xref: /linux/drivers/net/ipa/ipa_endpoint.c (revision 6c1e423a3c84953edcf91ff03ab97829b287184a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 /* Hardware is told about receive buffers once a "batch" has been queued */
29 #define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
30 
31 /* The amount of RX buffer space consumed by standard skb overhead */
32 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
33 
34 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
35 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
36 
37 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
38 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
39 
40 /** enum ipa_status_opcode - status element opcode hardware values */
41 enum ipa_status_opcode {
42 	IPA_STATUS_OPCODE_PACKET		= 0x01,
43 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
44 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
45 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
46 };
47 
48 /** enum ipa_status_exception - status element exception type */
49 enum ipa_status_exception {
50 	/* 0 means no exception */
51 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
52 };
53 
54 /* Status element provided by hardware */
55 struct ipa_status {
56 	u8 opcode;		/* enum ipa_status_opcode */
57 	u8 exception;		/* enum ipa_status_exception */
58 	__le16 mask;
59 	__le16 pkt_len;
60 	u8 endp_src_idx;
61 	u8 endp_dst_idx;
62 	__le32 metadata;
63 	__le32 flags1;
64 	__le64 flags2;
65 	__le32 flags3;
66 	__le32 flags4;
67 };
68 
69 /* Field masks for struct ipa_status structure fields */
70 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
71 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
72 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
73 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
74 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
75 
76 static u32 aggr_byte_limit_max(enum ipa_version version)
77 {
78 	if (version < IPA_VERSION_4_5)
79 		return field_max(aggr_byte_limit_fmask(true));
80 
81 	return field_max(aggr_byte_limit_fmask(false));
82 }
83 
84 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
85 			    const struct ipa_gsi_endpoint_data *all_data,
86 			    const struct ipa_gsi_endpoint_data *data)
87 {
88 	const struct ipa_gsi_endpoint_data *other_data;
89 	struct device *dev = &ipa->pdev->dev;
90 	enum ipa_endpoint_name other_name;
91 
92 	if (ipa_gsi_endpoint_data_empty(data))
93 		return true;
94 
95 	if (!data->toward_ipa) {
96 		u32 buffer_size;
97 		u32 limit;
98 
99 		if (data->endpoint.filter_support) {
100 			dev_err(dev, "filtering not supported for "
101 					"RX endpoint %u\n",
102 				data->endpoint_id);
103 			return false;
104 		}
105 
106 		/* Nothing more to check for non-AP RX */
107 		if (data->ee_id != GSI_EE_AP)
108 			return true;
109 
110 		buffer_size = data->endpoint.config.rx.buffer_size;
111 		/* The buffer size must hold an MTU plus overhead */
112 		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
113 		if (buffer_size < limit) {
114 			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
115 				data->endpoint_id, buffer_size, limit);
116 			return false;
117 		}
118 
119 		/* For an endpoint supporting receive aggregation, the
120 		 * aggregation byte limit defines the point at which an
121 		 * aggregation window will close.  It is programmed into the
122 		 * IPA hardware as a number of KB.  We don't use "hard byte
123 		 * limit" aggregation, so we need to supply enough space in
124 		 * a receive buffer to hold a complete MTU plus normal skb
125 		 * overhead *after* that aggregation byte limit has been
126 		 * crossed.
127 		 *
128 		 * This check just ensures the receive buffer size doesn't
129 		 * exceed what's representable in the aggregation limit field.
130 		 */
131 		if (data->endpoint.config.aggregation) {
132 			limit += SZ_1K * aggr_byte_limit_max(ipa->version);
133 			if (buffer_size - NET_SKB_PAD > limit) {
134 				dev_err(dev, "RX buffer size too large for aggregated RX endpoint %u (%u > %u)\n",
135 					data->endpoint_id,
136 					buffer_size - NET_SKB_PAD, limit);
137 
138 				return false;
139 			}
140 		}
141 
142 		return true;	/* Nothing more to check for RX */
143 	}
144 
145 	if (data->endpoint.config.status_enable) {
146 		other_name = data->endpoint.config.tx.status_endpoint;
147 		if (other_name >= count) {
148 			dev_err(dev, "status endpoint name %u out of range "
149 					"for endpoint %u\n",
150 				other_name, data->endpoint_id);
151 			return false;
152 		}
153 
154 		/* Status endpoint must be defined... */
155 		other_data = &all_data[other_name];
156 		if (ipa_gsi_endpoint_data_empty(other_data)) {
157 			dev_err(dev, "DMA endpoint name %u undefined "
158 					"for endpoint %u\n",
159 				other_name, data->endpoint_id);
160 			return false;
161 		}
162 
163 		/* ...and has to be an RX endpoint... */
164 		if (other_data->toward_ipa) {
165 			dev_err(dev,
166 				"status endpoint for endpoint %u not RX\n",
167 				data->endpoint_id);
168 			return false;
169 		}
170 
171 		/* ...and if it's to be an AP endpoint... */
172 		if (other_data->ee_id == GSI_EE_AP) {
173 			/* ...make sure it has status enabled. */
174 			if (!other_data->endpoint.config.status_enable) {
175 				dev_err(dev,
176 					"status not enabled for endpoint %u\n",
177 					other_data->endpoint_id);
178 				return false;
179 			}
180 		}
181 	}
182 
183 	if (data->endpoint.config.dma_mode) {
184 		other_name = data->endpoint.config.dma_endpoint;
185 		if (other_name >= count) {
186 			dev_err(dev, "DMA endpoint name %u out of range "
187 					"for endpoint %u\n",
188 				other_name, data->endpoint_id);
189 			return false;
190 		}
191 
192 		other_data = &all_data[other_name];
193 		if (ipa_gsi_endpoint_data_empty(other_data)) {
194 			dev_err(dev, "DMA endpoint name %u undefined "
195 					"for endpoint %u\n",
196 				other_name, data->endpoint_id);
197 			return false;
198 		}
199 	}
200 
201 	return true;
202 }
203 
204 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
205 				    const struct ipa_gsi_endpoint_data *data)
206 {
207 	const struct ipa_gsi_endpoint_data *dp = data;
208 	struct device *dev = &ipa->pdev->dev;
209 	enum ipa_endpoint_name name;
210 
211 	if (count > IPA_ENDPOINT_COUNT) {
212 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
213 			count, IPA_ENDPOINT_COUNT);
214 		return false;
215 	}
216 
217 	/* Make sure needed endpoints have defined data */
218 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
219 		dev_err(dev, "command TX endpoint not defined\n");
220 		return false;
221 	}
222 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
223 		dev_err(dev, "LAN RX endpoint not defined\n");
224 		return false;
225 	}
226 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
227 		dev_err(dev, "AP->modem TX endpoint not defined\n");
228 		return false;
229 	}
230 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
231 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
232 		return false;
233 	}
234 
235 	for (name = 0; name < count; name++, dp++)
236 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
237 			return false;
238 
239 	return true;
240 }
241 
242 /* Allocate a transaction to use on a non-command endpoint */
243 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
244 						  u32 tre_count)
245 {
246 	struct gsi *gsi = &endpoint->ipa->gsi;
247 	u32 channel_id = endpoint->channel_id;
248 	enum dma_data_direction direction;
249 
250 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
251 
252 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
253 }
254 
255 /* suspend_delay represents suspend for RX, delay for TX endpoints.
256  * Note that suspend is not supported starting with IPA v4.0, and
257  * delay mode should not be used starting with IPA v4.2.
258  */
259 static bool
260 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
261 {
262 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
263 	struct ipa *ipa = endpoint->ipa;
264 	bool state;
265 	u32 mask;
266 	u32 val;
267 
268 	if (endpoint->toward_ipa)
269 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
270 	else
271 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
272 
273 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
274 
275 	val = ioread32(ipa->reg_virt + offset);
276 	state = !!(val & mask);
277 
278 	/* Don't bother if it's already in the requested state */
279 	if (suspend_delay != state) {
280 		val ^= mask;
281 		iowrite32(val, ipa->reg_virt + offset);
282 	}
283 
284 	return state;
285 }
286 
287 /* We don't care what the previous state was for delay mode */
288 static void
289 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
290 {
291 	/* Delay mode should not be used for IPA v4.2+ */
292 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
293 	WARN_ON(!endpoint->toward_ipa);
294 
295 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
296 }
297 
298 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
299 {
300 	u32 mask = BIT(endpoint->endpoint_id);
301 	struct ipa *ipa = endpoint->ipa;
302 	u32 offset;
303 	u32 val;
304 
305 	WARN_ON(!(mask & ipa->available));
306 
307 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
308 	val = ioread32(ipa->reg_virt + offset);
309 
310 	return !!(val & mask);
311 }
312 
313 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
314 {
315 	u32 mask = BIT(endpoint->endpoint_id);
316 	struct ipa *ipa = endpoint->ipa;
317 
318 	WARN_ON(!(mask & ipa->available));
319 
320 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
321 }
322 
323 /**
324  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
325  * @endpoint:	Endpoint on which to emulate a suspend
326  *
327  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
328  *  with an open aggregation frame.  This is to work around a hardware
329  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
330  *  generated when it should be.
331  */
332 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
333 {
334 	struct ipa *ipa = endpoint->ipa;
335 
336 	if (!endpoint->data->aggregation)
337 		return;
338 
339 	/* Nothing to do if the endpoint doesn't have aggregation open */
340 	if (!ipa_endpoint_aggr_active(endpoint))
341 		return;
342 
343 	/* Force close aggregation */
344 	ipa_endpoint_force_close(endpoint);
345 
346 	ipa_interrupt_simulate_suspend(ipa->interrupt);
347 }
348 
349 /* Returns previous suspend state (true means suspend was enabled) */
350 static bool
351 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
352 {
353 	bool suspended;
354 
355 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
356 		return enable;	/* For IPA v4.0+, no change made */
357 
358 	WARN_ON(endpoint->toward_ipa);
359 
360 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
361 
362 	/* A client suspended with an open aggregation frame will not
363 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
364 	 * ipa_endpoint_suspend_aggr() handle this.
365 	 */
366 	if (enable && !suspended)
367 		ipa_endpoint_suspend_aggr(endpoint);
368 
369 	return suspended;
370 }
371 
372 /* Put all modem RX endpoints into suspend mode, and stop transmission
373  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
374  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
375  * control instead.
376  */
377 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
378 {
379 	u32 endpoint_id;
380 
381 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
382 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
383 
384 		if (endpoint->ee_id != GSI_EE_MODEM)
385 			continue;
386 
387 		if (!endpoint->toward_ipa)
388 			(void)ipa_endpoint_program_suspend(endpoint, enable);
389 		else if (ipa->version < IPA_VERSION_4_2)
390 			ipa_endpoint_program_delay(endpoint, enable);
391 		else
392 			gsi_modem_channel_flow_control(&ipa->gsi,
393 						       endpoint->channel_id,
394 						       enable);
395 	}
396 }
397 
398 /* Reset all modem endpoints to use the default exception endpoint */
399 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
400 {
401 	u32 initialized = ipa->initialized;
402 	struct gsi_trans *trans;
403 	u32 count;
404 
405 	/* We need one command per modem TX endpoint.  We can get an upper
406 	 * bound on that by assuming all initialized endpoints are modem->IPA.
407 	 * That won't happen, and we could be more precise, but this is fine
408 	 * for now.  End the transaction with commands to clear the pipeline.
409 	 */
410 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
411 	trans = ipa_cmd_trans_alloc(ipa, count);
412 	if (!trans) {
413 		dev_err(&ipa->pdev->dev,
414 			"no transaction to reset modem exception endpoints\n");
415 		return -EBUSY;
416 	}
417 
418 	while (initialized) {
419 		u32 endpoint_id = __ffs(initialized);
420 		struct ipa_endpoint *endpoint;
421 		u32 offset;
422 
423 		initialized ^= BIT(endpoint_id);
424 
425 		/* We only reset modem TX endpoints */
426 		endpoint = &ipa->endpoint[endpoint_id];
427 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
428 			continue;
429 
430 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
431 
432 		/* Value written is 0, and all bits are updated.  That
433 		 * means status is disabled on the endpoint, and as a
434 		 * result all other fields in the register are ignored.
435 		 */
436 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
437 	}
438 
439 	ipa_cmd_pipeline_clear_add(trans);
440 
441 	/* XXX This should have a 1 second timeout */
442 	gsi_trans_commit_wait(trans);
443 
444 	ipa_cmd_pipeline_clear_wait(ipa);
445 
446 	return 0;
447 }
448 
449 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
450 {
451 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
452 	enum ipa_cs_offload_en enabled;
453 	u32 val = 0;
454 
455 	/* FRAG_OFFLOAD_EN is 0 */
456 	if (endpoint->data->checksum) {
457 		enum ipa_version version = endpoint->ipa->version;
458 
459 		if (endpoint->toward_ipa) {
460 			u32 checksum_offset;
461 
462 			/* Checksum header offset is in 4-byte units */
463 			checksum_offset = sizeof(struct rmnet_map_header);
464 			checksum_offset /= sizeof(u32);
465 			val |= u32_encode_bits(checksum_offset,
466 					       CS_METADATA_HDR_OFFSET_FMASK);
467 
468 			enabled = version < IPA_VERSION_4_5
469 					? IPA_CS_OFFLOAD_UL
470 					: IPA_CS_OFFLOAD_INLINE;
471 		} else {
472 			enabled = version < IPA_VERSION_4_5
473 					? IPA_CS_OFFLOAD_DL
474 					: IPA_CS_OFFLOAD_INLINE;
475 		}
476 	} else {
477 		enabled = IPA_CS_OFFLOAD_NONE;
478 	}
479 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
480 	/* CS_GEN_QMB_MASTER_SEL is 0 */
481 
482 	iowrite32(val, endpoint->ipa->reg_virt + offset);
483 }
484 
485 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
486 {
487 	u32 offset;
488 	u32 val;
489 
490 	if (!endpoint->toward_ipa)
491 		return;
492 
493 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
494 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
495 
496 	iowrite32(val, endpoint->ipa->reg_virt + offset);
497 }
498 
499 static u32
500 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
501 {
502 	u32 header_size = sizeof(struct rmnet_map_header);
503 
504 	/* Without checksum offload, we just have the MAP header */
505 	if (!endpoint->data->checksum)
506 		return header_size;
507 
508 	if (version < IPA_VERSION_4_5) {
509 		/* Checksum header inserted for AP TX endpoints only */
510 		if (endpoint->toward_ipa)
511 			header_size += sizeof(struct rmnet_map_ul_csum_header);
512 	} else {
513 		/* Checksum header is used in both directions */
514 		header_size += sizeof(struct rmnet_map_v5_csum_header);
515 	}
516 
517 	return header_size;
518 }
519 
520 /**
521  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
522  * @endpoint:	Endpoint pointer
523  *
524  * We program QMAP endpoints so each packet received is preceded by a QMAP
525  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
526  * packet size field, and we have the IPA hardware populate both for each
527  * received packet.  The header is configured (in the HDR_EXT register)
528  * to use big endian format.
529  *
530  * The packet size is written into the QMAP header's pkt_len field.  That
531  * location is defined here using the HDR_OFST_PKT_SIZE field.
532  *
533  * The mux_id comes from a 4-byte metadata value supplied with each packet
534  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
535  * value that we want, in its low-order byte.  A bitmask defined in the
536  * endpoint's METADATA_MASK register defines which byte within the modem
537  * metadata contains the mux_id.  And the OFST_METADATA field programmed
538  * here indicates where the extracted byte should be placed within the QMAP
539  * header.
540  */
541 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
542 {
543 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
544 	struct ipa *ipa = endpoint->ipa;
545 	u32 val = 0;
546 
547 	if (endpoint->data->qmap) {
548 		enum ipa_version version = ipa->version;
549 		size_t header_size;
550 
551 		header_size = ipa_qmap_header_size(version, endpoint);
552 		val = ipa_header_size_encoded(version, header_size);
553 
554 		/* Define how to fill fields in a received QMAP header */
555 		if (!endpoint->toward_ipa) {
556 			u32 offset;	/* Field offset within header */
557 
558 			/* Where IPA will write the metadata value */
559 			offset = offsetof(struct rmnet_map_header, mux_id);
560 			val |= ipa_metadata_offset_encoded(version, offset);
561 
562 			/* Where IPA will write the length */
563 			offset = offsetof(struct rmnet_map_header, pkt_len);
564 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
565 			if (version >= IPA_VERSION_4_5)
566 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
567 
568 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
569 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
570 		}
571 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
572 		val |= HDR_OFST_METADATA_VALID_FMASK;
573 
574 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
575 		/* HDR_A5_MUX is 0 */
576 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
577 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
578 	}
579 
580 	iowrite32(val, ipa->reg_virt + offset);
581 }
582 
583 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
584 {
585 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
586 	u32 pad_align = endpoint->data->rx.pad_align;
587 	struct ipa *ipa = endpoint->ipa;
588 	u32 val = 0;
589 
590 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
591 
592 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
593 	 * driver assumes this field is meaningful in packets it receives,
594 	 * and assumes the header's payload length includes that padding.
595 	 * The RMNet driver does *not* pad packets it sends, however, so
596 	 * the pad field (although 0) should be ignored.
597 	 */
598 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
599 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
600 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
601 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
602 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
603 	}
604 
605 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
606 	if (!endpoint->toward_ipa)
607 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
608 
609 	/* IPA v4.5 adds some most-significant bits to a few fields,
610 	 * two of which are defined in the HDR (not HDR_EXT) register.
611 	 */
612 	if (ipa->version >= IPA_VERSION_4_5) {
613 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
614 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
615 			u32 offset;
616 
617 			offset = offsetof(struct rmnet_map_header, pkt_len);
618 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
619 			val |= u32_encode_bits(offset,
620 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
621 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
622 		}
623 	}
624 	iowrite32(val, ipa->reg_virt + offset);
625 }
626 
627 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
628 {
629 	u32 endpoint_id = endpoint->endpoint_id;
630 	u32 val = 0;
631 	u32 offset;
632 
633 	if (endpoint->toward_ipa)
634 		return;		/* Register not valid for TX endpoints */
635 
636 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
637 
638 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
639 	if (endpoint->data->qmap)
640 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
641 
642 	iowrite32(val, endpoint->ipa->reg_virt + offset);
643 }
644 
645 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
646 {
647 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
648 	u32 val;
649 
650 	if (!endpoint->toward_ipa)
651 		return;		/* Register not valid for RX endpoints */
652 
653 	if (endpoint->data->dma_mode) {
654 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
655 		u32 dma_endpoint_id;
656 
657 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
658 
659 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
660 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
661 	} else {
662 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
663 	}
664 	/* All other bits unspecified (and 0) */
665 
666 	iowrite32(val, endpoint->ipa->reg_virt + offset);
667 }
668 
669 /* Compute the aggregation size value to use for a given buffer size */
670 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
671 {
672 	/* We don't use "hard byte limit" aggregation, so we define the
673 	 * aggregation limit such that our buffer has enough space *after*
674 	 * that limit to receive a full MTU of data, plus overhead.
675 	 */
676 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
677 
678 	return rx_buffer_size / SZ_1K;
679 }
680 
681 /* Encoded values for AGGR endpoint register fields */
682 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
683 {
684 	if (version < IPA_VERSION_4_5)
685 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
686 
687 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
688 }
689 
690 /* Encode the aggregation timer limit (microseconds) based on IPA version */
691 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
692 {
693 	u32 gran_sel;
694 	u32 fmask;
695 	u32 val;
696 
697 	if (version < IPA_VERSION_4_5) {
698 		/* We set aggregation granularity in ipa_hardware_config() */
699 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
700 
701 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
702 	}
703 
704 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
705 	 * pulse generators 0 and 1 available, which were configured
706 	 * in ipa_qtime_config() to have granularity 100 usec and
707 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
708 	 * otherwise fall back to pulse generator 1.
709 	 */
710 	fmask = aggr_time_limit_fmask(false);
711 	val = DIV_ROUND_CLOSEST(limit, 100);
712 	if (val > field_max(fmask)) {
713 		/* Have to use pulse generator 1 (millisecond granularity) */
714 		gran_sel = AGGR_GRAN_SEL_FMASK;
715 		val = DIV_ROUND_CLOSEST(limit, 1000);
716 	} else {
717 		/* We can use pulse generator 0 (100 usec granularity) */
718 		gran_sel = 0;
719 	}
720 
721 	return gran_sel | u32_encode_bits(val, fmask);
722 }
723 
724 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
725 {
726 	u32 val = enabled ? 1 : 0;
727 
728 	if (version < IPA_VERSION_4_5)
729 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
730 
731 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
732 }
733 
734 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
735 {
736 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
737 	enum ipa_version version = endpoint->ipa->version;
738 	u32 val = 0;
739 
740 	if (endpoint->data->aggregation) {
741 		if (!endpoint->toward_ipa) {
742 			const struct ipa_endpoint_rx_data *rx_data;
743 			u32 buffer_size;
744 			bool close_eof;
745 			u32 limit;
746 
747 			rx_data = &endpoint->data->rx;
748 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
749 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
750 
751 			buffer_size = rx_data->buffer_size;
752 			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD);
753 			val |= aggr_byte_limit_encoded(version, limit);
754 
755 			limit = IPA_AGGR_TIME_LIMIT;
756 			val |= aggr_time_limit_encoded(version, limit);
757 
758 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
759 
760 			close_eof = rx_data->aggr_close_eof;
761 			val |= aggr_sw_eof_active_encoded(version, close_eof);
762 
763 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
764 		} else {
765 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
766 					       AGGR_EN_FMASK);
767 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
768 			/* other fields ignored */
769 		}
770 		/* AGGR_FORCE_CLOSE is 0 */
771 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
772 	} else {
773 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
774 		/* other fields ignored */
775 	}
776 
777 	iowrite32(val, endpoint->ipa->reg_virt + offset);
778 }
779 
780 /* Return the Qtime-based head-of-line blocking timer value that
781  * represents the given number of microseconds.  The result
782  * includes both the timer value and the selected timer granularity.
783  */
784 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
785 {
786 	u32 gran_sel;
787 	u32 val;
788 
789 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
790 	 * pulse generators 0 and 1 available, which were configured
791 	 * in ipa_qtime_config() to have granularity 100 usec and
792 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
793 	 * otherwise fall back to pulse generator 1.
794 	 */
795 	val = DIV_ROUND_CLOSEST(microseconds, 100);
796 	if (val > field_max(TIME_LIMIT_FMASK)) {
797 		/* Have to use pulse generator 1 (millisecond granularity) */
798 		gran_sel = GRAN_SEL_FMASK;
799 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
800 	} else {
801 		/* We can use pulse generator 0 (100 usec granularity) */
802 		gran_sel = 0;
803 	}
804 
805 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
806 }
807 
808 /* The head-of-line blocking timer is defined as a tick count.  For
809  * IPA version 4.5 the tick count is based on the Qtimer, which is
810  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
811  * each tick represents 128 cycles of the IPA core clock.
812  *
813  * Return the encoded value that should be written to that register
814  * that represents the timeout period provided.  For IPA v4.2 this
815  * encodes a base and scale value, while for earlier versions the
816  * value is a simple tick count.
817  */
818 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
819 {
820 	u32 width;
821 	u32 scale;
822 	u64 ticks;
823 	u64 rate;
824 	u32 high;
825 	u32 val;
826 
827 	if (!microseconds)
828 		return 0;	/* Nothing to compute if timer period is 0 */
829 
830 	if (ipa->version >= IPA_VERSION_4_5)
831 		return hol_block_timer_qtime_val(ipa, microseconds);
832 
833 	/* Use 64 bit arithmetic to avoid overflow... */
834 	rate = ipa_core_clock_rate(ipa);
835 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
836 	/* ...but we still need to fit into a 32-bit register */
837 	WARN_ON(ticks > U32_MAX);
838 
839 	/* IPA v3.5.1 through v4.1 just record the tick count */
840 	if (ipa->version < IPA_VERSION_4_2)
841 		return (u32)ticks;
842 
843 	/* For IPA v4.2, the tick count is represented by base and
844 	 * scale fields within the 32-bit timer register, where:
845 	 *     ticks = base << scale;
846 	 * The best precision is achieved when the base value is as
847 	 * large as possible.  Find the highest set bit in the tick
848 	 * count, and extract the number of bits in the base field
849 	 * such that high bit is included.
850 	 */
851 	high = fls(ticks);		/* 1..32 */
852 	width = HWEIGHT32(BASE_VALUE_FMASK);
853 	scale = high > width ? high - width : 0;
854 	if (scale) {
855 		/* If we're scaling, round up to get a closer result */
856 		ticks += 1 << (scale - 1);
857 		/* High bit was set, so rounding might have affected it */
858 		if (fls(ticks) != high)
859 			scale++;
860 	}
861 
862 	val = u32_encode_bits(scale, SCALE_FMASK);
863 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
864 
865 	return val;
866 }
867 
868 /* If microseconds is 0, timeout is immediate */
869 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
870 					      u32 microseconds)
871 {
872 	u32 endpoint_id = endpoint->endpoint_id;
873 	struct ipa *ipa = endpoint->ipa;
874 	u32 offset;
875 	u32 val;
876 
877 	/* This should only be changed when HOL_BLOCK_EN is disabled */
878 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
879 	val = hol_block_timer_val(ipa, microseconds);
880 	iowrite32(val, ipa->reg_virt + offset);
881 }
882 
883 static void
884 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
885 {
886 	u32 endpoint_id = endpoint->endpoint_id;
887 	u32 offset;
888 	u32 val;
889 
890 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
891 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
892 	iowrite32(val, endpoint->ipa->reg_virt + offset);
893 	/* When enabling, the register must be written twice for IPA v4.5+ */
894 	if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
895 		iowrite32(val, endpoint->ipa->reg_virt + offset);
896 }
897 
898 /* Assumes HOL_BLOCK is in disabled state */
899 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
900 					       u32 microseconds)
901 {
902 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
903 	ipa_endpoint_init_hol_block_en(endpoint, true);
904 }
905 
906 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
907 {
908 	ipa_endpoint_init_hol_block_en(endpoint, false);
909 }
910 
911 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
912 {
913 	u32 i;
914 
915 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
916 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
917 
918 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
919 			continue;
920 
921 		ipa_endpoint_init_hol_block_disable(endpoint);
922 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
923 	}
924 }
925 
926 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
927 {
928 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
929 	u32 val = 0;
930 
931 	if (!endpoint->toward_ipa)
932 		return;		/* Register not valid for RX endpoints */
933 
934 	/* DEAGGR_HDR_LEN is 0 */
935 	/* PACKET_OFFSET_VALID is 0 */
936 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
937 	/* MAX_PACKET_LEN is 0 (not enforced) */
938 
939 	iowrite32(val, endpoint->ipa->reg_virt + offset);
940 }
941 
942 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
943 {
944 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
945 	struct ipa *ipa = endpoint->ipa;
946 	u32 val;
947 
948 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
949 	iowrite32(val, ipa->reg_virt + offset);
950 }
951 
952 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
953 {
954 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
955 	u32 val = 0;
956 
957 	if (!endpoint->toward_ipa)
958 		return;		/* Register not valid for RX endpoints */
959 
960 	/* Low-order byte configures primary packet processing */
961 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
962 
963 	/* Second byte configures replicated packet processing */
964 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
965 			       SEQ_REP_TYPE_FMASK);
966 
967 	iowrite32(val, endpoint->ipa->reg_virt + offset);
968 }
969 
970 /**
971  * ipa_endpoint_skb_tx() - Transmit a socket buffer
972  * @endpoint:	Endpoint pointer
973  * @skb:	Socket buffer to send
974  *
975  * Returns:	0 if successful, or a negative error code
976  */
977 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
978 {
979 	struct gsi_trans *trans;
980 	u32 nr_frags;
981 	int ret;
982 
983 	/* Make sure source endpoint's TLV FIFO has enough entries to
984 	 * hold the linear portion of the skb and all its fragments.
985 	 * If not, see if we can linearize it before giving up.
986 	 */
987 	nr_frags = skb_shinfo(skb)->nr_frags;
988 	if (1 + nr_frags > endpoint->trans_tre_max) {
989 		if (skb_linearize(skb))
990 			return -E2BIG;
991 		nr_frags = 0;
992 	}
993 
994 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
995 	if (!trans)
996 		return -EBUSY;
997 
998 	ret = gsi_trans_skb_add(trans, skb);
999 	if (ret)
1000 		goto err_trans_free;
1001 	trans->data = skb;	/* transaction owns skb now */
1002 
1003 	gsi_trans_commit(trans, !netdev_xmit_more());
1004 
1005 	return 0;
1006 
1007 err_trans_free:
1008 	gsi_trans_free(trans);
1009 
1010 	return -ENOMEM;
1011 }
1012 
1013 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1014 {
1015 	u32 endpoint_id = endpoint->endpoint_id;
1016 	struct ipa *ipa = endpoint->ipa;
1017 	u32 val = 0;
1018 	u32 offset;
1019 
1020 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
1021 
1022 	if (endpoint->data->status_enable) {
1023 		val |= STATUS_EN_FMASK;
1024 		if (endpoint->toward_ipa) {
1025 			enum ipa_endpoint_name name;
1026 			u32 status_endpoint_id;
1027 
1028 			name = endpoint->data->tx.status_endpoint;
1029 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1030 
1031 			val |= u32_encode_bits(status_endpoint_id,
1032 					       STATUS_ENDP_FMASK);
1033 		}
1034 		/* STATUS_LOCATION is 0, meaning status element precedes
1035 		 * packet (not present for IPA v4.5)
1036 		 */
1037 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1038 	}
1039 
1040 	iowrite32(val, ipa->reg_virt + offset);
1041 }
1042 
1043 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1044 				      struct gsi_trans *trans)
1045 {
1046 	struct page *page;
1047 	u32 buffer_size;
1048 	u32 offset;
1049 	u32 len;
1050 	int ret;
1051 
1052 	buffer_size = endpoint->data->rx.buffer_size;
1053 	page = dev_alloc_pages(get_order(buffer_size));
1054 	if (!page)
1055 		return -ENOMEM;
1056 
1057 	/* Offset the buffer to make space for skb headroom */
1058 	offset = NET_SKB_PAD;
1059 	len = buffer_size - offset;
1060 
1061 	ret = gsi_trans_page_add(trans, page, len, offset);
1062 	if (ret)
1063 		__free_pages(page, get_order(buffer_size));
1064 	else
1065 		trans->data = page;	/* transaction owns page now */
1066 
1067 	return ret;
1068 }
1069 
1070 /**
1071  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1072  * @endpoint:	Endpoint to be replenished
1073  *
1074  * The IPA hardware can hold a fixed number of receive buffers for an RX
1075  * endpoint, based on the number of entries in the underlying channel ring
1076  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1077  * more receive buffers can be supplied to the hardware.  Replenishing for
1078  * an endpoint can be disabled, in which case buffers are not queued to
1079  * the hardware.
1080  */
1081 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1082 {
1083 	struct gsi_trans *trans;
1084 
1085 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1086 		return;
1087 
1088 	/* Skip it if it's already active */
1089 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1090 		return;
1091 
1092 	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1093 		bool doorbell;
1094 
1095 		if (ipa_endpoint_replenish_one(endpoint, trans))
1096 			goto try_again_later;
1097 
1098 
1099 		/* Ring the doorbell if we've got a full batch */
1100 		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1101 		gsi_trans_commit(trans, doorbell);
1102 	}
1103 
1104 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1105 
1106 	return;
1107 
1108 try_again_later:
1109 	gsi_trans_free(trans);
1110 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1111 
1112 	/* Whenever a receive buffer transaction completes we'll try to
1113 	 * replenish again.  It's unlikely, but if we fail to supply even
1114 	 * one buffer, nothing will trigger another replenish attempt.
1115 	 * If the hardware has no receive buffers queued, schedule work to
1116 	 * try replenishing again.
1117 	 */
1118 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1119 		schedule_delayed_work(&endpoint->replenish_work,
1120 				      msecs_to_jiffies(1));
1121 }
1122 
1123 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1124 {
1125 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1126 
1127 	/* Start replenishing if hardware currently has no buffers */
1128 	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1129 		ipa_endpoint_replenish(endpoint);
1130 }
1131 
1132 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1133 {
1134 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1135 }
1136 
1137 static void ipa_endpoint_replenish_work(struct work_struct *work)
1138 {
1139 	struct delayed_work *dwork = to_delayed_work(work);
1140 	struct ipa_endpoint *endpoint;
1141 
1142 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1143 
1144 	ipa_endpoint_replenish(endpoint);
1145 }
1146 
1147 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1148 				  void *data, u32 len, u32 extra)
1149 {
1150 	struct sk_buff *skb;
1151 
1152 	if (!endpoint->netdev)
1153 		return;
1154 
1155 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1156 	if (skb) {
1157 		/* Copy the data into the socket buffer and receive it */
1158 		skb_put(skb, len);
1159 		memcpy(skb->data, data, len);
1160 		skb->truesize += extra;
1161 	}
1162 
1163 	ipa_modem_skb_rx(endpoint->netdev, skb);
1164 }
1165 
1166 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1167 				   struct page *page, u32 len)
1168 {
1169 	u32 buffer_size = endpoint->data->rx.buffer_size;
1170 	struct sk_buff *skb;
1171 
1172 	/* Nothing to do if there's no netdev */
1173 	if (!endpoint->netdev)
1174 		return false;
1175 
1176 	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1177 
1178 	skb = build_skb(page_address(page), buffer_size);
1179 	if (skb) {
1180 		/* Reserve the headroom and account for the data */
1181 		skb_reserve(skb, NET_SKB_PAD);
1182 		skb_put(skb, len);
1183 	}
1184 
1185 	/* Receive the buffer (or record drop if unable to build it) */
1186 	ipa_modem_skb_rx(endpoint->netdev, skb);
1187 
1188 	return skb != NULL;
1189 }
1190 
1191 /* The format of a packet status element is the same for several status
1192  * types (opcodes).  Other types aren't currently supported.
1193  */
1194 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1195 {
1196 	switch (opcode) {
1197 	case IPA_STATUS_OPCODE_PACKET:
1198 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1199 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1200 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1201 		return true;
1202 	default:
1203 		return false;
1204 	}
1205 }
1206 
1207 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1208 				     const struct ipa_status *status)
1209 {
1210 	u32 endpoint_id;
1211 
1212 	if (!ipa_status_format_packet(status->opcode))
1213 		return true;
1214 	if (!status->pkt_len)
1215 		return true;
1216 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1217 				  IPA_STATUS_DST_IDX_FMASK);
1218 	if (endpoint_id != endpoint->endpoint_id)
1219 		return true;
1220 
1221 	return false;	/* Don't skip this packet, process it */
1222 }
1223 
1224 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1225 				    const struct ipa_status *status)
1226 {
1227 	struct ipa_endpoint *command_endpoint;
1228 	struct ipa *ipa = endpoint->ipa;
1229 	u32 endpoint_id;
1230 
1231 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1232 		return false;	/* No valid tag */
1233 
1234 	/* The status contains a valid tag.  We know the packet was sent to
1235 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1236 	 * If the packet came from the AP->command TX endpoint we know
1237 	 * this packet was sent as part of the pipeline clear process.
1238 	 */
1239 	endpoint_id = u8_get_bits(status->endp_src_idx,
1240 				  IPA_STATUS_SRC_IDX_FMASK);
1241 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1242 	if (endpoint_id == command_endpoint->endpoint_id) {
1243 		complete(&ipa->completion);
1244 	} else {
1245 		dev_err(&ipa->pdev->dev,
1246 			"unexpected tagged packet from endpoint %u\n",
1247 			endpoint_id);
1248 	}
1249 
1250 	return true;
1251 }
1252 
1253 /* Return whether the status indicates the packet should be dropped */
1254 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1255 				     const struct ipa_status *status)
1256 {
1257 	u32 val;
1258 
1259 	/* If the status indicates a tagged transfer, we'll drop the packet */
1260 	if (ipa_endpoint_status_tag(endpoint, status))
1261 		return true;
1262 
1263 	/* Deaggregation exceptions we drop; all other types we consume */
1264 	if (status->exception)
1265 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1266 
1267 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1268 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1269 
1270 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1271 }
1272 
1273 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1274 				      struct page *page, u32 total_len)
1275 {
1276 	u32 buffer_size = endpoint->data->rx.buffer_size;
1277 	void *data = page_address(page) + NET_SKB_PAD;
1278 	u32 unused = buffer_size - total_len;
1279 	u32 resid = total_len;
1280 
1281 	while (resid) {
1282 		const struct ipa_status *status = data;
1283 		u32 align;
1284 		u32 len;
1285 
1286 		if (resid < sizeof(*status)) {
1287 			dev_err(&endpoint->ipa->pdev->dev,
1288 				"short message (%u bytes < %zu byte status)\n",
1289 				resid, sizeof(*status));
1290 			break;
1291 		}
1292 
1293 		/* Skip over status packets that lack packet data */
1294 		if (ipa_endpoint_status_skip(endpoint, status)) {
1295 			data += sizeof(*status);
1296 			resid -= sizeof(*status);
1297 			continue;
1298 		}
1299 
1300 		/* Compute the amount of buffer space consumed by the packet,
1301 		 * including the status element.  If the hardware is configured
1302 		 * to pad packet data to an aligned boundary, account for that.
1303 		 * And if checksum offload is enabled a trailer containing
1304 		 * computed checksum information will be appended.
1305 		 */
1306 		align = endpoint->data->rx.pad_align ? : 1;
1307 		len = le16_to_cpu(status->pkt_len);
1308 		len = sizeof(*status) + ALIGN(len, align);
1309 		if (endpoint->data->checksum)
1310 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1311 
1312 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1313 			void *data2;
1314 			u32 extra;
1315 			u32 len2;
1316 
1317 			/* Client receives only packet data (no status) */
1318 			data2 = data + sizeof(*status);
1319 			len2 = le16_to_cpu(status->pkt_len);
1320 
1321 			/* Have the true size reflect the extra unused space in
1322 			 * the original receive buffer.  Distribute the "cost"
1323 			 * proportionately across all aggregated packets in the
1324 			 * buffer.
1325 			 */
1326 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1327 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1328 		}
1329 
1330 		/* Consume status and the full packet it describes */
1331 		data += len;
1332 		resid -= len;
1333 	}
1334 }
1335 
1336 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1337 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1338 				     struct gsi_trans *trans)
1339 {
1340 }
1341 
1342 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1343 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1344 				     struct gsi_trans *trans)
1345 {
1346 	struct page *page;
1347 
1348 	if (trans->cancelled)
1349 		goto done;
1350 
1351 	/* Parse or build a socket buffer using the actual received length */
1352 	page = trans->data;
1353 	if (endpoint->data->status_enable)
1354 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1355 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1356 		trans->data = NULL;	/* Pages have been consumed */
1357 done:
1358 	ipa_endpoint_replenish(endpoint);
1359 }
1360 
1361 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1362 				 struct gsi_trans *trans)
1363 {
1364 	if (endpoint->toward_ipa)
1365 		ipa_endpoint_tx_complete(endpoint, trans);
1366 	else
1367 		ipa_endpoint_rx_complete(endpoint, trans);
1368 }
1369 
1370 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1371 				struct gsi_trans *trans)
1372 {
1373 	if (endpoint->toward_ipa) {
1374 		struct ipa *ipa = endpoint->ipa;
1375 
1376 		/* Nothing to do for command transactions */
1377 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1378 			struct sk_buff *skb = trans->data;
1379 
1380 			if (skb)
1381 				dev_kfree_skb_any(skb);
1382 		}
1383 	} else {
1384 		struct page *page = trans->data;
1385 
1386 		if (page) {
1387 			u32 buffer_size = endpoint->data->rx.buffer_size;
1388 
1389 			__free_pages(page, get_order(buffer_size));
1390 		}
1391 	}
1392 }
1393 
1394 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1395 {
1396 	u32 val;
1397 
1398 	/* ROUTE_DIS is 0 */
1399 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1400 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1401 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1402 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1403 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1404 
1405 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1406 }
1407 
1408 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1409 {
1410 	ipa_endpoint_default_route_set(ipa, 0);
1411 }
1412 
1413 /**
1414  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1415  * @endpoint:	Endpoint to be reset
1416  *
1417  * If aggregation is active on an RX endpoint when a reset is performed
1418  * on its underlying GSI channel, a special sequence of actions must be
1419  * taken to ensure the IPA pipeline is properly cleared.
1420  *
1421  * Return:	0 if successful, or a negative error code
1422  */
1423 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1424 {
1425 	struct device *dev = &endpoint->ipa->pdev->dev;
1426 	struct ipa *ipa = endpoint->ipa;
1427 	struct gsi *gsi = &ipa->gsi;
1428 	bool suspended = false;
1429 	dma_addr_t addr;
1430 	u32 retries;
1431 	u32 len = 1;
1432 	void *virt;
1433 	int ret;
1434 
1435 	virt = kzalloc(len, GFP_KERNEL);
1436 	if (!virt)
1437 		return -ENOMEM;
1438 
1439 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1440 	if (dma_mapping_error(dev, addr)) {
1441 		ret = -ENOMEM;
1442 		goto out_kfree;
1443 	}
1444 
1445 	/* Force close aggregation before issuing the reset */
1446 	ipa_endpoint_force_close(endpoint);
1447 
1448 	/* Reset and reconfigure the channel with the doorbell engine
1449 	 * disabled.  Then poll until we know aggregation is no longer
1450 	 * active.  We'll re-enable the doorbell (if appropriate) when
1451 	 * we reset again below.
1452 	 */
1453 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1454 
1455 	/* Make sure the channel isn't suspended */
1456 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1457 
1458 	/* Start channel and do a 1 byte read */
1459 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1460 	if (ret)
1461 		goto out_suspend_again;
1462 
1463 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1464 	if (ret)
1465 		goto err_endpoint_stop;
1466 
1467 	/* Wait for aggregation to be closed on the channel */
1468 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1469 	do {
1470 		if (!ipa_endpoint_aggr_active(endpoint))
1471 			break;
1472 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1473 	} while (retries--);
1474 
1475 	/* Check one last time */
1476 	if (ipa_endpoint_aggr_active(endpoint))
1477 		dev_err(dev, "endpoint %u still active during reset\n",
1478 			endpoint->endpoint_id);
1479 
1480 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1481 
1482 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1483 	if (ret)
1484 		goto out_suspend_again;
1485 
1486 	/* Finally, reset and reconfigure the channel again (re-enabling
1487 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1488 	 * complete the channel reset sequence.  Finish by suspending the
1489 	 * channel again (if necessary).
1490 	 */
1491 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1492 
1493 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1494 
1495 	goto out_suspend_again;
1496 
1497 err_endpoint_stop:
1498 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1499 out_suspend_again:
1500 	if (suspended)
1501 		(void)ipa_endpoint_program_suspend(endpoint, true);
1502 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1503 out_kfree:
1504 	kfree(virt);
1505 
1506 	return ret;
1507 }
1508 
1509 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1510 {
1511 	u32 channel_id = endpoint->channel_id;
1512 	struct ipa *ipa = endpoint->ipa;
1513 	bool special;
1514 	int ret = 0;
1515 
1516 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1517 	 * is active, we need to handle things specially to recover.
1518 	 * All other cases just need to reset the underlying GSI channel.
1519 	 */
1520 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1521 			endpoint->data->aggregation;
1522 	if (special && ipa_endpoint_aggr_active(endpoint))
1523 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1524 	else
1525 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1526 
1527 	if (ret)
1528 		dev_err(&ipa->pdev->dev,
1529 			"error %d resetting channel %u for endpoint %u\n",
1530 			ret, endpoint->channel_id, endpoint->endpoint_id);
1531 }
1532 
1533 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1534 {
1535 	if (endpoint->toward_ipa) {
1536 		/* Newer versions of IPA use GSI channel flow control
1537 		 * instead of endpoint DELAY mode to prevent sending data.
1538 		 * Flow control is disabled for newly-allocated channels,
1539 		 * and we can assume flow control is not (ever) enabled
1540 		 * for AP TX channels.
1541 		 */
1542 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1543 			ipa_endpoint_program_delay(endpoint, false);
1544 	} else {
1545 		/* Ensure suspend mode is off on all AP RX endpoints */
1546 		(void)ipa_endpoint_program_suspend(endpoint, false);
1547 	}
1548 	ipa_endpoint_init_cfg(endpoint);
1549 	ipa_endpoint_init_nat(endpoint);
1550 	ipa_endpoint_init_hdr(endpoint);
1551 	ipa_endpoint_init_hdr_ext(endpoint);
1552 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1553 	ipa_endpoint_init_mode(endpoint);
1554 	ipa_endpoint_init_aggr(endpoint);
1555 	if (!endpoint->toward_ipa)
1556 		ipa_endpoint_init_hol_block_disable(endpoint);
1557 	ipa_endpoint_init_deaggr(endpoint);
1558 	ipa_endpoint_init_rsrc_grp(endpoint);
1559 	ipa_endpoint_init_seq(endpoint);
1560 	ipa_endpoint_status(endpoint);
1561 }
1562 
1563 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1564 {
1565 	struct ipa *ipa = endpoint->ipa;
1566 	struct gsi *gsi = &ipa->gsi;
1567 	int ret;
1568 
1569 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1570 	if (ret) {
1571 		dev_err(&ipa->pdev->dev,
1572 			"error %d starting %cX channel %u for endpoint %u\n",
1573 			ret, endpoint->toward_ipa ? 'T' : 'R',
1574 			endpoint->channel_id, endpoint->endpoint_id);
1575 		return ret;
1576 	}
1577 
1578 	if (!endpoint->toward_ipa) {
1579 		ipa_interrupt_suspend_enable(ipa->interrupt,
1580 					     endpoint->endpoint_id);
1581 		ipa_endpoint_replenish_enable(endpoint);
1582 	}
1583 
1584 	ipa->enabled |= BIT(endpoint->endpoint_id);
1585 
1586 	return 0;
1587 }
1588 
1589 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1590 {
1591 	u32 mask = BIT(endpoint->endpoint_id);
1592 	struct ipa *ipa = endpoint->ipa;
1593 	struct gsi *gsi = &ipa->gsi;
1594 	int ret;
1595 
1596 	if (!(ipa->enabled & mask))
1597 		return;
1598 
1599 	ipa->enabled ^= mask;
1600 
1601 	if (!endpoint->toward_ipa) {
1602 		ipa_endpoint_replenish_disable(endpoint);
1603 		ipa_interrupt_suspend_disable(ipa->interrupt,
1604 					      endpoint->endpoint_id);
1605 	}
1606 
1607 	/* Note that if stop fails, the channel's state is not well-defined */
1608 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1609 	if (ret)
1610 		dev_err(&ipa->pdev->dev,
1611 			"error %d attempting to stop endpoint %u\n", ret,
1612 			endpoint->endpoint_id);
1613 }
1614 
1615 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1616 {
1617 	struct device *dev = &endpoint->ipa->pdev->dev;
1618 	struct gsi *gsi = &endpoint->ipa->gsi;
1619 	int ret;
1620 
1621 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1622 		return;
1623 
1624 	if (!endpoint->toward_ipa) {
1625 		ipa_endpoint_replenish_disable(endpoint);
1626 		(void)ipa_endpoint_program_suspend(endpoint, true);
1627 	}
1628 
1629 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1630 	if (ret)
1631 		dev_err(dev, "error %d suspending channel %u\n", ret,
1632 			endpoint->channel_id);
1633 }
1634 
1635 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1636 {
1637 	struct device *dev = &endpoint->ipa->pdev->dev;
1638 	struct gsi *gsi = &endpoint->ipa->gsi;
1639 	int ret;
1640 
1641 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1642 		return;
1643 
1644 	if (!endpoint->toward_ipa)
1645 		(void)ipa_endpoint_program_suspend(endpoint, false);
1646 
1647 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1648 	if (ret)
1649 		dev_err(dev, "error %d resuming channel %u\n", ret,
1650 			endpoint->channel_id);
1651 	else if (!endpoint->toward_ipa)
1652 		ipa_endpoint_replenish_enable(endpoint);
1653 }
1654 
1655 void ipa_endpoint_suspend(struct ipa *ipa)
1656 {
1657 	if (!ipa->setup_complete)
1658 		return;
1659 
1660 	if (ipa->modem_netdev)
1661 		ipa_modem_suspend(ipa->modem_netdev);
1662 
1663 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1664 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1665 }
1666 
1667 void ipa_endpoint_resume(struct ipa *ipa)
1668 {
1669 	if (!ipa->setup_complete)
1670 		return;
1671 
1672 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1673 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1674 
1675 	if (ipa->modem_netdev)
1676 		ipa_modem_resume(ipa->modem_netdev);
1677 }
1678 
1679 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1680 {
1681 	struct gsi *gsi = &endpoint->ipa->gsi;
1682 	u32 channel_id = endpoint->channel_id;
1683 
1684 	/* Only AP endpoints get set up */
1685 	if (endpoint->ee_id != GSI_EE_AP)
1686 		return;
1687 
1688 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1689 	if (!endpoint->toward_ipa) {
1690 		/* RX transactions require a single TRE, so the maximum
1691 		 * backlog is the same as the maximum outstanding TREs.
1692 		 */
1693 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1694 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1695 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1696 				  ipa_endpoint_replenish_work);
1697 	}
1698 
1699 	ipa_endpoint_program(endpoint);
1700 
1701 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1702 }
1703 
1704 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1705 {
1706 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1707 
1708 	if (!endpoint->toward_ipa)
1709 		cancel_delayed_work_sync(&endpoint->replenish_work);
1710 
1711 	ipa_endpoint_reset(endpoint);
1712 }
1713 
1714 void ipa_endpoint_setup(struct ipa *ipa)
1715 {
1716 	u32 initialized = ipa->initialized;
1717 
1718 	ipa->set_up = 0;
1719 	while (initialized) {
1720 		u32 endpoint_id = __ffs(initialized);
1721 
1722 		initialized ^= BIT(endpoint_id);
1723 
1724 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1725 	}
1726 }
1727 
1728 void ipa_endpoint_teardown(struct ipa *ipa)
1729 {
1730 	u32 set_up = ipa->set_up;
1731 
1732 	while (set_up) {
1733 		u32 endpoint_id = __fls(set_up);
1734 
1735 		set_up ^= BIT(endpoint_id);
1736 
1737 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1738 	}
1739 	ipa->set_up = 0;
1740 }
1741 
1742 int ipa_endpoint_config(struct ipa *ipa)
1743 {
1744 	struct device *dev = &ipa->pdev->dev;
1745 	u32 initialized;
1746 	u32 rx_base;
1747 	u32 rx_mask;
1748 	u32 tx_mask;
1749 	int ret = 0;
1750 	u32 max;
1751 	u32 val;
1752 
1753 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1754 	 * Furthermore, the endpoints were not grouped such that TX
1755 	 * endpoint numbers started with 0 and RX endpoints had numbers
1756 	 * higher than all TX endpoints, so we can't do the simple
1757 	 * direction check used for newer hardware below.
1758 	 *
1759 	 * For hardware that doesn't support the FLAVOR_0 register,
1760 	 * just set the available mask to support any endpoint, and
1761 	 * assume the configuration is valid.
1762 	 */
1763 	if (ipa->version < IPA_VERSION_3_5) {
1764 		ipa->available = ~0;
1765 		return 0;
1766 	}
1767 
1768 	/* Find out about the endpoints supplied by the hardware, and ensure
1769 	 * the highest one doesn't exceed the number we support.
1770 	 */
1771 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1772 
1773 	/* Our RX is an IPA producer */
1774 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1775 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1776 	if (max > IPA_ENDPOINT_MAX) {
1777 		dev_err(dev, "too many endpoints (%u > %u)\n",
1778 			max, IPA_ENDPOINT_MAX);
1779 		return -EINVAL;
1780 	}
1781 	rx_mask = GENMASK(max - 1, rx_base);
1782 
1783 	/* Our TX is an IPA consumer */
1784 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1785 	tx_mask = GENMASK(max - 1, 0);
1786 
1787 	ipa->available = rx_mask | tx_mask;
1788 
1789 	/* Check for initialized endpoints not supported by the hardware */
1790 	if (ipa->initialized & ~ipa->available) {
1791 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1792 			ipa->initialized & ~ipa->available);
1793 		ret = -EINVAL;		/* Report other errors too */
1794 	}
1795 
1796 	initialized = ipa->initialized;
1797 	while (initialized) {
1798 		u32 endpoint_id = __ffs(initialized);
1799 		struct ipa_endpoint *endpoint;
1800 
1801 		initialized ^= BIT(endpoint_id);
1802 
1803 		/* Make sure it's pointing in the right direction */
1804 		endpoint = &ipa->endpoint[endpoint_id];
1805 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1806 			dev_err(dev, "endpoint id %u wrong direction\n",
1807 				endpoint_id);
1808 			ret = -EINVAL;
1809 		}
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 void ipa_endpoint_deconfig(struct ipa *ipa)
1816 {
1817 	ipa->available = 0;	/* Nothing more to do */
1818 }
1819 
1820 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1821 				  const struct ipa_gsi_endpoint_data *data)
1822 {
1823 	struct ipa_endpoint *endpoint;
1824 
1825 	endpoint = &ipa->endpoint[data->endpoint_id];
1826 
1827 	if (data->ee_id == GSI_EE_AP)
1828 		ipa->channel_map[data->channel_id] = endpoint;
1829 	ipa->name_map[name] = endpoint;
1830 
1831 	endpoint->ipa = ipa;
1832 	endpoint->ee_id = data->ee_id;
1833 	endpoint->channel_id = data->channel_id;
1834 	endpoint->endpoint_id = data->endpoint_id;
1835 	endpoint->toward_ipa = data->toward_ipa;
1836 	endpoint->data = &data->endpoint.config;
1837 
1838 	ipa->initialized |= BIT(endpoint->endpoint_id);
1839 }
1840 
1841 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1842 {
1843 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1844 
1845 	memset(endpoint, 0, sizeof(*endpoint));
1846 }
1847 
1848 void ipa_endpoint_exit(struct ipa *ipa)
1849 {
1850 	u32 initialized = ipa->initialized;
1851 
1852 	while (initialized) {
1853 		u32 endpoint_id = __fls(initialized);
1854 
1855 		initialized ^= BIT(endpoint_id);
1856 
1857 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1858 	}
1859 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1860 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1861 }
1862 
1863 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1864 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1865 		      const struct ipa_gsi_endpoint_data *data)
1866 {
1867 	enum ipa_endpoint_name name;
1868 	u32 filter_map;
1869 
1870 	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
1871 
1872 	if (!ipa_endpoint_data_valid(ipa, count, data))
1873 		return 0;	/* Error */
1874 
1875 	ipa->initialized = 0;
1876 
1877 	filter_map = 0;
1878 	for (name = 0; name < count; name++, data++) {
1879 		if (ipa_gsi_endpoint_data_empty(data))
1880 			continue;	/* Skip over empty slots */
1881 
1882 		ipa_endpoint_init_one(ipa, name, data);
1883 
1884 		if (data->endpoint.filter_support)
1885 			filter_map |= BIT(data->endpoint_id);
1886 	}
1887 
1888 	if (!ipa_filter_map_valid(ipa, filter_map))
1889 		goto err_endpoint_exit;
1890 
1891 	return filter_map;	/* Non-zero bitmask */
1892 
1893 err_endpoint_exit:
1894 	ipa_endpoint_exit(ipa);
1895 
1896 	return 0;	/* Error */
1897 }
1898