xref: /linux/drivers/net/ipa/ipa_endpoint.c (revision 9d106c6dd81bb26ad7fc3ee89cb1d62557c8e2c9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 
25 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
26 
27 #define IPA_REPLENISH_BATCH	16
28 
29 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
30 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
31 
32 /* The amount of RX buffer space consumed by standard skb overhead */
33 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
34 
35 #define IPA_ENDPOINT_STOP_RX_RETRIES		10
36 #define IPA_ENDPOINT_STOP_RX_SIZE		1	/* bytes */
37 
38 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
39 #define IPA_AGGR_TIME_LIMIT_DEFAULT		1000	/* microseconds */
40 
41 #define ENDPOINT_STOP_DMA_TIMEOUT		15	/* milliseconds */
42 
43 /** enum ipa_status_opcode - status element opcode hardware values */
44 enum ipa_status_opcode {
45 	IPA_STATUS_OPCODE_PACKET		= 0x01,
46 	IPA_STATUS_OPCODE_NEW_FRAG_RULE		= 0x02,
47 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
48 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
49 	IPA_STATUS_OPCODE_LOG			= 0x10,
50 	IPA_STATUS_OPCODE_DCMP			= 0x20,
51 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
52 };
53 
54 /** enum ipa_status_exception - status element exception type */
55 enum ipa_status_exception {
56 	/* 0 means no exception */
57 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
58 	IPA_STATUS_EXCEPTION_IPTYPE		= 0x04,
59 	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 0x08,
60 	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 0x10,
61 	IPA_STATUS_EXCEPTION_SW_FILT		= 0x20,
62 	/* The meaning of the next value depends on whether the IP version */
63 	IPA_STATUS_EXCEPTION_NAT		= 0x40,		/* IPv4 */
64 	IPA_STATUS_EXCEPTION_IPV6CT		= IPA_STATUS_EXCEPTION_NAT,
65 };
66 
67 /* Status element provided by hardware */
68 struct ipa_status {
69 	u8 opcode;		/* enum ipa_status_opcode */
70 	u8 exception;		/* enum ipa_status_exception */
71 	__le16 mask;
72 	__le16 pkt_len;
73 	u8 endp_src_idx;
74 	u8 endp_dst_idx;
75 	__le32 metadata;
76 	__le32 flags1;
77 	__le64 flags2;
78 	__le32 flags3;
79 	__le32 flags4;
80 };
81 
82 /* Field masks for struct ipa_status structure fields */
83 
84 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
85 
86 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
87 
88 #define IPA_STATUS_FLAGS1_FLT_LOCAL_FMASK	GENMASK(0, 0)
89 #define IPA_STATUS_FLAGS1_FLT_HASH_FMASK	GENMASK(1, 1)
90 #define IPA_STATUS_FLAGS1_FLT_GLOBAL_FMASK	GENMASK(2, 2)
91 #define IPA_STATUS_FLAGS1_FLT_RET_HDR_FMASK	GENMASK(3, 3)
92 #define IPA_STATUS_FLAGS1_FLT_RULE_ID_FMASK	GENMASK(13, 4)
93 #define IPA_STATUS_FLAGS1_RT_LOCAL_FMASK	GENMASK(14, 14)
94 #define IPA_STATUS_FLAGS1_RT_HASH_FMASK		GENMASK(15, 15)
95 #define IPA_STATUS_FLAGS1_UCP_FMASK		GENMASK(16, 16)
96 #define IPA_STATUS_FLAGS1_RT_TBL_IDX_FMASK	GENMASK(21, 17)
97 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
98 
99 #define IPA_STATUS_FLAGS2_NAT_HIT_FMASK		GENMASK_ULL(0, 0)
100 #define IPA_STATUS_FLAGS2_NAT_ENTRY_IDX_FMASK	GENMASK_ULL(13, 1)
101 #define IPA_STATUS_FLAGS2_NAT_TYPE_FMASK	GENMASK_ULL(15, 14)
102 #define IPA_STATUS_FLAGS2_TAG_INFO_FMASK	GENMASK_ULL(63, 16)
103 
104 #define IPA_STATUS_FLAGS3_SEQ_NUM_FMASK		GENMASK(7, 0)
105 #define IPA_STATUS_FLAGS3_TOD_CTR_FMASK		GENMASK(31, 8)
106 
107 #define IPA_STATUS_FLAGS4_HDR_LOCAL_FMASK	GENMASK(0, 0)
108 #define IPA_STATUS_FLAGS4_HDR_OFFSET_FMASK	GENMASK(10, 1)
109 #define IPA_STATUS_FLAGS4_FRAG_HIT_FMASK	GENMASK(11, 11)
110 #define IPA_STATUS_FLAGS4_FRAG_RULE_FMASK	GENMASK(15, 12)
111 #define IPA_STATUS_FLAGS4_HW_SPECIFIC_FMASK	GENMASK(31, 16)
112 
113 #ifdef IPA_VALIDATE
114 
115 static void ipa_endpoint_validate_build(void)
116 {
117 	/* The aggregation byte limit defines the point at which an
118 	 * aggregation window will close.  It is programmed into the
119 	 * IPA hardware as a number of KB.  We don't use "hard byte
120 	 * limit" aggregation, which means that we need to supply
121 	 * enough space in a receive buffer to hold a complete MTU
122 	 * plus normal skb overhead *after* that aggregation byte
123 	 * limit has been crossed.
124 	 *
125 	 * This check just ensures we don't define a receive buffer
126 	 * size that would exceed what we can represent in the field
127 	 * that is used to program its size.
128 	 */
129 	BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
130 		     field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
131 		     IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
132 
133 	/* I honestly don't know where this requirement comes from.  But
134 	 * it holds, and if we someday need to loosen the constraint we
135 	 * can try to track it down.
136 	 */
137 	BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
138 }
139 
140 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
141 			    const struct ipa_gsi_endpoint_data *all_data,
142 			    const struct ipa_gsi_endpoint_data *data)
143 {
144 	const struct ipa_gsi_endpoint_data *other_data;
145 	struct device *dev = &ipa->pdev->dev;
146 	enum ipa_endpoint_name other_name;
147 
148 	if (ipa_gsi_endpoint_data_empty(data))
149 		return true;
150 
151 	if (!data->toward_ipa) {
152 		if (data->endpoint.filter_support) {
153 			dev_err(dev, "filtering not supported for "
154 					"RX endpoint %u\n",
155 				data->endpoint_id);
156 			return false;
157 		}
158 
159 		return true;	/* Nothing more to check for RX */
160 	}
161 
162 	if (data->endpoint.config.status_enable) {
163 		other_name = data->endpoint.config.tx.status_endpoint;
164 		if (other_name >= count) {
165 			dev_err(dev, "status endpoint name %u out of range "
166 					"for endpoint %u\n",
167 				other_name, data->endpoint_id);
168 			return false;
169 		}
170 
171 		/* Status endpoint must be defined... */
172 		other_data = &all_data[other_name];
173 		if (ipa_gsi_endpoint_data_empty(other_data)) {
174 			dev_err(dev, "DMA endpoint name %u undefined "
175 					"for endpoint %u\n",
176 				other_name, data->endpoint_id);
177 			return false;
178 		}
179 
180 		/* ...and has to be an RX endpoint... */
181 		if (other_data->toward_ipa) {
182 			dev_err(dev,
183 				"status endpoint for endpoint %u not RX\n",
184 				data->endpoint_id);
185 			return false;
186 		}
187 
188 		/* ...and if it's to be an AP endpoint... */
189 		if (other_data->ee_id == GSI_EE_AP) {
190 			/* ...make sure it has status enabled. */
191 			if (!other_data->endpoint.config.status_enable) {
192 				dev_err(dev,
193 					"status not enabled for endpoint %u\n",
194 					other_data->endpoint_id);
195 				return false;
196 			}
197 		}
198 	}
199 
200 	if (data->endpoint.config.dma_mode) {
201 		other_name = data->endpoint.config.dma_endpoint;
202 		if (other_name >= count) {
203 			dev_err(dev, "DMA endpoint name %u out of range "
204 					"for endpoint %u\n",
205 				other_name, data->endpoint_id);
206 			return false;
207 		}
208 
209 		other_data = &all_data[other_name];
210 		if (ipa_gsi_endpoint_data_empty(other_data)) {
211 			dev_err(dev, "DMA endpoint name %u undefined "
212 					"for endpoint %u\n",
213 				other_name, data->endpoint_id);
214 			return false;
215 		}
216 	}
217 
218 	return true;
219 }
220 
221 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
222 				    const struct ipa_gsi_endpoint_data *data)
223 {
224 	const struct ipa_gsi_endpoint_data *dp = data;
225 	struct device *dev = &ipa->pdev->dev;
226 	enum ipa_endpoint_name name;
227 
228 	ipa_endpoint_validate_build();
229 
230 	if (count > IPA_ENDPOINT_COUNT) {
231 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
232 			count, IPA_ENDPOINT_COUNT);
233 		return false;
234 	}
235 
236 	/* Make sure needed endpoints have defined data */
237 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
238 		dev_err(dev, "command TX endpoint not defined\n");
239 		return false;
240 	}
241 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
242 		dev_err(dev, "LAN RX endpoint not defined\n");
243 		return false;
244 	}
245 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
246 		dev_err(dev, "AP->modem TX endpoint not defined\n");
247 		return false;
248 	}
249 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
250 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
251 		return false;
252 	}
253 
254 	for (name = 0; name < count; name++, dp++)
255 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
256 			return false;
257 
258 	return true;
259 }
260 
261 #else /* !IPA_VALIDATE */
262 
263 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
264 				    const struct ipa_gsi_endpoint_data *data)
265 {
266 	return true;
267 }
268 
269 #endif /* !IPA_VALIDATE */
270 
271 /* Allocate a transaction to use on a non-command endpoint */
272 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
273 						  u32 tre_count)
274 {
275 	struct gsi *gsi = &endpoint->ipa->gsi;
276 	u32 channel_id = endpoint->channel_id;
277 	enum dma_data_direction direction;
278 
279 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
280 
281 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
282 }
283 
284 /* suspend_delay represents suspend for RX, delay for TX endpoints.
285  * Note that suspend is not supported starting with IPA v4.0.
286  */
287 static int
288 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
289 {
290 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
291 	struct ipa *ipa = endpoint->ipa;
292 	u32 mask;
293 	u32 val;
294 
295 	/* assert(ipa->version == IPA_VERSION_3_5_1 */
296 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
297 
298 	val = ioread32(ipa->reg_virt + offset);
299 	if (suspend_delay == !!(val & mask))
300 		return -EALREADY;	/* Already set to desired state */
301 
302 	val ^= mask;
303 	iowrite32(val, ipa->reg_virt + offset);
304 
305 	return 0;
306 }
307 
308 /* Enable or disable delay or suspend mode on all modem endpoints */
309 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
310 {
311 	bool support_suspend;
312 	u32 endpoint_id;
313 
314 	/* DELAY mode doesn't work right on IPA v4.2 */
315 	if (ipa->version == IPA_VERSION_4_2)
316 		return;
317 
318 	/* Only IPA v3.5.1 supports SUSPEND mode on RX endpoints */
319 	support_suspend = ipa->version == IPA_VERSION_3_5_1;
320 
321 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
322 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
323 
324 		if (endpoint->ee_id != GSI_EE_MODEM)
325 			continue;
326 
327 		/* Set TX delay mode, or for IPA v3.5.1 RX suspend mode */
328 		if (endpoint->toward_ipa || support_suspend)
329 			(void)ipa_endpoint_init_ctrl(endpoint, enable);
330 	}
331 }
332 
333 /* Reset all modem endpoints to use the default exception endpoint */
334 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
335 {
336 	u32 initialized = ipa->initialized;
337 	struct gsi_trans *trans;
338 	u32 count;
339 
340 	/* We need one command per modem TX endpoint.  We can get an upper
341 	 * bound on that by assuming all initialized endpoints are modem->IPA.
342 	 * That won't happen, and we could be more precise, but this is fine
343 	 * for now.  We need to end the transactio with a "tag process."
344 	 */
345 	count = hweight32(initialized) + ipa_cmd_tag_process_count();
346 	trans = ipa_cmd_trans_alloc(ipa, count);
347 	if (!trans) {
348 		dev_err(&ipa->pdev->dev,
349 			"no transaction to reset modem exception endpoints\n");
350 		return -EBUSY;
351 	}
352 
353 	while (initialized) {
354 		u32 endpoint_id = __ffs(initialized);
355 		struct ipa_endpoint *endpoint;
356 		u32 offset;
357 
358 		initialized ^= BIT(endpoint_id);
359 
360 		/* We only reset modem TX endpoints */
361 		endpoint = &ipa->endpoint[endpoint_id];
362 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
363 			continue;
364 
365 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
366 
367 		/* Value written is 0, and all bits are updated.  That
368 		 * means status is disabled on the endpoint, and as a
369 		 * result all other fields in the register are ignored.
370 		 */
371 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
372 	}
373 
374 	ipa_cmd_tag_process_add(trans);
375 
376 	/* XXX This should have a 1 second timeout */
377 	gsi_trans_commit_wait(trans);
378 
379 	return 0;
380 }
381 
382 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
383 {
384 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
385 	u32 val = 0;
386 
387 	/* FRAG_OFFLOAD_EN is 0 */
388 	if (endpoint->data->checksum) {
389 		if (endpoint->toward_ipa) {
390 			u32 checksum_offset;
391 
392 			val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
393 					       CS_OFFLOAD_EN_FMASK);
394 			/* Checksum header offset is in 4-byte units */
395 			checksum_offset = sizeof(struct rmnet_map_header);
396 			checksum_offset /= sizeof(u32);
397 			val |= u32_encode_bits(checksum_offset,
398 					       CS_METADATA_HDR_OFFSET_FMASK);
399 		} else {
400 			val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
401 					       CS_OFFLOAD_EN_FMASK);
402 		}
403 	} else {
404 		val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
405 				       CS_OFFLOAD_EN_FMASK);
406 	}
407 	/* CS_GEN_QMB_MASTER_SEL is 0 */
408 
409 	iowrite32(val, endpoint->ipa->reg_virt + offset);
410 }
411 
412 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
413 {
414 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
415 	u32 val = 0;
416 
417 	if (endpoint->data->qmap) {
418 		size_t header_size = sizeof(struct rmnet_map_header);
419 
420 		if (endpoint->toward_ipa && endpoint->data->checksum)
421 			header_size += sizeof(struct rmnet_map_ul_csum_header);
422 
423 		val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
424 		/* metadata is the 4 byte rmnet_map header itself */
425 		val |= HDR_OFST_METADATA_VALID_FMASK;
426 		val |= u32_encode_bits(0, HDR_OFST_METADATA_FMASK);
427 		/* HDR_ADDITIONAL_CONST_LEN is 0; (IPA->AP only) */
428 		if (!endpoint->toward_ipa) {
429 			u32 size_offset = offsetof(struct rmnet_map_header,
430 						   pkt_len);
431 
432 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
433 			val |= u32_encode_bits(size_offset,
434 					       HDR_OFST_PKT_SIZE_FMASK);
435 		}
436 		/* HDR_A5_MUX is 0 */
437 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
438 		/* HDR_METADATA_REG_VALID is 0; (AP->IPA only) */
439 	}
440 
441 	iowrite32(val, endpoint->ipa->reg_virt + offset);
442 }
443 
444 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
445 {
446 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
447 	u32 pad_align = endpoint->data->rx.pad_align;
448 	u32 val = 0;
449 
450 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
451 	val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
452 	/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
453 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
454 	/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
455 	if (!endpoint->toward_ipa)
456 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
457 
458 	iowrite32(val, endpoint->ipa->reg_virt + offset);
459 }
460 
461 /**
462  * Generate a metadata mask value that will select only the mux_id
463  * field in an rmnet_map header structure.  The mux_id is at offset
464  * 1 byte from the beginning of the structure, but the metadata
465  * value is treated as a 4-byte unit.  So this mask must be computed
466  * with endianness in mind.  Note that ipa_endpoint_init_hdr_metadata_mask()
467  * will convert this value to the proper byte order.
468  *
469  * Marked __always_inline because this is really computing a
470  * constant value.
471  */
472 static __always_inline __be32 ipa_rmnet_mux_id_metadata_mask(void)
473 {
474 	size_t mux_id_offset = offsetof(struct rmnet_map_header, mux_id);
475 	u32 mux_id_mask = 0;
476 	u8 *bytes;
477 
478 	bytes = (u8 *)&mux_id_mask;
479 	bytes[mux_id_offset] = 0xff;	/* mux_id is 1 byte */
480 
481 	return cpu_to_be32(mux_id_mask);
482 }
483 
484 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
485 {
486 	u32 endpoint_id = endpoint->endpoint_id;
487 	u32 val = 0;
488 	u32 offset;
489 
490 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
491 
492 	if (!endpoint->toward_ipa && endpoint->data->qmap)
493 		val = ipa_rmnet_mux_id_metadata_mask();
494 
495 	iowrite32(val, endpoint->ipa->reg_virt + offset);
496 }
497 
498 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
499 {
500 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
501 	u32 val;
502 
503 	if (endpoint->toward_ipa && endpoint->data->dma_mode) {
504 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
505 		u32 dma_endpoint_id;
506 
507 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
508 
509 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
510 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
511 	} else {
512 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
513 	}
514 	/* Other bitfields unspecified (and 0) */
515 
516 	iowrite32(val, endpoint->ipa->reg_virt + offset);
517 }
518 
519 /* Compute the aggregation size value to use for a given buffer size */
520 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
521 {
522 	/* We don't use "hard byte limit" aggregation, so we define the
523 	 * aggregation limit such that our buffer has enough space *after*
524 	 * that limit to receive a full MTU of data, plus overhead.
525 	 */
526 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
527 
528 	return rx_buffer_size / SZ_1K;
529 }
530 
531 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
532 {
533 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
534 	u32 val = 0;
535 
536 	if (endpoint->data->aggregation) {
537 		if (!endpoint->toward_ipa) {
538 			u32 aggr_size = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
539 			u32 limit;
540 
541 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
542 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
543 			val |= u32_encode_bits(aggr_size,
544 					       AGGR_BYTE_LIMIT_FMASK);
545 			limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
546 			val |= u32_encode_bits(limit / IPA_AGGR_GRANULARITY,
547 					       AGGR_TIME_LIMIT_FMASK);
548 			val |= u32_encode_bits(0, AGGR_PKT_LIMIT_FMASK);
549 			if (endpoint->data->rx.aggr_close_eof)
550 				val |= AGGR_SW_EOF_ACTIVE_FMASK;
551 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
552 		} else {
553 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
554 					       AGGR_EN_FMASK);
555 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
556 			/* other fields ignored */
557 		}
558 		/* AGGR_FORCE_CLOSE is 0 */
559 	} else {
560 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
561 		/* other fields ignored */
562 	}
563 
564 	iowrite32(val, endpoint->ipa->reg_virt + offset);
565 }
566 
567 /* A return value of 0 indicates an error */
568 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
569 {
570 	u32 scale;
571 	u32 base;
572 	u32 val;
573 
574 	if (!microseconds)
575 		return 0;	/* invalid delay */
576 
577 	/* Timer is represented in units of clock ticks. */
578 	if (ipa->version < IPA_VERSION_4_2)
579 		return microseconds;	/* XXX Needs to be computed */
580 
581 	/* IPA v4.2 represents the tick count as base * scale */
582 	scale = 1;			/* XXX Needs to be computed */
583 	if (scale > field_max(SCALE_FMASK))
584 		return 0;		/* scale too big */
585 
586 	base = DIV_ROUND_CLOSEST(microseconds, scale);
587 	if (base > field_max(BASE_VALUE_FMASK))
588 		return 0;		/* microseconds too big */
589 
590 	val = u32_encode_bits(scale, SCALE_FMASK);
591 	val |= u32_encode_bits(base, BASE_VALUE_FMASK);
592 
593 	return val;
594 }
595 
596 static int ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
597 					     u32 microseconds)
598 {
599 	u32 endpoint_id = endpoint->endpoint_id;
600 	struct ipa *ipa = endpoint->ipa;
601 	u32 offset;
602 	u32 val;
603 
604 	/* XXX We'll fix this when the register definition is clear */
605 	if (microseconds) {
606 		struct device *dev = &ipa->pdev->dev;
607 
608 		dev_err(dev, "endpoint %u non-zero HOLB period (ignoring)\n",
609 			endpoint_id);
610 		microseconds = 0;
611 	}
612 
613 	if (microseconds) {
614 		val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
615 		if (!val)
616 			return -EINVAL;
617 	} else {
618 		val = 0;	/* timeout is immediate */
619 	}
620 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
621 	iowrite32(val, ipa->reg_virt + offset);
622 
623 	return 0;
624 }
625 
626 static void
627 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
628 {
629 	u32 endpoint_id = endpoint->endpoint_id;
630 	u32 offset;
631 	u32 val;
632 
633 	val = u32_encode_bits(enable ? 1 : 0, HOL_BLOCK_EN_FMASK);
634 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
635 	iowrite32(val, endpoint->ipa->reg_virt + offset);
636 }
637 
638 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
639 {
640 	u32 i;
641 
642 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
643 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
644 
645 		if (endpoint->ee_id != GSI_EE_MODEM)
646 			continue;
647 
648 		(void)ipa_endpoint_init_hol_block_timer(endpoint, 0);
649 		ipa_endpoint_init_hol_block_enable(endpoint, true);
650 	}
651 }
652 
653 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
654 {
655 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
656 	u32 val = 0;
657 
658 	/* DEAGGR_HDR_LEN is 0 */
659 	/* PACKET_OFFSET_VALID is 0 */
660 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
661 	/* MAX_PACKET_LEN is 0 (not enforced) */
662 
663 	iowrite32(val, endpoint->ipa->reg_virt + offset);
664 }
665 
666 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
667 {
668 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
669 	u32 seq_type = endpoint->seq_type;
670 	u32 val = 0;
671 
672 	val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
673 	val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
674 	/* HPS_REP_SEQ_TYPE is 0 */
675 	/* DPS_REP_SEQ_TYPE is 0 */
676 
677 	iowrite32(val, endpoint->ipa->reg_virt + offset);
678 }
679 
680 /**
681  * ipa_endpoint_skb_tx() - Transmit a socket buffer
682  * @endpoint:	Endpoint pointer
683  * @skb:	Socket buffer to send
684  *
685  * Returns:	0 if successful, or a negative error code
686  */
687 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
688 {
689 	struct gsi_trans *trans;
690 	u32 nr_frags;
691 	int ret;
692 
693 	/* Make sure source endpoint's TLV FIFO has enough entries to
694 	 * hold the linear portion of the skb and all its fragments.
695 	 * If not, see if we can linearize it before giving up.
696 	 */
697 	nr_frags = skb_shinfo(skb)->nr_frags;
698 	if (1 + nr_frags > endpoint->trans_tre_max) {
699 		if (skb_linearize(skb))
700 			return -E2BIG;
701 		nr_frags = 0;
702 	}
703 
704 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
705 	if (!trans)
706 		return -EBUSY;
707 
708 	ret = gsi_trans_skb_add(trans, skb);
709 	if (ret)
710 		goto err_trans_free;
711 	trans->data = skb;	/* transaction owns skb now */
712 
713 	gsi_trans_commit(trans, !netdev_xmit_more());
714 
715 	return 0;
716 
717 err_trans_free:
718 	gsi_trans_free(trans);
719 
720 	return -ENOMEM;
721 }
722 
723 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
724 {
725 	u32 endpoint_id = endpoint->endpoint_id;
726 	struct ipa *ipa = endpoint->ipa;
727 	u32 val = 0;
728 	u32 offset;
729 
730 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
731 
732 	if (endpoint->data->status_enable) {
733 		val |= STATUS_EN_FMASK;
734 		if (endpoint->toward_ipa) {
735 			enum ipa_endpoint_name name;
736 			u32 status_endpoint_id;
737 
738 			name = endpoint->data->tx.status_endpoint;
739 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
740 
741 			val |= u32_encode_bits(status_endpoint_id,
742 					       STATUS_ENDP_FMASK);
743 		}
744 		/* STATUS_LOCATION is 0 (status element precedes packet) */
745 		/* The next field is present for IPA v4.0 and above */
746 		/* STATUS_PKT_SUPPRESS_FMASK is 0 */
747 	}
748 
749 	iowrite32(val, ipa->reg_virt + offset);
750 }
751 
752 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
753 {
754 	struct gsi_trans *trans;
755 	bool doorbell = false;
756 	struct page *page;
757 	u32 offset;
758 	u32 len;
759 	int ret;
760 
761 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
762 	if (!page)
763 		return -ENOMEM;
764 
765 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
766 	if (!trans)
767 		goto err_free_pages;
768 
769 	/* Offset the buffer to make space for skb headroom */
770 	offset = NET_SKB_PAD;
771 	len = IPA_RX_BUFFER_SIZE - offset;
772 
773 	ret = gsi_trans_page_add(trans, page, len, offset);
774 	if (ret)
775 		goto err_trans_free;
776 	trans->data = page;	/* transaction owns page now */
777 
778 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
779 		doorbell = true;
780 		endpoint->replenish_ready = 0;
781 	}
782 
783 	gsi_trans_commit(trans, doorbell);
784 
785 	return 0;
786 
787 err_trans_free:
788 	gsi_trans_free(trans);
789 err_free_pages:
790 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
791 
792 	return -ENOMEM;
793 }
794 
795 /**
796  * ipa_endpoint_replenish() - Replenish the Rx packets cache.
797  *
798  * Allocate RX packet wrapper structures with maximal socket buffers
799  * for an endpoint.  These are supplied to the hardware, which fills
800  * them with incoming data.
801  */
802 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
803 {
804 	struct gsi *gsi;
805 	u32 backlog;
806 
807 	if (!endpoint->replenish_enabled) {
808 		if (count)
809 			atomic_add(count, &endpoint->replenish_saved);
810 		return;
811 	}
812 
813 
814 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
815 		if (ipa_endpoint_replenish_one(endpoint))
816 			goto try_again_later;
817 	if (count)
818 		atomic_add(count, &endpoint->replenish_backlog);
819 
820 	return;
821 
822 try_again_later:
823 	/* The last one didn't succeed, so fix the backlog */
824 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
825 
826 	if (count)
827 		atomic_add(count, &endpoint->replenish_backlog);
828 
829 	/* Whenever a receive buffer transaction completes we'll try to
830 	 * replenish again.  It's unlikely, but if we fail to supply even
831 	 * one buffer, nothing will trigger another replenish attempt.
832 	 * Receive buffer transactions use one TRE, so schedule work to
833 	 * try replenishing again if our backlog is *all* available TREs.
834 	 */
835 	gsi = &endpoint->ipa->gsi;
836 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
837 		schedule_delayed_work(&endpoint->replenish_work,
838 				      msecs_to_jiffies(1));
839 }
840 
841 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
842 {
843 	struct gsi *gsi = &endpoint->ipa->gsi;
844 	u32 max_backlog;
845 	u32 saved;
846 
847 	endpoint->replenish_enabled = true;
848 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
849 		atomic_add(saved, &endpoint->replenish_backlog);
850 
851 	/* Start replenishing if hardware currently has no buffers */
852 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
853 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
854 		ipa_endpoint_replenish(endpoint, 0);
855 }
856 
857 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
858 {
859 	u32 backlog;
860 
861 	endpoint->replenish_enabled = false;
862 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
863 		atomic_add(backlog, &endpoint->replenish_saved);
864 }
865 
866 static void ipa_endpoint_replenish_work(struct work_struct *work)
867 {
868 	struct delayed_work *dwork = to_delayed_work(work);
869 	struct ipa_endpoint *endpoint;
870 
871 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
872 
873 	ipa_endpoint_replenish(endpoint, 0);
874 }
875 
876 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
877 				  void *data, u32 len, u32 extra)
878 {
879 	struct sk_buff *skb;
880 
881 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
882 	if (skb) {
883 		skb_put(skb, len);
884 		memcpy(skb->data, data, len);
885 		skb->truesize += extra;
886 	}
887 
888 	/* Now receive it, or drop it if there's no netdev */
889 	if (endpoint->netdev)
890 		ipa_modem_skb_rx(endpoint->netdev, skb);
891 	else if (skb)
892 		dev_kfree_skb_any(skb);
893 }
894 
895 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
896 				   struct page *page, u32 len)
897 {
898 	struct sk_buff *skb;
899 
900 	/* Nothing to do if there's no netdev */
901 	if (!endpoint->netdev)
902 		return false;
903 
904 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
905 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
906 	if (skb) {
907 		/* Reserve the headroom and account for the data */
908 		skb_reserve(skb, NET_SKB_PAD);
909 		skb_put(skb, len);
910 	}
911 
912 	/* Receive the buffer (or record drop if unable to build it) */
913 	ipa_modem_skb_rx(endpoint->netdev, skb);
914 
915 	return skb != NULL;
916 }
917 
918 /* The format of a packet status element is the same for several status
919  * types (opcodes).  The NEW_FRAG_RULE, LOG, DCMP (decompression) types
920  * aren't currently supported
921  */
922 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
923 {
924 	switch (opcode) {
925 	case IPA_STATUS_OPCODE_PACKET:
926 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
927 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
928 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
929 		return true;
930 	default:
931 		return false;
932 	}
933 }
934 
935 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
936 				     const struct ipa_status *status)
937 {
938 	u32 endpoint_id;
939 
940 	if (!ipa_status_format_packet(status->opcode))
941 		return true;
942 	if (!status->pkt_len)
943 		return true;
944 	endpoint_id = u32_get_bits(status->endp_dst_idx,
945 				   IPA_STATUS_DST_IDX_FMASK);
946 	if (endpoint_id != endpoint->endpoint_id)
947 		return true;
948 
949 	return false;	/* Don't skip this packet, process it */
950 }
951 
952 /* Return whether the status indicates the packet should be dropped */
953 static bool ipa_status_drop_packet(const struct ipa_status *status)
954 {
955 	u32 val;
956 
957 	/* Deaggregation exceptions we drop; others we consume */
958 	if (status->exception)
959 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
960 
961 	/* Drop the packet if it fails to match a routing rule; otherwise no */
962 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
963 
964 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
965 }
966 
967 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
968 				      struct page *page, u32 total_len)
969 {
970 	void *data = page_address(page) + NET_SKB_PAD;
971 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
972 	u32 resid = total_len;
973 
974 	while (resid) {
975 		const struct ipa_status *status = data;
976 		u32 align;
977 		u32 len;
978 
979 		if (resid < sizeof(*status)) {
980 			dev_err(&endpoint->ipa->pdev->dev,
981 				"short message (%u bytes < %zu byte status)\n",
982 				resid, sizeof(*status));
983 			break;
984 		}
985 
986 		/* Skip over status packets that lack packet data */
987 		if (ipa_endpoint_status_skip(endpoint, status)) {
988 			data += sizeof(*status);
989 			resid -= sizeof(*status);
990 			continue;
991 		}
992 
993 		/* Compute the amount of buffer space consumed by the
994 		 * packet, including the status element.  If the hardware
995 		 * is configured to pad packet data to an aligned boundary,
996 		 * account for that.  And if checksum offload is is enabled
997 		 * a trailer containing computed checksum information will
998 		 * be appended.
999 		 */
1000 		align = endpoint->data->rx.pad_align ? : 1;
1001 		len = le16_to_cpu(status->pkt_len);
1002 		len = sizeof(*status) + ALIGN(len, align);
1003 		if (endpoint->data->checksum)
1004 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1005 
1006 		/* Charge the new packet with a proportional fraction of
1007 		 * the unused space in the original receive buffer.
1008 		 * XXX Charge a proportion of the *whole* receive buffer?
1009 		 */
1010 		if (!ipa_status_drop_packet(status)) {
1011 			u32 extra = unused * len / total_len;
1012 			void *data2 = data + sizeof(*status);
1013 			u32 len2 = le16_to_cpu(status->pkt_len);
1014 
1015 			/* Client receives only packet data (no status) */
1016 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1017 		}
1018 
1019 		/* Consume status and the full packet it describes */
1020 		data += len;
1021 		resid -= len;
1022 	}
1023 }
1024 
1025 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1026 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1027 				     struct gsi_trans *trans)
1028 {
1029 }
1030 
1031 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1032 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1033 				     struct gsi_trans *trans)
1034 {
1035 	struct page *page;
1036 
1037 	ipa_endpoint_replenish(endpoint, 1);
1038 
1039 	if (trans->cancelled)
1040 		return;
1041 
1042 	/* Parse or build a socket buffer using the actual received length */
1043 	page = trans->data;
1044 	if (endpoint->data->status_enable)
1045 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1046 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1047 		trans->data = NULL;	/* Pages have been consumed */
1048 }
1049 
1050 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1051 				 struct gsi_trans *trans)
1052 {
1053 	if (endpoint->toward_ipa)
1054 		ipa_endpoint_tx_complete(endpoint, trans);
1055 	else
1056 		ipa_endpoint_rx_complete(endpoint, trans);
1057 }
1058 
1059 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1060 				struct gsi_trans *trans)
1061 {
1062 	if (endpoint->toward_ipa) {
1063 		struct ipa *ipa = endpoint->ipa;
1064 
1065 		/* Nothing to do for command transactions */
1066 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1067 			struct sk_buff *skb = trans->data;
1068 
1069 			if (skb)
1070 				dev_kfree_skb_any(skb);
1071 		}
1072 	} else {
1073 		struct page *page = trans->data;
1074 
1075 		if (page)
1076 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1077 	}
1078 }
1079 
1080 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1081 {
1082 	u32 val;
1083 
1084 	/* ROUTE_DIS is 0 */
1085 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1086 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1087 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1088 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1089 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1090 
1091 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1092 }
1093 
1094 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1095 {
1096 	ipa_endpoint_default_route_set(ipa, 0);
1097 }
1098 
1099 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
1100 {
1101 	u32 mask = BIT(endpoint->endpoint_id);
1102 	struct ipa *ipa = endpoint->ipa;
1103 	u32 offset;
1104 	u32 val;
1105 
1106 	/* assert(mask & ipa->available); */
1107 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
1108 	val = ioread32(ipa->reg_virt + offset);
1109 
1110 	return !!(val & mask);
1111 }
1112 
1113 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
1114 {
1115 	u32 mask = BIT(endpoint->endpoint_id);
1116 	struct ipa *ipa = endpoint->ipa;
1117 
1118 	/* assert(mask & ipa->available); */
1119 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
1120 }
1121 
1122 /**
1123  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1124  * @endpoint:	Endpoint to be reset
1125  *
1126  * If aggregation is active on an RX endpoint when a reset is performed
1127  * on its underlying GSI channel, a special sequence of actions must be
1128  * taken to ensure the IPA pipeline is properly cleared.
1129  *
1130  * @Return:	0 if successful, or a negative error code
1131  */
1132 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1133 {
1134 	struct device *dev = &endpoint->ipa->pdev->dev;
1135 	struct ipa *ipa = endpoint->ipa;
1136 	bool endpoint_suspended = false;
1137 	struct gsi *gsi = &ipa->gsi;
1138 	dma_addr_t addr;
1139 	bool db_enable;
1140 	u32 retries;
1141 	u32 len = 1;
1142 	void *virt;
1143 	int ret;
1144 
1145 	virt = kzalloc(len, GFP_KERNEL);
1146 	if (!virt)
1147 		return -ENOMEM;
1148 
1149 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1150 	if (dma_mapping_error(dev, addr)) {
1151 		ret = -ENOMEM;
1152 		goto out_kfree;
1153 	}
1154 
1155 	/* Force close aggregation before issuing the reset */
1156 	ipa_endpoint_force_close(endpoint);
1157 
1158 	/* Reset and reconfigure the channel with the doorbell engine
1159 	 * disabled.  Then poll until we know aggregation is no longer
1160 	 * active.  We'll re-enable the doorbell (if appropriate) when
1161 	 * we reset again below.
1162 	 */
1163 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1164 
1165 	/* Make sure the channel isn't suspended */
1166 	if (endpoint->ipa->version == IPA_VERSION_3_5_1)
1167 		if (!ipa_endpoint_init_ctrl(endpoint, false))
1168 			endpoint_suspended = true;
1169 
1170 	/* Start channel and do a 1 byte read */
1171 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1172 	if (ret)
1173 		goto out_suspend_again;
1174 
1175 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1176 	if (ret)
1177 		goto err_endpoint_stop;
1178 
1179 	/* Wait for aggregation to be closed on the channel */
1180 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1181 	do {
1182 		if (!ipa_endpoint_aggr_active(endpoint))
1183 			break;
1184 		msleep(1);
1185 	} while (retries--);
1186 
1187 	/* Check one last time */
1188 	if (ipa_endpoint_aggr_active(endpoint))
1189 		dev_err(dev, "endpoint %u still active during reset\n",
1190 			endpoint->endpoint_id);
1191 
1192 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1193 
1194 	ret = ipa_endpoint_stop(endpoint);
1195 	if (ret)
1196 		goto out_suspend_again;
1197 
1198 	/* Finally, reset and reconfigure the channel again (re-enabling the
1199 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1200 	 * complete the channel reset sequence.  Finish by suspending the
1201 	 * channel again (if necessary).
1202 	 */
1203 	db_enable = ipa->version == IPA_VERSION_3_5_1;
1204 	gsi_channel_reset(gsi, endpoint->channel_id, db_enable);
1205 
1206 	msleep(1);
1207 
1208 	goto out_suspend_again;
1209 
1210 err_endpoint_stop:
1211 	ipa_endpoint_stop(endpoint);
1212 out_suspend_again:
1213 	if (endpoint_suspended)
1214 		(void)ipa_endpoint_init_ctrl(endpoint, true);
1215 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1216 out_kfree:
1217 	kfree(virt);
1218 
1219 	return ret;
1220 }
1221 
1222 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1223 {
1224 	u32 channel_id = endpoint->channel_id;
1225 	struct ipa *ipa = endpoint->ipa;
1226 	bool db_enable;
1227 	bool special;
1228 	int ret = 0;
1229 
1230 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1231 	 * is active, we need to handle things specially to recover.
1232 	 * All other cases just need to reset the underlying GSI channel.
1233 	 *
1234 	 * IPA v3.5.1 enables the doorbell engine.  Newer versions do not.
1235 	 */
1236 	db_enable = ipa->version == IPA_VERSION_3_5_1;
1237 	special = !endpoint->toward_ipa && endpoint->data->aggregation;
1238 	if (special && ipa_endpoint_aggr_active(endpoint))
1239 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1240 	else
1241 		gsi_channel_reset(&ipa->gsi, channel_id, db_enable);
1242 
1243 	if (ret)
1244 		dev_err(&ipa->pdev->dev,
1245 			"error %d resetting channel %u for endpoint %u\n",
1246 			ret, endpoint->channel_id, endpoint->endpoint_id);
1247 }
1248 
1249 static int ipa_endpoint_stop_rx_dma(struct ipa *ipa)
1250 {
1251 	u16 size = IPA_ENDPOINT_STOP_RX_SIZE;
1252 	struct gsi_trans *trans;
1253 	dma_addr_t addr;
1254 	int ret;
1255 
1256 	trans = ipa_cmd_trans_alloc(ipa, 1);
1257 	if (!trans) {
1258 		dev_err(&ipa->pdev->dev,
1259 			"no transaction for RX endpoint STOP workaround\n");
1260 		return -EBUSY;
1261 	}
1262 
1263 	/* Read into the highest part of the zero memory area */
1264 	addr = ipa->zero_addr + ipa->zero_size - size;
1265 
1266 	ipa_cmd_dma_task_32b_addr_add(trans, size, addr, false);
1267 
1268 	ret = gsi_trans_commit_wait_timeout(trans, ENDPOINT_STOP_DMA_TIMEOUT);
1269 	if (ret)
1270 		gsi_trans_free(trans);
1271 
1272 	return ret;
1273 }
1274 
1275 /**
1276  * ipa_endpoint_stop() - Stops a GSI channel in IPA
1277  * @client:	Client whose endpoint should be stopped
1278  *
1279  * This function implements the sequence to stop a GSI channel
1280  * in IPA. This function returns when the channel is is STOP state.
1281  *
1282  * Return value: 0 on success, negative otherwise
1283  */
1284 int ipa_endpoint_stop(struct ipa_endpoint *endpoint)
1285 {
1286 	u32 retries = endpoint->toward_ipa ? 0 : IPA_ENDPOINT_STOP_RX_RETRIES;
1287 	int ret;
1288 
1289 	do {
1290 		struct ipa *ipa = endpoint->ipa;
1291 		struct gsi *gsi = &ipa->gsi;
1292 
1293 		ret = gsi_channel_stop(gsi, endpoint->channel_id);
1294 		if (ret != -EAGAIN)
1295 			break;
1296 
1297 		if (endpoint->toward_ipa)
1298 			continue;
1299 
1300 		/* For IPA v3.5.1, send a DMA read task and check again */
1301 		if (ipa->version == IPA_VERSION_3_5_1) {
1302 			ret = ipa_endpoint_stop_rx_dma(ipa);
1303 			if (ret)
1304 				break;
1305 		}
1306 
1307 		msleep(1);
1308 	} while (retries--);
1309 
1310 	return retries ? ret : -EIO;
1311 }
1312 
1313 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1314 {
1315 	struct device *dev = &endpoint->ipa->pdev->dev;
1316 	int ret;
1317 
1318 	if (endpoint->toward_ipa) {
1319 		bool delay_mode = endpoint->data->tx.delay;
1320 
1321 		ret = ipa_endpoint_init_ctrl(endpoint, delay_mode);
1322 		/* Endpoint is expected to not be in delay mode */
1323 		if (!ret != delay_mode) {
1324 			dev_warn(dev,
1325 				"TX endpoint %u was %sin delay mode\n",
1326 				endpoint->endpoint_id,
1327 				delay_mode ? "already " : "");
1328 		}
1329 		ipa_endpoint_init_hdr_ext(endpoint);
1330 		ipa_endpoint_init_aggr(endpoint);
1331 		ipa_endpoint_init_deaggr(endpoint);
1332 		ipa_endpoint_init_seq(endpoint);
1333 	} else {
1334 		if (endpoint->ipa->version == IPA_VERSION_3_5_1) {
1335 			if (!ipa_endpoint_init_ctrl(endpoint, false))
1336 				dev_warn(dev,
1337 					"RX endpoint %u was suspended\n",
1338 					endpoint->endpoint_id);
1339 		}
1340 		ipa_endpoint_init_hdr_ext(endpoint);
1341 		ipa_endpoint_init_aggr(endpoint);
1342 	}
1343 	ipa_endpoint_init_cfg(endpoint);
1344 	ipa_endpoint_init_hdr(endpoint);
1345 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1346 	ipa_endpoint_init_mode(endpoint);
1347 	ipa_endpoint_status(endpoint);
1348 }
1349 
1350 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1351 {
1352 	struct ipa *ipa = endpoint->ipa;
1353 	struct gsi *gsi = &ipa->gsi;
1354 	int ret;
1355 
1356 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1357 	if (ret) {
1358 		dev_err(&ipa->pdev->dev,
1359 			"error %d starting %cX channel %u for endpoint %u\n",
1360 			ret, endpoint->toward_ipa ? 'T' : 'R',
1361 			endpoint->channel_id, endpoint->endpoint_id);
1362 		return ret;
1363 	}
1364 
1365 	if (!endpoint->toward_ipa) {
1366 		ipa_interrupt_suspend_enable(ipa->interrupt,
1367 					     endpoint->endpoint_id);
1368 		ipa_endpoint_replenish_enable(endpoint);
1369 	}
1370 
1371 	ipa->enabled |= BIT(endpoint->endpoint_id);
1372 
1373 	return 0;
1374 }
1375 
1376 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1377 {
1378 	u32 mask = BIT(endpoint->endpoint_id);
1379 	struct ipa *ipa = endpoint->ipa;
1380 	int ret;
1381 
1382 	if (!(endpoint->ipa->enabled & mask))
1383 		return;
1384 
1385 	endpoint->ipa->enabled ^= mask;
1386 
1387 	if (!endpoint->toward_ipa) {
1388 		ipa_endpoint_replenish_disable(endpoint);
1389 		ipa_interrupt_suspend_disable(ipa->interrupt,
1390 					      endpoint->endpoint_id);
1391 	}
1392 
1393 	/* Note that if stop fails, the channel's state is not well-defined */
1394 	ret = ipa_endpoint_stop(endpoint);
1395 	if (ret)
1396 		dev_err(&ipa->pdev->dev,
1397 			"error %d attempting to stop endpoint %u\n", ret,
1398 			endpoint->endpoint_id);
1399 }
1400 
1401 /**
1402  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
1403  * @endpoint_id:	Endpoint on which to emulate a suspend
1404  *
1405  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
1406  *  with an open aggregation frame.  This is to work around a hardware
1407  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
1408  *  generated when it should be.
1409  */
1410 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
1411 {
1412 	struct ipa *ipa = endpoint->ipa;
1413 
1414 	/* assert(ipa->version == IPA_VERSION_3_5_1); */
1415 
1416 	if (!endpoint->data->aggregation)
1417 		return;
1418 
1419 	/* Nothing to do if the endpoint doesn't have aggregation open */
1420 	if (!ipa_endpoint_aggr_active(endpoint))
1421 		return;
1422 
1423 	/* Force close aggregation */
1424 	ipa_endpoint_force_close(endpoint);
1425 
1426 	ipa_interrupt_simulate_suspend(ipa->interrupt);
1427 }
1428 
1429 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1430 {
1431 	struct device *dev = &endpoint->ipa->pdev->dev;
1432 	struct gsi *gsi = &endpoint->ipa->gsi;
1433 	bool stop_channel;
1434 	int ret;
1435 
1436 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1437 		return;
1438 
1439 	if (!endpoint->toward_ipa)
1440 		ipa_endpoint_replenish_disable(endpoint);
1441 
1442 	/* IPA v3.5.1 doesn't use channel stop for suspend */
1443 	stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1444 	if (!endpoint->toward_ipa && !stop_channel) {
1445 		/* Due to a hardware bug, a client suspended with an open
1446 		 * aggregation frame will not generate a SUSPEND IPA
1447 		 * interrupt.  We work around this by force-closing the
1448 		 * aggregation frame, then simulating the arrival of such
1449 		 * an interrupt.
1450 		 */
1451 		WARN_ON(ipa_endpoint_init_ctrl(endpoint, true));
1452 		ipa_endpoint_suspend_aggr(endpoint);
1453 	}
1454 
1455 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1456 	if (ret)
1457 		dev_err(dev, "error %d suspending channel %u\n", ret,
1458 			endpoint->channel_id);
1459 }
1460 
1461 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1462 {
1463 	struct device *dev = &endpoint->ipa->pdev->dev;
1464 	struct gsi *gsi = &endpoint->ipa->gsi;
1465 	bool start_channel;
1466 	int ret;
1467 
1468 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1469 		return;
1470 
1471 	/* IPA v3.5.1 doesn't use channel start for resume */
1472 	start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1473 	if (!endpoint->toward_ipa && !start_channel)
1474 		WARN_ON(ipa_endpoint_init_ctrl(endpoint, false));
1475 
1476 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1477 	if (ret)
1478 		dev_err(dev, "error %d resuming channel %u\n", ret,
1479 			endpoint->channel_id);
1480 	else if (!endpoint->toward_ipa)
1481 		ipa_endpoint_replenish_enable(endpoint);
1482 }
1483 
1484 void ipa_endpoint_suspend(struct ipa *ipa)
1485 {
1486 	if (ipa->modem_netdev)
1487 		ipa_modem_suspend(ipa->modem_netdev);
1488 
1489 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1490 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1491 }
1492 
1493 void ipa_endpoint_resume(struct ipa *ipa)
1494 {
1495 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1496 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1497 
1498 	if (ipa->modem_netdev)
1499 		ipa_modem_resume(ipa->modem_netdev);
1500 }
1501 
1502 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1503 {
1504 	struct gsi *gsi = &endpoint->ipa->gsi;
1505 	u32 channel_id = endpoint->channel_id;
1506 
1507 	/* Only AP endpoints get set up */
1508 	if (endpoint->ee_id != GSI_EE_AP)
1509 		return;
1510 
1511 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1512 	if (!endpoint->toward_ipa) {
1513 		/* RX transactions require a single TRE, so the maximum
1514 		 * backlog is the same as the maximum outstanding TREs.
1515 		 */
1516 		endpoint->replenish_enabled = false;
1517 		atomic_set(&endpoint->replenish_saved,
1518 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1519 		atomic_set(&endpoint->replenish_backlog, 0);
1520 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1521 				  ipa_endpoint_replenish_work);
1522 	}
1523 
1524 	ipa_endpoint_program(endpoint);
1525 
1526 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1527 }
1528 
1529 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1530 {
1531 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1532 
1533 	if (!endpoint->toward_ipa)
1534 		cancel_delayed_work_sync(&endpoint->replenish_work);
1535 
1536 	ipa_endpoint_reset(endpoint);
1537 }
1538 
1539 void ipa_endpoint_setup(struct ipa *ipa)
1540 {
1541 	u32 initialized = ipa->initialized;
1542 
1543 	ipa->set_up = 0;
1544 	while (initialized) {
1545 		u32 endpoint_id = __ffs(initialized);
1546 
1547 		initialized ^= BIT(endpoint_id);
1548 
1549 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1550 	}
1551 }
1552 
1553 void ipa_endpoint_teardown(struct ipa *ipa)
1554 {
1555 	u32 set_up = ipa->set_up;
1556 
1557 	while (set_up) {
1558 		u32 endpoint_id = __fls(set_up);
1559 
1560 		set_up ^= BIT(endpoint_id);
1561 
1562 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1563 	}
1564 	ipa->set_up = 0;
1565 }
1566 
1567 int ipa_endpoint_config(struct ipa *ipa)
1568 {
1569 	struct device *dev = &ipa->pdev->dev;
1570 	u32 initialized;
1571 	u32 rx_base;
1572 	u32 rx_mask;
1573 	u32 tx_mask;
1574 	int ret = 0;
1575 	u32 max;
1576 	u32 val;
1577 
1578 	/* Find out about the endpoints supplied by the hardware, and ensure
1579 	 * the highest one doesn't exceed the number we support.
1580 	 */
1581 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1582 
1583 	/* Our RX is an IPA producer */
1584 	rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
1585 	max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
1586 	if (max > IPA_ENDPOINT_MAX) {
1587 		dev_err(dev, "too many endpoints (%u > %u)\n",
1588 			max, IPA_ENDPOINT_MAX);
1589 		return -EINVAL;
1590 	}
1591 	rx_mask = GENMASK(max - 1, rx_base);
1592 
1593 	/* Our TX is an IPA consumer */
1594 	max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
1595 	tx_mask = GENMASK(max - 1, 0);
1596 
1597 	ipa->available = rx_mask | tx_mask;
1598 
1599 	/* Check for initialized endpoints not supported by the hardware */
1600 	if (ipa->initialized & ~ipa->available) {
1601 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1602 			ipa->initialized & ~ipa->available);
1603 		ret = -EINVAL;		/* Report other errors too */
1604 	}
1605 
1606 	initialized = ipa->initialized;
1607 	while (initialized) {
1608 		u32 endpoint_id = __ffs(initialized);
1609 		struct ipa_endpoint *endpoint;
1610 
1611 		initialized ^= BIT(endpoint_id);
1612 
1613 		/* Make sure it's pointing in the right direction */
1614 		endpoint = &ipa->endpoint[endpoint_id];
1615 		if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1616 			dev_err(dev, "endpoint id %u wrong direction\n",
1617 				endpoint_id);
1618 			ret = -EINVAL;
1619 		}
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 void ipa_endpoint_deconfig(struct ipa *ipa)
1626 {
1627 	ipa->available = 0;	/* Nothing more to do */
1628 }
1629 
1630 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1631 				  const struct ipa_gsi_endpoint_data *data)
1632 {
1633 	struct ipa_endpoint *endpoint;
1634 
1635 	endpoint = &ipa->endpoint[data->endpoint_id];
1636 
1637 	if (data->ee_id == GSI_EE_AP)
1638 		ipa->channel_map[data->channel_id] = endpoint;
1639 	ipa->name_map[name] = endpoint;
1640 
1641 	endpoint->ipa = ipa;
1642 	endpoint->ee_id = data->ee_id;
1643 	endpoint->seq_type = data->endpoint.seq_type;
1644 	endpoint->channel_id = data->channel_id;
1645 	endpoint->endpoint_id = data->endpoint_id;
1646 	endpoint->toward_ipa = data->toward_ipa;
1647 	endpoint->data = &data->endpoint.config;
1648 
1649 	ipa->initialized |= BIT(endpoint->endpoint_id);
1650 }
1651 
1652 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1653 {
1654 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1655 
1656 	memset(endpoint, 0, sizeof(*endpoint));
1657 }
1658 
1659 void ipa_endpoint_exit(struct ipa *ipa)
1660 {
1661 	u32 initialized = ipa->initialized;
1662 
1663 	while (initialized) {
1664 		u32 endpoint_id = __fls(initialized);
1665 
1666 		initialized ^= BIT(endpoint_id);
1667 
1668 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1669 	}
1670 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1671 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1672 }
1673 
1674 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1675 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1676 		      const struct ipa_gsi_endpoint_data *data)
1677 {
1678 	enum ipa_endpoint_name name;
1679 	u32 filter_map;
1680 
1681 	if (!ipa_endpoint_data_valid(ipa, count, data))
1682 		return 0;	/* Error */
1683 
1684 	ipa->initialized = 0;
1685 
1686 	filter_map = 0;
1687 	for (name = 0; name < count; name++, data++) {
1688 		if (ipa_gsi_endpoint_data_empty(data))
1689 			continue;	/* Skip over empty slots */
1690 
1691 		ipa_endpoint_init_one(ipa, name, data);
1692 
1693 		if (data->endpoint.filter_support)
1694 			filter_map |= BIT(data->endpoint_id);
1695 	}
1696 
1697 	if (!ipa_filter_map_valid(ipa, filter_map))
1698 		goto err_endpoint_exit;
1699 
1700 	return filter_map;	/* Non-zero bitmask */
1701 
1702 err_endpoint_exit:
1703 	ipa_endpoint_exit(ipa);
1704 
1705 	return 0;	/* Error */
1706 }
1707