xref: /linux/drivers/net/ipa/ipa_main.c (revision 6387bf7c390a17a03f05a70099e135f61c7cb437)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_power.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_resource.h"
27 #include "ipa_cmd.h"
28 #include "ipa_reg.h"
29 #include "ipa_mem.h"
30 #include "ipa_table.h"
31 #include "ipa_smp2p.h"
32 #include "ipa_modem.h"
33 #include "ipa_uc.h"
34 #include "ipa_interrupt.h"
35 #include "gsi_trans.h"
36 #include "ipa_sysfs.h"
37 
38 /**
39  * DOC: The IP Accelerator
40  *
41  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42  * networking component found in many Qualcomm SoCs.  The IPA is connected
43  * to the application processor (AP), but is also connected (and partially
44  * controlled by) other "execution environments" (EEs), such as a modem.
45  *
46  * The IPA is the conduit between the AP and the modem that carries network
47  * traffic.  This driver presents a network interface representing the
48  * connection of the modem to external (e.g. LTE) networks.
49  *
50  * The IPA provides protocol checksum calculation, offloading this work
51  * from the AP.  The IPA offers additional functionality, including routing,
52  * filtering, and NAT support, but that more advanced functionality is not
53  * currently supported.  Despite that, some resources--including routing
54  * tables and filter tables--are defined in this driver because they must
55  * be initialized even when the advanced hardware features are not used.
56  *
57  * There are two distinct layers that implement the IPA hardware, and this
58  * is reflected in the organization of the driver.  The generic software
59  * interface (GSI) is an integral component of the IPA, providing a
60  * well-defined communication layer between the AP subsystem and the IPA
61  * core.  The GSI implements a set of "channels" used for communication
62  * between the AP and the IPA.
63  *
64  * The IPA layer uses GSI channels to implement its "endpoints".  And while
65  * a GSI channel carries data between the AP and the IPA, a pair of IPA
66  * endpoints is used to carry traffic between two EEs.  Specifically, the main
67  * modem network interface is implemented by two pairs of endpoints:  a TX
68  * endpoint on the AP coupled with an RX endpoint on the modem; and another
69  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70  */
71 
72 /* The name of the GSI firmware file relative to /lib/firmware */
73 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
74 #define IPA_PAS_ID		15
75 
76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
78 #define TAG_TIMESTAMP_SHIFT	14
79 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
80 
81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
83 
84 /**
85  * ipa_setup() - Set up IPA hardware
86  * @ipa:	IPA pointer
87  *
88  * Perform initialization that requires issuing immediate commands on
89  * the command TX endpoint.  If the modem is doing GSI firmware load
90  * and initialization, this function will be called when an SMP2P
91  * interrupt has been signaled by the modem.  Otherwise it will be
92  * called from ipa_probe() after GSI firmware has been successfully
93  * loaded, authenticated, and started by Trust Zone.
94  */
95 int ipa_setup(struct ipa *ipa)
96 {
97 	struct ipa_endpoint *exception_endpoint;
98 	struct ipa_endpoint *command_endpoint;
99 	struct device *dev = &ipa->pdev->dev;
100 	int ret;
101 
102 	ret = gsi_setup(&ipa->gsi);
103 	if (ret)
104 		return ret;
105 
106 	ret = ipa_power_setup(ipa);
107 	if (ret)
108 		goto err_gsi_teardown;
109 
110 	ipa_endpoint_setup(ipa);
111 
112 	/* We need to use the AP command TX endpoint to perform other
113 	 * initialization, so we enable first.
114 	 */
115 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
116 	ret = ipa_endpoint_enable_one(command_endpoint);
117 	if (ret)
118 		goto err_endpoint_teardown;
119 
120 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
121 	if (ret)
122 		goto err_command_disable;
123 
124 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
125 	if (ret)
126 		goto err_command_disable;
127 
128 	/* Enable the exception handling endpoint, and tell the hardware
129 	 * to use it by default.
130 	 */
131 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
132 	ret = ipa_endpoint_enable_one(exception_endpoint);
133 	if (ret)
134 		goto err_command_disable;
135 
136 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
137 
138 	/* We're all set.  Now prepare for communication with the modem */
139 	ret = ipa_qmi_setup(ipa);
140 	if (ret)
141 		goto err_default_route_clear;
142 
143 	ipa->setup_complete = true;
144 
145 	dev_info(dev, "IPA driver setup completed successfully\n");
146 
147 	return 0;
148 
149 err_default_route_clear:
150 	ipa_endpoint_default_route_clear(ipa);
151 	ipa_endpoint_disable_one(exception_endpoint);
152 err_command_disable:
153 	ipa_endpoint_disable_one(command_endpoint);
154 err_endpoint_teardown:
155 	ipa_endpoint_teardown(ipa);
156 	ipa_power_teardown(ipa);
157 err_gsi_teardown:
158 	gsi_teardown(&ipa->gsi);
159 
160 	return ret;
161 }
162 
163 /**
164  * ipa_teardown() - Inverse of ipa_setup()
165  * @ipa:	IPA pointer
166  */
167 static void ipa_teardown(struct ipa *ipa)
168 {
169 	struct ipa_endpoint *exception_endpoint;
170 	struct ipa_endpoint *command_endpoint;
171 
172 	/* We're going to tear everything down, as if setup never completed */
173 	ipa->setup_complete = false;
174 
175 	ipa_qmi_teardown(ipa);
176 	ipa_endpoint_default_route_clear(ipa);
177 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
178 	ipa_endpoint_disable_one(exception_endpoint);
179 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
180 	ipa_endpoint_disable_one(command_endpoint);
181 	ipa_endpoint_teardown(ipa);
182 	ipa_power_teardown(ipa);
183 	gsi_teardown(&ipa->gsi);
184 }
185 
186 static void
187 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
188 {
189 	u32 val;
190 
191 	/* IPA v4.5+ has no backward compatibility register */
192 	if (ipa->version >= IPA_VERSION_4_5)
193 		return;
194 
195 	val = data->backward_compat;
196 	iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
197 }
198 
199 static void ipa_hardware_config_tx(struct ipa *ipa)
200 {
201 	enum ipa_version version = ipa->version;
202 	u32 val;
203 
204 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
205 		return;
206 
207 	/* Disable PA mask to allow HOLB drop */
208 	val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
209 
210 	val &= ~PA_MASK_EN_FMASK;
211 
212 	iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
213 }
214 
215 static void ipa_hardware_config_clkon(struct ipa *ipa)
216 {
217 	enum ipa_version version = ipa->version;
218 	u32 val;
219 
220 	if (version < IPA_VERSION_3_1 || version >= IPA_VERSION_4_5)
221 		return;
222 
223 	/* Implement some hardware workarounds */
224 	if (version >= IPA_VERSION_4_0) {
225 		/* Enable open global clocks in the CLKON configuration */
226 		val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
227 	} else if (version == IPA_VERSION_3_1) {
228 		val = MISC_FMASK;	/* Disable MISC clock gating */
229 	} else {
230 		return;
231 	}
232 
233 	iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
234 }
235 
236 /* Configure bus access behavior for IPA components */
237 static void ipa_hardware_config_comp(struct ipa *ipa)
238 {
239 	u32 val;
240 
241 	/* Nothing to configure prior to IPA v4.0 */
242 	if (ipa->version < IPA_VERSION_4_0)
243 		return;
244 
245 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
246 
247 	if (ipa->version == IPA_VERSION_4_0) {
248 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
249 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
250 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
251 	} else if (ipa->version < IPA_VERSION_4_5) {
252 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
253 	} else {
254 		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
255 	}
256 
257 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
258 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
259 
260 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
261 }
262 
263 /* Configure DDR and (possibly) PCIe max read/write QSB values */
264 static void
265 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
266 {
267 	const struct ipa_qsb_data *data0;
268 	const struct ipa_qsb_data *data1;
269 	u32 val;
270 
271 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
272 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
273 	if (data->qsb_count > 1)
274 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
275 
276 	/* Max outstanding write accesses for QSB masters */
277 	val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
278 	if (data->qsb_count > 1)
279 		val |= u32_encode_bits(data1->max_writes,
280 				       GEN_QMB_1_MAX_WRITES_FMASK);
281 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
282 
283 	/* Max outstanding read accesses for QSB masters */
284 	val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
285 	if (ipa->version >= IPA_VERSION_4_0)
286 		val |= u32_encode_bits(data0->max_reads_beats,
287 				       GEN_QMB_0_MAX_READS_BEATS_FMASK);
288 	if (data->qsb_count > 1) {
289 		val |= u32_encode_bits(data1->max_reads,
290 				       GEN_QMB_1_MAX_READS_FMASK);
291 		if (ipa->version >= IPA_VERSION_4_0)
292 			val |= u32_encode_bits(data1->max_reads_beats,
293 					       GEN_QMB_1_MAX_READS_BEATS_FMASK);
294 	}
295 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
296 }
297 
298 /* The internal inactivity timer clock is used for the aggregation timer */
299 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
300 
301 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
302  * field to represent the given number of microseconds.  The value is one
303  * less than the number of timer ticks in the requested period.  0 is not
304  * a valid granularity value (so for example @usec must be at least 16 for
305  * a TIMER_FREQUENCY of 32000).
306  */
307 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
308 {
309 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
310 }
311 
312 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
313  * timestamps and timers independent of the IPA core clock rate.  The
314  * Qtimer is based on a 56-bit timestamp incremented at each tick of
315  * a 19.2 MHz SoC crystal oscillator (XO clock).
316  *
317  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
318  * timestamp is achieved by shifting the Qtimer timestamp value right
319  * some number of bits to produce the low-order bits of the coarser
320  * granularity timestamp.
321  *
322  * For timers, a common timer clock is derived from the XO clock using
323  * a divider (we use 192, to produce a 100kHz timer clock).  From
324  * this common clock, three "pulse generators" are used to produce
325  * timer ticks at a configurable frequency.  IPA timers (such as
326  * those used for aggregation or head-of-line block handling) now
327  * define their period based on one of these pulse generators.
328  */
329 static void ipa_qtime_config(struct ipa *ipa)
330 {
331 	u32 val;
332 
333 	/* Timer clock divider must be disabled when we change the rate */
334 	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
335 
336 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
337 	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
338 	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
339 	/* Configure tag and NAT Qtime timestamp resolution as well */
340 	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
341 	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
342 	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
343 
344 	/* Set granularity of pulse generators used for other timers */
345 	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
346 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
347 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
348 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
349 
350 	/* Actual divider is 1 more than value supplied here */
351 	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
352 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
353 
354 	/* Divider value is set; re-enable the common timer clock divider */
355 	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
356 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
357 }
358 
359 /* Before IPA v4.5 timing is controlled by a counter register */
360 static void ipa_hardware_config_counter(struct ipa *ipa)
361 {
362 	u32 granularity;
363 	u32 val;
364 
365 	granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
366 
367 	val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
368 
369 	iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
370 }
371 
372 static void ipa_hardware_config_timing(struct ipa *ipa)
373 {
374 	if (ipa->version < IPA_VERSION_4_5)
375 		ipa_hardware_config_counter(ipa);
376 	else
377 		ipa_qtime_config(ipa);
378 }
379 
380 static void ipa_hardware_config_hashing(struct ipa *ipa)
381 {
382 	u32 offset;
383 
384 	if (ipa->version != IPA_VERSION_4_2)
385 		return;
386 
387 	/* IPA v4.2 does not support hashed tables, so disable them */
388 	offset = ipa_reg_filt_rout_hash_en_offset(IPA_VERSION_4_2);
389 	iowrite32(0, ipa->reg_virt + offset);
390 }
391 
392 static void ipa_idle_indication_cfg(struct ipa *ipa,
393 				    u32 enter_idle_debounce_thresh,
394 				    bool const_non_idle_enable)
395 {
396 	u32 offset;
397 	u32 val;
398 
399 	val = u32_encode_bits(enter_idle_debounce_thresh,
400 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
401 	if (const_non_idle_enable)
402 		val |= CONST_NON_IDLE_ENABLE_FMASK;
403 
404 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
405 	iowrite32(val, ipa->reg_virt + offset);
406 }
407 
408 /**
409  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
410  * @ipa:	IPA pointer
411  *
412  * Configures when the IPA signals it is idle to the global clock
413  * controller, which can respond by scaling down the clock to save
414  * power.
415  */
416 static void ipa_hardware_dcd_config(struct ipa *ipa)
417 {
418 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
419 	ipa_idle_indication_cfg(ipa, 256, false);
420 }
421 
422 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
423 {
424 	/* Power-on reset values */
425 	ipa_idle_indication_cfg(ipa, 0, true);
426 }
427 
428 /**
429  * ipa_hardware_config() - Primitive hardware initialization
430  * @ipa:	IPA pointer
431  * @data:	IPA configuration data
432  */
433 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
434 {
435 	ipa_hardware_config_bcr(ipa, data);
436 	ipa_hardware_config_tx(ipa);
437 	ipa_hardware_config_clkon(ipa);
438 	ipa_hardware_config_comp(ipa);
439 	ipa_hardware_config_qsb(ipa, data);
440 	ipa_hardware_config_timing(ipa);
441 	ipa_hardware_config_hashing(ipa);
442 	ipa_hardware_dcd_config(ipa);
443 }
444 
445 /**
446  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
447  * @ipa:	IPA pointer
448  *
449  * This restores the power-on reset values (even if they aren't different)
450  */
451 static void ipa_hardware_deconfig(struct ipa *ipa)
452 {
453 	/* Mostly we just leave things as we set them. */
454 	ipa_hardware_dcd_deconfig(ipa);
455 }
456 
457 /**
458  * ipa_config() - Configure IPA hardware
459  * @ipa:	IPA pointer
460  * @data:	IPA configuration data
461  *
462  * Perform initialization requiring IPA power to be enabled.
463  */
464 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
465 {
466 	int ret;
467 
468 	ipa_hardware_config(ipa, data);
469 
470 	ret = ipa_mem_config(ipa);
471 	if (ret)
472 		goto err_hardware_deconfig;
473 
474 	ipa->interrupt = ipa_interrupt_config(ipa);
475 	if (IS_ERR(ipa->interrupt)) {
476 		ret = PTR_ERR(ipa->interrupt);
477 		ipa->interrupt = NULL;
478 		goto err_mem_deconfig;
479 	}
480 
481 	ipa_uc_config(ipa);
482 
483 	ret = ipa_endpoint_config(ipa);
484 	if (ret)
485 		goto err_uc_deconfig;
486 
487 	ipa_table_config(ipa);		/* No deconfig required */
488 
489 	/* Assign resource limitation to each group; no deconfig required */
490 	ret = ipa_resource_config(ipa, data->resource_data);
491 	if (ret)
492 		goto err_endpoint_deconfig;
493 
494 	ret = ipa_modem_config(ipa);
495 	if (ret)
496 		goto err_endpoint_deconfig;
497 
498 	return 0;
499 
500 err_endpoint_deconfig:
501 	ipa_endpoint_deconfig(ipa);
502 err_uc_deconfig:
503 	ipa_uc_deconfig(ipa);
504 	ipa_interrupt_deconfig(ipa->interrupt);
505 	ipa->interrupt = NULL;
506 err_mem_deconfig:
507 	ipa_mem_deconfig(ipa);
508 err_hardware_deconfig:
509 	ipa_hardware_deconfig(ipa);
510 
511 	return ret;
512 }
513 
514 /**
515  * ipa_deconfig() - Inverse of ipa_config()
516  * @ipa:	IPA pointer
517  */
518 static void ipa_deconfig(struct ipa *ipa)
519 {
520 	ipa_modem_deconfig(ipa);
521 	ipa_endpoint_deconfig(ipa);
522 	ipa_uc_deconfig(ipa);
523 	ipa_interrupt_deconfig(ipa->interrupt);
524 	ipa->interrupt = NULL;
525 	ipa_mem_deconfig(ipa);
526 	ipa_hardware_deconfig(ipa);
527 }
528 
529 static int ipa_firmware_load(struct device *dev)
530 {
531 	const struct firmware *fw;
532 	struct device_node *node;
533 	struct resource res;
534 	phys_addr_t phys;
535 	const char *path;
536 	ssize_t size;
537 	void *virt;
538 	int ret;
539 
540 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
541 	if (!node) {
542 		dev_err(dev, "DT error getting \"memory-region\" property\n");
543 		return -EINVAL;
544 	}
545 
546 	ret = of_address_to_resource(node, 0, &res);
547 	of_node_put(node);
548 	if (ret) {
549 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
550 			ret);
551 		return ret;
552 	}
553 
554 	/* Use name from DTB if specified; use default for *any* error */
555 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
556 	if (ret) {
557 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
558 			ret);
559 		path = IPA_FW_PATH_DEFAULT;
560 	}
561 
562 	ret = request_firmware(&fw, path, dev);
563 	if (ret) {
564 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
565 		return ret;
566 	}
567 
568 	phys = res.start;
569 	size = (size_t)resource_size(&res);
570 	virt = memremap(phys, size, MEMREMAP_WC);
571 	if (!virt) {
572 		dev_err(dev, "unable to remap firmware memory\n");
573 		ret = -ENOMEM;
574 		goto out_release_firmware;
575 	}
576 
577 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
578 	if (ret)
579 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
580 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
581 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
582 
583 	memunmap(virt);
584 out_release_firmware:
585 	release_firmware(fw);
586 
587 	return ret;
588 }
589 
590 static const struct of_device_id ipa_match[] = {
591 	{
592 		.compatible	= "qcom,msm8998-ipa",
593 		.data		= &ipa_data_v3_1,
594 	},
595 	{
596 		.compatible	= "qcom,sdm845-ipa",
597 		.data		= &ipa_data_v3_5_1,
598 	},
599 	{
600 		.compatible	= "qcom,sc7180-ipa",
601 		.data		= &ipa_data_v4_2,
602 	},
603 	{
604 		.compatible	= "qcom,sdx55-ipa",
605 		.data		= &ipa_data_v4_5,
606 	},
607 	{
608 		.compatible	= "qcom,sm8350-ipa",
609 		.data		= &ipa_data_v4_9,
610 	},
611 	{
612 		.compatible	= "qcom,sc7280-ipa",
613 		.data		= &ipa_data_v4_11,
614 	},
615 	{ },
616 };
617 MODULE_DEVICE_TABLE(of, ipa_match);
618 
619 /* Check things that can be validated at build time.  This just
620  * groups these things BUILD_BUG_ON() calls don't clutter the rest
621  * of the code.
622  * */
623 static void ipa_validate_build(void)
624 {
625 	/* At one time we assumed a 64-bit build, allowing some do_div()
626 	 * calls to be replaced by simple division or modulo operations.
627 	 * We currently only perform divide and modulo operations on u32,
628 	 * u16, or size_t objects, and of those only size_t has any chance
629 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
630 	 * on a 32-bit build, but there is no harm in verifying that.)
631 	 */
632 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
633 
634 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
635 	BUILD_BUG_ON(GSI_EE_AP != 0);
636 
637 	/* There's no point if we have no channels or event rings */
638 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
639 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
640 
641 	/* GSI hardware design limits */
642 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
643 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
644 
645 	/* The number of TREs in a transaction is limited by the channel's
646 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
647 	 * to represents the number of TREs it has allocated and used.
648 	 */
649 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
650 
651 	/* This is used as a divisor */
652 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
653 
654 	/* Aggregation granularity value can't be 0, and must fit */
655 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
656 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
657 			field_max(AGGR_GRANULARITY_FMASK));
658 }
659 
660 /**
661  * ipa_probe() - IPA platform driver probe function
662  * @pdev:	Platform device pointer
663  *
664  * Return:	0 if successful, or a negative error code (possibly
665  *		EPROBE_DEFER)
666  *
667  * This is the main entry point for the IPA driver.  Initialization proceeds
668  * in several stages:
669  *   - The "init" stage involves activities that can be initialized without
670  *     access to the IPA hardware.
671  *   - The "config" stage requires IPA power to be active so IPA registers
672  *     can be accessed, but does not require the use of IPA immediate commands.
673  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
674  *     layer to be initialized.
675  *
676  * A Boolean Device Tree "modem-init" property determines whether GSI
677  * initialization will be performed by the AP (Trust Zone) or the modem.
678  * If the AP does GSI initialization, the setup phase is entered after
679  * this has completed successfully.  Otherwise the modem initializes
680  * the GSI layer and signals it has finished by sending an SMP2P interrupt
681  * to the AP; this triggers the start if IPA setup.
682  */
683 static int ipa_probe(struct platform_device *pdev)
684 {
685 	struct device *dev = &pdev->dev;
686 	const struct ipa_data *data;
687 	struct ipa_power *power;
688 	bool modem_init;
689 	struct ipa *ipa;
690 	int ret;
691 
692 	ipa_validate_build();
693 
694 	/* Get configuration data early; needed for power initialization */
695 	data = of_device_get_match_data(dev);
696 	if (!data) {
697 		dev_err(dev, "matched hardware not supported\n");
698 		return -ENODEV;
699 	}
700 
701 	if (!ipa_version_supported(data->version)) {
702 		dev_err(dev, "unsupported IPA version %u\n", data->version);
703 		return -EINVAL;
704 	}
705 
706 	/* If we need Trust Zone, make sure it's available */
707 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
708 	if (!modem_init)
709 		if (!qcom_scm_is_available())
710 			return -EPROBE_DEFER;
711 
712 	/* The clock and interconnects might not be ready when we're
713 	 * probed, so might return -EPROBE_DEFER.
714 	 */
715 	power = ipa_power_init(dev, data->power_data);
716 	if (IS_ERR(power))
717 		return PTR_ERR(power);
718 
719 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
720 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
721 	if (!ipa) {
722 		ret = -ENOMEM;
723 		goto err_power_exit;
724 	}
725 
726 	ipa->pdev = pdev;
727 	dev_set_drvdata(dev, ipa);
728 	ipa->power = power;
729 	ipa->version = data->version;
730 	init_completion(&ipa->completion);
731 
732 	ret = ipa_reg_init(ipa);
733 	if (ret)
734 		goto err_kfree_ipa;
735 
736 	ret = ipa_mem_init(ipa, data->mem_data);
737 	if (ret)
738 		goto err_reg_exit;
739 
740 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
741 		       data->endpoint_data);
742 	if (ret)
743 		goto err_mem_exit;
744 
745 	/* Result is a non-zero mask of endpoints that support filtering */
746 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
747 					    data->endpoint_data);
748 	if (!ipa->filter_map) {
749 		ret = -EINVAL;
750 		goto err_gsi_exit;
751 	}
752 
753 	ret = ipa_table_init(ipa);
754 	if (ret)
755 		goto err_endpoint_exit;
756 
757 	ret = ipa_smp2p_init(ipa, modem_init);
758 	if (ret)
759 		goto err_table_exit;
760 
761 	/* Power needs to be active for config and setup */
762 	ret = pm_runtime_get_sync(dev);
763 	if (WARN_ON(ret < 0))
764 		goto err_power_put;
765 
766 	ret = ipa_config(ipa, data);
767 	if (ret)
768 		goto err_power_put;
769 
770 	dev_info(dev, "IPA driver initialized");
771 
772 	/* If the modem is doing early initialization, it will trigger a
773 	 * call to ipa_setup() when it has finished.  In that case we're
774 	 * done here.
775 	 */
776 	if (modem_init)
777 		goto done;
778 
779 	/* Otherwise we need to load the firmware and have Trust Zone validate
780 	 * and install it.  If that succeeds we can proceed with setup.
781 	 */
782 	ret = ipa_firmware_load(dev);
783 	if (ret)
784 		goto err_deconfig;
785 
786 	ret = ipa_setup(ipa);
787 	if (ret)
788 		goto err_deconfig;
789 done:
790 	pm_runtime_mark_last_busy(dev);
791 	(void)pm_runtime_put_autosuspend(dev);
792 
793 	return 0;
794 
795 err_deconfig:
796 	ipa_deconfig(ipa);
797 err_power_put:
798 	pm_runtime_put_noidle(dev);
799 	ipa_smp2p_exit(ipa);
800 err_table_exit:
801 	ipa_table_exit(ipa);
802 err_endpoint_exit:
803 	ipa_endpoint_exit(ipa);
804 err_gsi_exit:
805 	gsi_exit(&ipa->gsi);
806 err_mem_exit:
807 	ipa_mem_exit(ipa);
808 err_reg_exit:
809 	ipa_reg_exit(ipa);
810 err_kfree_ipa:
811 	kfree(ipa);
812 err_power_exit:
813 	ipa_power_exit(power);
814 
815 	return ret;
816 }
817 
818 static int ipa_remove(struct platform_device *pdev)
819 {
820 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
821 	struct ipa_power *power = ipa->power;
822 	struct device *dev = &pdev->dev;
823 	int ret;
824 
825 	/* Prevent the modem from triggering a call to ipa_setup().  This
826 	 * also ensures a modem-initiated setup that's underway completes.
827 	 */
828 	ipa_smp2p_irq_disable_setup(ipa);
829 
830 	ret = pm_runtime_get_sync(dev);
831 	if (WARN_ON(ret < 0))
832 		goto out_power_put;
833 
834 	if (ipa->setup_complete) {
835 		ret = ipa_modem_stop(ipa);
836 		/* If starting or stopping is in progress, try once more */
837 		if (ret == -EBUSY) {
838 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
839 			ret = ipa_modem_stop(ipa);
840 		}
841 		if (ret)
842 			return ret;
843 
844 		ipa_teardown(ipa);
845 	}
846 
847 	ipa_deconfig(ipa);
848 out_power_put:
849 	pm_runtime_put_noidle(dev);
850 	ipa_smp2p_exit(ipa);
851 	ipa_table_exit(ipa);
852 	ipa_endpoint_exit(ipa);
853 	gsi_exit(&ipa->gsi);
854 	ipa_mem_exit(ipa);
855 	ipa_reg_exit(ipa);
856 	kfree(ipa);
857 	ipa_power_exit(power);
858 
859 	dev_info(dev, "IPA driver removed");
860 
861 	return 0;
862 }
863 
864 static void ipa_shutdown(struct platform_device *pdev)
865 {
866 	int ret;
867 
868 	ret = ipa_remove(pdev);
869 	if (ret)
870 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
871 }
872 
873 static const struct attribute_group *ipa_attribute_groups[] = {
874 	&ipa_attribute_group,
875 	&ipa_feature_attribute_group,
876 	&ipa_endpoint_id_attribute_group,
877 	&ipa_modem_attribute_group,
878 	NULL,
879 };
880 
881 static struct platform_driver ipa_driver = {
882 	.probe		= ipa_probe,
883 	.remove		= ipa_remove,
884 	.shutdown	= ipa_shutdown,
885 	.driver	= {
886 		.name		= "ipa",
887 		.pm		= &ipa_pm_ops,
888 		.of_match_table	= ipa_match,
889 		.dev_groups	= ipa_attribute_groups,
890 	},
891 };
892 
893 module_platform_driver(ipa_driver);
894 
895 MODULE_LICENSE("GPL v2");
896 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
897