1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/of_address.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_power.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_resource.h" 27 #include "ipa_cmd.h" 28 #include "ipa_reg.h" 29 #include "ipa_mem.h" 30 #include "ipa_table.h" 31 #include "ipa_smp2p.h" 32 #include "ipa_modem.h" 33 #include "ipa_uc.h" 34 #include "ipa_interrupt.h" 35 #include "gsi_trans.h" 36 #include "ipa_sysfs.h" 37 38 /** 39 * DOC: The IP Accelerator 40 * 41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 42 * networking component found in many Qualcomm SoCs. The IPA is connected 43 * to the application processor (AP), but is also connected (and partially 44 * controlled by) other "execution environments" (EEs), such as a modem. 45 * 46 * The IPA is the conduit between the AP and the modem that carries network 47 * traffic. This driver presents a network interface representing the 48 * connection of the modem to external (e.g. LTE) networks. 49 * 50 * The IPA provides protocol checksum calculation, offloading this work 51 * from the AP. The IPA offers additional functionality, including routing, 52 * filtering, and NAT support, but that more advanced functionality is not 53 * currently supported. Despite that, some resources--including routing 54 * tables and filter tables--are defined in this driver because they must 55 * be initialized even when the advanced hardware features are not used. 56 * 57 * There are two distinct layers that implement the IPA hardware, and this 58 * is reflected in the organization of the driver. The generic software 59 * interface (GSI) is an integral component of the IPA, providing a 60 * well-defined communication layer between the AP subsystem and the IPA 61 * core. The GSI implements a set of "channels" used for communication 62 * between the AP and the IPA. 63 * 64 * The IPA layer uses GSI channels to implement its "endpoints". And while 65 * a GSI channel carries data between the AP and the IPA, a pair of IPA 66 * endpoints is used to carry traffic between two EEs. Specifically, the main 67 * modem network interface is implemented by two pairs of endpoints: a TX 68 * endpoint on the AP coupled with an RX endpoint on the modem; and another 69 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 70 */ 71 72 /* The name of the GSI firmware file relative to /lib/firmware */ 73 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 74 #define IPA_PAS_ID 15 75 76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 77 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 78 #define TAG_TIMESTAMP_SHIFT 14 79 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 80 81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 82 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 83 84 /** 85 * ipa_setup() - Set up IPA hardware 86 * @ipa: IPA pointer 87 * 88 * Perform initialization that requires issuing immediate commands on 89 * the command TX endpoint. If the modem is doing GSI firmware load 90 * and initialization, this function will be called when an SMP2P 91 * interrupt has been signaled by the modem. Otherwise it will be 92 * called from ipa_probe() after GSI firmware has been successfully 93 * loaded, authenticated, and started by Trust Zone. 94 */ 95 int ipa_setup(struct ipa *ipa) 96 { 97 struct ipa_endpoint *exception_endpoint; 98 struct ipa_endpoint *command_endpoint; 99 struct device *dev = &ipa->pdev->dev; 100 int ret; 101 102 ret = gsi_setup(&ipa->gsi); 103 if (ret) 104 return ret; 105 106 ret = ipa_power_setup(ipa); 107 if (ret) 108 goto err_gsi_teardown; 109 110 ipa_endpoint_setup(ipa); 111 112 /* We need to use the AP command TX endpoint to perform other 113 * initialization, so we enable first. 114 */ 115 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 116 ret = ipa_endpoint_enable_one(command_endpoint); 117 if (ret) 118 goto err_endpoint_teardown; 119 120 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 121 if (ret) 122 goto err_command_disable; 123 124 ret = ipa_table_setup(ipa); /* No matching teardown required */ 125 if (ret) 126 goto err_command_disable; 127 128 /* Enable the exception handling endpoint, and tell the hardware 129 * to use it by default. 130 */ 131 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 132 ret = ipa_endpoint_enable_one(exception_endpoint); 133 if (ret) 134 goto err_command_disable; 135 136 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 137 138 /* We're all set. Now prepare for communication with the modem */ 139 ret = ipa_qmi_setup(ipa); 140 if (ret) 141 goto err_default_route_clear; 142 143 ipa->setup_complete = true; 144 145 dev_info(dev, "IPA driver setup completed successfully\n"); 146 147 return 0; 148 149 err_default_route_clear: 150 ipa_endpoint_default_route_clear(ipa); 151 ipa_endpoint_disable_one(exception_endpoint); 152 err_command_disable: 153 ipa_endpoint_disable_one(command_endpoint); 154 err_endpoint_teardown: 155 ipa_endpoint_teardown(ipa); 156 ipa_power_teardown(ipa); 157 err_gsi_teardown: 158 gsi_teardown(&ipa->gsi); 159 160 return ret; 161 } 162 163 /** 164 * ipa_teardown() - Inverse of ipa_setup() 165 * @ipa: IPA pointer 166 */ 167 static void ipa_teardown(struct ipa *ipa) 168 { 169 struct ipa_endpoint *exception_endpoint; 170 struct ipa_endpoint *command_endpoint; 171 172 /* We're going to tear everything down, as if setup never completed */ 173 ipa->setup_complete = false; 174 175 ipa_qmi_teardown(ipa); 176 ipa_endpoint_default_route_clear(ipa); 177 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 178 ipa_endpoint_disable_one(exception_endpoint); 179 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 180 ipa_endpoint_disable_one(command_endpoint); 181 ipa_endpoint_teardown(ipa); 182 ipa_power_teardown(ipa); 183 gsi_teardown(&ipa->gsi); 184 } 185 186 /* Configure bus access behavior for IPA components */ 187 static void ipa_hardware_config_comp(struct ipa *ipa) 188 { 189 u32 val; 190 191 /* Nothing to configure prior to IPA v4.0 */ 192 if (ipa->version < IPA_VERSION_4_0) 193 return; 194 195 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 196 197 if (ipa->version == IPA_VERSION_4_0) { 198 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; 199 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; 200 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; 201 } else if (ipa->version < IPA_VERSION_4_5) { 202 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; 203 } else { 204 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */ 205 } 206 207 val |= GSI_MULTI_INORDER_RD_DIS_FMASK; 208 val |= GSI_MULTI_INORDER_WR_DIS_FMASK; 209 210 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); 211 } 212 213 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 214 static void 215 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 216 { 217 const struct ipa_qsb_data *data0; 218 const struct ipa_qsb_data *data1; 219 u32 val; 220 221 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 222 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 223 if (data->qsb_count > 1) 224 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 225 226 /* Max outstanding write accesses for QSB masters */ 227 val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK); 228 if (data->qsb_count > 1) 229 val |= u32_encode_bits(data1->max_writes, 230 GEN_QMB_1_MAX_WRITES_FMASK); 231 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); 232 233 /* Max outstanding read accesses for QSB masters */ 234 val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK); 235 if (ipa->version >= IPA_VERSION_4_0) 236 val |= u32_encode_bits(data0->max_reads_beats, 237 GEN_QMB_0_MAX_READS_BEATS_FMASK); 238 if (data->qsb_count > 1) { 239 val |= u32_encode_bits(data1->max_reads, 240 GEN_QMB_1_MAX_READS_FMASK); 241 if (ipa->version >= IPA_VERSION_4_0) 242 val |= u32_encode_bits(data1->max_reads_beats, 243 GEN_QMB_1_MAX_READS_BEATS_FMASK); 244 } 245 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); 246 } 247 248 /* The internal inactivity timer clock is used for the aggregation timer */ 249 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 250 251 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 252 * field to represent the given number of microseconds. The value is one 253 * less than the number of timer ticks in the requested period. 0 is not 254 * a valid granularity value (so for example @usec must be at least 16 for 255 * a TIMER_FREQUENCY of 32000). 256 */ 257 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 258 { 259 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 260 } 261 262 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 263 * timestamps and timers independent of the IPA core clock rate. The 264 * Qtimer is based on a 56-bit timestamp incremented at each tick of 265 * a 19.2 MHz SoC crystal oscillator (XO clock). 266 * 267 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 268 * timestamp is achieved by shifting the Qtimer timestamp value right 269 * some number of bits to produce the low-order bits of the coarser 270 * granularity timestamp. 271 * 272 * For timers, a common timer clock is derived from the XO clock using 273 * a divider (we use 192, to produce a 100kHz timer clock). From 274 * this common clock, three "pulse generators" are used to produce 275 * timer ticks at a configurable frequency. IPA timers (such as 276 * those used for aggregation or head-of-line block handling) now 277 * define their period based on one of these pulse generators. 278 */ 279 static void ipa_qtime_config(struct ipa *ipa) 280 { 281 u32 val; 282 283 /* Timer clock divider must be disabled when we change the rate */ 284 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 285 286 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ 287 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK); 288 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK); 289 /* Configure tag and NAT Qtime timestamp resolution as well */ 290 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK); 291 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK); 292 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET); 293 294 /* Set granularity of pulse generators used for other timers */ 295 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK); 296 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK); 297 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK); 298 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET); 299 300 /* Actual divider is 1 more than value supplied here */ 301 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK); 302 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 303 304 /* Divider value is set; re-enable the common timer clock divider */ 305 val |= u32_encode_bits(1, DIV_ENABLE_FMASK); 306 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET); 307 } 308 309 static void ipa_idle_indication_cfg(struct ipa *ipa, 310 u32 enter_idle_debounce_thresh, 311 bool const_non_idle_enable) 312 { 313 u32 offset; 314 u32 val; 315 316 val = u32_encode_bits(enter_idle_debounce_thresh, 317 ENTER_IDLE_DEBOUNCE_THRESH_FMASK); 318 if (const_non_idle_enable) 319 val |= CONST_NON_IDLE_ENABLE_FMASK; 320 321 offset = ipa_reg_idle_indication_cfg_offset(ipa->version); 322 iowrite32(val, ipa->reg_virt + offset); 323 } 324 325 /** 326 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 327 * @ipa: IPA pointer 328 * 329 * Configures when the IPA signals it is idle to the global clock 330 * controller, which can respond by scaling down the clock to save 331 * power. 332 */ 333 static void ipa_hardware_dcd_config(struct ipa *ipa) 334 { 335 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 336 ipa_idle_indication_cfg(ipa, 256, false); 337 } 338 339 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 340 { 341 /* Power-on reset values */ 342 ipa_idle_indication_cfg(ipa, 0, true); 343 } 344 345 /** 346 * ipa_hardware_config() - Primitive hardware initialization 347 * @ipa: IPA pointer 348 * @data: IPA configuration data 349 */ 350 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 351 { 352 enum ipa_version version = ipa->version; 353 u32 granularity; 354 u32 val; 355 356 /* IPA v4.5+ has no backward compatibility register */ 357 if (version < IPA_VERSION_4_5) { 358 val = data->backward_compat; 359 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); 360 } 361 362 /* Implement some hardware workarounds */ 363 if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) { 364 /* Disable PA mask to allow HOLB drop */ 365 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 366 val &= ~PA_MASK_EN_FMASK; 367 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); 368 369 /* Enable open global clocks in the CLKON configuration */ 370 val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK; 371 } else if (version == IPA_VERSION_3_1) { 372 val = MISC_FMASK; /* Disable MISC clock gating */ 373 } else { 374 val = 0; /* No CLKON configuration needed */ 375 } 376 if (val) 377 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); 378 379 ipa_hardware_config_comp(ipa); 380 381 /* Configure system bus limits */ 382 ipa_hardware_config_qsb(ipa, data); 383 384 if (version < IPA_VERSION_4_5) { 385 /* Configure aggregation timer granularity */ 386 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 387 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); 388 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); 389 } else { 390 ipa_qtime_config(ipa); 391 } 392 393 /* IPA v4.2 does not support hashed tables, so disable them */ 394 if (version == IPA_VERSION_4_2) { 395 u32 offset = ipa_reg_filt_rout_hash_en_offset(version); 396 397 iowrite32(0, ipa->reg_virt + offset); 398 } 399 400 /* Enable dynamic clock division */ 401 ipa_hardware_dcd_config(ipa); 402 } 403 404 /** 405 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 406 * @ipa: IPA pointer 407 * 408 * This restores the power-on reset values (even if they aren't different) 409 */ 410 static void ipa_hardware_deconfig(struct ipa *ipa) 411 { 412 /* Mostly we just leave things as we set them. */ 413 ipa_hardware_dcd_deconfig(ipa); 414 } 415 416 /** 417 * ipa_config() - Configure IPA hardware 418 * @ipa: IPA pointer 419 * @data: IPA configuration data 420 * 421 * Perform initialization requiring IPA power to be enabled. 422 */ 423 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 424 { 425 int ret; 426 427 ipa_hardware_config(ipa, data); 428 429 ret = ipa_mem_config(ipa); 430 if (ret) 431 goto err_hardware_deconfig; 432 433 ipa->interrupt = ipa_interrupt_config(ipa); 434 if (IS_ERR(ipa->interrupt)) { 435 ret = PTR_ERR(ipa->interrupt); 436 ipa->interrupt = NULL; 437 goto err_mem_deconfig; 438 } 439 440 ipa_uc_config(ipa); 441 442 ret = ipa_endpoint_config(ipa); 443 if (ret) 444 goto err_uc_deconfig; 445 446 ipa_table_config(ipa); /* No deconfig required */ 447 448 /* Assign resource limitation to each group; no deconfig required */ 449 ret = ipa_resource_config(ipa, data->resource_data); 450 if (ret) 451 goto err_endpoint_deconfig; 452 453 ret = ipa_modem_config(ipa); 454 if (ret) 455 goto err_endpoint_deconfig; 456 457 return 0; 458 459 err_endpoint_deconfig: 460 ipa_endpoint_deconfig(ipa); 461 err_uc_deconfig: 462 ipa_uc_deconfig(ipa); 463 ipa_interrupt_deconfig(ipa->interrupt); 464 ipa->interrupt = NULL; 465 err_mem_deconfig: 466 ipa_mem_deconfig(ipa); 467 err_hardware_deconfig: 468 ipa_hardware_deconfig(ipa); 469 470 return ret; 471 } 472 473 /** 474 * ipa_deconfig() - Inverse of ipa_config() 475 * @ipa: IPA pointer 476 */ 477 static void ipa_deconfig(struct ipa *ipa) 478 { 479 ipa_modem_deconfig(ipa); 480 ipa_endpoint_deconfig(ipa); 481 ipa_uc_deconfig(ipa); 482 ipa_interrupt_deconfig(ipa->interrupt); 483 ipa->interrupt = NULL; 484 ipa_mem_deconfig(ipa); 485 ipa_hardware_deconfig(ipa); 486 } 487 488 static int ipa_firmware_load(struct device *dev) 489 { 490 const struct firmware *fw; 491 struct device_node *node; 492 struct resource res; 493 phys_addr_t phys; 494 const char *path; 495 ssize_t size; 496 void *virt; 497 int ret; 498 499 node = of_parse_phandle(dev->of_node, "memory-region", 0); 500 if (!node) { 501 dev_err(dev, "DT error getting \"memory-region\" property\n"); 502 return -EINVAL; 503 } 504 505 ret = of_address_to_resource(node, 0, &res); 506 of_node_put(node); 507 if (ret) { 508 dev_err(dev, "error %d getting \"memory-region\" resource\n", 509 ret); 510 return ret; 511 } 512 513 /* Use name from DTB if specified; use default for *any* error */ 514 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 515 if (ret) { 516 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 517 ret); 518 path = IPA_FW_PATH_DEFAULT; 519 } 520 521 ret = request_firmware(&fw, path, dev); 522 if (ret) { 523 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 524 return ret; 525 } 526 527 phys = res.start; 528 size = (size_t)resource_size(&res); 529 virt = memremap(phys, size, MEMREMAP_WC); 530 if (!virt) { 531 dev_err(dev, "unable to remap firmware memory\n"); 532 ret = -ENOMEM; 533 goto out_release_firmware; 534 } 535 536 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 537 if (ret) 538 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 539 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 540 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 541 542 memunmap(virt); 543 out_release_firmware: 544 release_firmware(fw); 545 546 return ret; 547 } 548 549 static const struct of_device_id ipa_match[] = { 550 { 551 .compatible = "qcom,msm8998-ipa", 552 .data = &ipa_data_v3_1, 553 }, 554 { 555 .compatible = "qcom,sdm845-ipa", 556 .data = &ipa_data_v3_5_1, 557 }, 558 { 559 .compatible = "qcom,sc7180-ipa", 560 .data = &ipa_data_v4_2, 561 }, 562 { 563 .compatible = "qcom,sdx55-ipa", 564 .data = &ipa_data_v4_5, 565 }, 566 { 567 .compatible = "qcom,sm8350-ipa", 568 .data = &ipa_data_v4_9, 569 }, 570 { 571 .compatible = "qcom,sc7280-ipa", 572 .data = &ipa_data_v4_11, 573 }, 574 { }, 575 }; 576 MODULE_DEVICE_TABLE(of, ipa_match); 577 578 /* Check things that can be validated at build time. This just 579 * groups these things BUILD_BUG_ON() calls don't clutter the rest 580 * of the code. 581 * */ 582 static void ipa_validate_build(void) 583 { 584 /* At one time we assumed a 64-bit build, allowing some do_div() 585 * calls to be replaced by simple division or modulo operations. 586 * We currently only perform divide and modulo operations on u32, 587 * u16, or size_t objects, and of those only size_t has any chance 588 * of being a 64-bit value. (It should be guaranteed 32 bits wide 589 * on a 32-bit build, but there is no harm in verifying that.) 590 */ 591 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 592 593 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 594 BUILD_BUG_ON(GSI_EE_AP != 0); 595 596 /* There's no point if we have no channels or event rings */ 597 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 598 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 599 600 /* GSI hardware design limits */ 601 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 602 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 603 604 /* The number of TREs in a transaction is limited by the channel's 605 * TLV FIFO size. A transaction structure uses 8-bit fields 606 * to represents the number of TREs it has allocated and used. 607 */ 608 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 609 610 /* This is used as a divisor */ 611 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 612 613 /* Aggregation granularity value can't be 0, and must fit */ 614 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 615 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > 616 field_max(AGGR_GRANULARITY_FMASK)); 617 } 618 619 static bool ipa_version_valid(enum ipa_version version) 620 { 621 switch (version) { 622 case IPA_VERSION_3_0: 623 case IPA_VERSION_3_1: 624 case IPA_VERSION_3_5: 625 case IPA_VERSION_3_5_1: 626 case IPA_VERSION_4_0: 627 case IPA_VERSION_4_1: 628 case IPA_VERSION_4_2: 629 case IPA_VERSION_4_5: 630 case IPA_VERSION_4_7: 631 case IPA_VERSION_4_9: 632 case IPA_VERSION_4_11: 633 return true; 634 635 default: 636 return false; 637 } 638 } 639 640 /** 641 * ipa_probe() - IPA platform driver probe function 642 * @pdev: Platform device pointer 643 * 644 * Return: 0 if successful, or a negative error code (possibly 645 * EPROBE_DEFER) 646 * 647 * This is the main entry point for the IPA driver. Initialization proceeds 648 * in several stages: 649 * - The "init" stage involves activities that can be initialized without 650 * access to the IPA hardware. 651 * - The "config" stage requires IPA power to be active so IPA registers 652 * can be accessed, but does not require the use of IPA immediate commands. 653 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 654 * layer to be initialized. 655 * 656 * A Boolean Device Tree "modem-init" property determines whether GSI 657 * initialization will be performed by the AP (Trust Zone) or the modem. 658 * If the AP does GSI initialization, the setup phase is entered after 659 * this has completed successfully. Otherwise the modem initializes 660 * the GSI layer and signals it has finished by sending an SMP2P interrupt 661 * to the AP; this triggers the start if IPA setup. 662 */ 663 static int ipa_probe(struct platform_device *pdev) 664 { 665 struct device *dev = &pdev->dev; 666 const struct ipa_data *data; 667 struct ipa_power *power; 668 bool modem_init; 669 struct ipa *ipa; 670 int ret; 671 672 ipa_validate_build(); 673 674 /* Get configuration data early; needed for power initialization */ 675 data = of_device_get_match_data(dev); 676 if (!data) { 677 dev_err(dev, "matched hardware not supported\n"); 678 return -ENODEV; 679 } 680 681 if (!ipa_version_valid(data->version)) { 682 dev_err(dev, "invalid IPA version\n"); 683 return -EINVAL; 684 } 685 686 /* If we need Trust Zone, make sure it's available */ 687 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 688 if (!modem_init) 689 if (!qcom_scm_is_available()) 690 return -EPROBE_DEFER; 691 692 /* The clock and interconnects might not be ready when we're 693 * probed, so might return -EPROBE_DEFER. 694 */ 695 power = ipa_power_init(dev, data->power_data); 696 if (IS_ERR(power)) 697 return PTR_ERR(power); 698 699 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 700 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 701 if (!ipa) { 702 ret = -ENOMEM; 703 goto err_power_exit; 704 } 705 706 ipa->pdev = pdev; 707 dev_set_drvdata(dev, ipa); 708 ipa->power = power; 709 ipa->version = data->version; 710 init_completion(&ipa->completion); 711 712 ret = ipa_reg_init(ipa); 713 if (ret) 714 goto err_kfree_ipa; 715 716 ret = ipa_mem_init(ipa, data->mem_data); 717 if (ret) 718 goto err_reg_exit; 719 720 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 721 data->endpoint_data); 722 if (ret) 723 goto err_mem_exit; 724 725 /* Result is a non-zero mask of endpoints that support filtering */ 726 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, 727 data->endpoint_data); 728 if (!ipa->filter_map) { 729 ret = -EINVAL; 730 goto err_gsi_exit; 731 } 732 733 ret = ipa_table_init(ipa); 734 if (ret) 735 goto err_endpoint_exit; 736 737 ret = ipa_smp2p_init(ipa, modem_init); 738 if (ret) 739 goto err_table_exit; 740 741 /* Power needs to be active for config and setup */ 742 ret = pm_runtime_get_sync(dev); 743 if (WARN_ON(ret < 0)) 744 goto err_power_put; 745 746 ret = ipa_config(ipa, data); 747 if (ret) 748 goto err_power_put; 749 750 dev_info(dev, "IPA driver initialized"); 751 752 /* If the modem is doing early initialization, it will trigger a 753 * call to ipa_setup() when it has finished. In that case we're 754 * done here. 755 */ 756 if (modem_init) 757 goto done; 758 759 /* Otherwise we need to load the firmware and have Trust Zone validate 760 * and install it. If that succeeds we can proceed with setup. 761 */ 762 ret = ipa_firmware_load(dev); 763 if (ret) 764 goto err_deconfig; 765 766 ret = ipa_setup(ipa); 767 if (ret) 768 goto err_deconfig; 769 done: 770 pm_runtime_mark_last_busy(dev); 771 (void)pm_runtime_put_autosuspend(dev); 772 773 return 0; 774 775 err_deconfig: 776 ipa_deconfig(ipa); 777 err_power_put: 778 pm_runtime_put_noidle(dev); 779 ipa_smp2p_exit(ipa); 780 err_table_exit: 781 ipa_table_exit(ipa); 782 err_endpoint_exit: 783 ipa_endpoint_exit(ipa); 784 err_gsi_exit: 785 gsi_exit(&ipa->gsi); 786 err_mem_exit: 787 ipa_mem_exit(ipa); 788 err_reg_exit: 789 ipa_reg_exit(ipa); 790 err_kfree_ipa: 791 kfree(ipa); 792 err_power_exit: 793 ipa_power_exit(power); 794 795 return ret; 796 } 797 798 static int ipa_remove(struct platform_device *pdev) 799 { 800 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 801 struct ipa_power *power = ipa->power; 802 struct device *dev = &pdev->dev; 803 int ret; 804 805 /* Prevent the modem from triggering a call to ipa_setup(). This 806 * also ensures a modem-initiated setup that's underway completes. 807 */ 808 ipa_smp2p_irq_disable_setup(ipa); 809 810 ret = pm_runtime_get_sync(dev); 811 if (WARN_ON(ret < 0)) 812 goto out_power_put; 813 814 if (ipa->setup_complete) { 815 ret = ipa_modem_stop(ipa); 816 /* If starting or stopping is in progress, try once more */ 817 if (ret == -EBUSY) { 818 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 819 ret = ipa_modem_stop(ipa); 820 } 821 if (ret) 822 return ret; 823 824 ipa_teardown(ipa); 825 } 826 827 ipa_deconfig(ipa); 828 out_power_put: 829 pm_runtime_put_noidle(dev); 830 ipa_smp2p_exit(ipa); 831 ipa_table_exit(ipa); 832 ipa_endpoint_exit(ipa); 833 gsi_exit(&ipa->gsi); 834 ipa_mem_exit(ipa); 835 ipa_reg_exit(ipa); 836 kfree(ipa); 837 ipa_power_exit(power); 838 839 return 0; 840 } 841 842 static void ipa_shutdown(struct platform_device *pdev) 843 { 844 int ret; 845 846 ret = ipa_remove(pdev); 847 if (ret) 848 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); 849 } 850 851 static const struct attribute_group *ipa_attribute_groups[] = { 852 &ipa_attribute_group, 853 &ipa_feature_attribute_group, 854 &ipa_modem_attribute_group, 855 NULL, 856 }; 857 858 static struct platform_driver ipa_driver = { 859 .probe = ipa_probe, 860 .remove = ipa_remove, 861 .shutdown = ipa_shutdown, 862 .driver = { 863 .name = "ipa", 864 .pm = &ipa_pm_ops, 865 .of_match_table = ipa_match, 866 .dev_groups = ipa_attribute_groups, 867 }, 868 }; 869 870 module_platform_driver(ipa_driver); 871 872 MODULE_LICENSE("GPL v2"); 873 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 874