xref: /linux/drivers/net/ipa/ipa_main.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_power.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_resource.h"
27 #include "ipa_cmd.h"
28 #include "ipa_reg.h"
29 #include "ipa_mem.h"
30 #include "ipa_table.h"
31 #include "ipa_smp2p.h"
32 #include "ipa_modem.h"
33 #include "ipa_uc.h"
34 #include "ipa_interrupt.h"
35 #include "gsi_trans.h"
36 #include "ipa_sysfs.h"
37 
38 /**
39  * DOC: The IP Accelerator
40  *
41  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42  * networking component found in many Qualcomm SoCs.  The IPA is connected
43  * to the application processor (AP), but is also connected (and partially
44  * controlled by) other "execution environments" (EEs), such as a modem.
45  *
46  * The IPA is the conduit between the AP and the modem that carries network
47  * traffic.  This driver presents a network interface representing the
48  * connection of the modem to external (e.g. LTE) networks.
49  *
50  * The IPA provides protocol checksum calculation, offloading this work
51  * from the AP.  The IPA offers additional functionality, including routing,
52  * filtering, and NAT support, but that more advanced functionality is not
53  * currently supported.  Despite that, some resources--including routing
54  * tables and filter tables--are defined in this driver because they must
55  * be initialized even when the advanced hardware features are not used.
56  *
57  * There are two distinct layers that implement the IPA hardware, and this
58  * is reflected in the organization of the driver.  The generic software
59  * interface (GSI) is an integral component of the IPA, providing a
60  * well-defined communication layer between the AP subsystem and the IPA
61  * core.  The GSI implements a set of "channels" used for communication
62  * between the AP and the IPA.
63  *
64  * The IPA layer uses GSI channels to implement its "endpoints".  And while
65  * a GSI channel carries data between the AP and the IPA, a pair of IPA
66  * endpoints is used to carry traffic between two EEs.  Specifically, the main
67  * modem network interface is implemented by two pairs of endpoints:  a TX
68  * endpoint on the AP coupled with an RX endpoint on the modem; and another
69  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70  */
71 
72 /* The name of the GSI firmware file relative to /lib/firmware */
73 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
74 #define IPA_PAS_ID		15
75 
76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
78 #define TAG_TIMESTAMP_SHIFT	14
79 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
80 
81 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
83 
84 /**
85  * ipa_setup() - Set up IPA hardware
86  * @ipa:	IPA pointer
87  *
88  * Perform initialization that requires issuing immediate commands on
89  * the command TX endpoint.  If the modem is doing GSI firmware load
90  * and initialization, this function will be called when an SMP2P
91  * interrupt has been signaled by the modem.  Otherwise it will be
92  * called from ipa_probe() after GSI firmware has been successfully
93  * loaded, authenticated, and started by Trust Zone.
94  */
95 int ipa_setup(struct ipa *ipa)
96 {
97 	struct ipa_endpoint *exception_endpoint;
98 	struct ipa_endpoint *command_endpoint;
99 	struct device *dev = &ipa->pdev->dev;
100 	int ret;
101 
102 	ret = gsi_setup(&ipa->gsi);
103 	if (ret)
104 		return ret;
105 
106 	ret = ipa_power_setup(ipa);
107 	if (ret)
108 		goto err_gsi_teardown;
109 
110 	ipa_endpoint_setup(ipa);
111 
112 	/* We need to use the AP command TX endpoint to perform other
113 	 * initialization, so we enable first.
114 	 */
115 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
116 	ret = ipa_endpoint_enable_one(command_endpoint);
117 	if (ret)
118 		goto err_endpoint_teardown;
119 
120 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
121 	if (ret)
122 		goto err_command_disable;
123 
124 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
125 	if (ret)
126 		goto err_command_disable;
127 
128 	/* Enable the exception handling endpoint, and tell the hardware
129 	 * to use it by default.
130 	 */
131 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
132 	ret = ipa_endpoint_enable_one(exception_endpoint);
133 	if (ret)
134 		goto err_command_disable;
135 
136 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
137 
138 	/* We're all set.  Now prepare for communication with the modem */
139 	ret = ipa_qmi_setup(ipa);
140 	if (ret)
141 		goto err_default_route_clear;
142 
143 	ipa->setup_complete = true;
144 
145 	dev_info(dev, "IPA driver setup completed successfully\n");
146 
147 	return 0;
148 
149 err_default_route_clear:
150 	ipa_endpoint_default_route_clear(ipa);
151 	ipa_endpoint_disable_one(exception_endpoint);
152 err_command_disable:
153 	ipa_endpoint_disable_one(command_endpoint);
154 err_endpoint_teardown:
155 	ipa_endpoint_teardown(ipa);
156 	ipa_power_teardown(ipa);
157 err_gsi_teardown:
158 	gsi_teardown(&ipa->gsi);
159 
160 	return ret;
161 }
162 
163 /**
164  * ipa_teardown() - Inverse of ipa_setup()
165  * @ipa:	IPA pointer
166  */
167 static void ipa_teardown(struct ipa *ipa)
168 {
169 	struct ipa_endpoint *exception_endpoint;
170 	struct ipa_endpoint *command_endpoint;
171 
172 	/* We're going to tear everything down, as if setup never completed */
173 	ipa->setup_complete = false;
174 
175 	ipa_qmi_teardown(ipa);
176 	ipa_endpoint_default_route_clear(ipa);
177 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
178 	ipa_endpoint_disable_one(exception_endpoint);
179 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
180 	ipa_endpoint_disable_one(command_endpoint);
181 	ipa_endpoint_teardown(ipa);
182 	ipa_power_teardown(ipa);
183 	gsi_teardown(&ipa->gsi);
184 }
185 
186 /* Configure bus access behavior for IPA components */
187 static void ipa_hardware_config_comp(struct ipa *ipa)
188 {
189 	u32 val;
190 
191 	/* Nothing to configure prior to IPA v4.0 */
192 	if (ipa->version < IPA_VERSION_4_0)
193 		return;
194 
195 	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
196 
197 	if (ipa->version == IPA_VERSION_4_0) {
198 		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
199 		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
200 		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
201 	} else if (ipa->version < IPA_VERSION_4_5) {
202 		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
203 	} else {
204 		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
205 	}
206 
207 	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
208 	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
209 
210 	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
211 }
212 
213 /* Configure DDR and (possibly) PCIe max read/write QSB values */
214 static void
215 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
216 {
217 	const struct ipa_qsb_data *data0;
218 	const struct ipa_qsb_data *data1;
219 	u32 val;
220 
221 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
222 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
223 	if (data->qsb_count > 1)
224 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
225 
226 	/* Max outstanding write accesses for QSB masters */
227 	val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
228 	if (data->qsb_count > 1)
229 		val |= u32_encode_bits(data1->max_writes,
230 				       GEN_QMB_1_MAX_WRITES_FMASK);
231 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
232 
233 	/* Max outstanding read accesses for QSB masters */
234 	val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
235 	if (ipa->version >= IPA_VERSION_4_0)
236 		val |= u32_encode_bits(data0->max_reads_beats,
237 				       GEN_QMB_0_MAX_READS_BEATS_FMASK);
238 	if (data->qsb_count > 1) {
239 		val |= u32_encode_bits(data1->max_reads,
240 				       GEN_QMB_1_MAX_READS_FMASK);
241 		if (ipa->version >= IPA_VERSION_4_0)
242 			val |= u32_encode_bits(data1->max_reads_beats,
243 					       GEN_QMB_1_MAX_READS_BEATS_FMASK);
244 	}
245 	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
246 }
247 
248 /* The internal inactivity timer clock is used for the aggregation timer */
249 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
250 
251 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
252  * field to represent the given number of microseconds.  The value is one
253  * less than the number of timer ticks in the requested period.  0 is not
254  * a valid granularity value (so for example @usec must be at least 16 for
255  * a TIMER_FREQUENCY of 32000).
256  */
257 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
258 {
259 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
260 }
261 
262 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
263  * timestamps and timers independent of the IPA core clock rate.  The
264  * Qtimer is based on a 56-bit timestamp incremented at each tick of
265  * a 19.2 MHz SoC crystal oscillator (XO clock).
266  *
267  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
268  * timestamp is achieved by shifting the Qtimer timestamp value right
269  * some number of bits to produce the low-order bits of the coarser
270  * granularity timestamp.
271  *
272  * For timers, a common timer clock is derived from the XO clock using
273  * a divider (we use 192, to produce a 100kHz timer clock).  From
274  * this common clock, three "pulse generators" are used to produce
275  * timer ticks at a configurable frequency.  IPA timers (such as
276  * those used for aggregation or head-of-line block handling) now
277  * define their period based on one of these pulse generators.
278  */
279 static void ipa_qtime_config(struct ipa *ipa)
280 {
281 	u32 val;
282 
283 	/* Timer clock divider must be disabled when we change the rate */
284 	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
285 
286 	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
287 	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
288 	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
289 	/* Configure tag and NAT Qtime timestamp resolution as well */
290 	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
291 	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
292 	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
293 
294 	/* Set granularity of pulse generators used for other timers */
295 	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
296 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
297 	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
298 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
299 
300 	/* Actual divider is 1 more than value supplied here */
301 	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
302 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
303 
304 	/* Divider value is set; re-enable the common timer clock divider */
305 	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
306 	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
307 }
308 
309 static void ipa_idle_indication_cfg(struct ipa *ipa,
310 				    u32 enter_idle_debounce_thresh,
311 				    bool const_non_idle_enable)
312 {
313 	u32 offset;
314 	u32 val;
315 
316 	val = u32_encode_bits(enter_idle_debounce_thresh,
317 			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
318 	if (const_non_idle_enable)
319 		val |= CONST_NON_IDLE_ENABLE_FMASK;
320 
321 	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
322 	iowrite32(val, ipa->reg_virt + offset);
323 }
324 
325 /**
326  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
327  * @ipa:	IPA pointer
328  *
329  * Configures when the IPA signals it is idle to the global clock
330  * controller, which can respond by scaling down the clock to save
331  * power.
332  */
333 static void ipa_hardware_dcd_config(struct ipa *ipa)
334 {
335 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
336 	ipa_idle_indication_cfg(ipa, 256, false);
337 }
338 
339 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
340 {
341 	/* Power-on reset values */
342 	ipa_idle_indication_cfg(ipa, 0, true);
343 }
344 
345 /**
346  * ipa_hardware_config() - Primitive hardware initialization
347  * @ipa:	IPA pointer
348  * @data:	IPA configuration data
349  */
350 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
351 {
352 	enum ipa_version version = ipa->version;
353 	u32 granularity;
354 	u32 val;
355 
356 	/* IPA v4.5+ has no backward compatibility register */
357 	if (version < IPA_VERSION_4_5) {
358 		val = data->backward_compat;
359 		iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
360 	}
361 
362 	/* Implement some hardware workarounds */
363 	if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
364 		/* Disable PA mask to allow HOLB drop */
365 		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
366 		val &= ~PA_MASK_EN_FMASK;
367 		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
368 
369 		/* Enable open global clocks in the CLKON configuration */
370 		val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
371 	} else if (version == IPA_VERSION_3_1) {
372 		val = MISC_FMASK;	/* Disable MISC clock gating */
373 	} else {
374 		val = 0;		/* No CLKON configuration needed */
375 	}
376 	if (val)
377 		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
378 
379 	ipa_hardware_config_comp(ipa);
380 
381 	/* Configure system bus limits */
382 	ipa_hardware_config_qsb(ipa, data);
383 
384 	if (version < IPA_VERSION_4_5) {
385 		/* Configure aggregation timer granularity */
386 		granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
387 		val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
388 		iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
389 	} else {
390 		ipa_qtime_config(ipa);
391 	}
392 
393 	/* IPA v4.2 does not support hashed tables, so disable them */
394 	if (version == IPA_VERSION_4_2) {
395 		u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
396 
397 		iowrite32(0, ipa->reg_virt + offset);
398 	}
399 
400 	/* Enable dynamic clock division */
401 	ipa_hardware_dcd_config(ipa);
402 }
403 
404 /**
405  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
406  * @ipa:	IPA pointer
407  *
408  * This restores the power-on reset values (even if they aren't different)
409  */
410 static void ipa_hardware_deconfig(struct ipa *ipa)
411 {
412 	/* Mostly we just leave things as we set them. */
413 	ipa_hardware_dcd_deconfig(ipa);
414 }
415 
416 /**
417  * ipa_config() - Configure IPA hardware
418  * @ipa:	IPA pointer
419  * @data:	IPA configuration data
420  *
421  * Perform initialization requiring IPA power to be enabled.
422  */
423 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
424 {
425 	int ret;
426 
427 	ipa_hardware_config(ipa, data);
428 
429 	ret = ipa_mem_config(ipa);
430 	if (ret)
431 		goto err_hardware_deconfig;
432 
433 	ipa->interrupt = ipa_interrupt_config(ipa);
434 	if (IS_ERR(ipa->interrupt)) {
435 		ret = PTR_ERR(ipa->interrupt);
436 		ipa->interrupt = NULL;
437 		goto err_mem_deconfig;
438 	}
439 
440 	ipa_uc_config(ipa);
441 
442 	ret = ipa_endpoint_config(ipa);
443 	if (ret)
444 		goto err_uc_deconfig;
445 
446 	ipa_table_config(ipa);		/* No deconfig required */
447 
448 	/* Assign resource limitation to each group; no deconfig required */
449 	ret = ipa_resource_config(ipa, data->resource_data);
450 	if (ret)
451 		goto err_endpoint_deconfig;
452 
453 	ret = ipa_modem_config(ipa);
454 	if (ret)
455 		goto err_endpoint_deconfig;
456 
457 	return 0;
458 
459 err_endpoint_deconfig:
460 	ipa_endpoint_deconfig(ipa);
461 err_uc_deconfig:
462 	ipa_uc_deconfig(ipa);
463 	ipa_interrupt_deconfig(ipa->interrupt);
464 	ipa->interrupt = NULL;
465 err_mem_deconfig:
466 	ipa_mem_deconfig(ipa);
467 err_hardware_deconfig:
468 	ipa_hardware_deconfig(ipa);
469 
470 	return ret;
471 }
472 
473 /**
474  * ipa_deconfig() - Inverse of ipa_config()
475  * @ipa:	IPA pointer
476  */
477 static void ipa_deconfig(struct ipa *ipa)
478 {
479 	ipa_modem_deconfig(ipa);
480 	ipa_endpoint_deconfig(ipa);
481 	ipa_uc_deconfig(ipa);
482 	ipa_interrupt_deconfig(ipa->interrupt);
483 	ipa->interrupt = NULL;
484 	ipa_mem_deconfig(ipa);
485 	ipa_hardware_deconfig(ipa);
486 }
487 
488 static int ipa_firmware_load(struct device *dev)
489 {
490 	const struct firmware *fw;
491 	struct device_node *node;
492 	struct resource res;
493 	phys_addr_t phys;
494 	const char *path;
495 	ssize_t size;
496 	void *virt;
497 	int ret;
498 
499 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
500 	if (!node) {
501 		dev_err(dev, "DT error getting \"memory-region\" property\n");
502 		return -EINVAL;
503 	}
504 
505 	ret = of_address_to_resource(node, 0, &res);
506 	of_node_put(node);
507 	if (ret) {
508 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
509 			ret);
510 		return ret;
511 	}
512 
513 	/* Use name from DTB if specified; use default for *any* error */
514 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
515 	if (ret) {
516 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
517 			ret);
518 		path = IPA_FW_PATH_DEFAULT;
519 	}
520 
521 	ret = request_firmware(&fw, path, dev);
522 	if (ret) {
523 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
524 		return ret;
525 	}
526 
527 	phys = res.start;
528 	size = (size_t)resource_size(&res);
529 	virt = memremap(phys, size, MEMREMAP_WC);
530 	if (!virt) {
531 		dev_err(dev, "unable to remap firmware memory\n");
532 		ret = -ENOMEM;
533 		goto out_release_firmware;
534 	}
535 
536 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
537 	if (ret)
538 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
539 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
540 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
541 
542 	memunmap(virt);
543 out_release_firmware:
544 	release_firmware(fw);
545 
546 	return ret;
547 }
548 
549 static const struct of_device_id ipa_match[] = {
550 	{
551 		.compatible	= "qcom,msm8998-ipa",
552 		.data		= &ipa_data_v3_1,
553 	},
554 	{
555 		.compatible	= "qcom,sdm845-ipa",
556 		.data		= &ipa_data_v3_5_1,
557 	},
558 	{
559 		.compatible	= "qcom,sc7180-ipa",
560 		.data		= &ipa_data_v4_2,
561 	},
562 	{
563 		.compatible	= "qcom,sdx55-ipa",
564 		.data		= &ipa_data_v4_5,
565 	},
566 	{
567 		.compatible	= "qcom,sm8350-ipa",
568 		.data		= &ipa_data_v4_9,
569 	},
570 	{
571 		.compatible	= "qcom,sc7280-ipa",
572 		.data		= &ipa_data_v4_11,
573 	},
574 	{ },
575 };
576 MODULE_DEVICE_TABLE(of, ipa_match);
577 
578 /* Check things that can be validated at build time.  This just
579  * groups these things BUILD_BUG_ON() calls don't clutter the rest
580  * of the code.
581  * */
582 static void ipa_validate_build(void)
583 {
584 	/* At one time we assumed a 64-bit build, allowing some do_div()
585 	 * calls to be replaced by simple division or modulo operations.
586 	 * We currently only perform divide and modulo operations on u32,
587 	 * u16, or size_t objects, and of those only size_t has any chance
588 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
589 	 * on a 32-bit build, but there is no harm in verifying that.)
590 	 */
591 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
592 
593 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
594 	BUILD_BUG_ON(GSI_EE_AP != 0);
595 
596 	/* There's no point if we have no channels or event rings */
597 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
598 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
599 
600 	/* GSI hardware design limits */
601 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
602 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
603 
604 	/* The number of TREs in a transaction is limited by the channel's
605 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
606 	 * to represents the number of TREs it has allocated and used.
607 	 */
608 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
609 
610 	/* This is used as a divisor */
611 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
612 
613 	/* Aggregation granularity value can't be 0, and must fit */
614 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
615 	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
616 			field_max(AGGR_GRANULARITY_FMASK));
617 }
618 
619 static bool ipa_version_valid(enum ipa_version version)
620 {
621 	switch (version) {
622 	case IPA_VERSION_3_0:
623 	case IPA_VERSION_3_1:
624 	case IPA_VERSION_3_5:
625 	case IPA_VERSION_3_5_1:
626 	case IPA_VERSION_4_0:
627 	case IPA_VERSION_4_1:
628 	case IPA_VERSION_4_2:
629 	case IPA_VERSION_4_5:
630 	case IPA_VERSION_4_7:
631 	case IPA_VERSION_4_9:
632 	case IPA_VERSION_4_11:
633 		return true;
634 
635 	default:
636 		return false;
637 	}
638 }
639 
640 /**
641  * ipa_probe() - IPA platform driver probe function
642  * @pdev:	Platform device pointer
643  *
644  * Return:	0 if successful, or a negative error code (possibly
645  *		EPROBE_DEFER)
646  *
647  * This is the main entry point for the IPA driver.  Initialization proceeds
648  * in several stages:
649  *   - The "init" stage involves activities that can be initialized without
650  *     access to the IPA hardware.
651  *   - The "config" stage requires IPA power to be active so IPA registers
652  *     can be accessed, but does not require the use of IPA immediate commands.
653  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
654  *     layer to be initialized.
655  *
656  * A Boolean Device Tree "modem-init" property determines whether GSI
657  * initialization will be performed by the AP (Trust Zone) or the modem.
658  * If the AP does GSI initialization, the setup phase is entered after
659  * this has completed successfully.  Otherwise the modem initializes
660  * the GSI layer and signals it has finished by sending an SMP2P interrupt
661  * to the AP; this triggers the start if IPA setup.
662  */
663 static int ipa_probe(struct platform_device *pdev)
664 {
665 	struct device *dev = &pdev->dev;
666 	const struct ipa_data *data;
667 	struct ipa_power *power;
668 	bool modem_init;
669 	struct ipa *ipa;
670 	int ret;
671 
672 	ipa_validate_build();
673 
674 	/* Get configuration data early; needed for power initialization */
675 	data = of_device_get_match_data(dev);
676 	if (!data) {
677 		dev_err(dev, "matched hardware not supported\n");
678 		return -ENODEV;
679 	}
680 
681 	if (!ipa_version_valid(data->version)) {
682 		dev_err(dev, "invalid IPA version\n");
683 		return -EINVAL;
684 	}
685 
686 	/* If we need Trust Zone, make sure it's available */
687 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
688 	if (!modem_init)
689 		if (!qcom_scm_is_available())
690 			return -EPROBE_DEFER;
691 
692 	/* The clock and interconnects might not be ready when we're
693 	 * probed, so might return -EPROBE_DEFER.
694 	 */
695 	power = ipa_power_init(dev, data->power_data);
696 	if (IS_ERR(power))
697 		return PTR_ERR(power);
698 
699 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
700 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
701 	if (!ipa) {
702 		ret = -ENOMEM;
703 		goto err_power_exit;
704 	}
705 
706 	ipa->pdev = pdev;
707 	dev_set_drvdata(dev, ipa);
708 	ipa->power = power;
709 	ipa->version = data->version;
710 	init_completion(&ipa->completion);
711 
712 	ret = ipa_reg_init(ipa);
713 	if (ret)
714 		goto err_kfree_ipa;
715 
716 	ret = ipa_mem_init(ipa, data->mem_data);
717 	if (ret)
718 		goto err_reg_exit;
719 
720 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
721 		       data->endpoint_data);
722 	if (ret)
723 		goto err_mem_exit;
724 
725 	/* Result is a non-zero mask of endpoints that support filtering */
726 	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
727 					    data->endpoint_data);
728 	if (!ipa->filter_map) {
729 		ret = -EINVAL;
730 		goto err_gsi_exit;
731 	}
732 
733 	ret = ipa_table_init(ipa);
734 	if (ret)
735 		goto err_endpoint_exit;
736 
737 	ret = ipa_smp2p_init(ipa, modem_init);
738 	if (ret)
739 		goto err_table_exit;
740 
741 	/* Power needs to be active for config and setup */
742 	ret = pm_runtime_get_sync(dev);
743 	if (WARN_ON(ret < 0))
744 		goto err_power_put;
745 
746 	ret = ipa_config(ipa, data);
747 	if (ret)
748 		goto err_power_put;
749 
750 	dev_info(dev, "IPA driver initialized");
751 
752 	/* If the modem is doing early initialization, it will trigger a
753 	 * call to ipa_setup() when it has finished.  In that case we're
754 	 * done here.
755 	 */
756 	if (modem_init)
757 		goto done;
758 
759 	/* Otherwise we need to load the firmware and have Trust Zone validate
760 	 * and install it.  If that succeeds we can proceed with setup.
761 	 */
762 	ret = ipa_firmware_load(dev);
763 	if (ret)
764 		goto err_deconfig;
765 
766 	ret = ipa_setup(ipa);
767 	if (ret)
768 		goto err_deconfig;
769 done:
770 	pm_runtime_mark_last_busy(dev);
771 	(void)pm_runtime_put_autosuspend(dev);
772 
773 	return 0;
774 
775 err_deconfig:
776 	ipa_deconfig(ipa);
777 err_power_put:
778 	pm_runtime_put_noidle(dev);
779 	ipa_smp2p_exit(ipa);
780 err_table_exit:
781 	ipa_table_exit(ipa);
782 err_endpoint_exit:
783 	ipa_endpoint_exit(ipa);
784 err_gsi_exit:
785 	gsi_exit(&ipa->gsi);
786 err_mem_exit:
787 	ipa_mem_exit(ipa);
788 err_reg_exit:
789 	ipa_reg_exit(ipa);
790 err_kfree_ipa:
791 	kfree(ipa);
792 err_power_exit:
793 	ipa_power_exit(power);
794 
795 	return ret;
796 }
797 
798 static int ipa_remove(struct platform_device *pdev)
799 {
800 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
801 	struct ipa_power *power = ipa->power;
802 	struct device *dev = &pdev->dev;
803 	int ret;
804 
805 	/* Prevent the modem from triggering a call to ipa_setup().  This
806 	 * also ensures a modem-initiated setup that's underway completes.
807 	 */
808 	ipa_smp2p_irq_disable_setup(ipa);
809 
810 	ret = pm_runtime_get_sync(dev);
811 	if (WARN_ON(ret < 0))
812 		goto out_power_put;
813 
814 	if (ipa->setup_complete) {
815 		ret = ipa_modem_stop(ipa);
816 		/* If starting or stopping is in progress, try once more */
817 		if (ret == -EBUSY) {
818 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
819 			ret = ipa_modem_stop(ipa);
820 		}
821 		if (ret)
822 			return ret;
823 
824 		ipa_teardown(ipa);
825 	}
826 
827 	ipa_deconfig(ipa);
828 out_power_put:
829 	pm_runtime_put_noidle(dev);
830 	ipa_smp2p_exit(ipa);
831 	ipa_table_exit(ipa);
832 	ipa_endpoint_exit(ipa);
833 	gsi_exit(&ipa->gsi);
834 	ipa_mem_exit(ipa);
835 	ipa_reg_exit(ipa);
836 	kfree(ipa);
837 	ipa_power_exit(power);
838 
839 	return 0;
840 }
841 
842 static void ipa_shutdown(struct platform_device *pdev)
843 {
844 	int ret;
845 
846 	ret = ipa_remove(pdev);
847 	if (ret)
848 		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
849 }
850 
851 static const struct attribute_group *ipa_attribute_groups[] = {
852 	&ipa_attribute_group,
853 	&ipa_feature_attribute_group,
854 	&ipa_modem_attribute_group,
855 	NULL,
856 };
857 
858 static struct platform_driver ipa_driver = {
859 	.probe		= ipa_probe,
860 	.remove		= ipa_remove,
861 	.shutdown	= ipa_shutdown,
862 	.driver	= {
863 		.name		= "ipa",
864 		.pm		= &ipa_pm_ops,
865 		.of_match_table	= ipa_match,
866 		.dev_groups	= ipa_attribute_groups,
867 	},
868 };
869 
870 module_platform_driver(ipa_driver);
871 
872 MODULE_LICENSE("GPL v2");
873 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
874