1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2023 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/atomic.h> 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/bug.h> 12 #include <linux/io.h> 13 #include <linux/firmware.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/firmware/qcom/qcom_scm.h> 20 #include <linux/soc/qcom/mdt_loader.h> 21 22 #include "ipa.h" 23 #include "ipa_power.h" 24 #include "ipa_data.h" 25 #include "ipa_endpoint.h" 26 #include "ipa_resource.h" 27 #include "ipa_cmd.h" 28 #include "ipa_reg.h" 29 #include "ipa_mem.h" 30 #include "ipa_table.h" 31 #include "ipa_smp2p.h" 32 #include "ipa_modem.h" 33 #include "ipa_uc.h" 34 #include "ipa_interrupt.h" 35 #include "gsi_trans.h" 36 #include "ipa_sysfs.h" 37 38 /** 39 * DOC: The IP Accelerator 40 * 41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a 42 * networking component found in many Qualcomm SoCs. The IPA is connected 43 * to the application processor (AP), but is also connected (and partially 44 * controlled by) other "execution environments" (EEs), such as a modem. 45 * 46 * The IPA is the conduit between the AP and the modem that carries network 47 * traffic. This driver presents a network interface representing the 48 * connection of the modem to external (e.g. LTE) networks. 49 * 50 * The IPA provides protocol checksum calculation, offloading this work 51 * from the AP. The IPA offers additional functionality, including routing, 52 * filtering, and NAT support, but that more advanced functionality is not 53 * currently supported. Despite that, some resources--including routing 54 * tables and filter tables--are defined in this driver because they must 55 * be initialized even when the advanced hardware features are not used. 56 * 57 * There are two distinct layers that implement the IPA hardware, and this 58 * is reflected in the organization of the driver. The generic software 59 * interface (GSI) is an integral component of the IPA, providing a 60 * well-defined communication layer between the AP subsystem and the IPA 61 * core. The GSI implements a set of "channels" used for communication 62 * between the AP and the IPA. 63 * 64 * The IPA layer uses GSI channels to implement its "endpoints". And while 65 * a GSI channel carries data between the AP and the IPA, a pair of IPA 66 * endpoints is used to carry traffic between two EEs. Specifically, the main 67 * modem network interface is implemented by two pairs of endpoints: a TX 68 * endpoint on the AP coupled with an RX endpoint on the modem; and another 69 * RX endpoint on the AP receiving data from a TX endpoint on the modem. 70 */ 71 72 /* The name of the GSI firmware file relative to /lib/firmware */ 73 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" 74 #define IPA_PAS_ID 15 75 76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ 77 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */ 78 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ 79 #define TAG_TIMESTAMP_SHIFT 14 80 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ 81 82 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ 83 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ 84 85 /** 86 * enum ipa_firmware_loader: How GSI firmware gets loaded 87 * 88 * @IPA_LOADER_DEFER: System not ready; try again later 89 * @IPA_LOADER_SELF: AP loads GSI firmware 90 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done 91 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware 92 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid 93 */ 94 enum ipa_firmware_loader { 95 IPA_LOADER_DEFER, 96 IPA_LOADER_SELF, 97 IPA_LOADER_MODEM, 98 IPA_LOADER_SKIP, 99 IPA_LOADER_INVALID, 100 }; 101 102 /** 103 * ipa_setup() - Set up IPA hardware 104 * @ipa: IPA pointer 105 * 106 * Perform initialization that requires issuing immediate commands on 107 * the command TX endpoint. If the modem is doing GSI firmware load 108 * and initialization, this function will be called when an SMP2P 109 * interrupt has been signaled by the modem. Otherwise it will be 110 * called from ipa_probe() after GSI firmware has been successfully 111 * loaded, authenticated, and started by Trust Zone. 112 */ 113 int ipa_setup(struct ipa *ipa) 114 { 115 struct ipa_endpoint *exception_endpoint; 116 struct ipa_endpoint *command_endpoint; 117 struct device *dev = &ipa->pdev->dev; 118 int ret; 119 120 ret = gsi_setup(&ipa->gsi); 121 if (ret) 122 return ret; 123 124 ret = ipa_power_setup(ipa); 125 if (ret) 126 goto err_gsi_teardown; 127 128 ipa_endpoint_setup(ipa); 129 130 /* We need to use the AP command TX endpoint to perform other 131 * initialization, so we enable first. 132 */ 133 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 134 ret = ipa_endpoint_enable_one(command_endpoint); 135 if (ret) 136 goto err_endpoint_teardown; 137 138 ret = ipa_mem_setup(ipa); /* No matching teardown required */ 139 if (ret) 140 goto err_command_disable; 141 142 ret = ipa_table_setup(ipa); /* No matching teardown required */ 143 if (ret) 144 goto err_command_disable; 145 146 /* Enable the exception handling endpoint, and tell the hardware 147 * to use it by default. 148 */ 149 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 150 ret = ipa_endpoint_enable_one(exception_endpoint); 151 if (ret) 152 goto err_command_disable; 153 154 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); 155 156 /* We're all set. Now prepare for communication with the modem */ 157 ret = ipa_qmi_setup(ipa); 158 if (ret) 159 goto err_default_route_clear; 160 161 ipa->setup_complete = true; 162 163 dev_info(dev, "IPA driver setup completed successfully\n"); 164 165 return 0; 166 167 err_default_route_clear: 168 ipa_endpoint_default_route_clear(ipa); 169 ipa_endpoint_disable_one(exception_endpoint); 170 err_command_disable: 171 ipa_endpoint_disable_one(command_endpoint); 172 err_endpoint_teardown: 173 ipa_endpoint_teardown(ipa); 174 ipa_power_teardown(ipa); 175 err_gsi_teardown: 176 gsi_teardown(&ipa->gsi); 177 178 return ret; 179 } 180 181 /** 182 * ipa_teardown() - Inverse of ipa_setup() 183 * @ipa: IPA pointer 184 */ 185 static void ipa_teardown(struct ipa *ipa) 186 { 187 struct ipa_endpoint *exception_endpoint; 188 struct ipa_endpoint *command_endpoint; 189 190 /* We're going to tear everything down, as if setup never completed */ 191 ipa->setup_complete = false; 192 193 ipa_qmi_teardown(ipa); 194 ipa_endpoint_default_route_clear(ipa); 195 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; 196 ipa_endpoint_disable_one(exception_endpoint); 197 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 198 ipa_endpoint_disable_one(command_endpoint); 199 ipa_endpoint_teardown(ipa); 200 ipa_power_teardown(ipa); 201 gsi_teardown(&ipa->gsi); 202 } 203 204 static void 205 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) 206 { 207 const struct reg *reg; 208 u32 val; 209 210 /* IPA v4.5+ has no backward compatibility register */ 211 if (ipa->version >= IPA_VERSION_4_5) 212 return; 213 214 reg = ipa_reg(ipa, IPA_BCR); 215 val = data->backward_compat; 216 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 217 } 218 219 static void ipa_hardware_config_tx(struct ipa *ipa) 220 { 221 enum ipa_version version = ipa->version; 222 const struct reg *reg; 223 u32 offset; 224 u32 val; 225 226 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) 227 return; 228 229 /* Disable PA mask to allow HOLB drop */ 230 reg = ipa_reg(ipa, IPA_TX_CFG); 231 offset = reg_offset(reg); 232 233 val = ioread32(ipa->reg_virt + offset); 234 235 val &= ~reg_bit(reg, PA_MASK_EN); 236 237 iowrite32(val, ipa->reg_virt + offset); 238 } 239 240 static void ipa_hardware_config_clkon(struct ipa *ipa) 241 { 242 enum ipa_version version = ipa->version; 243 const struct reg *reg; 244 u32 val; 245 246 if (version >= IPA_VERSION_4_5) 247 return; 248 249 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) 250 return; 251 252 /* Implement some hardware workarounds */ 253 reg = ipa_reg(ipa, CLKON_CFG); 254 if (version == IPA_VERSION_3_1) { 255 /* Disable MISC clock gating */ 256 val = reg_bit(reg, CLKON_MISC); 257 } else { /* IPA v4.0+ */ 258 /* Enable open global clocks in the CLKON configuration */ 259 val = reg_bit(reg, CLKON_GLOBAL); 260 val |= reg_bit(reg, GLOBAL_2X_CLK); 261 } 262 263 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 264 } 265 266 /* Configure bus access behavior for IPA components */ 267 static void ipa_hardware_config_comp(struct ipa *ipa) 268 { 269 const struct reg *reg; 270 u32 offset; 271 u32 val; 272 273 /* Nothing to configure prior to IPA v4.0 */ 274 if (ipa->version < IPA_VERSION_4_0) 275 return; 276 277 reg = ipa_reg(ipa, COMP_CFG); 278 offset = reg_offset(reg); 279 280 val = ioread32(ipa->reg_virt + offset); 281 282 if (ipa->version == IPA_VERSION_4_0) { 283 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN); 284 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN); 285 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); 286 } else if (ipa->version < IPA_VERSION_4_5) { 287 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); 288 } else { 289 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ 290 } 291 292 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); 293 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); 294 295 iowrite32(val, ipa->reg_virt + offset); 296 } 297 298 /* Configure DDR and (possibly) PCIe max read/write QSB values */ 299 static void 300 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) 301 { 302 const struct ipa_qsb_data *data0; 303 const struct ipa_qsb_data *data1; 304 const struct reg *reg; 305 u32 val; 306 307 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ 308 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; 309 if (data->qsb_count > 1) 310 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; 311 312 /* Max outstanding write accesses for QSB masters */ 313 reg = ipa_reg(ipa, QSB_MAX_WRITES); 314 315 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); 316 if (data->qsb_count > 1) 317 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); 318 319 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 320 321 /* Max outstanding read accesses for QSB masters */ 322 reg = ipa_reg(ipa, QSB_MAX_READS); 323 324 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); 325 if (ipa->version >= IPA_VERSION_4_0) 326 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, 327 data0->max_reads_beats); 328 if (data->qsb_count > 1) { 329 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); 330 if (ipa->version >= IPA_VERSION_4_0) 331 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, 332 data1->max_reads_beats); 333 } 334 335 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 336 } 337 338 /* The internal inactivity timer clock is used for the aggregation timer */ 339 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ 340 341 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY 342 * field to represent the given number of microseconds. The value is one 343 * less than the number of timer ticks in the requested period. 0 is not 344 * a valid granularity value (so for example @usec must be at least 16 for 345 * a TIMER_FREQUENCY of 32000). 346 */ 347 static __always_inline u32 ipa_aggr_granularity_val(u32 usec) 348 { 349 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; 350 } 351 352 /* IPA uses unified Qtime starting at IPA v4.5, implementing various 353 * timestamps and timers independent of the IPA core clock rate. The 354 * Qtimer is based on a 56-bit timestamp incremented at each tick of 355 * a 19.2 MHz SoC crystal oscillator (XO clock). 356 * 357 * For IPA timestamps (tag, NAT, data path logging) a lower resolution 358 * timestamp is achieved by shifting the Qtimer timestamp value right 359 * some number of bits to produce the low-order bits of the coarser 360 * granularity timestamp. 361 * 362 * For timers, a common timer clock is derived from the XO clock using 363 * a divider (we use 192, to produce a 100kHz timer clock). From 364 * this common clock, three "pulse generators" are used to produce 365 * timer ticks at a configurable frequency. IPA timers (such as 366 * those used for aggregation or head-of-line block handling) now 367 * define their period based on one of these pulse generators. 368 */ 369 static void ipa_qtime_config(struct ipa *ipa) 370 { 371 const struct reg *reg; 372 u32 offset; 373 u32 val; 374 375 /* Timer clock divider must be disabled when we change the rate */ 376 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 377 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 378 379 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); 380 if (ipa->version < IPA_VERSION_5_5) { 381 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */ 382 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); 383 val |= reg_bit(reg, DPL_TIMESTAMP_SEL); 384 } 385 /* Configure tag and NAT Qtime timestamp resolution as well */ 386 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); 387 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); 388 389 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 390 391 /* Set granularity of pulse generators used for other timers */ 392 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); 393 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); 394 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); 395 if (ipa->version >= IPA_VERSION_5_0) { 396 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS); 397 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS); 398 } else { 399 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); 400 } 401 402 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 403 404 /* Actual divider is 1 more than value supplied here */ 405 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); 406 offset = reg_offset(reg); 407 408 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); 409 410 iowrite32(val, ipa->reg_virt + offset); 411 412 /* Divider value is set; re-enable the common timer clock divider */ 413 val |= reg_bit(reg, DIV_ENABLE); 414 415 iowrite32(val, ipa->reg_virt + offset); 416 } 417 418 /* Before IPA v4.5 timing is controlled by a counter register */ 419 static void ipa_hardware_config_counter(struct ipa *ipa) 420 { 421 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); 422 const struct reg *reg; 423 u32 val; 424 425 reg = ipa_reg(ipa, COUNTER_CFG); 426 /* If defined, EOT_COAL_GRANULARITY is 0 */ 427 val = reg_encode(reg, AGGR_GRANULARITY, granularity); 428 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 429 } 430 431 static void ipa_hardware_config_timing(struct ipa *ipa) 432 { 433 if (ipa->version < IPA_VERSION_4_5) 434 ipa_hardware_config_counter(ipa); 435 else 436 ipa_qtime_config(ipa); 437 } 438 439 static void ipa_hardware_config_hashing(struct ipa *ipa) 440 { 441 const struct reg *reg; 442 443 /* Other than IPA v4.2, all versions enable "hashing". Starting 444 * with IPA v5.0, the filter and router tables are implemented 445 * differently, but the default configuration enables this feature 446 * (now referred to as "cacheing"), so there's nothing to do here. 447 */ 448 if (ipa->version != IPA_VERSION_4_2) 449 return; 450 451 /* IPA v4.2 does not support hashed tables, so disable them */ 452 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); 453 454 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, 455 * IPV4_FILTER_HASH are all zero. 456 */ 457 iowrite32(0, ipa->reg_virt + reg_offset(reg)); 458 } 459 460 static void ipa_idle_indication_cfg(struct ipa *ipa, 461 u32 enter_idle_debounce_thresh, 462 bool const_non_idle_enable) 463 { 464 const struct reg *reg; 465 u32 val; 466 467 if (ipa->version < IPA_VERSION_3_5_1) 468 return; 469 470 reg = ipa_reg(ipa, IDLE_INDICATION_CFG); 471 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, 472 enter_idle_debounce_thresh); 473 if (const_non_idle_enable) 474 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE); 475 476 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 477 } 478 479 /** 480 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA 481 * @ipa: IPA pointer 482 * 483 * Configures when the IPA signals it is idle to the global clock 484 * controller, which can respond by scaling down the clock to save 485 * power. 486 */ 487 static void ipa_hardware_dcd_config(struct ipa *ipa) 488 { 489 /* Recommended values for IPA 3.5 and later according to IPA HPG */ 490 ipa_idle_indication_cfg(ipa, 256, false); 491 } 492 493 static void ipa_hardware_dcd_deconfig(struct ipa *ipa) 494 { 495 /* Power-on reset values */ 496 ipa_idle_indication_cfg(ipa, 0, true); 497 } 498 499 /** 500 * ipa_hardware_config() - Primitive hardware initialization 501 * @ipa: IPA pointer 502 * @data: IPA configuration data 503 */ 504 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) 505 { 506 ipa_hardware_config_bcr(ipa, data); 507 ipa_hardware_config_tx(ipa); 508 ipa_hardware_config_clkon(ipa); 509 ipa_hardware_config_comp(ipa); 510 ipa_hardware_config_qsb(ipa, data); 511 ipa_hardware_config_timing(ipa); 512 ipa_hardware_config_hashing(ipa); 513 ipa_hardware_dcd_config(ipa); 514 } 515 516 /** 517 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() 518 * @ipa: IPA pointer 519 * 520 * This restores the power-on reset values (even if they aren't different) 521 */ 522 static void ipa_hardware_deconfig(struct ipa *ipa) 523 { 524 /* Mostly we just leave things as we set them. */ 525 ipa_hardware_dcd_deconfig(ipa); 526 } 527 528 /** 529 * ipa_config() - Configure IPA hardware 530 * @ipa: IPA pointer 531 * @data: IPA configuration data 532 * 533 * Perform initialization requiring IPA power to be enabled. 534 */ 535 static int ipa_config(struct ipa *ipa, const struct ipa_data *data) 536 { 537 int ret; 538 539 ipa_hardware_config(ipa, data); 540 541 ret = ipa_mem_config(ipa); 542 if (ret) 543 goto err_hardware_deconfig; 544 545 ipa->interrupt = ipa_interrupt_config(ipa); 546 if (IS_ERR(ipa->interrupt)) { 547 ret = PTR_ERR(ipa->interrupt); 548 ipa->interrupt = NULL; 549 goto err_mem_deconfig; 550 } 551 552 ipa_uc_config(ipa); 553 554 ret = ipa_endpoint_config(ipa); 555 if (ret) 556 goto err_uc_deconfig; 557 558 ipa_table_config(ipa); /* No deconfig required */ 559 560 /* Assign resource limitation to each group; no deconfig required */ 561 ret = ipa_resource_config(ipa, data->resource_data); 562 if (ret) 563 goto err_endpoint_deconfig; 564 565 ret = ipa_modem_config(ipa); 566 if (ret) 567 goto err_endpoint_deconfig; 568 569 return 0; 570 571 err_endpoint_deconfig: 572 ipa_endpoint_deconfig(ipa); 573 err_uc_deconfig: 574 ipa_uc_deconfig(ipa); 575 ipa_interrupt_deconfig(ipa->interrupt); 576 ipa->interrupt = NULL; 577 err_mem_deconfig: 578 ipa_mem_deconfig(ipa); 579 err_hardware_deconfig: 580 ipa_hardware_deconfig(ipa); 581 582 return ret; 583 } 584 585 /** 586 * ipa_deconfig() - Inverse of ipa_config() 587 * @ipa: IPA pointer 588 */ 589 static void ipa_deconfig(struct ipa *ipa) 590 { 591 ipa_modem_deconfig(ipa); 592 ipa_endpoint_deconfig(ipa); 593 ipa_uc_deconfig(ipa); 594 ipa_interrupt_deconfig(ipa->interrupt); 595 ipa->interrupt = NULL; 596 ipa_mem_deconfig(ipa); 597 ipa_hardware_deconfig(ipa); 598 } 599 600 static int ipa_firmware_load(struct device *dev) 601 { 602 const struct firmware *fw; 603 struct device_node *node; 604 struct resource res; 605 phys_addr_t phys; 606 const char *path; 607 ssize_t size; 608 void *virt; 609 int ret; 610 611 node = of_parse_phandle(dev->of_node, "memory-region", 0); 612 if (!node) { 613 dev_err(dev, "DT error getting \"memory-region\" property\n"); 614 return -EINVAL; 615 } 616 617 ret = of_address_to_resource(node, 0, &res); 618 of_node_put(node); 619 if (ret) { 620 dev_err(dev, "error %d getting \"memory-region\" resource\n", 621 ret); 622 return ret; 623 } 624 625 /* Use name from DTB if specified; use default for *any* error */ 626 ret = of_property_read_string(dev->of_node, "firmware-name", &path); 627 if (ret) { 628 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", 629 ret); 630 path = IPA_FW_PATH_DEFAULT; 631 } 632 633 ret = request_firmware(&fw, path, dev); 634 if (ret) { 635 dev_err(dev, "error %d requesting \"%s\"\n", ret, path); 636 return ret; 637 } 638 639 phys = res.start; 640 size = (size_t)resource_size(&res); 641 virt = memremap(phys, size, MEMREMAP_WC); 642 if (!virt) { 643 dev_err(dev, "unable to remap firmware memory\n"); 644 ret = -ENOMEM; 645 goto out_release_firmware; 646 } 647 648 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); 649 if (ret) 650 dev_err(dev, "error %d loading \"%s\"\n", ret, path); 651 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) 652 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); 653 654 memunmap(virt); 655 out_release_firmware: 656 release_firmware(fw); 657 658 return ret; 659 } 660 661 static const struct of_device_id ipa_match[] = { 662 { 663 .compatible = "qcom,msm8998-ipa", 664 .data = &ipa_data_v3_1, 665 }, 666 { 667 .compatible = "qcom,sdm845-ipa", 668 .data = &ipa_data_v3_5_1, 669 }, 670 { 671 .compatible = "qcom,sc7180-ipa", 672 .data = &ipa_data_v4_2, 673 }, 674 { 675 .compatible = "qcom,sdx55-ipa", 676 .data = &ipa_data_v4_5, 677 }, 678 { 679 .compatible = "qcom,sm6350-ipa", 680 .data = &ipa_data_v4_7, 681 }, 682 { 683 .compatible = "qcom,sm8350-ipa", 684 .data = &ipa_data_v4_9, 685 }, 686 { 687 .compatible = "qcom,sc7280-ipa", 688 .data = &ipa_data_v4_11, 689 }, 690 { 691 .compatible = "qcom,sdx65-ipa", 692 .data = &ipa_data_v5_0, 693 }, 694 { 695 .compatible = "qcom,sm8550-ipa", 696 .data = &ipa_data_v5_5, 697 }, 698 { }, 699 }; 700 MODULE_DEVICE_TABLE(of, ipa_match); 701 702 /* Check things that can be validated at build time. This just 703 * groups these things BUILD_BUG_ON() calls don't clutter the rest 704 * of the code. 705 * */ 706 static void ipa_validate_build(void) 707 { 708 /* At one time we assumed a 64-bit build, allowing some do_div() 709 * calls to be replaced by simple division or modulo operations. 710 * We currently only perform divide and modulo operations on u32, 711 * u16, or size_t objects, and of those only size_t has any chance 712 * of being a 64-bit value. (It should be guaranteed 32 bits wide 713 * on a 32-bit build, but there is no harm in verifying that.) 714 */ 715 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); 716 717 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ 718 BUILD_BUG_ON(GSI_EE_AP != 0); 719 720 /* There's no point if we have no channels or event rings */ 721 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); 722 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); 723 724 /* GSI hardware design limits */ 725 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); 726 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); 727 728 /* The number of TREs in a transaction is limited by the channel's 729 * TLV FIFO size. A transaction structure uses 8-bit fields 730 * to represents the number of TREs it has allocated and used. 731 */ 732 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); 733 734 /* This is used as a divisor */ 735 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); 736 737 /* Aggregation granularity value can't be 0, and must fit */ 738 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); 739 } 740 741 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) 742 { 743 bool modem_init; 744 const char *str; 745 int ret; 746 747 /* Look up the old and new properties by name */ 748 modem_init = of_property_read_bool(dev->of_node, "modem-init"); 749 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); 750 751 /* If the new property doesn't exist, it's legacy behavior */ 752 if (ret == -EINVAL) { 753 if (modem_init) 754 return IPA_LOADER_MODEM; 755 goto out_self; 756 } 757 758 /* Any other error on the new property means it's poorly defined */ 759 if (ret) 760 return IPA_LOADER_INVALID; 761 762 /* New property value exists; if old one does too, that's invalid */ 763 if (modem_init) 764 return IPA_LOADER_INVALID; 765 766 /* Modem loads GSI firmware for "modem" */ 767 if (!strcmp(str, "modem")) 768 return IPA_LOADER_MODEM; 769 770 /* No GSI firmware load is needed for "skip" */ 771 if (!strcmp(str, "skip")) 772 return IPA_LOADER_SKIP; 773 774 /* Any value other than "self" is an error */ 775 if (strcmp(str, "self")) 776 return IPA_LOADER_INVALID; 777 out_self: 778 /* We need Trust Zone to load firmware; make sure it's available */ 779 if (qcom_scm_is_available()) 780 return IPA_LOADER_SELF; 781 782 return IPA_LOADER_DEFER; 783 } 784 785 /** 786 * ipa_probe() - IPA platform driver probe function 787 * @pdev: Platform device pointer 788 * 789 * Return: 0 if successful, or a negative error code (possibly 790 * EPROBE_DEFER) 791 * 792 * This is the main entry point for the IPA driver. Initialization proceeds 793 * in several stages: 794 * - The "init" stage involves activities that can be initialized without 795 * access to the IPA hardware. 796 * - The "config" stage requires IPA power to be active so IPA registers 797 * can be accessed, but does not require the use of IPA immediate commands. 798 * - The "setup" stage uses IPA immediate commands, and so requires the GSI 799 * layer to be initialized. 800 * 801 * A Boolean Device Tree "modem-init" property determines whether GSI 802 * initialization will be performed by the AP (Trust Zone) or the modem. 803 * If the AP does GSI initialization, the setup phase is entered after 804 * this has completed successfully. Otherwise the modem initializes 805 * the GSI layer and signals it has finished by sending an SMP2P interrupt 806 * to the AP; this triggers the start if IPA setup. 807 */ 808 static int ipa_probe(struct platform_device *pdev) 809 { 810 struct device *dev = &pdev->dev; 811 enum ipa_firmware_loader loader; 812 const struct ipa_data *data; 813 struct ipa_power *power; 814 struct ipa *ipa; 815 int ret; 816 817 ipa_validate_build(); 818 819 /* Get configuration data early; needed for power initialization */ 820 data = of_device_get_match_data(dev); 821 if (!data) { 822 dev_err(dev, "matched hardware not supported\n"); 823 return -ENODEV; 824 } 825 826 if (!ipa_version_supported(data->version)) { 827 dev_err(dev, "unsupported IPA version %u\n", data->version); 828 return -EINVAL; 829 } 830 831 if (!data->modem_route_count) { 832 dev_err(dev, "modem_route_count cannot be zero\n"); 833 return -EINVAL; 834 } 835 836 loader = ipa_firmware_loader(dev); 837 if (loader == IPA_LOADER_INVALID) 838 return -EINVAL; 839 if (loader == IPA_LOADER_DEFER) 840 return -EPROBE_DEFER; 841 842 /* The clock and interconnects might not be ready when we're 843 * probed, so might return -EPROBE_DEFER. 844 */ 845 power = ipa_power_init(dev, data->power_data); 846 if (IS_ERR(power)) 847 return PTR_ERR(power); 848 849 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ 850 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); 851 if (!ipa) { 852 ret = -ENOMEM; 853 goto err_power_exit; 854 } 855 856 ipa->pdev = pdev; 857 dev_set_drvdata(dev, ipa); 858 ipa->power = power; 859 ipa->version = data->version; 860 ipa->modem_route_count = data->modem_route_count; 861 init_completion(&ipa->completion); 862 863 ret = ipa_reg_init(ipa); 864 if (ret) 865 goto err_kfree_ipa; 866 867 ret = ipa_mem_init(ipa, data->mem_data); 868 if (ret) 869 goto err_reg_exit; 870 871 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, 872 data->endpoint_data); 873 if (ret) 874 goto err_mem_exit; 875 876 /* Result is a non-zero mask of endpoints that support filtering */ 877 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); 878 if (ret) 879 goto err_gsi_exit; 880 881 ret = ipa_table_init(ipa); 882 if (ret) 883 goto err_endpoint_exit; 884 885 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM); 886 if (ret) 887 goto err_table_exit; 888 889 /* Power needs to be active for config and setup */ 890 ret = pm_runtime_get_sync(dev); 891 if (WARN_ON(ret < 0)) 892 goto err_power_put; 893 894 ret = ipa_config(ipa, data); 895 if (ret) 896 goto err_power_put; 897 898 dev_info(dev, "IPA driver initialized"); 899 900 /* If the modem is loading GSI firmware, it will trigger a call to 901 * ipa_setup() when it has finished. In that case we're done here. 902 */ 903 if (loader == IPA_LOADER_MODEM) 904 goto done; 905 906 if (loader == IPA_LOADER_SELF) { 907 /* The AP is loading GSI firmware; do so now */ 908 ret = ipa_firmware_load(dev); 909 if (ret) 910 goto err_deconfig; 911 } /* Otherwise loader == IPA_LOADER_SKIP */ 912 913 /* GSI firmware is loaded; proceed to setup */ 914 ret = ipa_setup(ipa); 915 if (ret) 916 goto err_deconfig; 917 done: 918 pm_runtime_mark_last_busy(dev); 919 (void)pm_runtime_put_autosuspend(dev); 920 921 return 0; 922 923 err_deconfig: 924 ipa_deconfig(ipa); 925 err_power_put: 926 pm_runtime_put_noidle(dev); 927 ipa_smp2p_exit(ipa); 928 err_table_exit: 929 ipa_table_exit(ipa); 930 err_endpoint_exit: 931 ipa_endpoint_exit(ipa); 932 err_gsi_exit: 933 gsi_exit(&ipa->gsi); 934 err_mem_exit: 935 ipa_mem_exit(ipa); 936 err_reg_exit: 937 ipa_reg_exit(ipa); 938 err_kfree_ipa: 939 kfree(ipa); 940 err_power_exit: 941 ipa_power_exit(power); 942 943 return ret; 944 } 945 946 static void ipa_remove(struct platform_device *pdev) 947 { 948 struct ipa *ipa = dev_get_drvdata(&pdev->dev); 949 struct ipa_power *power = ipa->power; 950 struct device *dev = &pdev->dev; 951 int ret; 952 953 /* Prevent the modem from triggering a call to ipa_setup(). This 954 * also ensures a modem-initiated setup that's underway completes. 955 */ 956 ipa_smp2p_irq_disable_setup(ipa); 957 958 ret = pm_runtime_get_sync(dev); 959 if (WARN_ON(ret < 0)) 960 goto out_power_put; 961 962 if (ipa->setup_complete) { 963 ret = ipa_modem_stop(ipa); 964 /* If starting or stopping is in progress, try once more */ 965 if (ret == -EBUSY) { 966 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 967 ret = ipa_modem_stop(ipa); 968 } 969 if (ret) { 970 /* 971 * Not cleaning up here properly might also yield a 972 * crash later on. As the device is still unregistered 973 * in this case, this might even yield a crash later on. 974 */ 975 dev_err(dev, "Failed to stop modem (%pe), leaking resources\n", 976 ERR_PTR(ret)); 977 return; 978 } 979 980 ipa_teardown(ipa); 981 } 982 983 ipa_deconfig(ipa); 984 out_power_put: 985 pm_runtime_put_noidle(dev); 986 ipa_smp2p_exit(ipa); 987 ipa_table_exit(ipa); 988 ipa_endpoint_exit(ipa); 989 gsi_exit(&ipa->gsi); 990 ipa_mem_exit(ipa); 991 ipa_reg_exit(ipa); 992 kfree(ipa); 993 ipa_power_exit(power); 994 995 dev_info(dev, "IPA driver removed"); 996 } 997 998 static const struct attribute_group *ipa_attribute_groups[] = { 999 &ipa_attribute_group, 1000 &ipa_feature_attribute_group, 1001 &ipa_endpoint_id_attribute_group, 1002 &ipa_modem_attribute_group, 1003 NULL, 1004 }; 1005 1006 static struct platform_driver ipa_driver = { 1007 .probe = ipa_probe, 1008 .remove_new = ipa_remove, 1009 .shutdown = ipa_remove, 1010 .driver = { 1011 .name = "ipa", 1012 .pm = &ipa_pm_ops, 1013 .of_match_table = ipa_match, 1014 .dev_groups = ipa_attribute_groups, 1015 }, 1016 }; 1017 1018 module_platform_driver(ipa_driver); 1019 1020 MODULE_LICENSE("GPL v2"); 1021 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); 1022