1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_power.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 /* Hardware is told about receive buffers once a "batch" has been queued */ 29 #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ 30 31 /* The amount of RX buffer space consumed by standard skb overhead */ 32 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 33 34 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 35 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 36 37 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 38 39 /** enum ipa_status_opcode - status element opcode hardware values */ 40 enum ipa_status_opcode { 41 IPA_STATUS_OPCODE_PACKET = 0x01, 42 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 43 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 44 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 45 }; 46 47 /** enum ipa_status_exception - status element exception type */ 48 enum ipa_status_exception { 49 /* 0 means no exception */ 50 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 51 }; 52 53 /* Status element provided by hardware */ 54 struct ipa_status { 55 u8 opcode; /* enum ipa_status_opcode */ 56 u8 exception; /* enum ipa_status_exception */ 57 __le16 mask; 58 __le16 pkt_len; 59 u8 endp_src_idx; 60 u8 endp_dst_idx; 61 __le32 metadata; 62 __le32 flags1; 63 __le64 flags2; 64 __le32 flags3; 65 __le32 flags4; 66 }; 67 68 /* Field masks for struct ipa_status structure fields */ 69 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 70 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 71 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 72 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 73 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 74 75 static u32 aggr_byte_limit_max(enum ipa_version version) 76 { 77 if (version < IPA_VERSION_4_5) 78 return field_max(aggr_byte_limit_fmask(true)); 79 80 return field_max(aggr_byte_limit_fmask(false)); 81 } 82 83 /* Compute the aggregation size value to use for a given buffer size */ 84 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) 85 { 86 /* A hard aggregation limit will not be crossed; aggregation closes 87 * if saving incoming data would cross the hard byte limit boundary. 88 * 89 * With a soft limit, aggregation closes *after* the size boundary 90 * has been crossed. In that case the limit must leave enough space 91 * after that limit to receive a full MTU of data plus overhead. 92 */ 93 if (!aggr_hard_limit) 94 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 95 96 /* The byte limit is encoded as a number of kilobytes */ 97 98 return rx_buffer_size / SZ_1K; 99 } 100 101 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 102 const struct ipa_gsi_endpoint_data *all_data, 103 const struct ipa_gsi_endpoint_data *data) 104 { 105 const struct ipa_gsi_endpoint_data *other_data; 106 struct device *dev = &ipa->pdev->dev; 107 enum ipa_endpoint_name other_name; 108 109 if (ipa_gsi_endpoint_data_empty(data)) 110 return true; 111 112 if (!data->toward_ipa) { 113 const struct ipa_endpoint_rx *rx_config; 114 u32 buffer_size; 115 u32 aggr_size; 116 u32 limit; 117 118 if (data->endpoint.filter_support) { 119 dev_err(dev, "filtering not supported for " 120 "RX endpoint %u\n", 121 data->endpoint_id); 122 return false; 123 } 124 125 /* Nothing more to check for non-AP RX */ 126 if (data->ee_id != GSI_EE_AP) 127 return true; 128 129 rx_config = &data->endpoint.config.rx; 130 131 /* The buffer size must hold an MTU plus overhead */ 132 buffer_size = rx_config->buffer_size; 133 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 134 if (buffer_size < limit) { 135 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", 136 data->endpoint_id, buffer_size, limit); 137 return false; 138 } 139 140 if (!data->endpoint.config.aggregation) { 141 bool result = true; 142 143 /* No aggregation; check for bogus aggregation data */ 144 if (rx_config->aggr_time_limit) { 145 dev_err(dev, 146 "time limit with no aggregation for RX endpoint %u\n", 147 data->endpoint_id); 148 result = false; 149 } 150 151 if (rx_config->aggr_hard_limit) { 152 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n", 153 data->endpoint_id); 154 result = false; 155 } 156 157 if (rx_config->aggr_close_eof) { 158 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n", 159 data->endpoint_id); 160 result = false; 161 } 162 163 return result; /* Nothing more to check */ 164 } 165 166 /* For an endpoint supporting receive aggregation, the byte 167 * limit defines the point at which aggregation closes. This 168 * check ensures the receive buffer size doesn't result in a 169 * limit that exceeds what's representable in the aggregation 170 * byte limit field. 171 */ 172 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 173 rx_config->aggr_hard_limit); 174 limit = aggr_byte_limit_max(ipa->version); 175 if (aggr_size > limit) { 176 dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n", 177 data->endpoint_id, aggr_size, limit); 178 179 return false; 180 } 181 182 return true; /* Nothing more to check for RX */ 183 } 184 185 /* Starting with IPA v4.5 sequencer replication is obsolete */ 186 if (ipa->version >= IPA_VERSION_4_5) { 187 if (data->endpoint.config.tx.seq_rep_type) { 188 dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n", 189 data->endpoint_id); 190 return false; 191 } 192 } 193 194 if (data->endpoint.config.status_enable) { 195 other_name = data->endpoint.config.tx.status_endpoint; 196 if (other_name >= count) { 197 dev_err(dev, "status endpoint name %u out of range " 198 "for endpoint %u\n", 199 other_name, data->endpoint_id); 200 return false; 201 } 202 203 /* Status endpoint must be defined... */ 204 other_data = &all_data[other_name]; 205 if (ipa_gsi_endpoint_data_empty(other_data)) { 206 dev_err(dev, "DMA endpoint name %u undefined " 207 "for endpoint %u\n", 208 other_name, data->endpoint_id); 209 return false; 210 } 211 212 /* ...and has to be an RX endpoint... */ 213 if (other_data->toward_ipa) { 214 dev_err(dev, 215 "status endpoint for endpoint %u not RX\n", 216 data->endpoint_id); 217 return false; 218 } 219 220 /* ...and if it's to be an AP endpoint... */ 221 if (other_data->ee_id == GSI_EE_AP) { 222 /* ...make sure it has status enabled. */ 223 if (!other_data->endpoint.config.status_enable) { 224 dev_err(dev, 225 "status not enabled for endpoint %u\n", 226 other_data->endpoint_id); 227 return false; 228 } 229 } 230 } 231 232 if (data->endpoint.config.dma_mode) { 233 other_name = data->endpoint.config.dma_endpoint; 234 if (other_name >= count) { 235 dev_err(dev, "DMA endpoint name %u out of range " 236 "for endpoint %u\n", 237 other_name, data->endpoint_id); 238 return false; 239 } 240 241 other_data = &all_data[other_name]; 242 if (ipa_gsi_endpoint_data_empty(other_data)) { 243 dev_err(dev, "DMA endpoint name %u undefined " 244 "for endpoint %u\n", 245 other_name, data->endpoint_id); 246 return false; 247 } 248 } 249 250 return true; 251 } 252 253 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 254 const struct ipa_gsi_endpoint_data *data) 255 { 256 const struct ipa_gsi_endpoint_data *dp = data; 257 struct device *dev = &ipa->pdev->dev; 258 enum ipa_endpoint_name name; 259 260 if (count > IPA_ENDPOINT_COUNT) { 261 dev_err(dev, "too many endpoints specified (%u > %u)\n", 262 count, IPA_ENDPOINT_COUNT); 263 return false; 264 } 265 266 /* Make sure needed endpoints have defined data */ 267 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 268 dev_err(dev, "command TX endpoint not defined\n"); 269 return false; 270 } 271 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 272 dev_err(dev, "LAN RX endpoint not defined\n"); 273 return false; 274 } 275 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 276 dev_err(dev, "AP->modem TX endpoint not defined\n"); 277 return false; 278 } 279 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 280 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 281 return false; 282 } 283 284 for (name = 0; name < count; name++, dp++) 285 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 286 return false; 287 288 return true; 289 } 290 291 /* Allocate a transaction to use on a non-command endpoint */ 292 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 293 u32 tre_count) 294 { 295 struct gsi *gsi = &endpoint->ipa->gsi; 296 u32 channel_id = endpoint->channel_id; 297 enum dma_data_direction direction; 298 299 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 300 301 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 302 } 303 304 /* suspend_delay represents suspend for RX, delay for TX endpoints. 305 * Note that suspend is not supported starting with IPA v4.0, and 306 * delay mode should not be used starting with IPA v4.2. 307 */ 308 static bool 309 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 310 { 311 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 312 struct ipa *ipa = endpoint->ipa; 313 bool state; 314 u32 mask; 315 u32 val; 316 317 if (endpoint->toward_ipa) 318 WARN_ON(ipa->version >= IPA_VERSION_4_2); 319 else 320 WARN_ON(ipa->version >= IPA_VERSION_4_0); 321 322 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 323 324 val = ioread32(ipa->reg_virt + offset); 325 state = !!(val & mask); 326 327 /* Don't bother if it's already in the requested state */ 328 if (suspend_delay != state) { 329 val ^= mask; 330 iowrite32(val, ipa->reg_virt + offset); 331 } 332 333 return state; 334 } 335 336 /* We don't care what the previous state was for delay mode */ 337 static void 338 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 339 { 340 /* Delay mode should not be used for IPA v4.2+ */ 341 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); 342 WARN_ON(!endpoint->toward_ipa); 343 344 (void)ipa_endpoint_init_ctrl(endpoint, enable); 345 } 346 347 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 348 { 349 u32 mask = BIT(endpoint->endpoint_id); 350 struct ipa *ipa = endpoint->ipa; 351 u32 offset; 352 u32 val; 353 354 WARN_ON(!(mask & ipa->available)); 355 356 offset = ipa_reg_state_aggr_active_offset(ipa->version); 357 val = ioread32(ipa->reg_virt + offset); 358 359 return !!(val & mask); 360 } 361 362 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 363 { 364 u32 mask = BIT(endpoint->endpoint_id); 365 struct ipa *ipa = endpoint->ipa; 366 367 WARN_ON(!(mask & ipa->available)); 368 369 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 370 } 371 372 /** 373 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 374 * @endpoint: Endpoint on which to emulate a suspend 375 * 376 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 377 * with an open aggregation frame. This is to work around a hardware 378 * issue in IPA version 3.5.1 where the suspend interrupt will not be 379 * generated when it should be. 380 */ 381 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 382 { 383 struct ipa *ipa = endpoint->ipa; 384 385 if (!endpoint->config.aggregation) 386 return; 387 388 /* Nothing to do if the endpoint doesn't have aggregation open */ 389 if (!ipa_endpoint_aggr_active(endpoint)) 390 return; 391 392 /* Force close aggregation */ 393 ipa_endpoint_force_close(endpoint); 394 395 ipa_interrupt_simulate_suspend(ipa->interrupt); 396 } 397 398 /* Returns previous suspend state (true means suspend was enabled) */ 399 static bool 400 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 401 { 402 bool suspended; 403 404 if (endpoint->ipa->version >= IPA_VERSION_4_0) 405 return enable; /* For IPA v4.0+, no change made */ 406 407 WARN_ON(endpoint->toward_ipa); 408 409 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 410 411 /* A client suspended with an open aggregation frame will not 412 * generate a SUSPEND IPA interrupt. If enabling suspend, have 413 * ipa_endpoint_suspend_aggr() handle this. 414 */ 415 if (enable && !suspended) 416 ipa_endpoint_suspend_aggr(endpoint); 417 418 return suspended; 419 } 420 421 /* Put all modem RX endpoints into suspend mode, and stop transmission 422 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is 423 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow 424 * control instead. 425 */ 426 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 427 { 428 u32 endpoint_id; 429 430 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 431 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 432 433 if (endpoint->ee_id != GSI_EE_MODEM) 434 continue; 435 436 if (!endpoint->toward_ipa) 437 (void)ipa_endpoint_program_suspend(endpoint, enable); 438 else if (ipa->version < IPA_VERSION_4_2) 439 ipa_endpoint_program_delay(endpoint, enable); 440 else 441 gsi_modem_channel_flow_control(&ipa->gsi, 442 endpoint->channel_id, 443 enable); 444 } 445 } 446 447 /* Reset all modem endpoints to use the default exception endpoint */ 448 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 449 { 450 u32 initialized = ipa->initialized; 451 struct gsi_trans *trans; 452 u32 count; 453 454 /* We need one command per modem TX endpoint, plus the commands 455 * that clear the pipeline. 456 */ 457 count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); 458 trans = ipa_cmd_trans_alloc(ipa, count); 459 if (!trans) { 460 dev_err(&ipa->pdev->dev, 461 "no transaction to reset modem exception endpoints\n"); 462 return -EBUSY; 463 } 464 465 while (initialized) { 466 u32 endpoint_id = __ffs(initialized); 467 struct ipa_endpoint *endpoint; 468 u32 offset; 469 470 initialized ^= BIT(endpoint_id); 471 472 /* We only reset modem TX endpoints */ 473 endpoint = &ipa->endpoint[endpoint_id]; 474 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 475 continue; 476 477 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 478 479 /* Value written is 0, and all bits are updated. That 480 * means status is disabled on the endpoint, and as a 481 * result all other fields in the register are ignored. 482 */ 483 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 484 } 485 486 ipa_cmd_pipeline_clear_add(trans); 487 488 gsi_trans_commit_wait(trans); 489 490 ipa_cmd_pipeline_clear_wait(ipa); 491 492 return 0; 493 } 494 495 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 496 { 497 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 498 enum ipa_cs_offload_en enabled; 499 u32 val = 0; 500 501 /* FRAG_OFFLOAD_EN is 0 */ 502 if (endpoint->config.checksum) { 503 enum ipa_version version = endpoint->ipa->version; 504 505 if (endpoint->toward_ipa) { 506 u32 off; 507 508 /* Checksum header offset is in 4-byte units */ 509 off = sizeof(struct rmnet_map_header); 510 off /= sizeof(u32); 511 val |= u32_encode_bits(off, 512 CS_METADATA_HDR_OFFSET_FMASK); 513 514 enabled = version < IPA_VERSION_4_5 515 ? IPA_CS_OFFLOAD_UL 516 : IPA_CS_OFFLOAD_INLINE; 517 } else { 518 enabled = version < IPA_VERSION_4_5 519 ? IPA_CS_OFFLOAD_DL 520 : IPA_CS_OFFLOAD_INLINE; 521 } 522 } else { 523 enabled = IPA_CS_OFFLOAD_NONE; 524 } 525 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 526 /* CS_GEN_QMB_MASTER_SEL is 0 */ 527 528 iowrite32(val, endpoint->ipa->reg_virt + offset); 529 } 530 531 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 532 { 533 u32 offset; 534 u32 val; 535 536 if (!endpoint->toward_ipa) 537 return; 538 539 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 540 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 541 542 iowrite32(val, endpoint->ipa->reg_virt + offset); 543 } 544 545 static u32 546 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 547 { 548 u32 header_size = sizeof(struct rmnet_map_header); 549 550 /* Without checksum offload, we just have the MAP header */ 551 if (!endpoint->config.checksum) 552 return header_size; 553 554 if (version < IPA_VERSION_4_5) { 555 /* Checksum header inserted for AP TX endpoints only */ 556 if (endpoint->toward_ipa) 557 header_size += sizeof(struct rmnet_map_ul_csum_header); 558 } else { 559 /* Checksum header is used in both directions */ 560 header_size += sizeof(struct rmnet_map_v5_csum_header); 561 } 562 563 return header_size; 564 } 565 566 /** 567 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 568 * @endpoint: Endpoint pointer 569 * 570 * We program QMAP endpoints so each packet received is preceded by a QMAP 571 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 572 * packet size field, and we have the IPA hardware populate both for each 573 * received packet. The header is configured (in the HDR_EXT register) 574 * to use big endian format. 575 * 576 * The packet size is written into the QMAP header's pkt_len field. That 577 * location is defined here using the HDR_OFST_PKT_SIZE field. 578 * 579 * The mux_id comes from a 4-byte metadata value supplied with each packet 580 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 581 * value that we want, in its low-order byte. A bitmask defined in the 582 * endpoint's METADATA_MASK register defines which byte within the modem 583 * metadata contains the mux_id. And the OFST_METADATA field programmed 584 * here indicates where the extracted byte should be placed within the QMAP 585 * header. 586 */ 587 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 588 { 589 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 590 struct ipa *ipa = endpoint->ipa; 591 u32 val = 0; 592 593 if (endpoint->config.qmap) { 594 enum ipa_version version = ipa->version; 595 size_t header_size; 596 597 header_size = ipa_qmap_header_size(version, endpoint); 598 val = ipa_header_size_encoded(version, header_size); 599 600 /* Define how to fill fields in a received QMAP header */ 601 if (!endpoint->toward_ipa) { 602 u32 off; /* Field offset within header */ 603 604 /* Where IPA will write the metadata value */ 605 off = offsetof(struct rmnet_map_header, mux_id); 606 val |= ipa_metadata_offset_encoded(version, off); 607 608 /* Where IPA will write the length */ 609 off = offsetof(struct rmnet_map_header, pkt_len); 610 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 611 if (version >= IPA_VERSION_4_5) 612 off &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 613 614 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 615 val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK); 616 } 617 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 618 val |= HDR_OFST_METADATA_VALID_FMASK; 619 620 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 621 /* HDR_A5_MUX is 0 */ 622 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 623 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 624 } 625 626 iowrite32(val, ipa->reg_virt + offset); 627 } 628 629 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 630 { 631 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 632 u32 pad_align = endpoint->config.rx.pad_align; 633 struct ipa *ipa = endpoint->ipa; 634 u32 val = 0; 635 636 if (endpoint->config.qmap) { 637 /* We have a header, so we must specify its endianness */ 638 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 639 640 /* A QMAP header contains a 6 bit pad field at offset 0. 641 * The RMNet driver assumes this field is meaningful in 642 * packets it receives, and assumes the header's payload 643 * length includes that padding. The RMNet driver does 644 * *not* pad packets it sends, however, so the pad field 645 * (although 0) should be ignored. 646 */ 647 if (!endpoint->toward_ipa) { 648 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 649 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 650 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 651 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 652 } 653 } 654 655 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 656 if (!endpoint->toward_ipa) 657 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 658 659 /* IPA v4.5 adds some most-significant bits to a few fields, 660 * two of which are defined in the HDR (not HDR_EXT) register. 661 */ 662 if (ipa->version >= IPA_VERSION_4_5) { 663 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 664 if (endpoint->config.qmap && !endpoint->toward_ipa) { 665 u32 off; 666 667 off = offsetof(struct rmnet_map_header, pkt_len); 668 off >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 669 val |= u32_encode_bits(off, 670 HDR_OFST_PKT_SIZE_MSB_FMASK); 671 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 672 } 673 } 674 iowrite32(val, ipa->reg_virt + offset); 675 } 676 677 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 678 { 679 u32 endpoint_id = endpoint->endpoint_id; 680 u32 val = 0; 681 u32 offset; 682 683 if (endpoint->toward_ipa) 684 return; /* Register not valid for TX endpoints */ 685 686 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 687 688 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 689 if (endpoint->config.qmap) 690 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 691 692 iowrite32(val, endpoint->ipa->reg_virt + offset); 693 } 694 695 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 696 { 697 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 698 u32 val; 699 700 if (!endpoint->toward_ipa) 701 return; /* Register not valid for RX endpoints */ 702 703 if (endpoint->config.dma_mode) { 704 enum ipa_endpoint_name name = endpoint->config.dma_endpoint; 705 u32 dma_endpoint_id; 706 707 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 708 709 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 710 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 711 } else { 712 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 713 } 714 /* All other bits unspecified (and 0) */ 715 716 iowrite32(val, endpoint->ipa->reg_virt + offset); 717 } 718 719 /* Encoded values for AGGR endpoint register fields */ 720 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 721 { 722 if (version < IPA_VERSION_4_5) 723 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 724 725 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 726 } 727 728 /* For IPA v4.5+, times are expressed using Qtime. The AP uses one of two 729 * pulse generators (0 and 1) to measure elapsed time. In ipa_qtime_config() 730 * they're configured to have granularity 100 usec and 1 msec, respectively. 731 * 732 * The return value is the positive or negative Qtime value to use to 733 * express the (microsecond) time provided. A positive return value 734 * means pulse generator 0 can be used; otherwise use pulse generator 1. 735 */ 736 static int ipa_qtime_val(u32 microseconds, u32 max) 737 { 738 u32 val; 739 740 /* Use 100 microsecond granularity if possible */ 741 val = DIV_ROUND_CLOSEST(microseconds, 100); 742 if (val <= max) 743 return (int)val; 744 745 /* Have to use pulse generator 1 (millisecond granularity) */ 746 val = DIV_ROUND_CLOSEST(microseconds, 1000); 747 WARN_ON(val > max); 748 749 return (int)-val; 750 } 751 752 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 753 static u32 aggr_time_limit_encode(enum ipa_version version, u32 microseconds) 754 { 755 u32 fmask; 756 u32 val; 757 758 if (!microseconds) 759 return 0; /* Nothing to compute if time limit is 0 */ 760 761 if (version >= IPA_VERSION_4_5) { 762 u32 gran_sel; 763 int ret; 764 765 /* Compute the Qtime limit value to use */ 766 fmask = aggr_time_limit_fmask(false); 767 ret = ipa_qtime_val(microseconds, field_max(fmask)); 768 if (ret < 0) { 769 val = -ret; 770 gran_sel = AGGR_GRAN_SEL_FMASK; 771 } else { 772 val = ret; 773 gran_sel = 0; 774 } 775 776 return gran_sel | u32_encode_bits(val, fmask); 777 } 778 779 /* We set aggregation granularity in ipa_hardware_config() */ 780 fmask = aggr_time_limit_fmask(true); 781 val = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY); 782 WARN(val > field_max(fmask), 783 "aggr_time_limit too large (%u > %u usec)\n", 784 val, field_max(fmask) * IPA_AGGR_GRANULARITY); 785 786 return u32_encode_bits(val, fmask); 787 } 788 789 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 790 { 791 u32 val = enabled ? 1 : 0; 792 793 if (version < IPA_VERSION_4_5) 794 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 795 796 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 797 } 798 799 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 800 { 801 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 802 enum ipa_version version = endpoint->ipa->version; 803 u32 val = 0; 804 805 if (endpoint->config.aggregation) { 806 if (!endpoint->toward_ipa) { 807 const struct ipa_endpoint_rx *rx_config; 808 u32 buffer_size; 809 bool close_eof; 810 u32 limit; 811 812 rx_config = &endpoint->config.rx; 813 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 814 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 815 816 buffer_size = rx_config->buffer_size; 817 limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 818 rx_config->aggr_hard_limit); 819 val |= aggr_byte_limit_encoded(version, limit); 820 821 limit = rx_config->aggr_time_limit; 822 val |= aggr_time_limit_encode(version, limit); 823 824 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 825 826 close_eof = rx_config->aggr_close_eof; 827 val |= aggr_sw_eof_active_encoded(version, close_eof); 828 } else { 829 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 830 AGGR_EN_FMASK); 831 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 832 /* other fields ignored */ 833 } 834 /* AGGR_FORCE_CLOSE is 0 */ 835 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 836 } else { 837 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 838 /* other fields ignored */ 839 } 840 841 iowrite32(val, endpoint->ipa->reg_virt + offset); 842 } 843 844 /* The head-of-line blocking timer is defined as a tick count. For 845 * IPA version 4.5 the tick count is based on the Qtimer, which is 846 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 847 * each tick represents 128 cycles of the IPA core clock. 848 * 849 * Return the encoded value representing the timeout period provided 850 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register. 851 */ 852 static u32 hol_block_timer_encode(struct ipa *ipa, u32 microseconds) 853 { 854 u32 width; 855 u32 scale; 856 u64 ticks; 857 u64 rate; 858 u32 high; 859 u32 val; 860 861 if (!microseconds) 862 return 0; /* Nothing to compute if timer period is 0 */ 863 864 if (ipa->version >= IPA_VERSION_4_5) { 865 u32 gran_sel; 866 int ret; 867 868 /* Compute the Qtime limit value to use */ 869 ret = ipa_qtime_val(microseconds, field_max(TIME_LIMIT_FMASK)); 870 if (ret < 0) { 871 val = -ret; 872 gran_sel = GRAN_SEL_FMASK; 873 } else { 874 val = ret; 875 gran_sel = 0; 876 } 877 878 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 879 } 880 881 /* Use 64 bit arithmetic to avoid overflow... */ 882 rate = ipa_core_clock_rate(ipa); 883 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 884 /* ...but we still need to fit into a 32-bit register */ 885 WARN_ON(ticks > U32_MAX); 886 887 /* IPA v3.5.1 through v4.1 just record the tick count */ 888 if (ipa->version < IPA_VERSION_4_2) 889 return (u32)ticks; 890 891 /* For IPA v4.2, the tick count is represented by base and 892 * scale fields within the 32-bit timer register, where: 893 * ticks = base << scale; 894 * The best precision is achieved when the base value is as 895 * large as possible. Find the highest set bit in the tick 896 * count, and extract the number of bits in the base field 897 * such that high bit is included. 898 */ 899 high = fls(ticks); /* 1..32 */ 900 width = HWEIGHT32(BASE_VALUE_FMASK); 901 scale = high > width ? high - width : 0; 902 if (scale) { 903 /* If we're scaling, round up to get a closer result */ 904 ticks += 1 << (scale - 1); 905 /* High bit was set, so rounding might have affected it */ 906 if (fls(ticks) != high) 907 scale++; 908 } 909 910 val = u32_encode_bits(scale, SCALE_FMASK); 911 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 912 913 return val; 914 } 915 916 /* If microseconds is 0, timeout is immediate */ 917 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 918 u32 microseconds) 919 { 920 u32 endpoint_id = endpoint->endpoint_id; 921 struct ipa *ipa = endpoint->ipa; 922 u32 offset; 923 u32 val; 924 925 /* This should only be changed when HOL_BLOCK_EN is disabled */ 926 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 927 val = hol_block_timer_encode(ipa, microseconds); 928 iowrite32(val, ipa->reg_virt + offset); 929 } 930 931 static void 932 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) 933 { 934 u32 endpoint_id = endpoint->endpoint_id; 935 u32 offset; 936 u32 val; 937 938 val = enable ? HOL_BLOCK_EN_FMASK : 0; 939 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 940 iowrite32(val, endpoint->ipa->reg_virt + offset); 941 /* When enabling, the register must be written twice for IPA v4.5+ */ 942 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) 943 iowrite32(val, endpoint->ipa->reg_virt + offset); 944 } 945 946 /* Assumes HOL_BLOCK is in disabled state */ 947 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, 948 u32 microseconds) 949 { 950 ipa_endpoint_init_hol_block_timer(endpoint, microseconds); 951 ipa_endpoint_init_hol_block_en(endpoint, true); 952 } 953 954 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) 955 { 956 ipa_endpoint_init_hol_block_en(endpoint, false); 957 } 958 959 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 960 { 961 u32 i; 962 963 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 964 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 965 966 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 967 continue; 968 969 ipa_endpoint_init_hol_block_disable(endpoint); 970 ipa_endpoint_init_hol_block_enable(endpoint, 0); 971 } 972 } 973 974 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 975 { 976 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 977 u32 val = 0; 978 979 if (!endpoint->toward_ipa) 980 return; /* Register not valid for RX endpoints */ 981 982 /* DEAGGR_HDR_LEN is 0 */ 983 /* PACKET_OFFSET_VALID is 0 */ 984 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 985 /* MAX_PACKET_LEN is 0 (not enforced) */ 986 987 iowrite32(val, endpoint->ipa->reg_virt + offset); 988 } 989 990 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 991 { 992 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 993 struct ipa *ipa = endpoint->ipa; 994 u32 val; 995 996 val = rsrc_grp_encoded(ipa->version, endpoint->config.resource_group); 997 iowrite32(val, ipa->reg_virt + offset); 998 } 999 1000 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 1001 { 1002 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 1003 u32 val = 0; 1004 1005 if (!endpoint->toward_ipa) 1006 return; /* Register not valid for RX endpoints */ 1007 1008 /* Low-order byte configures primary packet processing */ 1009 val |= u32_encode_bits(endpoint->config.tx.seq_type, SEQ_TYPE_FMASK); 1010 1011 /* Second byte (if supported) configures replicated packet processing */ 1012 if (endpoint->ipa->version < IPA_VERSION_4_5) 1013 val |= u32_encode_bits(endpoint->config.tx.seq_rep_type, 1014 SEQ_REP_TYPE_FMASK); 1015 1016 iowrite32(val, endpoint->ipa->reg_virt + offset); 1017 } 1018 1019 /** 1020 * ipa_endpoint_skb_tx() - Transmit a socket buffer 1021 * @endpoint: Endpoint pointer 1022 * @skb: Socket buffer to send 1023 * 1024 * Returns: 0 if successful, or a negative error code 1025 */ 1026 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 1027 { 1028 struct gsi_trans *trans; 1029 u32 nr_frags; 1030 int ret; 1031 1032 /* Make sure source endpoint's TLV FIFO has enough entries to 1033 * hold the linear portion of the skb and all its fragments. 1034 * If not, see if we can linearize it before giving up. 1035 */ 1036 nr_frags = skb_shinfo(skb)->nr_frags; 1037 if (nr_frags > endpoint->skb_frag_max) { 1038 if (skb_linearize(skb)) 1039 return -E2BIG; 1040 nr_frags = 0; 1041 } 1042 1043 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 1044 if (!trans) 1045 return -EBUSY; 1046 1047 ret = gsi_trans_skb_add(trans, skb); 1048 if (ret) 1049 goto err_trans_free; 1050 trans->data = skb; /* transaction owns skb now */ 1051 1052 gsi_trans_commit(trans, !netdev_xmit_more()); 1053 1054 return 0; 1055 1056 err_trans_free: 1057 gsi_trans_free(trans); 1058 1059 return -ENOMEM; 1060 } 1061 1062 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 1063 { 1064 u32 endpoint_id = endpoint->endpoint_id; 1065 struct ipa *ipa = endpoint->ipa; 1066 u32 val = 0; 1067 u32 offset; 1068 1069 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 1070 1071 if (endpoint->config.status_enable) { 1072 val |= STATUS_EN_FMASK; 1073 if (endpoint->toward_ipa) { 1074 enum ipa_endpoint_name name; 1075 u32 status_endpoint_id; 1076 1077 name = endpoint->config.tx.status_endpoint; 1078 status_endpoint_id = ipa->name_map[name]->endpoint_id; 1079 1080 val |= u32_encode_bits(status_endpoint_id, 1081 STATUS_ENDP_FMASK); 1082 } 1083 /* STATUS_LOCATION is 0, meaning status element precedes 1084 * packet (not present for IPA v4.5) 1085 */ 1086 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 1087 } 1088 1089 iowrite32(val, ipa->reg_virt + offset); 1090 } 1091 1092 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, 1093 struct gsi_trans *trans) 1094 { 1095 struct page *page; 1096 u32 buffer_size; 1097 u32 offset; 1098 u32 len; 1099 int ret; 1100 1101 buffer_size = endpoint->config.rx.buffer_size; 1102 page = dev_alloc_pages(get_order(buffer_size)); 1103 if (!page) 1104 return -ENOMEM; 1105 1106 /* Offset the buffer to make space for skb headroom */ 1107 offset = NET_SKB_PAD; 1108 len = buffer_size - offset; 1109 1110 ret = gsi_trans_page_add(trans, page, len, offset); 1111 if (ret) 1112 put_page(page); 1113 else 1114 trans->data = page; /* transaction owns page now */ 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1121 * @endpoint: Endpoint to be replenished 1122 * 1123 * The IPA hardware can hold a fixed number of receive buffers for an RX 1124 * endpoint, based on the number of entries in the underlying channel ring 1125 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1126 * more receive buffers can be supplied to the hardware. Replenishing for 1127 * an endpoint can be disabled, in which case buffers are not queued to 1128 * the hardware. 1129 */ 1130 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) 1131 { 1132 struct gsi_trans *trans; 1133 1134 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) 1135 return; 1136 1137 /* Skip it if it's already active */ 1138 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) 1139 return; 1140 1141 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { 1142 bool doorbell; 1143 1144 if (ipa_endpoint_replenish_one(endpoint, trans)) 1145 goto try_again_later; 1146 1147 1148 /* Ring the doorbell if we've got a full batch */ 1149 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); 1150 gsi_trans_commit(trans, doorbell); 1151 } 1152 1153 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1154 1155 return; 1156 1157 try_again_later: 1158 gsi_trans_free(trans); 1159 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1160 1161 /* Whenever a receive buffer transaction completes we'll try to 1162 * replenish again. It's unlikely, but if we fail to supply even 1163 * one buffer, nothing will trigger another replenish attempt. 1164 * If the hardware has no receive buffers queued, schedule work to 1165 * try replenishing again. 1166 */ 1167 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1168 schedule_delayed_work(&endpoint->replenish_work, 1169 msecs_to_jiffies(1)); 1170 } 1171 1172 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1173 { 1174 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1175 1176 /* Start replenishing if hardware currently has no buffers */ 1177 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1178 ipa_endpoint_replenish(endpoint); 1179 } 1180 1181 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1182 { 1183 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1184 } 1185 1186 static void ipa_endpoint_replenish_work(struct work_struct *work) 1187 { 1188 struct delayed_work *dwork = to_delayed_work(work); 1189 struct ipa_endpoint *endpoint; 1190 1191 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1192 1193 ipa_endpoint_replenish(endpoint); 1194 } 1195 1196 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1197 void *data, u32 len, u32 extra) 1198 { 1199 struct sk_buff *skb; 1200 1201 if (!endpoint->netdev) 1202 return; 1203 1204 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1205 if (skb) { 1206 /* Copy the data into the socket buffer and receive it */ 1207 skb_put(skb, len); 1208 memcpy(skb->data, data, len); 1209 skb->truesize += extra; 1210 } 1211 1212 ipa_modem_skb_rx(endpoint->netdev, skb); 1213 } 1214 1215 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1216 struct page *page, u32 len) 1217 { 1218 u32 buffer_size = endpoint->config.rx.buffer_size; 1219 struct sk_buff *skb; 1220 1221 /* Nothing to do if there's no netdev */ 1222 if (!endpoint->netdev) 1223 return false; 1224 1225 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); 1226 1227 skb = build_skb(page_address(page), buffer_size); 1228 if (skb) { 1229 /* Reserve the headroom and account for the data */ 1230 skb_reserve(skb, NET_SKB_PAD); 1231 skb_put(skb, len); 1232 } 1233 1234 /* Receive the buffer (or record drop if unable to build it) */ 1235 ipa_modem_skb_rx(endpoint->netdev, skb); 1236 1237 return skb != NULL; 1238 } 1239 1240 /* The format of a packet status element is the same for several status 1241 * types (opcodes). Other types aren't currently supported. 1242 */ 1243 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1244 { 1245 switch (opcode) { 1246 case IPA_STATUS_OPCODE_PACKET: 1247 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1248 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1249 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1250 return true; 1251 default: 1252 return false; 1253 } 1254 } 1255 1256 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1257 const struct ipa_status *status) 1258 { 1259 u32 endpoint_id; 1260 1261 if (!ipa_status_format_packet(status->opcode)) 1262 return true; 1263 if (!status->pkt_len) 1264 return true; 1265 endpoint_id = u8_get_bits(status->endp_dst_idx, 1266 IPA_STATUS_DST_IDX_FMASK); 1267 if (endpoint_id != endpoint->endpoint_id) 1268 return true; 1269 1270 return false; /* Don't skip this packet, process it */ 1271 } 1272 1273 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1274 const struct ipa_status *status) 1275 { 1276 struct ipa_endpoint *command_endpoint; 1277 struct ipa *ipa = endpoint->ipa; 1278 u32 endpoint_id; 1279 1280 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1281 return false; /* No valid tag */ 1282 1283 /* The status contains a valid tag. We know the packet was sent to 1284 * this endpoint (already verified by ipa_endpoint_status_skip()). 1285 * If the packet came from the AP->command TX endpoint we know 1286 * this packet was sent as part of the pipeline clear process. 1287 */ 1288 endpoint_id = u8_get_bits(status->endp_src_idx, 1289 IPA_STATUS_SRC_IDX_FMASK); 1290 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1291 if (endpoint_id == command_endpoint->endpoint_id) { 1292 complete(&ipa->completion); 1293 } else { 1294 dev_err(&ipa->pdev->dev, 1295 "unexpected tagged packet from endpoint %u\n", 1296 endpoint_id); 1297 } 1298 1299 return true; 1300 } 1301 1302 /* Return whether the status indicates the packet should be dropped */ 1303 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1304 const struct ipa_status *status) 1305 { 1306 u32 val; 1307 1308 /* If the status indicates a tagged transfer, we'll drop the packet */ 1309 if (ipa_endpoint_status_tag(endpoint, status)) 1310 return true; 1311 1312 /* Deaggregation exceptions we drop; all other types we consume */ 1313 if (status->exception) 1314 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1315 1316 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1317 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1318 1319 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1320 } 1321 1322 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1323 struct page *page, u32 total_len) 1324 { 1325 u32 buffer_size = endpoint->config.rx.buffer_size; 1326 void *data = page_address(page) + NET_SKB_PAD; 1327 u32 unused = buffer_size - total_len; 1328 u32 resid = total_len; 1329 1330 while (resid) { 1331 const struct ipa_status *status = data; 1332 u32 align; 1333 u32 len; 1334 1335 if (resid < sizeof(*status)) { 1336 dev_err(&endpoint->ipa->pdev->dev, 1337 "short message (%u bytes < %zu byte status)\n", 1338 resid, sizeof(*status)); 1339 break; 1340 } 1341 1342 /* Skip over status packets that lack packet data */ 1343 if (ipa_endpoint_status_skip(endpoint, status)) { 1344 data += sizeof(*status); 1345 resid -= sizeof(*status); 1346 continue; 1347 } 1348 1349 /* Compute the amount of buffer space consumed by the packet, 1350 * including the status element. If the hardware is configured 1351 * to pad packet data to an aligned boundary, account for that. 1352 * And if checksum offload is enabled a trailer containing 1353 * computed checksum information will be appended. 1354 */ 1355 align = endpoint->config.rx.pad_align ? : 1; 1356 len = le16_to_cpu(status->pkt_len); 1357 len = sizeof(*status) + ALIGN(len, align); 1358 if (endpoint->config.checksum) 1359 len += sizeof(struct rmnet_map_dl_csum_trailer); 1360 1361 if (!ipa_endpoint_status_drop(endpoint, status)) { 1362 void *data2; 1363 u32 extra; 1364 u32 len2; 1365 1366 /* Client receives only packet data (no status) */ 1367 data2 = data + sizeof(*status); 1368 len2 = le16_to_cpu(status->pkt_len); 1369 1370 /* Have the true size reflect the extra unused space in 1371 * the original receive buffer. Distribute the "cost" 1372 * proportionately across all aggregated packets in the 1373 * buffer. 1374 */ 1375 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1376 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1377 } 1378 1379 /* Consume status and the full packet it describes */ 1380 data += len; 1381 resid -= len; 1382 } 1383 } 1384 1385 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1386 struct gsi_trans *trans) 1387 { 1388 struct page *page; 1389 1390 if (endpoint->toward_ipa) 1391 return; 1392 1393 if (trans->cancelled) 1394 goto done; 1395 1396 /* Parse or build a socket buffer using the actual received length */ 1397 page = trans->data; 1398 if (endpoint->config.status_enable) 1399 ipa_endpoint_status_parse(endpoint, page, trans->len); 1400 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1401 trans->data = NULL; /* Pages have been consumed */ 1402 done: 1403 ipa_endpoint_replenish(endpoint); 1404 } 1405 1406 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1407 struct gsi_trans *trans) 1408 { 1409 if (endpoint->toward_ipa) { 1410 struct ipa *ipa = endpoint->ipa; 1411 1412 /* Nothing to do for command transactions */ 1413 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1414 struct sk_buff *skb = trans->data; 1415 1416 if (skb) 1417 dev_kfree_skb_any(skb); 1418 } 1419 } else { 1420 struct page *page = trans->data; 1421 1422 if (page) 1423 put_page(page); 1424 } 1425 } 1426 1427 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1428 { 1429 u32 val; 1430 1431 /* ROUTE_DIS is 0 */ 1432 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1433 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1434 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1435 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1436 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1437 1438 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1439 } 1440 1441 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1442 { 1443 ipa_endpoint_default_route_set(ipa, 0); 1444 } 1445 1446 /** 1447 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1448 * @endpoint: Endpoint to be reset 1449 * 1450 * If aggregation is active on an RX endpoint when a reset is performed 1451 * on its underlying GSI channel, a special sequence of actions must be 1452 * taken to ensure the IPA pipeline is properly cleared. 1453 * 1454 * Return: 0 if successful, or a negative error code 1455 */ 1456 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1457 { 1458 struct device *dev = &endpoint->ipa->pdev->dev; 1459 struct ipa *ipa = endpoint->ipa; 1460 struct gsi *gsi = &ipa->gsi; 1461 bool suspended = false; 1462 dma_addr_t addr; 1463 u32 retries; 1464 u32 len = 1; 1465 void *virt; 1466 int ret; 1467 1468 virt = kzalloc(len, GFP_KERNEL); 1469 if (!virt) 1470 return -ENOMEM; 1471 1472 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1473 if (dma_mapping_error(dev, addr)) { 1474 ret = -ENOMEM; 1475 goto out_kfree; 1476 } 1477 1478 /* Force close aggregation before issuing the reset */ 1479 ipa_endpoint_force_close(endpoint); 1480 1481 /* Reset and reconfigure the channel with the doorbell engine 1482 * disabled. Then poll until we know aggregation is no longer 1483 * active. We'll re-enable the doorbell (if appropriate) when 1484 * we reset again below. 1485 */ 1486 gsi_channel_reset(gsi, endpoint->channel_id, false); 1487 1488 /* Make sure the channel isn't suspended */ 1489 suspended = ipa_endpoint_program_suspend(endpoint, false); 1490 1491 /* Start channel and do a 1 byte read */ 1492 ret = gsi_channel_start(gsi, endpoint->channel_id); 1493 if (ret) 1494 goto out_suspend_again; 1495 1496 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1497 if (ret) 1498 goto err_endpoint_stop; 1499 1500 /* Wait for aggregation to be closed on the channel */ 1501 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1502 do { 1503 if (!ipa_endpoint_aggr_active(endpoint)) 1504 break; 1505 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1506 } while (retries--); 1507 1508 /* Check one last time */ 1509 if (ipa_endpoint_aggr_active(endpoint)) 1510 dev_err(dev, "endpoint %u still active during reset\n", 1511 endpoint->endpoint_id); 1512 1513 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1514 1515 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1516 if (ret) 1517 goto out_suspend_again; 1518 1519 /* Finally, reset and reconfigure the channel again (re-enabling 1520 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1521 * complete the channel reset sequence. Finish by suspending the 1522 * channel again (if necessary). 1523 */ 1524 gsi_channel_reset(gsi, endpoint->channel_id, true); 1525 1526 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1527 1528 goto out_suspend_again; 1529 1530 err_endpoint_stop: 1531 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1532 out_suspend_again: 1533 if (suspended) 1534 (void)ipa_endpoint_program_suspend(endpoint, true); 1535 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1536 out_kfree: 1537 kfree(virt); 1538 1539 return ret; 1540 } 1541 1542 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1543 { 1544 u32 channel_id = endpoint->channel_id; 1545 struct ipa *ipa = endpoint->ipa; 1546 bool special; 1547 int ret = 0; 1548 1549 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1550 * is active, we need to handle things specially to recover. 1551 * All other cases just need to reset the underlying GSI channel. 1552 */ 1553 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1554 endpoint->config.aggregation; 1555 if (special && ipa_endpoint_aggr_active(endpoint)) 1556 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1557 else 1558 gsi_channel_reset(&ipa->gsi, channel_id, true); 1559 1560 if (ret) 1561 dev_err(&ipa->pdev->dev, 1562 "error %d resetting channel %u for endpoint %u\n", 1563 ret, endpoint->channel_id, endpoint->endpoint_id); 1564 } 1565 1566 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1567 { 1568 if (endpoint->toward_ipa) { 1569 /* Newer versions of IPA use GSI channel flow control 1570 * instead of endpoint DELAY mode to prevent sending data. 1571 * Flow control is disabled for newly-allocated channels, 1572 * and we can assume flow control is not (ever) enabled 1573 * for AP TX channels. 1574 */ 1575 if (endpoint->ipa->version < IPA_VERSION_4_2) 1576 ipa_endpoint_program_delay(endpoint, false); 1577 } else { 1578 /* Ensure suspend mode is off on all AP RX endpoints */ 1579 (void)ipa_endpoint_program_suspend(endpoint, false); 1580 } 1581 ipa_endpoint_init_cfg(endpoint); 1582 ipa_endpoint_init_nat(endpoint); 1583 ipa_endpoint_init_hdr(endpoint); 1584 ipa_endpoint_init_hdr_ext(endpoint); 1585 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1586 ipa_endpoint_init_mode(endpoint); 1587 ipa_endpoint_init_aggr(endpoint); 1588 if (!endpoint->toward_ipa) { 1589 if (endpoint->config.rx.holb_drop) 1590 ipa_endpoint_init_hol_block_enable(endpoint, 0); 1591 else 1592 ipa_endpoint_init_hol_block_disable(endpoint); 1593 } 1594 ipa_endpoint_init_deaggr(endpoint); 1595 ipa_endpoint_init_rsrc_grp(endpoint); 1596 ipa_endpoint_init_seq(endpoint); 1597 ipa_endpoint_status(endpoint); 1598 } 1599 1600 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1601 { 1602 struct ipa *ipa = endpoint->ipa; 1603 struct gsi *gsi = &ipa->gsi; 1604 int ret; 1605 1606 ret = gsi_channel_start(gsi, endpoint->channel_id); 1607 if (ret) { 1608 dev_err(&ipa->pdev->dev, 1609 "error %d starting %cX channel %u for endpoint %u\n", 1610 ret, endpoint->toward_ipa ? 'T' : 'R', 1611 endpoint->channel_id, endpoint->endpoint_id); 1612 return ret; 1613 } 1614 1615 if (!endpoint->toward_ipa) { 1616 ipa_interrupt_suspend_enable(ipa->interrupt, 1617 endpoint->endpoint_id); 1618 ipa_endpoint_replenish_enable(endpoint); 1619 } 1620 1621 ipa->enabled |= BIT(endpoint->endpoint_id); 1622 1623 return 0; 1624 } 1625 1626 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1627 { 1628 u32 mask = BIT(endpoint->endpoint_id); 1629 struct ipa *ipa = endpoint->ipa; 1630 struct gsi *gsi = &ipa->gsi; 1631 int ret; 1632 1633 if (!(ipa->enabled & mask)) 1634 return; 1635 1636 ipa->enabled ^= mask; 1637 1638 if (!endpoint->toward_ipa) { 1639 ipa_endpoint_replenish_disable(endpoint); 1640 ipa_interrupt_suspend_disable(ipa->interrupt, 1641 endpoint->endpoint_id); 1642 } 1643 1644 /* Note that if stop fails, the channel's state is not well-defined */ 1645 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1646 if (ret) 1647 dev_err(&ipa->pdev->dev, 1648 "error %d attempting to stop endpoint %u\n", ret, 1649 endpoint->endpoint_id); 1650 } 1651 1652 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1653 { 1654 struct device *dev = &endpoint->ipa->pdev->dev; 1655 struct gsi *gsi = &endpoint->ipa->gsi; 1656 int ret; 1657 1658 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1659 return; 1660 1661 if (!endpoint->toward_ipa) { 1662 ipa_endpoint_replenish_disable(endpoint); 1663 (void)ipa_endpoint_program_suspend(endpoint, true); 1664 } 1665 1666 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1667 if (ret) 1668 dev_err(dev, "error %d suspending channel %u\n", ret, 1669 endpoint->channel_id); 1670 } 1671 1672 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1673 { 1674 struct device *dev = &endpoint->ipa->pdev->dev; 1675 struct gsi *gsi = &endpoint->ipa->gsi; 1676 int ret; 1677 1678 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1679 return; 1680 1681 if (!endpoint->toward_ipa) 1682 (void)ipa_endpoint_program_suspend(endpoint, false); 1683 1684 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1685 if (ret) 1686 dev_err(dev, "error %d resuming channel %u\n", ret, 1687 endpoint->channel_id); 1688 else if (!endpoint->toward_ipa) 1689 ipa_endpoint_replenish_enable(endpoint); 1690 } 1691 1692 void ipa_endpoint_suspend(struct ipa *ipa) 1693 { 1694 if (!ipa->setup_complete) 1695 return; 1696 1697 if (ipa->modem_netdev) 1698 ipa_modem_suspend(ipa->modem_netdev); 1699 1700 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1701 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1702 } 1703 1704 void ipa_endpoint_resume(struct ipa *ipa) 1705 { 1706 if (!ipa->setup_complete) 1707 return; 1708 1709 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1710 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1711 1712 if (ipa->modem_netdev) 1713 ipa_modem_resume(ipa->modem_netdev); 1714 } 1715 1716 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1717 { 1718 struct gsi *gsi = &endpoint->ipa->gsi; 1719 u32 channel_id = endpoint->channel_id; 1720 1721 /* Only AP endpoints get set up */ 1722 if (endpoint->ee_id != GSI_EE_AP) 1723 return; 1724 1725 endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; 1726 if (!endpoint->toward_ipa) { 1727 /* RX transactions require a single TRE, so the maximum 1728 * backlog is the same as the maximum outstanding TREs. 1729 */ 1730 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1731 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1732 INIT_DELAYED_WORK(&endpoint->replenish_work, 1733 ipa_endpoint_replenish_work); 1734 } 1735 1736 ipa_endpoint_program(endpoint); 1737 1738 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1739 } 1740 1741 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1742 { 1743 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1744 1745 if (!endpoint->toward_ipa) 1746 cancel_delayed_work_sync(&endpoint->replenish_work); 1747 1748 ipa_endpoint_reset(endpoint); 1749 } 1750 1751 void ipa_endpoint_setup(struct ipa *ipa) 1752 { 1753 u32 initialized = ipa->initialized; 1754 1755 ipa->set_up = 0; 1756 while (initialized) { 1757 u32 endpoint_id = __ffs(initialized); 1758 1759 initialized ^= BIT(endpoint_id); 1760 1761 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1762 } 1763 } 1764 1765 void ipa_endpoint_teardown(struct ipa *ipa) 1766 { 1767 u32 set_up = ipa->set_up; 1768 1769 while (set_up) { 1770 u32 endpoint_id = __fls(set_up); 1771 1772 set_up ^= BIT(endpoint_id); 1773 1774 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1775 } 1776 ipa->set_up = 0; 1777 } 1778 1779 int ipa_endpoint_config(struct ipa *ipa) 1780 { 1781 struct device *dev = &ipa->pdev->dev; 1782 u32 initialized; 1783 u32 rx_base; 1784 u32 rx_mask; 1785 u32 tx_mask; 1786 int ret = 0; 1787 u32 max; 1788 u32 val; 1789 1790 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1791 * Furthermore, the endpoints were not grouped such that TX 1792 * endpoint numbers started with 0 and RX endpoints had numbers 1793 * higher than all TX endpoints, so we can't do the simple 1794 * direction check used for newer hardware below. 1795 * 1796 * For hardware that doesn't support the FLAVOR_0 register, 1797 * just set the available mask to support any endpoint, and 1798 * assume the configuration is valid. 1799 */ 1800 if (ipa->version < IPA_VERSION_3_5) { 1801 ipa->available = ~0; 1802 return 0; 1803 } 1804 1805 /* Find out about the endpoints supplied by the hardware, and ensure 1806 * the highest one doesn't exceed the number we support. 1807 */ 1808 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1809 1810 /* Our RX is an IPA producer */ 1811 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1812 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1813 if (max > IPA_ENDPOINT_MAX) { 1814 dev_err(dev, "too many endpoints (%u > %u)\n", 1815 max, IPA_ENDPOINT_MAX); 1816 return -EINVAL; 1817 } 1818 rx_mask = GENMASK(max - 1, rx_base); 1819 1820 /* Our TX is an IPA consumer */ 1821 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1822 tx_mask = GENMASK(max - 1, 0); 1823 1824 ipa->available = rx_mask | tx_mask; 1825 1826 /* Check for initialized endpoints not supported by the hardware */ 1827 if (ipa->initialized & ~ipa->available) { 1828 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1829 ipa->initialized & ~ipa->available); 1830 ret = -EINVAL; /* Report other errors too */ 1831 } 1832 1833 initialized = ipa->initialized; 1834 while (initialized) { 1835 u32 endpoint_id = __ffs(initialized); 1836 struct ipa_endpoint *endpoint; 1837 1838 initialized ^= BIT(endpoint_id); 1839 1840 /* Make sure it's pointing in the right direction */ 1841 endpoint = &ipa->endpoint[endpoint_id]; 1842 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1843 dev_err(dev, "endpoint id %u wrong direction\n", 1844 endpoint_id); 1845 ret = -EINVAL; 1846 } 1847 } 1848 1849 return ret; 1850 } 1851 1852 void ipa_endpoint_deconfig(struct ipa *ipa) 1853 { 1854 ipa->available = 0; /* Nothing more to do */ 1855 } 1856 1857 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1858 const struct ipa_gsi_endpoint_data *data) 1859 { 1860 struct ipa_endpoint *endpoint; 1861 1862 endpoint = &ipa->endpoint[data->endpoint_id]; 1863 1864 if (data->ee_id == GSI_EE_AP) 1865 ipa->channel_map[data->channel_id] = endpoint; 1866 ipa->name_map[name] = endpoint; 1867 1868 endpoint->ipa = ipa; 1869 endpoint->ee_id = data->ee_id; 1870 endpoint->channel_id = data->channel_id; 1871 endpoint->endpoint_id = data->endpoint_id; 1872 endpoint->toward_ipa = data->toward_ipa; 1873 endpoint->config = data->endpoint.config; 1874 1875 ipa->initialized |= BIT(endpoint->endpoint_id); 1876 } 1877 1878 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1879 { 1880 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1881 1882 memset(endpoint, 0, sizeof(*endpoint)); 1883 } 1884 1885 void ipa_endpoint_exit(struct ipa *ipa) 1886 { 1887 u32 initialized = ipa->initialized; 1888 1889 while (initialized) { 1890 u32 endpoint_id = __fls(initialized); 1891 1892 initialized ^= BIT(endpoint_id); 1893 1894 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1895 } 1896 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1897 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1898 } 1899 1900 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1901 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1902 const struct ipa_gsi_endpoint_data *data) 1903 { 1904 enum ipa_endpoint_name name; 1905 u32 filter_map; 1906 1907 BUILD_BUG_ON(!IPA_REPLENISH_BATCH); 1908 1909 if (!ipa_endpoint_data_valid(ipa, count, data)) 1910 return 0; /* Error */ 1911 1912 ipa->initialized = 0; 1913 1914 filter_map = 0; 1915 for (name = 0; name < count; name++, data++) { 1916 if (ipa_gsi_endpoint_data_empty(data)) 1917 continue; /* Skip over empty slots */ 1918 1919 ipa_endpoint_init_one(ipa, name, data); 1920 1921 if (data->endpoint.filter_support) 1922 filter_map |= BIT(data->endpoint_id); 1923 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) 1924 ipa->modem_tx_count++; 1925 } 1926 1927 if (!ipa_filter_map_valid(ipa, filter_map)) 1928 goto err_endpoint_exit; 1929 1930 return filter_map; /* Non-zero bitmask */ 1931 1932 err_endpoint_exit: 1933 ipa_endpoint_exit(ipa); 1934 1935 return 0; /* Error */ 1936 } 1937