoint, and tell the hardware 158 * to use it by default. 159 */ 160 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 161 ret = ipa_endpoint_enable_one(exception_endpoint); 162 if (ret) 163 goto err_table_teardown; 164 165 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 166 167 /* We're all set. Now prepare for communication with the modem */ 168 ret = ipa_modem_setup(ipa); 169 if (ret) 170 goto err_default_route_clear; 171 172 ipa->setup_complete = true; 173 174 dev_info(dev, "IPA driver setup completed successfully\n"); 175 176 return 0; 177 178 err_default_route_clear: 179 ipa_endpoint_default_route_clear(ipa); 180 ipa_endpoint_disable_one(exception_endpoint); 181 err_table_teardown: 182 ipa_table_teardown(ipa); 183 err_mem_teardown: 184 ipa_mem_teardown(ipa); 185 err_command_disable: 186 ipa_endpoint_disable_one(command_endpoint); 187 err_endpoint_teardown: 188 ipa_endpoint_teardown(ipa); 189 (void)device_init_wakeup(dev, false); 190 err_uc_teardown: 191 ipa_uc_teardown(ipa); 192 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 193 ipa_interrupt_teardown(ipa->interrupt); 194 err_gsi_teardown: 195 gsi_teardown(&ipa->gsi); 196 197 return ret; 198 } 199 200 /** 201 * ipa_teardown() - Inverse of ipa_setup() 202 * @ipa: IPA pointer 203 */ 204 static void ipa_teardown(struct ipa *ipa) 205 { 206 struct ipa_endpoint *exception_endpoint; 207 struct ipa_endpoint *command_endpoint; 208 209 ipa_modem_teardown(ipa); 210 ipa_endpoint_default_route_clear(ipa); 211 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 212 ipa_endpoint_disable_one(exception_endpoint); 213 ipa_table_teardown(ipa); 214 ipa_mem_teardown(ipa); 215 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 216 ipa_endpoint_disable_one(command_endpoint); 217 ipa_endpoint_teardown(ipa); 218 (void)device_init_wakeup(&ipa->pdev->dev, false); 219 ipa_uc_teardown(ipa); 220 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); 221 ipa_interrupt_teardown(ipa->interrupt); 222 gsi_teardown(&ipa->gsi); 223 } 224 225 /* Configure QMB Core Master Port selection */ 226 static void ipa_hardware_config_comp(struct ipa *ipa) 227 { 228 u32 val; 229 230 /* Nothing to configure for IPA v3.5.1 */ 231 if (ipa->version == IPA_VERSION_3_5_1) 232 return; 233 234 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 235 236 if (ipa->version == IPA_VERSION_4_0) { 237 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 238 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 239 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 240 } else if (ipa->version < IPA_VERSION_4_5) { 241 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 242 } else { 243 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ 244 } 245 246 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 247 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 248 249 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 250 } 251 252 /* Configure DDR and PCIe max read/write QSB values */ 253 static void ipa_hardware_config_qsb(struct ipa *ipa) 254 { 255 enum ipa_version version = ipa->version; 256 u32 max0; 257 u32 max1; 258 u32 val; 259 260 /* QMB_0 represents DDR; QMB_1 represents PCIe */ 261 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); 262 switch (version) { 263 case IPA_VERSION_4_2: 264 max1 = 0; /* PCIe not present */ 265 break; 266 case IPA_VERSION_4_5: 267 max1 = 8; 268 break; 269 default: 270 max1 = 4; 271 break; 272 } 273 val |= u32_encode_bits(max1, GEN_QMB_1_MAX_WRITES_FMASK); 274 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 275 276 max1 = 12; 277 switch (version) { 278 case IPA_VERSION_3_5_1: 279 max0 = 8; 280 break; 281 case IPA_VERSION_4_0: 282 case IPA_VERSION_4_1: 283 max0 = 12; 284 break; 285 case IPA_VERSION_4_2: 286 max0 = 12; 287 max1 = 0; /* PCIe not present */ 288 break; 289 case IPA_VERSION_4_5: 290 max0 = 0; /* No limit (hardware maximum) */ 291 break; 292 } 293 val = u32_encode_bits(max0, GEN_QMB_0_MAX_READS_FMASK); 294 val |= u32_encode_bits(max1, GEN_QMB_1_MAX_READS_FMASK); 295 if (version != IPA_VERSION_3_5_1) { 296 /* GEN_QMB_0_MAX_READS_BEATS is 0 */ 297 /* GEN_QMB_1_MAX_READS_BEATS is 0 */ 298 } 299 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 300 } 301 302 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 303 * timestamps and timers independent of the IPA core clock rate. The 304 * Qtimer is based on a 56-bit timestamp incremented at each tick of 305 * a 19.2 MHz SoC crystal oscillator (XO clock). 306 * 307 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 308 * timestamp is achieved by shifting the Qtimer timestamp value right 309 * some number of bits to produce the low-order bits of the coarser 310 * granularity timestamp. 311 * 312 * For timers, a common timer clock is derived from the XO clock using 313 * a divider (we use 192, to produce a 100kHz timer clock). From 314 * this common clock, three "pulse generators" are used to produce 315 * timer ticks at a configurable frequency. IPA timers (such as 316 * those used for aggregation or head-of-line block handling) now 317 * define their period based on one of these pulse generators. 318 */ 319 static void ipa_qtime_config(struct ipa *ipa) 320 { 321 u32 val; 322 323 /* Timer clock divider must be disabled when we change the rate */ 324 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 325 326 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 327 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); 328 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); 329 /* Configure tag and NAT Qtime timestamp resolution as well */ 330 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); 331 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); 332 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); 333 334 /* Set granularity of pulse generators used for other timers */ 335 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); 336 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); 337 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); 338 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); 339 340 /* Actual divider is 1 more than value supplied here */ 341 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); 342 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 343 344 /* Divider value is set; re-enable the common timer clock divider */ 345 val |= u32_encode_bits(1, DIV_ENABLE_FMASK); 346 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 347 } 348 349 static void ipa_idle_indication_cfg(struct ipa *ipa, 350 u32 enter_idle_debounce_thresh, 351 bool const_non_idle_enable) 352 { 353 u32 offset; 354 u32 val; 355 356 val = u32_encode_bits(enter_idle_debounce_thresh, 357 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 358 if (const_non_idle_enable) 359 val |= CONST_NON_IDLE_ENABLE_FMASK; 360 361 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 362 iowrite32(val, ipa->reg_virt + offset); 363 } 364 365 /** 366 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 367 * @ipa: IPA pointer 368 * 369 * Configures when the IPA signals it is idle to the global clock 370 * controller, which can respond by scalling down the clock to 371 * save power. 372 */ 373 static void ipa_hardware_dcd_config(struct ipa *ipa) 374 { 375 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 376 ipa_idle_indication_cfg(ipa, 256, false); 377 } 378 379 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 380 { 381 /* Power-on reset values */ 382 ipa_idle_indication_cfg(ipa, 0, true); 383 } 384 385 /** 386 * ipa_hardware_config() - Primitive hardware initialization 387 * @ipa: IPA pointer 388 */ 389 static void ipa_hardware_config(struct ipa *ipa) 390 { 391 enum ipa_version version = ipa->version; 392 u32 granularity; 393 u32 val; 394 395 /* IPA v4.5 has no backward compatibility register */ 396 if (version < IPA_VERSION_4_5) { 397 val = ipa_reg_bcr_val(version); 398 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 399 } 400 401 /* Implement some hardware workarounds */ 402 if (version != IPA_VERSION_3_5_1 && version < IPA_VERSION_4_5) { 403 /* Enable open global clocks (not needed for IPA v4.5) */ 404 val = GLOBAL_FMASK; 405 val |= GLOBAL_2X_CLK_FMASK; 406 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 407 408 /* Disable PA mask to allow HOLB drop */ 409 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 410 val &= ~PA_MASK_EN_FMASK; 411 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 412 } 413 414 ipa_hardware_config_comp(ipa); 415 416 /* Configure system bus limits */ 417 ipa_hardware_config_qsb(ipa); 418 419 if (version < IPA_VERSION_4_5) { 420 /* Configure aggregation timer granularity */ 421 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 422 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); 423 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 424 } else { 425 ipa_qtime_config(ipa); 426 } 427 428 /* IPA v4.2 does not support hashed tables, so disable them */ 429 if (version == IPA_VERSION_4_2) { 430 u32 offset = ipa_reg_filt_rout_hash_en_offset(version); 431 432 iowrite32(0, ipa->reg_virt + offset); 433 } 434 435 /* Enable dynamic clock division */ 436 ipa_hardware_dcd_config(ipa); 437 } 438 439 /** 440 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 441 * @ipa: IPA pointer 442 * 443 * This restores the power-on reset values (even if they aren't different) 444 */ 445 static void ipa_hardware_deconfig(struct ipa *ipa) 446 { 447 /* Mostly we just leave things as we set them. */ 448 ipa_hardware_dcd_deconfig(ipa); 449 } 450 451 #ifdef IPA_VALIDATION 452 453 static bool ipa_resource_limits_valid(struct ipa *ipa, 454 const struct ipa_resource_data *data) 455 { 456 u32 group_count; 457 u32 i; 458 u32 j; 459 460 /* We program at most 6 source or destination resource group limits */ 461 BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6); 462 463 group_count = ipa_resource_group_src_count(ipa->version); 464 if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX) 465 return false; 466 467 /* Return an error if a non-zero resource limit is specified 468 * for a resource group not supported by hardware. 469 */ 470 for (i = 0; i < data->resource_src_count; i++) { 471 const struct ipa_resource_src *resource; 472 473 resource = &data->resource_src[i]; 474 for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++) 475 if (resource->limits[j].min || resource->limits[j].max) 476 return false; 477 } 478 479 group_count = ipa_resource_group_dst_count(ipa->version); 480 if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX) 481 return false; 482 483 for (i = 0; i < data->resource_dst_count; i++) { 484 const struct ipa_resource_dst *resource; 485 486 resource = &data->resource_dst[i]; 487 for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++) 488 if (resource->limits[j].min || resource->limits[j].max) 489 return false; 490 } 491 492 return true; 493 } 494 495 #else /* !IPA_VALIDATION */ 496 497 static bool ipa_resource_limits_valid(struct ipa *ipa, 498 const struct ipa_resource_data *data) 499 { 500 return true; 501 } 502 503 #endif /* !IPA_VALIDATION */ 504 505 static void 506 ipa_resource_config_common(struct ipa *ipa, u32 offset, 507 const struct ipa_resource_limits *xlimits, 508 const struct ipa_resource_limits *ylimits) 509 { 510 u32 val; 511 512 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); 513 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); 514 if (ylimits) { 515 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); 516 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); 517 } 518 519 iowrite32(val, ipa->reg_virt + offset); 520 } 521 522 static void ipa_resource_config_src(struct ipa *ipa, 523 const struct ipa_resource_src *resource) 524 { 525 u32 group_count = ipa_resource_group_src_count(ipa->version); 526 const struct ipa_resource_limits *ylimits; 527 u32 offset; 528 529 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 530 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 531 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 532 533 if (group_count < 2) 534 return; 535 536 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 537 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 538 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 539 540 if (group_count < 4) 541 return; 542 543 offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 544 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 545 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 546 } 547 548 static void ipa_resource_config_dst(struct ipa *ipa, 549 const struct ipa_resource_dst *resource) 550 { 551 u32 group_count = ipa_resource_group_dst_count(ipa->version); 552 const struct ipa_resource_limits *ylimits; 553 u32 offset; 554 555 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); 556 ylimits = group_count == 1 ? NULL : &resource->limits[1]; 557 ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); 558 559 if (group_count < 2) 560 return; 561 562 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); 563 ylimits = group_count == 3 ? NULL : &resource->limits[3]; 564 ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); 565 566 if (group_count < 4) 567 return; 568 569 offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); 570 ylimits = group_count == 5 ? NULL : &resource->limits[5]; 571 ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); 572 } 573 574 static int 575 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) 576 { 577 u32 i; 578 579 if (!ipa_resource_limits_valid(ipa, data)) 580 return -EINVAL; 581 582 for (i = 0; i < data->resource_src_count; i++) 583 ipa_resource_config_src(ipa, &data->resource_src[i]); 584 585 for (i = 0; i < data->resource_dst_count; i++) 586 ipa_resource_config_dst(ipa, &data->resource_dst[i]); 587 588 return 0; 589 } 590 591 static void ipa_resource_deconfig(struct ipa *ipa) 592 { 593 /* Nothing to do */ 594 } 595 596 /** 597 * ipa_config() - Configure IPA hardware 598 * @ipa: IPA pointer 599 * @data: IPA configuration data 600 * 601 * Perform initialization requiring IPA clock to be enabled. 602 */ 603 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 604 { 605 int ret; 606 607 /* Get a clock reference to allow initialization. This reference 608 * is held after initialization completes, and won't get dropped 609 * unless/until a system suspend request arrives. 610 */ 611 ipa_clock_get(ipa); 612 613 ipa_hardware_config(ipa); 614 615 ret = ipa_endpoint_config(ipa); 616 if (ret) 617 goto err_hardware_deconfig; 618 619 ret = ipa_mem_config(ipa); 620 if (ret) 621 goto err_endpoint_deconfig; 622 623 ipa_table_config(ipa); 624 625 /* Assign resource limitation to each group */ 626 ret = ipa_resource_config(ipa, data->resource_data); 627 if (ret) 628 goto err_table_deconfig; 629 630 ret = ipa_modem_config(ipa); 631 if (ret) 632 goto err_resource_deconfig; 633 634 return 0; 635 636 err_resource_deconfig: 637 ipa_resource_deconfig(ipa); 638 err_table_deconfig: 639 ipa_table_deconfig(ipa); 640 ipa_mem_deconfig(ipa); 641 err_endpoint_deconfig: 642 ipa_endpoint_deconfig(ipa); 643 err_hardware_deconfig: 644 ipa_hardware_deconfig(ipa); 645 ipa_clock_put(ipa); 646 647 return ret; 648 } 649 650 /** 651 * ipa_deconfig() - Inverse of ipa_config() 652 * @ipa: IPA pointer 653 */ 654 static void ipa_deconfig(struct ipa *ipa) 655 { 656 ipa_modem_deconfig(ipa); 657 ipa_resource_deconfig(ipa); 658 ipa_table_deconfig(ipa); 659 ipa_mem_deconfig(ipa); 660 ipa_endpoint_deconfig(ipa); 661 ipa_hardware_deconfig(ipa); 662 ipa_clock_put(ipa); 663 } 664 665 static int ipa_firmware_load(struct device *dev) 666 { 667 const struct firmware *fw; 668 struct device_node *node; 669 struct resource res; 670 phys_addr_t phys; 671 ssize_t size; 672 void *virt; 673 int ret; 674 675 node = of_parse_phandle(dev->of_node, "memory-region", 0); 676 if (!node) { 677 dev_err(dev, "DT error getting \"memory-region\" property\n"); 678 return -EINVAL; 679 } 680 681 ret = of_address_to_resource(node, 0, &res); 682 if (ret) { 683 dev_err(dev, "error %d getting \"memory-region\" resource\n", 684 ret); 685 return ret; 686 } 687 688 ret = request_firmware(&fw, IPA_FWS_PATH, dev); 689 if (ret) { 690 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); 691 return ret; 692 } 693 694 phys = res.start; 695 size = (size_t)resource_size(&res); 696 virt = memremap(phys, size, MEMREMAP_WC); 697 if (!virt) { 698 dev_err(dev, "unable to remap firmware memory\n"); 699 ret = -ENOMEM; 700 goto out_release_firmware; 701 } 702 703 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, 704 virt, phys, size, NULL); 705 if (ret) 706 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); 707 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 708 dev_err(dev, "error %d authenticating \"%s\"\n", ret, 709 IPA_FWS_PATH); 710 711 memunmap(virt); 712 out_release_firmware: 713 release_firmware(fw); 714 715 return ret; 716 } 717 718 static const struct of_device_id ipa_match[] = { 719 { 720 .compatible = "qcom,sdm845-ipa", 721 .data = &ipa_data_sdm845, 722 }, 723 { 724 .compatible = "qcom,sc7180-ipa", 725 .data = &ipa_data_sc7180, 726 }, 727 { }, 728 }; 729 MODULE_DEVICE_TABLE(of, ipa_match); 730 731 /* Check things that can be validated at build time. This just 732 * groups these things BUILD_BUG_ON() calls don't clutter the rest 733 * of the code. 734 * */ 735 static void ipa_validate_build(void) 736 { 737 #ifdef IPA_VALIDATE 738 /* We assume we're working on 64-bit hardware */ 739 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); 740 741 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 742 BUILD_BUG_ON(GSI_EE_AP != 0); 743 744 /* There's no point if we have no channels or event rings */ 745 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 746 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 747 748 /* GSI hardware design limits */ 749 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 750 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 751 752 /* The number of TREs in a transaction is limited by the channel's 753 * TLV FIFO size. A transaction structure uses 8-bit fields 754 * to represents the number of TREs it has allocated and used. 755 */ 756 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 757 758 /* This is used as a divisor */ 759 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 760 761 /* Aggregation granularity value can't be 0, and must fit */ 762 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 763 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 764 field_max(AGGR_GRANULARITY_FMASK)); 765 #endif /* IPA_VALIDATE */ 766 } 767 768 /** 769 * ipa_probe() - IPA platform driver probe function 770 * @pdev: Platform device pointer 771 * 772 * Return: 0 if successful, or a negative error code (possibly 773 * EPROBE_DEFER) 774 * 775 * This is the main entry point for the IPA driver. Initialization proceeds 776 * in several stages: 777 * - The "init" stage involves activities that can be initialized without 778 * access to the IPA hardware. 779 * - The "config" stage requires the IPA clock to be active so IPA registers 780 * can be accessed, but does not require the use of IPA immediate commands. 781 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 782 * layer to be initialized. 783 * 784 * A Boolean Device Tree "modem-init" property determines whether GSI 785 * initialization will be performed by the AP (Trust Zone) or the modem. 786 * If the AP does GSI initialization, the setup phase is entered after 787 * this has completed successfully. Otherwise the modem initializes 788 * the GSI layer and signals it has finished by sending an SMP2P interrupt 789 * to the AP; this triggers the start if IPA setup. 790 */ 791 static int ipa_probe(struct platform_device *pdev) 792 { 793 struct device *dev = &pdev->dev; 794 const struct ipa_data *data; 795 struct ipa_clock *clock; 796 bool modem_init; 797 struct ipa *ipa; 798 int ret; 799 800 ipa_validate_build(); 801 802 /* Get configuration data early; needed for clock initialization */ 803 data = of_device_get_match_data(dev); 804 if (!data) { 805 /* This is really IPA_VALIDATE (should never happen) */ 806 dev_err(dev, "matched hardware not supported\n"); 807 return -ENODEV; 808 } 809 810 /* If we need Trust Zone, make sure it's available */ 811 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 812 if (!modem_init) 813 if (!qcom_scm_is_available()) 814 return -EPROBE_DEFER; 815 816 /* The clock and interconnects might not be ready when we're 817 * probed, so might return -EPROBE_DEFER. 818 */ 819 clock = ipa_clock_init(dev, data->clock_data); 820 if (IS_ERR(clock)) 821 return PTR_ERR(clock); 822 823 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 824 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 825 if (!ipa) { 826 ret = -ENOMEM; 827 goto err_clock_exit; 828 } 829 830 ipa->pdev = pdev; 831 dev_set_drvdata(dev, ipa); 832 ipa->clock = clock; 833 ipa->version = data->version; 834 init_completion(&ipa->completion); 835 836 ret = ipa_reg_init(ipa); 837 if (ret) 838 goto err_kfree_ipa; 839 840 ret = ipa_mem_init(ipa, data->mem_data); 841 if (ret) 842 goto err_reg_exit; 843 844 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 845 data->endpoint_data); 846 if (ret) 847 goto err_mem_exit; 848 849 /* Result is a non-zero mask of endpoints that support filtering */ 850 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 851 data->endpoint_data); 852 if (!ipa->filter_map) { 853 ret = -EINVAL; 854 goto err_gsi_exit; 855 } 856 857 ret = ipa_table_init(ipa); 858 if (ret) 859 goto err_endpoint_exit; 860 861 ret = ipa_modem_init(ipa, modem_init); 862 if (ret) 863 goto err_table_exit; 864 865 ret = ipa_config(ipa, data); 866 if (ret) 867 goto err_modem_exit; 868 869 dev_info(dev, "IPA driver initialized"); 870 871 /* If the modem is doing early initialization, it will trigger a 872 * call to ipa_setup() call when it has finished. In that case 873 * we're done here. 874 */ 875 if (modem_init) 876 return 0; 877 878 /* Otherwise we need to load the firmware and have Trust Zone validate 879 * and install it. If that succeeds we can proceed with setup. 880 */ 881 ret = ipa_firmware_load(dev); 882 if (ret) 883 goto err_deconfig; 884 885 ret = ipa_setup(ipa); 886 if (ret) 887 goto err_deconfig; 888 889 return 0; 890 891 err_deconfig: 892 ipa_deconfig(ipa); 893 err_modem_exit: 894 ipa_modem_exit(ipa); 895 err_table_exit: 896 ipa_table_exit(ipa); 897 err_endpoint_exit: 898 ipa_endpoint_exit(ipa); 899 err_gsi_exit: 900 gsi_exit(&ipa->gsi); 901 err_mem_exit: 902 ipa_mem_exit(ipa); 903 err_reg_exit: 904 ipa_reg_exit(ipa); 905 err_kfree_ipa: 906 kfree(ipa); 907 err_clock_exit: 908 ipa_clock_exit(clock); 909 910 return ret; 911 } 912 913 static int ipa_remove(struct platform_device *pdev) 914 { 915 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 916 struct ipa_clock *clock = ipa->clock; 917 int ret; 918 919 if (ipa->setup_complete) { 920 ret = ipa_modem_stop(ipa); 921 /* If starting or stopping is in progress, try once more */ 922 if (ret == -EBUSY) { 923 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 924 ret = ipa_modem_stop(ipa); 925 } 926 if (ret) 927 return ret; 928 929 ipa_teardown(ipa); 930 } 931 932 ipa_deconfig(ipa); 933 ipa_modem_exit(ipa); 934 ipa_table_exit(ipa); 935 ipa_endpoint_exit(ipa); 936 gsi_exit(&ipa->gsi); 937 ipa_mem_exit(ipa); 938 ipa_reg_exit(ipa); 939 kfree(ipa); 940 ipa_clock_exit(clock); 941 942 return 0; 943 } 944 945 static void ipa_shutdown(struct platform_device *pdev) 946 { 947 int ret; 948 949 ret = ipa_remove(pdev); 950 if (ret) 951 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 952 } 953 954 /** 955 * ipa_suspend() - Power management system suspend callback 956 * @dev: IPA device structure 957 * 958 * Return: Always returns zero 959 * 960 * Called by the PM framework when a system suspend operation is invoked. 961 * Suspends endpoints and releases the clock reference held to keep 962 * the IPA clock running until this point. 963 */ 964 static int ipa_suspend(struct device *dev) 965 { 966 struct ipa *ipa = dev_get_drvdata(dev); 967 968 /* When a suspended RX endpoint has a packet ready to receive, we 969 * get an IPA SUSPEND interrupt. We trigger a system resume in 970 * that case, but only on the first such interrupt since suspend. 971 */ 972 __clear_bit(IPA_FLAG_RESUMED, ipa->flags); 973 974 ipa_endpoint_suspend(ipa); 975 976 ipa_clock_put(ipa); 977 978 return 0; 979 } 980 981 /** 982 * ipa_resume() - Power management system resume callback 983 * @dev: IPA device structure 984 * 985 * Return: Always returns 0 986 * 987 * Called by the PM framework when a system resume operation is invoked. 988 * Takes an IPA clock reference to keep the clock running until suspend, 989 * and resumes endpoints. 990 */ 991 static int ipa_resume(struct device *dev) 992 { 993 struct ipa *ipa = dev_get_drvdata(dev); 994 995 /* This clock reference will keep the IPA out of suspend 996 * until we get a power management suspend request. 997 */ 998 ipa_clock_get(ipa); 999 1000 ipa_endpoint_resume(ipa); 1001 1002 return 0; 1003 } 1004 1005 static const struct dev_pm_ops ipa_pm_ops = { 1006 .suspend = ipa_suspend, 1007 .resume = ipa_resume, 1008 }; 1009 1010 static struct platform_driver ipa_driver = { 1011 .probe = ipa_probe, 1012 .remove = ipa_remove, 1013 .shutdown = ipa_shutdown, 1014 .driver = { 1015 .name = "ipa", 1016 .pm = &ipa_pm_ops, 1017 .of_match_table = ipa_match, 1018 }, 1019 }; 1020 1021 module_platform_driver(ipa_driver); 1022 1023 MODULE_LICENSE("GPL v2"); 1024 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1025