xref: /linux/drivers/net/ipa/ipa_endpoint.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT_DEFAULT		500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_NEW_FRAG_RULE		= 0x02,
46 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
47 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
48 	IPA_STATUS_OPCODE_LOG			= 0x10,
49 	IPA_STATUS_OPCODE_DCMP			= 0x20,
50 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
51 };
52 
53 /** enum ipa_status_exception - status element exception type */
54 enum ipa_status_exception {
55 	/* 0 means no exception */
56 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
57 	IPA_STATUS_EXCEPTION_IPTYPE		= 0x04,
58 	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 0x08,
59 	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 0x10,
60 	IPA_STATUS_EXCEPTION_SW_FILT		= 0x20,
61 	/* The meaning of the next value depends on whether the IP version */
62 	IPA_STATUS_EXCEPTION_NAT		= 0x40,		/* IPv4 */
63 	IPA_STATUS_EXCEPTION_IPV6CT		= IPA_STATUS_EXCEPTION_NAT,
64 };
65 
66 /* Status element provided by hardware */
67 struct ipa_status {
68 	u8 opcode;		/* enum ipa_status_opcode */
69 	u8 exception;		/* enum ipa_status_exception */
70 	__le16 mask;
71 	__le16 pkt_len;
72 	u8 endp_src_idx;
73 	u8 endp_dst_idx;
74 	__le32 metadata;
75 	__le32 flags1;
76 	__le64 flags2;
77 	__le32 flags3;
78 	__le32 flags4;
79 };
80 
81 /* Field masks for struct ipa_status structure fields */
82 
83 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
84 
85 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
86 
87 #define IPA_STATUS_FLAGS1_FLT_LOCAL_FMASK	GENMASK(0, 0)
88 #define IPA_STATUS_FLAGS1_FLT_HASH_FMASK	GENMASK(1, 1)
89 #define IPA_STATUS_FLAGS1_FLT_GLOBAL_FMASK	GENMASK(2, 2)
90 #define IPA_STATUS_FLAGS1_FLT_RET_HDR_FMASK	GENMASK(3, 3)
91 #define IPA_STATUS_FLAGS1_FLT_RULE_ID_FMASK	GENMASK(13, 4)
92 #define IPA_STATUS_FLAGS1_RT_LOCAL_FMASK	GENMASK(14, 14)
93 #define IPA_STATUS_FLAGS1_RT_HASH_FMASK		GENMASK(15, 15)
94 #define IPA_STATUS_FLAGS1_UCP_FMASK		GENMASK(16, 16)
95 #define IPA_STATUS_FLAGS1_RT_TBL_IDX_FMASK	GENMASK(21, 17)
96 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
97 
98 #define IPA_STATUS_FLAGS2_NAT_HIT_FMASK		GENMASK_ULL(0, 0)
99 #define IPA_STATUS_FLAGS2_NAT_ENTRY_IDX_FMASK	GENMASK_ULL(13, 1)
100 #define IPA_STATUS_FLAGS2_NAT_TYPE_FMASK	GENMASK_ULL(15, 14)
101 #define IPA_STATUS_FLAGS2_TAG_INFO_FMASK	GENMASK_ULL(63, 16)
102 
103 #define IPA_STATUS_FLAGS3_SEQ_NUM_FMASK		GENMASK(7, 0)
104 #define IPA_STATUS_FLAGS3_TOD_CTR_FMASK		GENMASK(31, 8)
105 
106 #define IPA_STATUS_FLAGS4_HDR_LOCAL_FMASK	GENMASK(0, 0)
107 #define IPA_STATUS_FLAGS4_HDR_OFFSET_FMASK	GENMASK(10, 1)
108 #define IPA_STATUS_FLAGS4_FRAG_HIT_FMASK	GENMASK(11, 11)
109 #define IPA_STATUS_FLAGS4_FRAG_RULE_FMASK	GENMASK(15, 12)
110 #define IPA_STATUS_FLAGS4_HW_SPECIFIC_FMASK	GENMASK(31, 16)
111 
112 #ifdef IPA_VALIDATE
113 
114 static void ipa_endpoint_validate_build(void)
115 {
116 	/* The aggregation byte limit defines the point at which an
117 	 * aggregation window will close.  It is programmed into the
118 	 * IPA hardware as a number of KB.  We don't use "hard byte
119 	 * limit" aggregation, which means that we need to supply
120 	 * enough space in a receive buffer to hold a complete MTU
121 	 * plus normal skb overhead *after* that aggregation byte
122 	 * limit has been crossed.
123 	 *
124 	 * This check just ensures we don't define a receive buffer
125 	 * size that would exceed what we can represent in the field
126 	 * that is used to program its size.
127 	 */
128 	BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
129 		     field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
130 		     IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
131 
132 	/* I honestly don't know where this requirement comes from.  But
133 	 * it holds, and if we someday need to loosen the constraint we
134 	 * can try to track it down.
135 	 */
136 	BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
137 }
138 
139 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
140 			    const struct ipa_gsi_endpoint_data *all_data,
141 			    const struct ipa_gsi_endpoint_data *data)
142 {
143 	const struct ipa_gsi_endpoint_data *other_data;
144 	struct device *dev = &ipa->pdev->dev;
145 	enum ipa_endpoint_name other_name;
146 
147 	if (ipa_gsi_endpoint_data_empty(data))
148 		return true;
149 
150 	if (!data->toward_ipa) {
151 		if (data->endpoint.filter_support) {
152 			dev_err(dev, "filtering not supported for "
153 					"RX endpoint %u\n",
154 				data->endpoint_id);
155 			return false;
156 		}
157 
158 		return true;	/* Nothing more to check for RX */
159 	}
160 
161 	if (data->endpoint.config.status_enable) {
162 		other_name = data->endpoint.config.tx.status_endpoint;
163 		if (other_name >= count) {
164 			dev_err(dev, "status endpoint name %u out of range "
165 					"for endpoint %u\n",
166 				other_name, data->endpoint_id);
167 			return false;
168 		}
169 
170 		/* Status endpoint must be defined... */
171 		other_data = &all_data[other_name];
172 		if (ipa_gsi_endpoint_data_empty(other_data)) {
173 			dev_err(dev, "DMA endpoint name %u undefined "
174 					"for endpoint %u\n",
175 				other_name, data->endpoint_id);
176 			return false;
177 		}
178 
179 		/* ...and has to be an RX endpoint... */
180 		if (other_data->toward_ipa) {
181 			dev_err(dev,
182 				"status endpoint for endpoint %u not RX\n",
183 				data->endpoint_id);
184 			return false;
185 		}
186 
187 		/* ...and if it's to be an AP endpoint... */
188 		if (other_data->ee_id == GSI_EE_AP) {
189 			/* ...make sure it has status enabled. */
190 			if (!other_data->endpoint.config.status_enable) {
191 				dev_err(dev,
192 					"status not enabled for endpoint %u\n",
193 					other_data->endpoint_id);
194 				return false;
195 			}
196 		}
197 	}
198 
199 	if (data->endpoint.config.dma_mode) {
200 		other_name = data->endpoint.config.dma_endpoint;
201 		if (other_name >= count) {
202 			dev_err(dev, "DMA endpoint name %u out of range "
203 					"for endpoint %u\n",
204 				other_name, data->endpoint_id);
205 			return false;
206 		}
207 
208 		other_data = &all_data[other_name];
209 		if (ipa_gsi_endpoint_data_empty(other_data)) {
210 			dev_err(dev, "DMA endpoint name %u undefined "
211 					"for endpoint %u\n",
212 				other_name, data->endpoint_id);
213 			return false;
214 		}
215 	}
216 
217 	return true;
218 }
219 
220 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
221 				    const struct ipa_gsi_endpoint_data *data)
222 {
223 	const struct ipa_gsi_endpoint_data *dp = data;
224 	struct device *dev = &ipa->pdev->dev;
225 	enum ipa_endpoint_name name;
226 
227 	ipa_endpoint_validate_build();
228 
229 	if (count > IPA_ENDPOINT_COUNT) {
230 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
231 			count, IPA_ENDPOINT_COUNT);
232 		return false;
233 	}
234 
235 	/* Make sure needed endpoints have defined data */
236 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
237 		dev_err(dev, "command TX endpoint not defined\n");
238 		return false;
239 	}
240 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
241 		dev_err(dev, "LAN RX endpoint not defined\n");
242 		return false;
243 	}
244 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
245 		dev_err(dev, "AP->modem TX endpoint not defined\n");
246 		return false;
247 	}
248 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
249 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
250 		return false;
251 	}
252 
253 	for (name = 0; name < count; name++, dp++)
254 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
255 			return false;
256 
257 	return true;
258 }
259 
260 #else /* !IPA_VALIDATE */
261 
262 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
263 				    const struct ipa_gsi_endpoint_data *data)
264 {
265 	return true;
266 }
267 
268 #endif /* !IPA_VALIDATE */
269 
270 /* Allocate a transaction to use on a non-command endpoint */
271 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
272 						  u32 tre_count)
273 {
274 	struct gsi *gsi = &endpoint->ipa->gsi;
275 	u32 channel_id = endpoint->channel_id;
276 	enum dma_data_direction direction;
277 
278 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
279 
280 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
281 }
282 
283 /* suspend_delay represents suspend for RX, delay for TX endpoints.
284  * Note that suspend is not supported starting with IPA v4.0.
285  */
286 static bool
287 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
288 {
289 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
290 	struct ipa *ipa = endpoint->ipa;
291 	bool state;
292 	u32 mask;
293 	u32 val;
294 
295 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
296 	 * correctly on IPA v4.2.
297 	 *
298 	 * if (endpoint->toward_ipa)
299 	 * 	assert(ipa->version != IPA_VERSION_4.2);
300 	 * else
301 	 * 	assert(ipa->version == IPA_VERSION_3_5_1);
302 	 */
303 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
304 
305 	val = ioread32(ipa->reg_virt + offset);
306 	/* Don't bother if it's already in the requested state */
307 	state = !!(val & mask);
308 	if (suspend_delay != state) {
309 		val ^= mask;
310 		iowrite32(val, ipa->reg_virt + offset);
311 	}
312 
313 	return state;
314 }
315 
316 /* We currently don't care what the previous state was for delay mode */
317 static void
318 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
319 {
320 	/* assert(endpoint->toward_ipa); */
321 
322 	/* Delay mode doesn't work properly for IPA v4.2 */
323 	if (endpoint->ipa->version != IPA_VERSION_4_2)
324 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
325 }
326 
327 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
328 {
329 	u32 mask = BIT(endpoint->endpoint_id);
330 	struct ipa *ipa = endpoint->ipa;
331 	u32 offset;
332 	u32 val;
333 
334 	/* assert(mask & ipa->available); */
335 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
336 	val = ioread32(ipa->reg_virt + offset);
337 
338 	return !!(val & mask);
339 }
340 
341 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
342 {
343 	u32 mask = BIT(endpoint->endpoint_id);
344 	struct ipa *ipa = endpoint->ipa;
345 
346 	/* assert(mask & ipa->available); */
347 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
348 }
349 
350 /**
351  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
352  * @endpoint:	Endpoint on which to emulate a suspend
353  *
354  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
355  *  with an open aggregation frame.  This is to work around a hardware
356  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
357  *  generated when it should be.
358  */
359 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
360 {
361 	struct ipa *ipa = endpoint->ipa;
362 
363 	if (!endpoint->data->aggregation)
364 		return;
365 
366 	/* Nothing to do if the endpoint doesn't have aggregation open */
367 	if (!ipa_endpoint_aggr_active(endpoint))
368 		return;
369 
370 	/* Force close aggregation */
371 	ipa_endpoint_force_close(endpoint);
372 
373 	ipa_interrupt_simulate_suspend(ipa->interrupt);
374 }
375 
376 /* Returns previous suspend state (true means suspend was enabled) */
377 static bool
378 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
379 {
380 	bool suspended;
381 
382 	if (endpoint->ipa->version != IPA_VERSION_3_5_1)
383 		return enable;	/* For IPA v4.0+, no change made */
384 
385 	/* assert(!endpoint->toward_ipa); */
386 
387 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
388 
389 	/* A client suspended with an open aggregation frame will not
390 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
391 	 * ipa_endpoint_suspend_aggr() handle this.
392 	 */
393 	if (enable && !suspended)
394 		ipa_endpoint_suspend_aggr(endpoint);
395 
396 	return suspended;
397 }
398 
399 /* Enable or disable delay or suspend mode on all modem endpoints */
400 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
401 {
402 	u32 endpoint_id;
403 
404 	/* DELAY mode doesn't work correctly on IPA v4.2 */
405 	if (ipa->version == IPA_VERSION_4_2)
406 		return;
407 
408 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
409 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
410 
411 		if (endpoint->ee_id != GSI_EE_MODEM)
412 			continue;
413 
414 		/* Set TX delay mode or RX suspend mode */
415 		if (endpoint->toward_ipa)
416 			ipa_endpoint_program_delay(endpoint, enable);
417 		else
418 			(void)ipa_endpoint_program_suspend(endpoint, enable);
419 	}
420 }
421 
422 /* Reset all modem endpoints to use the default exception endpoint */
423 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
424 {
425 	u32 initialized = ipa->initialized;
426 	struct gsi_trans *trans;
427 	u32 count;
428 
429 	/* We need one command per modem TX endpoint.  We can get an upper
430 	 * bound on that by assuming all initialized endpoints are modem->IPA.
431 	 * That won't happen, and we could be more precise, but this is fine
432 	 * for now.  We need to end the transaction with a "tag process."
433 	 */
434 	count = hweight32(initialized) + ipa_cmd_tag_process_count();
435 	trans = ipa_cmd_trans_alloc(ipa, count);
436 	if (!trans) {
437 		dev_err(&ipa->pdev->dev,
438 			"no transaction to reset modem exception endpoints\n");
439 		return -EBUSY;
440 	}
441 
442 	while (initialized) {
443 		u32 endpoint_id = __ffs(initialized);
444 		struct ipa_endpoint *endpoint;
445 		u32 offset;
446 
447 		initialized ^= BIT(endpoint_id);
448 
449 		/* We only reset modem TX endpoints */
450 		endpoint = &ipa->endpoint[endpoint_id];
451 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
452 			continue;
453 
454 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
455 
456 		/* Value written is 0, and all bits are updated.  That
457 		 * means status is disabled on the endpoint, and as a
458 		 * result all other fields in the register are ignored.
459 		 */
460 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
461 	}
462 
463 	ipa_cmd_tag_process_add(trans);
464 
465 	/* XXX This should have a 1 second timeout */
466 	gsi_trans_commit_wait(trans);
467 
468 	return 0;
469 }
470 
471 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
472 {
473 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
474 	u32 val = 0;
475 
476 	/* FRAG_OFFLOAD_EN is 0 */
477 	if (endpoint->data->checksum) {
478 		if (endpoint->toward_ipa) {
479 			u32 checksum_offset;
480 
481 			val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
482 					       CS_OFFLOAD_EN_FMASK);
483 			/* Checksum header offset is in 4-byte units */
484 			checksum_offset = sizeof(struct rmnet_map_header);
485 			checksum_offset /= sizeof(u32);
486 			val |= u32_encode_bits(checksum_offset,
487 					       CS_METADATA_HDR_OFFSET_FMASK);
488 		} else {
489 			val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
490 					       CS_OFFLOAD_EN_FMASK);
491 		}
492 	} else {
493 		val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
494 				       CS_OFFLOAD_EN_FMASK);
495 	}
496 	/* CS_GEN_QMB_MASTER_SEL is 0 */
497 
498 	iowrite32(val, endpoint->ipa->reg_virt + offset);
499 }
500 
501 /**
502  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
503  * @endpoint:	Endpoint pointer
504  *
505  * We program QMAP endpoints so each packet received is preceded by a QMAP
506  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
507  * packet size field, and we have the IPA hardware populate both for each
508  * received packet.  The header is configured (in the HDR_EXT register)
509  * to use big endian format.
510  *
511  * The packet size is written into the QMAP header's pkt_len field.  That
512  * location is defined here using the HDR_OFST_PKT_SIZE field.
513  *
514  * The mux_id comes from a 4-byte metadata value supplied with each packet
515  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
516  * value that we want, in its low-order byte.  A bitmask defined in the
517  * endpoint's METADATA_MASK register defines which byte within the modem
518  * metadata contains the mux_id.  And the OFST_METADATA field programmed
519  * here indicates where the extracted byte should be placed within the QMAP
520  * header.
521  */
522 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
523 {
524 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
525 	u32 val = 0;
526 
527 	if (endpoint->data->qmap) {
528 		size_t header_size = sizeof(struct rmnet_map_header);
529 
530 		/* We might supply a checksum header after the QMAP header */
531 		if (endpoint->toward_ipa && endpoint->data->checksum)
532 			header_size += sizeof(struct rmnet_map_ul_csum_header);
533 		val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
534 
535 		/* Define how to fill fields in a received QMAP header */
536 		if (!endpoint->toward_ipa) {
537 			u32 off;	/* Field offset within header */
538 
539 			/* Where IPA will write the metadata value */
540 			off = offsetof(struct rmnet_map_header, mux_id);
541 			val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK);
542 
543 			/* Where IPA will write the length */
544 			off = offsetof(struct rmnet_map_header, pkt_len);
545 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
546 			val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK);
547 		}
548 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
549 		val |= HDR_OFST_METADATA_VALID_FMASK;
550 
551 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
552 		/* HDR_A5_MUX is 0 */
553 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
554 		/* HDR_METADATA_REG_VALID is 0 (TX only) */
555 	}
556 
557 	iowrite32(val, endpoint->ipa->reg_virt + offset);
558 }
559 
560 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
561 {
562 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
563 	u32 pad_align = endpoint->data->rx.pad_align;
564 	u32 val = 0;
565 
566 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
567 
568 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
569 	 * driver assumes this field is meaningful in packets it receives,
570 	 * and assumes the header's payload length includes that padding.
571 	 * The RMNet driver does *not* pad packets it sends, however, so
572 	 * the pad field (although 0) should be ignored.
573 	 */
574 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
575 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
576 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
577 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
578 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
579 	}
580 
581 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
582 	if (!endpoint->toward_ipa)
583 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
584 
585 	iowrite32(val, endpoint->ipa->reg_virt + offset);
586 }
587 
588 
589 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
590 {
591 	u32 endpoint_id = endpoint->endpoint_id;
592 	u32 val = 0;
593 	u32 offset;
594 
595 	if (endpoint->toward_ipa)
596 		return;		/* Register not valid for TX endpoints */
597 
598 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
599 
600 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
601 	if (endpoint->data->qmap)
602 		val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
603 
604 	iowrite32(val, endpoint->ipa->reg_virt + offset);
605 }
606 
607 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
608 {
609 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
610 	u32 val;
611 
612 	if (!endpoint->toward_ipa)
613 		return;		/* Register not valid for RX endpoints */
614 
615 	if (endpoint->data->dma_mode) {
616 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
617 		u32 dma_endpoint_id;
618 
619 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
620 
621 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
622 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
623 	} else {
624 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
625 	}
626 	/* All other bits unspecified (and 0) */
627 
628 	iowrite32(val, endpoint->ipa->reg_virt + offset);
629 }
630 
631 /* Compute the aggregation size value to use for a given buffer size */
632 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
633 {
634 	/* We don't use "hard byte limit" aggregation, so we define the
635 	 * aggregation limit such that our buffer has enough space *after*
636 	 * that limit to receive a full MTU of data, plus overhead.
637 	 */
638 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
639 
640 	return rx_buffer_size / SZ_1K;
641 }
642 
643 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
644 {
645 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
646 	u32 val = 0;
647 
648 	if (endpoint->data->aggregation) {
649 		if (!endpoint->toward_ipa) {
650 			u32 limit;
651 
652 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
653 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
654 
655 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
656 			val |= u32_encode_bits(limit, AGGR_BYTE_LIMIT_FMASK);
657 
658 			limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
659 			limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
660 			val |= u32_encode_bits(limit, AGGR_TIME_LIMIT_FMASK);
661 
662 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
663 
664 			if (endpoint->data->rx.aggr_close_eof)
665 				val |= AGGR_SW_EOF_ACTIVE_FMASK;
666 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
667 		} else {
668 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
669 					       AGGR_EN_FMASK);
670 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
671 			/* other fields ignored */
672 		}
673 		/* AGGR_FORCE_CLOSE is 0 */
674 	} else {
675 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
676 		/* other fields ignored */
677 	}
678 
679 	iowrite32(val, endpoint->ipa->reg_virt + offset);
680 }
681 
682 /* The head-of-line blocking timer is defined as a tick count, where each
683  * tick represents 128 cycles of the IPA core clock.  Return the value
684  * that should be written to that register that represents the timeout
685  * period provided.
686  */
687 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
688 {
689 	u32 width;
690 	u32 scale;
691 	u64 ticks;
692 	u64 rate;
693 	u32 high;
694 	u32 val;
695 
696 	if (!microseconds)
697 		return 0;	/* Nothing to compute if timer period is 0 */
698 
699 	/* Use 64 bit arithmetic to avoid overflow... */
700 	rate = ipa_clock_rate(ipa);
701 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
702 	/* ...but we still need to fit into a 32-bit register */
703 	WARN_ON(ticks > U32_MAX);
704 
705 	/* IPA v3.5.1 just records the tick count */
706 	if (ipa->version == IPA_VERSION_3_5_1)
707 		return (u32)ticks;
708 
709 	/* For IPA v4.2, the tick count is represented by base and
710 	 * scale fields within the 32-bit timer register, where:
711 	 *     ticks = base << scale;
712 	 * The best precision is achieved when the base value is as
713 	 * large as possible.  Find the highest set bit in the tick
714 	 * count, and extract the number of bits in the base field
715 	 * such that that high bit is included.
716 	 */
717 	high = fls(ticks);		/* 1..32 */
718 	width = HWEIGHT32(BASE_VALUE_FMASK);
719 	scale = high > width ? high - width : 0;
720 	if (scale) {
721 		/* If we're scaling, round up to get a closer result */
722 		ticks += 1 << (scale - 1);
723 		/* High bit was set, so rounding might have affected it */
724 		if (fls(ticks) != high)
725 			scale++;
726 	}
727 
728 	val = u32_encode_bits(scale, SCALE_FMASK);
729 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
730 
731 	return val;
732 }
733 
734 /* If microseconds is 0, timeout is immediate */
735 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
736 					      u32 microseconds)
737 {
738 	u32 endpoint_id = endpoint->endpoint_id;
739 	struct ipa *ipa = endpoint->ipa;
740 	u32 offset;
741 	u32 val;
742 
743 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
744 	val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
745 	iowrite32(val, ipa->reg_virt + offset);
746 }
747 
748 static void
749 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
750 {
751 	u32 endpoint_id = endpoint->endpoint_id;
752 	u32 offset;
753 	u32 val;
754 
755 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
756 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
757 	iowrite32(val, endpoint->ipa->reg_virt + offset);
758 }
759 
760 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
761 {
762 	u32 i;
763 
764 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
765 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
766 
767 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
768 			continue;
769 
770 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
771 		ipa_endpoint_init_hol_block_enable(endpoint, true);
772 	}
773 }
774 
775 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
776 {
777 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
778 	u32 val = 0;
779 
780 	if (!endpoint->toward_ipa)
781 		return;		/* Register not valid for RX endpoints */
782 
783 	/* DEAGGR_HDR_LEN is 0 */
784 	/* PACKET_OFFSET_VALID is 0 */
785 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
786 	/* MAX_PACKET_LEN is 0 (not enforced) */
787 
788 	iowrite32(val, endpoint->ipa->reg_virt + offset);
789 }
790 
791 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
792 {
793 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
794 	u32 seq_type = endpoint->seq_type;
795 	u32 val = 0;
796 
797 	if (!endpoint->toward_ipa)
798 		return;		/* Register not valid for RX endpoints */
799 
800 	/* Sequencer type is made up of four nibbles */
801 	val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
802 	val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
803 	/* The second two apply to replicated packets */
804 	val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK);
805 	val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK);
806 
807 	iowrite32(val, endpoint->ipa->reg_virt + offset);
808 }
809 
810 /**
811  * ipa_endpoint_skb_tx() - Transmit a socket buffer
812  * @endpoint:	Endpoint pointer
813  * @skb:	Socket buffer to send
814  *
815  * Returns:	0 if successful, or a negative error code
816  */
817 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
818 {
819 	struct gsi_trans *trans;
820 	u32 nr_frags;
821 	int ret;
822 
823 	/* Make sure source endpoint's TLV FIFO has enough entries to
824 	 * hold the linear portion of the skb and all its fragments.
825 	 * If not, see if we can linearize it before giving up.
826 	 */
827 	nr_frags = skb_shinfo(skb)->nr_frags;
828 	if (1 + nr_frags > endpoint->trans_tre_max) {
829 		if (skb_linearize(skb))
830 			return -E2BIG;
831 		nr_frags = 0;
832 	}
833 
834 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
835 	if (!trans)
836 		return -EBUSY;
837 
838 	ret = gsi_trans_skb_add(trans, skb);
839 	if (ret)
840 		goto err_trans_free;
841 	trans->data = skb;	/* transaction owns skb now */
842 
843 	gsi_trans_commit(trans, !netdev_xmit_more());
844 
845 	return 0;
846 
847 err_trans_free:
848 	gsi_trans_free(trans);
849 
850 	return -ENOMEM;
851 }
852 
853 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
854 {
855 	u32 endpoint_id = endpoint->endpoint_id;
856 	struct ipa *ipa = endpoint->ipa;
857 	u32 val = 0;
858 	u32 offset;
859 
860 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
861 
862 	if (endpoint->data->status_enable) {
863 		val |= STATUS_EN_FMASK;
864 		if (endpoint->toward_ipa) {
865 			enum ipa_endpoint_name name;
866 			u32 status_endpoint_id;
867 
868 			name = endpoint->data->tx.status_endpoint;
869 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
870 
871 			val |= u32_encode_bits(status_endpoint_id,
872 					       STATUS_ENDP_FMASK);
873 		}
874 		/* STATUS_LOCATION is 0 (status element precedes packet) */
875 		/* The next field is present for IPA v4.0 and above */
876 		/* STATUS_PKT_SUPPRESS_FMASK is 0 */
877 	}
878 
879 	iowrite32(val, ipa->reg_virt + offset);
880 }
881 
882 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
883 {
884 	struct gsi_trans *trans;
885 	bool doorbell = false;
886 	struct page *page;
887 	u32 offset;
888 	u32 len;
889 	int ret;
890 
891 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
892 	if (!page)
893 		return -ENOMEM;
894 
895 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
896 	if (!trans)
897 		goto err_free_pages;
898 
899 	/* Offset the buffer to make space for skb headroom */
900 	offset = NET_SKB_PAD;
901 	len = IPA_RX_BUFFER_SIZE - offset;
902 
903 	ret = gsi_trans_page_add(trans, page, len, offset);
904 	if (ret)
905 		goto err_trans_free;
906 	trans->data = page;	/* transaction owns page now */
907 
908 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
909 		doorbell = true;
910 		endpoint->replenish_ready = 0;
911 	}
912 
913 	gsi_trans_commit(trans, doorbell);
914 
915 	return 0;
916 
917 err_trans_free:
918 	gsi_trans_free(trans);
919 err_free_pages:
920 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
921 
922 	return -ENOMEM;
923 }
924 
925 /**
926  * ipa_endpoint_replenish() - Replenish the Rx packets cache.
927  * @endpoint:	Endpoint to be replenished
928  * @count:	Number of buffers to send to hardware
929  *
930  * Allocate RX packet wrapper structures with maximal socket buffers
931  * for an endpoint.  These are supplied to the hardware, which fills
932  * them with incoming data.
933  */
934 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
935 {
936 	struct gsi *gsi;
937 	u32 backlog;
938 
939 	if (!endpoint->replenish_enabled) {
940 		if (count)
941 			atomic_add(count, &endpoint->replenish_saved);
942 		return;
943 	}
944 
945 
946 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
947 		if (ipa_endpoint_replenish_one(endpoint))
948 			goto try_again_later;
949 	if (count)
950 		atomic_add(count, &endpoint->replenish_backlog);
951 
952 	return;
953 
954 try_again_later:
955 	/* The last one didn't succeed, so fix the backlog */
956 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
957 
958 	if (count)
959 		atomic_add(count, &endpoint->replenish_backlog);
960 
961 	/* Whenever a receive buffer transaction completes we'll try to
962 	 * replenish again.  It's unlikely, but if we fail to supply even
963 	 * one buffer, nothing will trigger another replenish attempt.
964 	 * Receive buffer transactions use one TRE, so schedule work to
965 	 * try replenishing again if our backlog is *all* available TREs.
966 	 */
967 	gsi = &endpoint->ipa->gsi;
968 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
969 		schedule_delayed_work(&endpoint->replenish_work,
970 				      msecs_to_jiffies(1));
971 }
972 
973 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
974 {
975 	struct gsi *gsi = &endpoint->ipa->gsi;
976 	u32 max_backlog;
977 	u32 saved;
978 
979 	endpoint->replenish_enabled = true;
980 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
981 		atomic_add(saved, &endpoint->replenish_backlog);
982 
983 	/* Start replenishing if hardware currently has no buffers */
984 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
985 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
986 		ipa_endpoint_replenish(endpoint, 0);
987 }
988 
989 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
990 {
991 	u32 backlog;
992 
993 	endpoint->replenish_enabled = false;
994 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
995 		atomic_add(backlog, &endpoint->replenish_saved);
996 }
997 
998 static void ipa_endpoint_replenish_work(struct work_struct *work)
999 {
1000 	struct delayed_work *dwork = to_delayed_work(work);
1001 	struct ipa_endpoint *endpoint;
1002 
1003 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1004 
1005 	ipa_endpoint_replenish(endpoint, 0);
1006 }
1007 
1008 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1009 				  void *data, u32 len, u32 extra)
1010 {
1011 	struct sk_buff *skb;
1012 
1013 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1014 	if (skb) {
1015 		skb_put(skb, len);
1016 		memcpy(skb->data, data, len);
1017 		skb->truesize += extra;
1018 	}
1019 
1020 	/* Now receive it, or drop it if there's no netdev */
1021 	if (endpoint->netdev)
1022 		ipa_modem_skb_rx(endpoint->netdev, skb);
1023 	else if (skb)
1024 		dev_kfree_skb_any(skb);
1025 }
1026 
1027 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1028 				   struct page *page, u32 len)
1029 {
1030 	struct sk_buff *skb;
1031 
1032 	/* Nothing to do if there's no netdev */
1033 	if (!endpoint->netdev)
1034 		return false;
1035 
1036 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1037 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1038 	if (skb) {
1039 		/* Reserve the headroom and account for the data */
1040 		skb_reserve(skb, NET_SKB_PAD);
1041 		skb_put(skb, len);
1042 	}
1043 
1044 	/* Receive the buffer (or record drop if unable to build it) */
1045 	ipa_modem_skb_rx(endpoint->netdev, skb);
1046 
1047 	return skb != NULL;
1048 }
1049 
1050 /* The format of a packet status element is the same for several status
1051  * types (opcodes).  The NEW_FRAG_RULE, LOG, DCMP (decompression) types
1052  * aren't currently supported
1053  */
1054 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1055 {
1056 	switch (opcode) {
1057 	case IPA_STATUS_OPCODE_PACKET:
1058 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1059 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1060 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1061 		return true;
1062 	default:
1063 		return false;
1064 	}
1065 }
1066 
1067 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1068 				     const struct ipa_status *status)
1069 {
1070 	u32 endpoint_id;
1071 
1072 	if (!ipa_status_format_packet(status->opcode))
1073 		return true;
1074 	if (!status->pkt_len)
1075 		return true;
1076 	endpoint_id = u32_get_bits(status->endp_dst_idx,
1077 				   IPA_STATUS_DST_IDX_FMASK);
1078 	if (endpoint_id != endpoint->endpoint_id)
1079 		return true;
1080 
1081 	return false;	/* Don't skip this packet, process it */
1082 }
1083 
1084 /* Return whether the status indicates the packet should be dropped */
1085 static bool ipa_status_drop_packet(const struct ipa_status *status)
1086 {
1087 	u32 val;
1088 
1089 	/* Deaggregation exceptions we drop; others we consume */
1090 	if (status->exception)
1091 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1092 
1093 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1094 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1095 
1096 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1097 }
1098 
1099 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1100 				      struct page *page, u32 total_len)
1101 {
1102 	void *data = page_address(page) + NET_SKB_PAD;
1103 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1104 	u32 resid = total_len;
1105 
1106 	while (resid) {
1107 		const struct ipa_status *status = data;
1108 		u32 align;
1109 		u32 len;
1110 
1111 		if (resid < sizeof(*status)) {
1112 			dev_err(&endpoint->ipa->pdev->dev,
1113 				"short message (%u bytes < %zu byte status)\n",
1114 				resid, sizeof(*status));
1115 			break;
1116 		}
1117 
1118 		/* Skip over status packets that lack packet data */
1119 		if (ipa_endpoint_status_skip(endpoint, status)) {
1120 			data += sizeof(*status);
1121 			resid -= sizeof(*status);
1122 			continue;
1123 		}
1124 
1125 		/* Compute the amount of buffer space consumed by the
1126 		 * packet, including the status element.  If the hardware
1127 		 * is configured to pad packet data to an aligned boundary,
1128 		 * account for that.  And if checksum offload is is enabled
1129 		 * a trailer containing computed checksum information will
1130 		 * be appended.
1131 		 */
1132 		align = endpoint->data->rx.pad_align ? : 1;
1133 		len = le16_to_cpu(status->pkt_len);
1134 		len = sizeof(*status) + ALIGN(len, align);
1135 		if (endpoint->data->checksum)
1136 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1137 
1138 		/* Charge the new packet with a proportional fraction of
1139 		 * the unused space in the original receive buffer.
1140 		 * XXX Charge a proportion of the *whole* receive buffer?
1141 		 */
1142 		if (!ipa_status_drop_packet(status)) {
1143 			u32 extra = unused * len / total_len;
1144 			void *data2 = data + sizeof(*status);
1145 			u32 len2 = le16_to_cpu(status->pkt_len);
1146 
1147 			/* Client receives only packet data (no status) */
1148 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1149 		}
1150 
1151 		/* Consume status and the full packet it describes */
1152 		data += len;
1153 		resid -= len;
1154 	}
1155 }
1156 
1157 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1158 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1159 				     struct gsi_trans *trans)
1160 {
1161 }
1162 
1163 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1164 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1165 				     struct gsi_trans *trans)
1166 {
1167 	struct page *page;
1168 
1169 	ipa_endpoint_replenish(endpoint, 1);
1170 
1171 	if (trans->cancelled)
1172 		return;
1173 
1174 	/* Parse or build a socket buffer using the actual received length */
1175 	page = trans->data;
1176 	if (endpoint->data->status_enable)
1177 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1178 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1179 		trans->data = NULL;	/* Pages have been consumed */
1180 }
1181 
1182 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1183 				 struct gsi_trans *trans)
1184 {
1185 	if (endpoint->toward_ipa)
1186 		ipa_endpoint_tx_complete(endpoint, trans);
1187 	else
1188 		ipa_endpoint_rx_complete(endpoint, trans);
1189 }
1190 
1191 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1192 				struct gsi_trans *trans)
1193 {
1194 	if (endpoint->toward_ipa) {
1195 		struct ipa *ipa = endpoint->ipa;
1196 
1197 		/* Nothing to do for command transactions */
1198 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1199 			struct sk_buff *skb = trans->data;
1200 
1201 			if (skb)
1202 				dev_kfree_skb_any(skb);
1203 		}
1204 	} else {
1205 		struct page *page = trans->data;
1206 
1207 		if (page)
1208 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1209 	}
1210 }
1211 
1212 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1213 {
1214 	u32 val;
1215 
1216 	/* ROUTE_DIS is 0 */
1217 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1218 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1219 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1220 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1221 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1222 
1223 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1224 }
1225 
1226 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1227 {
1228 	ipa_endpoint_default_route_set(ipa, 0);
1229 }
1230 
1231 /**
1232  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1233  * @endpoint:	Endpoint to be reset
1234  *
1235  * If aggregation is active on an RX endpoint when a reset is performed
1236  * on its underlying GSI channel, a special sequence of actions must be
1237  * taken to ensure the IPA pipeline is properly cleared.
1238  *
1239  * Return:	0 if successful, or a negative error code
1240  */
1241 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1242 {
1243 	struct device *dev = &endpoint->ipa->pdev->dev;
1244 	struct ipa *ipa = endpoint->ipa;
1245 	struct gsi *gsi = &ipa->gsi;
1246 	bool suspended = false;
1247 	dma_addr_t addr;
1248 	bool legacy;
1249 	u32 retries;
1250 	u32 len = 1;
1251 	void *virt;
1252 	int ret;
1253 
1254 	virt = kzalloc(len, GFP_KERNEL);
1255 	if (!virt)
1256 		return -ENOMEM;
1257 
1258 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1259 	if (dma_mapping_error(dev, addr)) {
1260 		ret = -ENOMEM;
1261 		goto out_kfree;
1262 	}
1263 
1264 	/* Force close aggregation before issuing the reset */
1265 	ipa_endpoint_force_close(endpoint);
1266 
1267 	/* Reset and reconfigure the channel with the doorbell engine
1268 	 * disabled.  Then poll until we know aggregation is no longer
1269 	 * active.  We'll re-enable the doorbell (if appropriate) when
1270 	 * we reset again below.
1271 	 */
1272 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1273 
1274 	/* Make sure the channel isn't suspended */
1275 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1276 
1277 	/* Start channel and do a 1 byte read */
1278 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1279 	if (ret)
1280 		goto out_suspend_again;
1281 
1282 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1283 	if (ret)
1284 		goto err_endpoint_stop;
1285 
1286 	/* Wait for aggregation to be closed on the channel */
1287 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1288 	do {
1289 		if (!ipa_endpoint_aggr_active(endpoint))
1290 			break;
1291 		msleep(1);
1292 	} while (retries--);
1293 
1294 	/* Check one last time */
1295 	if (ipa_endpoint_aggr_active(endpoint))
1296 		dev_err(dev, "endpoint %u still active during reset\n",
1297 			endpoint->endpoint_id);
1298 
1299 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1300 
1301 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1302 	if (ret)
1303 		goto out_suspend_again;
1304 
1305 	/* Finally, reset and reconfigure the channel again (re-enabling the
1306 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1307 	 * complete the channel reset sequence.  Finish by suspending the
1308 	 * channel again (if necessary).
1309 	 */
1310 	legacy = ipa->version == IPA_VERSION_3_5_1;
1311 	gsi_channel_reset(gsi, endpoint->channel_id, legacy);
1312 
1313 	msleep(1);
1314 
1315 	goto out_suspend_again;
1316 
1317 err_endpoint_stop:
1318 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1319 out_suspend_again:
1320 	if (suspended)
1321 		(void)ipa_endpoint_program_suspend(endpoint, true);
1322 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1323 out_kfree:
1324 	kfree(virt);
1325 
1326 	return ret;
1327 }
1328 
1329 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1330 {
1331 	u32 channel_id = endpoint->channel_id;
1332 	struct ipa *ipa = endpoint->ipa;
1333 	bool special;
1334 	bool legacy;
1335 	int ret = 0;
1336 
1337 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1338 	 * is active, we need to handle things specially to recover.
1339 	 * All other cases just need to reset the underlying GSI channel.
1340 	 *
1341 	 * IPA v3.5.1 enables the doorbell engine.  Newer versions do not.
1342 	 */
1343 	legacy = ipa->version == IPA_VERSION_3_5_1;
1344 	special = !endpoint->toward_ipa && endpoint->data->aggregation;
1345 	if (special && ipa_endpoint_aggr_active(endpoint))
1346 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1347 	else
1348 		gsi_channel_reset(&ipa->gsi, channel_id, legacy);
1349 
1350 	if (ret)
1351 		dev_err(&ipa->pdev->dev,
1352 			"error %d resetting channel %u for endpoint %u\n",
1353 			ret, endpoint->channel_id, endpoint->endpoint_id);
1354 }
1355 
1356 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1357 {
1358 	if (endpoint->toward_ipa)
1359 		ipa_endpoint_program_delay(endpoint, false);
1360 	else
1361 		(void)ipa_endpoint_program_suspend(endpoint, false);
1362 	ipa_endpoint_init_cfg(endpoint);
1363 	ipa_endpoint_init_hdr(endpoint);
1364 	ipa_endpoint_init_hdr_ext(endpoint);
1365 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1366 	ipa_endpoint_init_mode(endpoint);
1367 	ipa_endpoint_init_aggr(endpoint);
1368 	ipa_endpoint_init_deaggr(endpoint);
1369 	ipa_endpoint_init_seq(endpoint);
1370 	ipa_endpoint_status(endpoint);
1371 }
1372 
1373 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1374 {
1375 	struct ipa *ipa = endpoint->ipa;
1376 	struct gsi *gsi = &ipa->gsi;
1377 	int ret;
1378 
1379 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1380 	if (ret) {
1381 		dev_err(&ipa->pdev->dev,
1382 			"error %d starting %cX channel %u for endpoint %u\n",
1383 			ret, endpoint->toward_ipa ? 'T' : 'R',
1384 			endpoint->channel_id, endpoint->endpoint_id);
1385 		return ret;
1386 	}
1387 
1388 	if (!endpoint->toward_ipa) {
1389 		ipa_interrupt_suspend_enable(ipa->interrupt,
1390 					     endpoint->endpoint_id);
1391 		ipa_endpoint_replenish_enable(endpoint);
1392 	}
1393 
1394 	ipa->enabled |= BIT(endpoint->endpoint_id);
1395 
1396 	return 0;
1397 }
1398 
1399 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1400 {
1401 	u32 mask = BIT(endpoint->endpoint_id);
1402 	struct ipa *ipa = endpoint->ipa;
1403 	struct gsi *gsi = &ipa->gsi;
1404 	int ret;
1405 
1406 	if (!(ipa->enabled & mask))
1407 		return;
1408 
1409 	ipa->enabled ^= mask;
1410 
1411 	if (!endpoint->toward_ipa) {
1412 		ipa_endpoint_replenish_disable(endpoint);
1413 		ipa_interrupt_suspend_disable(ipa->interrupt,
1414 					      endpoint->endpoint_id);
1415 	}
1416 
1417 	/* Note that if stop fails, the channel's state is not well-defined */
1418 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1419 	if (ret)
1420 		dev_err(&ipa->pdev->dev,
1421 			"error %d attempting to stop endpoint %u\n", ret,
1422 			endpoint->endpoint_id);
1423 }
1424 
1425 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1426 {
1427 	struct device *dev = &endpoint->ipa->pdev->dev;
1428 	struct gsi *gsi = &endpoint->ipa->gsi;
1429 	bool stop_channel;
1430 	int ret;
1431 
1432 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1433 		return;
1434 
1435 	if (!endpoint->toward_ipa)
1436 		ipa_endpoint_replenish_disable(endpoint);
1437 
1438 	if (!endpoint->toward_ipa)
1439 		(void)ipa_endpoint_program_suspend(endpoint, true);
1440 
1441 	/* IPA v3.5.1 doesn't use channel stop for suspend */
1442 	stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1443 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1444 	if (ret)
1445 		dev_err(dev, "error %d suspending channel %u\n", ret,
1446 			endpoint->channel_id);
1447 }
1448 
1449 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1450 {
1451 	struct device *dev = &endpoint->ipa->pdev->dev;
1452 	struct gsi *gsi = &endpoint->ipa->gsi;
1453 	bool start_channel;
1454 	int ret;
1455 
1456 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1457 		return;
1458 
1459 	if (!endpoint->toward_ipa)
1460 		(void)ipa_endpoint_program_suspend(endpoint, false);
1461 
1462 	/* IPA v3.5.1 doesn't use channel start for resume */
1463 	start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1464 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1465 	if (ret)
1466 		dev_err(dev, "error %d resuming channel %u\n", ret,
1467 			endpoint->channel_id);
1468 	else if (!endpoint->toward_ipa)
1469 		ipa_endpoint_replenish_enable(endpoint);
1470 }
1471 
1472 void ipa_endpoint_suspend(struct ipa *ipa)
1473 {
1474 	if (ipa->modem_netdev)
1475 		ipa_modem_suspend(ipa->modem_netdev);
1476 
1477 	ipa_cmd_tag_process(ipa);
1478 
1479 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1480 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1481 }
1482 
1483 void ipa_endpoint_resume(struct ipa *ipa)
1484 {
1485 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1486 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1487 
1488 	if (ipa->modem_netdev)
1489 		ipa_modem_resume(ipa->modem_netdev);
1490 }
1491 
1492 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1493 {
1494 	struct gsi *gsi = &endpoint->ipa->gsi;
1495 	u32 channel_id = endpoint->channel_id;
1496 
1497 	/* Only AP endpoints get set up */
1498 	if (endpoint->ee_id != GSI_EE_AP)
1499 		return;
1500 
1501 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1502 	if (!endpoint->toward_ipa) {
1503 		/* RX transactions require a single TRE, so the maximum
1504 		 * backlog is the same as the maximum outstanding TREs.
1505 		 */
1506 		endpoint->replenish_enabled = false;
1507 		atomic_set(&endpoint->replenish_saved,
1508 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1509 		atomic_set(&endpoint->replenish_backlog, 0);
1510 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1511 				  ipa_endpoint_replenish_work);
1512 	}
1513 
1514 	ipa_endpoint_program(endpoint);
1515 
1516 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1517 }
1518 
1519 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1520 {
1521 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1522 
1523 	if (!endpoint->toward_ipa)
1524 		cancel_delayed_work_sync(&endpoint->replenish_work);
1525 
1526 	ipa_endpoint_reset(endpoint);
1527 }
1528 
1529 void ipa_endpoint_setup(struct ipa *ipa)
1530 {
1531 	u32 initialized = ipa->initialized;
1532 
1533 	ipa->set_up = 0;
1534 	while (initialized) {
1535 		u32 endpoint_id = __ffs(initialized);
1536 
1537 		initialized ^= BIT(endpoint_id);
1538 
1539 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1540 	}
1541 }
1542 
1543 void ipa_endpoint_teardown(struct ipa *ipa)
1544 {
1545 	u32 set_up = ipa->set_up;
1546 
1547 	while (set_up) {
1548 		u32 endpoint_id = __fls(set_up);
1549 
1550 		set_up ^= BIT(endpoint_id);
1551 
1552 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1553 	}
1554 	ipa->set_up = 0;
1555 }
1556 
1557 int ipa_endpoint_config(struct ipa *ipa)
1558 {
1559 	struct device *dev = &ipa->pdev->dev;
1560 	u32 initialized;
1561 	u32 rx_base;
1562 	u32 rx_mask;
1563 	u32 tx_mask;
1564 	int ret = 0;
1565 	u32 max;
1566 	u32 val;
1567 
1568 	/* Find out about the endpoints supplied by the hardware, and ensure
1569 	 * the highest one doesn't exceed the number we support.
1570 	 */
1571 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1572 
1573 	/* Our RX is an IPA producer */
1574 	rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
1575 	max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
1576 	if (max > IPA_ENDPOINT_MAX) {
1577 		dev_err(dev, "too many endpoints (%u > %u)\n",
1578 			max, IPA_ENDPOINT_MAX);
1579 		return -EINVAL;
1580 	}
1581 	rx_mask = GENMASK(max - 1, rx_base);
1582 
1583 	/* Our TX is an IPA consumer */
1584 	max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
1585 	tx_mask = GENMASK(max - 1, 0);
1586 
1587 	ipa->available = rx_mask | tx_mask;
1588 
1589 	/* Check for initialized endpoints not supported by the hardware */
1590 	if (ipa->initialized & ~ipa->available) {
1591 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1592 			ipa->initialized & ~ipa->available);
1593 		ret = -EINVAL;		/* Report other errors too */
1594 	}
1595 
1596 	initialized = ipa->initialized;
1597 	while (initialized) {
1598 		u32 endpoint_id = __ffs(initialized);
1599 		struct ipa_endpoint *endpoint;
1600 
1601 		initialized ^= BIT(endpoint_id);
1602 
1603 		/* Make sure it's pointing in the right direction */
1604 		endpoint = &ipa->endpoint[endpoint_id];
1605 		if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1606 			dev_err(dev, "endpoint id %u wrong direction\n",
1607 				endpoint_id);
1608 			ret = -EINVAL;
1609 		}
1610 	}
1611 
1612 	return ret;
1613 }
1614 
1615 void ipa_endpoint_deconfig(struct ipa *ipa)
1616 {
1617 	ipa->available = 0;	/* Nothing more to do */
1618 }
1619 
1620 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1621 				  const struct ipa_gsi_endpoint_data *data)
1622 {
1623 	struct ipa_endpoint *endpoint;
1624 
1625 	endpoint = &ipa->endpoint[data->endpoint_id];
1626 
1627 	if (data->ee_id == GSI_EE_AP)
1628 		ipa->channel_map[data->channel_id] = endpoint;
1629 	ipa->name_map[name] = endpoint;
1630 
1631 	endpoint->ipa = ipa;
1632 	endpoint->ee_id = data->ee_id;
1633 	endpoint->seq_type = data->endpoint.seq_type;
1634 	endpoint->channel_id = data->channel_id;
1635 	endpoint->endpoint_id = data->endpoint_id;
1636 	endpoint->toward_ipa = data->toward_ipa;
1637 	endpoint->data = &data->endpoint.config;
1638 
1639 	ipa->initialized |= BIT(endpoint->endpoint_id);
1640 }
1641 
1642 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1643 {
1644 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1645 
1646 	memset(endpoint, 0, sizeof(*endpoint));
1647 }
1648 
1649 void ipa_endpoint_exit(struct ipa *ipa)
1650 {
1651 	u32 initialized = ipa->initialized;
1652 
1653 	while (initialized) {
1654 		u32 endpoint_id = __fls(initialized);
1655 
1656 		initialized ^= BIT(endpoint_id);
1657 
1658 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1659 	}
1660 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1661 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1662 }
1663 
1664 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1665 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1666 		      const struct ipa_gsi_endpoint_data *data)
1667 {
1668 	enum ipa_endpoint_name name;
1669 	u32 filter_map;
1670 
1671 	if (!ipa_endpoint_data_valid(ipa, count, data))
1672 		return 0;	/* Error */
1673 
1674 	ipa->initialized = 0;
1675 
1676 	filter_map = 0;
1677 	for (name = 0; name < count; name++, data++) {
1678 		if (ipa_gsi_endpoint_data_empty(data))
1679 			continue;	/* Skip over empty slots */
1680 
1681 		ipa_endpoint_init_one(ipa, name, data);
1682 
1683 		if (data->endpoint.filter_support)
1684 			filter_map |= BIT(data->endpoint_id);
1685 	}
1686 
1687 	if (!ipa_filter_map_valid(ipa, filter_map))
1688 		goto err_endpoint_exit;
1689 
1690 	return filter_map;	/* Non-zero bitmask */
1691 
1692 err_endpoint_exit:
1693 	ipa_endpoint_exit(ipa);
1694 
1695 	return 0;	/* Error */
1696 }
1697