1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2024 Linaro Ltd. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/bits.h> 9 #include <linux/device.h> 10 #include <linux/dma-direction.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/types.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_cmd.h" 18 #include "ipa_data.h" 19 #include "ipa_endpoint.h" 20 #include "ipa_gsi.h" 21 #include "ipa_interrupt.h" 22 #include "ipa_mem.h" 23 #include "ipa_modem.h" 24 #include "ipa_power.h" 25 #include "ipa_reg.h" 26 #include "ipa_table.h" 27 #include "ipa_version.h" 28 29 /* Hardware is told about receive buffers once a "batch" has been queued */ 30 #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ 31 32 /* The amount of RX buffer space consumed by standard skb overhead */ 33 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 34 35 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 36 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 37 38 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 39 40 /** enum ipa_status_opcode - IPA status opcode field hardware values */ 41 enum ipa_status_opcode { /* *Not* a bitmask */ 42 IPA_STATUS_OPCODE_PACKET = 1, 43 IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2, 44 IPA_STATUS_OPCODE_DROPPED_PACKET = 4, 45 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8, 46 IPA_STATUS_OPCODE_LOG = 16, 47 IPA_STATUS_OPCODE_DCMP = 32, 48 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64, 49 }; 50 51 /** enum ipa_status_exception - IPA status exception field hardware values */ 52 enum ipa_status_exception { /* *Not* a bitmask */ 53 /* 0 means no exception */ 54 IPA_STATUS_EXCEPTION_DEAGGR = 1, 55 IPA_STATUS_EXCEPTION_IPTYPE = 4, 56 IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8, 57 IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16, 58 IPA_STATUS_EXCEPTION_SW_FILTER = 32, 59 IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */ 60 IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */ 61 IPA_STATUS_EXCEPTION_UC = 128, 62 IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129, 63 IPA_STATUS_EXCEPTION_HEADER_INSERT = 136, 64 IPA_STATUS_EXCEPTION_CHEKCSUM = 229, 65 }; 66 67 /** enum ipa_status_mask - IPA status mask field bitmask hardware values */ 68 enum ipa_status_mask { 69 IPA_STATUS_MASK_FRAG_PROCESS = BIT(0), 70 IPA_STATUS_MASK_FILT_PROCESS = BIT(1), 71 IPA_STATUS_MASK_NAT_PROCESS = BIT(2), 72 IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3), 73 IPA_STATUS_MASK_TAG_VALID = BIT(4), 74 IPA_STATUS_MASK_FRAGMENT = BIT(5), 75 IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6), 76 IPA_STATUS_MASK_V4 = BIT(7), 77 IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8), 78 IPA_STATUS_MASK_AGGR_PROCESS = BIT(9), 79 IPA_STATUS_MASK_DEST_EOT = BIT(10), 80 IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11), 81 IPA_STATUS_MASK_DEAGG_FIRST = BIT(12), 82 IPA_STATUS_MASK_SRC_EOT = BIT(13), 83 IPA_STATUS_MASK_PREV_EOT = BIT(14), 84 IPA_STATUS_MASK_BYTE_LIMIT = BIT(15), 85 }; 86 87 /* Special IPA filter/router rule field value indicating "rule miss" */ 88 #define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */ 89 90 /** The IPA status nat_type field uses enum ipa_nat_type hardware values */ 91 92 /* enum ipa_status_field_id - IPA packet status structure field identifiers */ 93 enum ipa_status_field_id { 94 STATUS_OPCODE, /* enum ipa_status_opcode */ 95 STATUS_EXCEPTION, /* enum ipa_status_exception */ 96 STATUS_MASK, /* enum ipa_status_mask (bitmask) */ 97 STATUS_LENGTH, 98 STATUS_SRC_ENDPOINT, 99 STATUS_DST_ENDPOINT, 100 STATUS_METADATA, 101 STATUS_FILTER_LOCAL, /* Boolean */ 102 STATUS_FILTER_HASH, /* Boolean */ 103 STATUS_FILTER_GLOBAL, /* Boolean */ 104 STATUS_FILTER_RETAIN, /* Boolean */ 105 STATUS_FILTER_RULE_INDEX, 106 STATUS_ROUTER_LOCAL, /* Boolean */ 107 STATUS_ROUTER_HASH, /* Boolean */ 108 STATUS_UCP, /* Boolean */ 109 STATUS_ROUTER_TABLE, 110 STATUS_ROUTER_RULE_INDEX, 111 STATUS_NAT_HIT, /* Boolean */ 112 STATUS_NAT_INDEX, 113 STATUS_NAT_TYPE, /* enum ipa_nat_type */ 114 STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */ 115 STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */ 116 STATUS_SEQUENCE, 117 STATUS_TIME_OF_DAY, 118 STATUS_HEADER_LOCAL, /* Boolean */ 119 STATUS_HEADER_OFFSET, 120 STATUS_FRAG_HIT, /* Boolean */ 121 STATUS_FRAG_RULE_INDEX, 122 }; 123 124 /* Size in bytes of an IPA packet status structure */ 125 #define IPA_STATUS_SIZE sizeof(__le32[8]) 126 127 /* IPA status structure decoder; looks up field values for a structure */ 128 static u32 ipa_status_extract(struct ipa *ipa, const void *data, 129 enum ipa_status_field_id field) 130 { 131 enum ipa_version version = ipa->version; 132 const __le32 *word = data; 133 134 switch (field) { 135 case STATUS_OPCODE: 136 return le32_get_bits(word[0], GENMASK(7, 0)); 137 case STATUS_EXCEPTION: 138 return le32_get_bits(word[0], GENMASK(15, 8)); 139 case STATUS_MASK: 140 return le32_get_bits(word[0], GENMASK(31, 16)); 141 case STATUS_LENGTH: 142 return le32_get_bits(word[1], GENMASK(15, 0)); 143 case STATUS_SRC_ENDPOINT: 144 if (version < IPA_VERSION_5_0) 145 return le32_get_bits(word[1], GENMASK(20, 16)); 146 return le32_get_bits(word[1], GENMASK(23, 16)); 147 /* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */ 148 /* Status word 1, bits 24-26 are reserved (IPA v5.0+) */ 149 case STATUS_DST_ENDPOINT: 150 if (version < IPA_VERSION_5_0) 151 return le32_get_bits(word[1], GENMASK(28, 24)); 152 return le32_get_bits(word[7], GENMASK(23, 16)); 153 /* Status word 1, bits 29-31 are reserved */ 154 case STATUS_METADATA: 155 return le32_to_cpu(word[2]); 156 case STATUS_FILTER_LOCAL: 157 return le32_get_bits(word[3], GENMASK(0, 0)); 158 case STATUS_FILTER_HASH: 159 return le32_get_bits(word[3], GENMASK(1, 1)); 160 case STATUS_FILTER_GLOBAL: 161 return le32_get_bits(word[3], GENMASK(2, 2)); 162 case STATUS_FILTER_RETAIN: 163 return le32_get_bits(word[3], GENMASK(3, 3)); 164 case STATUS_FILTER_RULE_INDEX: 165 return le32_get_bits(word[3], GENMASK(13, 4)); 166 /* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */ 167 case STATUS_ROUTER_LOCAL: 168 if (version < IPA_VERSION_5_0) 169 return le32_get_bits(word[3], GENMASK(14, 14)); 170 return le32_get_bits(word[1], GENMASK(27, 27)); 171 case STATUS_ROUTER_HASH: 172 if (version < IPA_VERSION_5_0) 173 return le32_get_bits(word[3], GENMASK(15, 15)); 174 return le32_get_bits(word[1], GENMASK(28, 28)); 175 case STATUS_UCP: 176 if (version < IPA_VERSION_5_0) 177 return le32_get_bits(word[3], GENMASK(16, 16)); 178 return le32_get_bits(word[7], GENMASK(31, 31)); 179 case STATUS_ROUTER_TABLE: 180 if (version < IPA_VERSION_5_0) 181 return le32_get_bits(word[3], GENMASK(21, 17)); 182 return le32_get_bits(word[3], GENMASK(21, 14)); 183 case STATUS_ROUTER_RULE_INDEX: 184 return le32_get_bits(word[3], GENMASK(31, 22)); 185 case STATUS_NAT_HIT: 186 return le32_get_bits(word[4], GENMASK(0, 0)); 187 case STATUS_NAT_INDEX: 188 return le32_get_bits(word[4], GENMASK(13, 1)); 189 case STATUS_NAT_TYPE: 190 return le32_get_bits(word[4], GENMASK(15, 14)); 191 case STATUS_TAG_LOW32: 192 return le32_get_bits(word[4], GENMASK(31, 16)) | 193 (le32_get_bits(word[5], GENMASK(15, 0)) << 16); 194 case STATUS_TAG_HIGH16: 195 return le32_get_bits(word[5], GENMASK(31, 16)); 196 case STATUS_SEQUENCE: 197 return le32_get_bits(word[6], GENMASK(7, 0)); 198 case STATUS_TIME_OF_DAY: 199 return le32_get_bits(word[6], GENMASK(31, 8)); 200 case STATUS_HEADER_LOCAL: 201 return le32_get_bits(word[7], GENMASK(0, 0)); 202 case STATUS_HEADER_OFFSET: 203 return le32_get_bits(word[7], GENMASK(10, 1)); 204 case STATUS_FRAG_HIT: 205 return le32_get_bits(word[7], GENMASK(11, 11)); 206 case STATUS_FRAG_RULE_INDEX: 207 return le32_get_bits(word[7], GENMASK(15, 12)); 208 /* Status word 7, bits 16-30 are reserved */ 209 /* Status word 7, bit 31 is reserved (not IPA v5.0+) */ 210 default: 211 WARN(true, "%s: bad field_id %u\n", __func__, field); 212 return 0; 213 } 214 } 215 216 /* Compute the aggregation size value to use for a given buffer size */ 217 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) 218 { 219 /* A hard aggregation limit will not be crossed; aggregation closes 220 * if saving incoming data would cross the hard byte limit boundary. 221 * 222 * With a soft limit, aggregation closes *after* the size boundary 223 * has been crossed. In that case the limit must leave enough space 224 * after that limit to receive a full MTU of data plus overhead. 225 */ 226 if (!aggr_hard_limit) 227 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 228 229 /* The byte limit is encoded as a number of kilobytes */ 230 231 return rx_buffer_size / SZ_1K; 232 } 233 234 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 235 const struct ipa_gsi_endpoint_data *all_data, 236 const struct ipa_gsi_endpoint_data *data) 237 { 238 const struct ipa_gsi_endpoint_data *other_data; 239 enum ipa_endpoint_name other_name; 240 struct device *dev = ipa->dev; 241 242 if (ipa_gsi_endpoint_data_empty(data)) 243 return true; 244 245 if (!data->toward_ipa) { 246 const struct ipa_endpoint_rx *rx_config; 247 const struct reg *reg; 248 u32 buffer_size; 249 u32 aggr_size; 250 u32 limit; 251 252 if (data->endpoint.filter_support) { 253 dev_err(dev, "filtering not supported for " 254 "RX endpoint %u\n", 255 data->endpoint_id); 256 return false; 257 } 258 259 /* Nothing more to check for non-AP RX */ 260 if (data->ee_id != GSI_EE_AP) 261 return true; 262 263 rx_config = &data->endpoint.config.rx; 264 265 /* The buffer size must hold an MTU plus overhead */ 266 buffer_size = rx_config->buffer_size; 267 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 268 if (buffer_size < limit) { 269 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", 270 data->endpoint_id, buffer_size, limit); 271 return false; 272 } 273 274 if (!data->endpoint.config.aggregation) { 275 bool result = true; 276 277 /* No aggregation; check for bogus aggregation data */ 278 if (rx_config->aggr_time_limit) { 279 dev_err(dev, 280 "time limit with no aggregation for RX endpoint %u\n", 281 data->endpoint_id); 282 result = false; 283 } 284 285 if (rx_config->aggr_hard_limit) { 286 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n", 287 data->endpoint_id); 288 result = false; 289 } 290 291 if (rx_config->aggr_close_eof) { 292 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n", 293 data->endpoint_id); 294 result = false; 295 } 296 297 return result; /* Nothing more to check */ 298 } 299 300 /* For an endpoint supporting receive aggregation, the byte 301 * limit defines the point at which aggregation closes. This 302 * check ensures the receive buffer size doesn't result in a 303 * limit that exceeds what's representable in the aggregation 304 * byte limit field. 305 */ 306 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 307 rx_config->aggr_hard_limit); 308 reg = ipa_reg(ipa, ENDP_INIT_AGGR); 309 310 limit = reg_field_max(reg, BYTE_LIMIT); 311 if (aggr_size > limit) { 312 dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n", 313 data->endpoint_id, aggr_size, limit); 314 315 return false; 316 } 317 318 return true; /* Nothing more to check for RX */ 319 } 320 321 /* Starting with IPA v4.5 sequencer replication is obsolete */ 322 if (ipa->version >= IPA_VERSION_4_5) { 323 if (data->endpoint.config.tx.seq_rep_type) { 324 dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n", 325 data->endpoint_id); 326 return false; 327 } 328 } 329 330 if (data->endpoint.config.status_enable) { 331 other_name = data->endpoint.config.tx.status_endpoint; 332 if (other_name >= count) { 333 dev_err(dev, "status endpoint name %u out of range " 334 "for endpoint %u\n", 335 other_name, data->endpoint_id); 336 return false; 337 } 338 339 /* Status endpoint must be defined... */ 340 other_data = &all_data[other_name]; 341 if (ipa_gsi_endpoint_data_empty(other_data)) { 342 dev_err(dev, "DMA endpoint name %u undefined " 343 "for endpoint %u\n", 344 other_name, data->endpoint_id); 345 return false; 346 } 347 348 /* ...and has to be an RX endpoint... */ 349 if (other_data->toward_ipa) { 350 dev_err(dev, 351 "status endpoint for endpoint %u not RX\n", 352 data->endpoint_id); 353 return false; 354 } 355 356 /* ...and if it's to be an AP endpoint... */ 357 if (other_data->ee_id == GSI_EE_AP) { 358 /* ...make sure it has status enabled. */ 359 if (!other_data->endpoint.config.status_enable) { 360 dev_err(dev, 361 "status not enabled for endpoint %u\n", 362 other_data->endpoint_id); 363 return false; 364 } 365 } 366 } 367 368 if (data->endpoint.config.dma_mode) { 369 other_name = data->endpoint.config.dma_endpoint; 370 if (other_name >= count) { 371 dev_err(dev, "DMA endpoint name %u out of range " 372 "for endpoint %u\n", 373 other_name, data->endpoint_id); 374 return false; 375 } 376 377 other_data = &all_data[other_name]; 378 if (ipa_gsi_endpoint_data_empty(other_data)) { 379 dev_err(dev, "DMA endpoint name %u undefined " 380 "for endpoint %u\n", 381 other_name, data->endpoint_id); 382 return false; 383 } 384 } 385 386 return true; 387 } 388 389 /* Validate endpoint configuration data. Return max defined endpoint ID */ 390 static u32 ipa_endpoint_max(struct ipa *ipa, u32 count, 391 const struct ipa_gsi_endpoint_data *data) 392 { 393 const struct ipa_gsi_endpoint_data *dp = data; 394 struct device *dev = ipa->dev; 395 enum ipa_endpoint_name name; 396 u32 max; 397 398 if (count > IPA_ENDPOINT_COUNT) { 399 dev_err(dev, "too many endpoints specified (%u > %u)\n", 400 count, IPA_ENDPOINT_COUNT); 401 return 0; 402 } 403 404 /* Make sure needed endpoints have defined data */ 405 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 406 dev_err(dev, "command TX endpoint not defined\n"); 407 return 0; 408 } 409 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 410 dev_err(dev, "LAN RX endpoint not defined\n"); 411 return 0; 412 } 413 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 414 dev_err(dev, "AP->modem TX endpoint not defined\n"); 415 return 0; 416 } 417 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 418 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 419 return 0; 420 } 421 422 max = 0; 423 for (name = 0; name < count; name++, dp++) { 424 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 425 return 0; 426 max = max_t(u32, max, dp->endpoint_id); 427 } 428 429 return max; 430 } 431 432 /* Allocate a transaction to use on a non-command endpoint */ 433 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 434 u32 tre_count) 435 { 436 struct gsi *gsi = &endpoint->ipa->gsi; 437 u32 channel_id = endpoint->channel_id; 438 enum dma_data_direction direction; 439 440 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 441 442 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 443 } 444 445 /* suspend_delay represents suspend for RX, delay for TX endpoints. 446 * Note that suspend is not supported starting with IPA v4.0, and 447 * delay mode should not be used starting with IPA v4.2. 448 */ 449 static bool 450 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 451 { 452 struct ipa *ipa = endpoint->ipa; 453 const struct reg *reg; 454 u32 field_id; 455 u32 offset; 456 bool state; 457 u32 mask; 458 u32 val; 459 460 if (endpoint->toward_ipa) 461 WARN_ON(ipa->version >= IPA_VERSION_4_2); 462 else 463 WARN_ON(ipa->version >= IPA_VERSION_4_0); 464 465 reg = ipa_reg(ipa, ENDP_INIT_CTRL); 466 offset = reg_n_offset(reg, endpoint->endpoint_id); 467 val = ioread32(ipa->reg_virt + offset); 468 469 field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND; 470 mask = reg_bit(reg, field_id); 471 472 state = !!(val & mask); 473 474 /* Don't bother if it's already in the requested state */ 475 if (suspend_delay != state) { 476 val ^= mask; 477 iowrite32(val, ipa->reg_virt + offset); 478 } 479 480 return state; 481 } 482 483 /* We don't care what the previous state was for delay mode */ 484 static void 485 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 486 { 487 /* Delay mode should not be used for IPA v4.2+ */ 488 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); 489 WARN_ON(!endpoint->toward_ipa); 490 491 (void)ipa_endpoint_init_ctrl(endpoint, enable); 492 } 493 494 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 495 { 496 u32 endpoint_id = endpoint->endpoint_id; 497 struct ipa *ipa = endpoint->ipa; 498 u32 unit = endpoint_id / 32; 499 const struct reg *reg; 500 u32 val; 501 502 WARN_ON(!test_bit(endpoint_id, ipa->available)); 503 504 reg = ipa_reg(ipa, STATE_AGGR_ACTIVE); 505 val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit)); 506 507 return !!(val & BIT(endpoint_id % 32)); 508 } 509 510 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 511 { 512 u32 endpoint_id = endpoint->endpoint_id; 513 u32 mask = BIT(endpoint_id % 32); 514 struct ipa *ipa = endpoint->ipa; 515 u32 unit = endpoint_id / 32; 516 const struct reg *reg; 517 518 WARN_ON(!test_bit(endpoint_id, ipa->available)); 519 520 reg = ipa_reg(ipa, AGGR_FORCE_CLOSE); 521 iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit)); 522 } 523 524 /** 525 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 526 * @endpoint: Endpoint on which to emulate a suspend 527 * 528 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 529 * with an open aggregation frame. This is to work around a hardware 530 * issue in IPA version 3.5.1 where the suspend interrupt will not be 531 * generated when it should be. 532 */ 533 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 534 { 535 struct ipa *ipa = endpoint->ipa; 536 537 if (!endpoint->config.aggregation) 538 return; 539 540 /* Nothing to do if the endpoint doesn't have aggregation open */ 541 if (!ipa_endpoint_aggr_active(endpoint)) 542 return; 543 544 /* Force close aggregation */ 545 ipa_endpoint_force_close(endpoint); 546 547 ipa_interrupt_simulate_suspend(ipa->interrupt); 548 } 549 550 /* Returns previous suspend state (true means suspend was enabled) */ 551 static bool 552 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 553 { 554 bool suspended; 555 556 if (endpoint->ipa->version >= IPA_VERSION_4_0) 557 return enable; /* For IPA v4.0+, no change made */ 558 559 WARN_ON(endpoint->toward_ipa); 560 561 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 562 563 /* A client suspended with an open aggregation frame will not 564 * generate a SUSPEND IPA interrupt. If enabling suspend, have 565 * ipa_endpoint_suspend_aggr() handle this. 566 */ 567 if (enable && !suspended) 568 ipa_endpoint_suspend_aggr(endpoint); 569 570 return suspended; 571 } 572 573 /* Put all modem RX endpoints into suspend mode, and stop transmission 574 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is 575 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow 576 * control instead. 577 */ 578 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 579 { 580 u32 endpoint_id = 0; 581 582 while (endpoint_id < ipa->endpoint_count) { 583 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; 584 585 if (endpoint->ee_id != GSI_EE_MODEM) 586 continue; 587 588 if (!endpoint->toward_ipa) 589 (void)ipa_endpoint_program_suspend(endpoint, enable); 590 else if (ipa->version < IPA_VERSION_4_2) 591 ipa_endpoint_program_delay(endpoint, enable); 592 else 593 gsi_modem_channel_flow_control(&ipa->gsi, 594 endpoint->channel_id, 595 enable); 596 } 597 } 598 599 /* Reset all modem endpoints to use the default exception endpoint */ 600 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 601 { 602 struct gsi_trans *trans; 603 u32 endpoint_id; 604 u32 count; 605 606 /* We need one command per modem TX endpoint, plus the commands 607 * that clear the pipeline. 608 */ 609 count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); 610 trans = ipa_cmd_trans_alloc(ipa, count); 611 if (!trans) { 612 dev_err(ipa->dev, 613 "no transaction to reset modem exception endpoints\n"); 614 return -EBUSY; 615 } 616 617 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { 618 struct ipa_endpoint *endpoint; 619 const struct reg *reg; 620 u32 offset; 621 622 /* We only reset modem TX endpoints */ 623 endpoint = &ipa->endpoint[endpoint_id]; 624 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 625 continue; 626 627 reg = ipa_reg(ipa, ENDP_STATUS); 628 offset = reg_n_offset(reg, endpoint_id); 629 630 /* Value written is 0, and all bits are updated. That 631 * means status is disabled on the endpoint, and as a 632 * result all other fields in the register are ignored. 633 */ 634 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 635 } 636 637 ipa_cmd_pipeline_clear_add(trans); 638 639 gsi_trans_commit_wait(trans); 640 641 ipa_cmd_pipeline_clear_wait(ipa); 642 643 return 0; 644 } 645 646 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 647 { 648 u32 endpoint_id = endpoint->endpoint_id; 649 struct ipa *ipa = endpoint->ipa; 650 enum ipa_cs_offload_en enabled; 651 const struct reg *reg; 652 u32 val = 0; 653 654 reg = ipa_reg(ipa, ENDP_INIT_CFG); 655 /* FRAG_OFFLOAD_EN is 0 */ 656 if (endpoint->config.checksum) { 657 enum ipa_version version = ipa->version; 658 659 if (endpoint->toward_ipa) { 660 u32 off; 661 662 /* Checksum header offset is in 4-byte units */ 663 off = sizeof(struct rmnet_map_header) / sizeof(u32); 664 val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off); 665 666 enabled = version < IPA_VERSION_4_5 667 ? IPA_CS_OFFLOAD_UL 668 : IPA_CS_OFFLOAD_INLINE; 669 } else { 670 enabled = version < IPA_VERSION_4_5 671 ? IPA_CS_OFFLOAD_DL 672 : IPA_CS_OFFLOAD_INLINE; 673 } 674 } else { 675 enabled = IPA_CS_OFFLOAD_NONE; 676 } 677 val |= reg_encode(reg, CS_OFFLOAD_EN, enabled); 678 /* CS_GEN_QMB_MASTER_SEL is 0 */ 679 680 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 681 } 682 683 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 684 { 685 u32 endpoint_id = endpoint->endpoint_id; 686 struct ipa *ipa = endpoint->ipa; 687 const struct reg *reg; 688 u32 val; 689 690 if (!endpoint->toward_ipa) 691 return; 692 693 reg = ipa_reg(ipa, ENDP_INIT_NAT); 694 val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS); 695 696 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 697 } 698 699 static u32 700 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 701 { 702 u32 header_size = sizeof(struct rmnet_map_header); 703 704 /* Without checksum offload, we just have the MAP header */ 705 if (!endpoint->config.checksum) 706 return header_size; 707 708 if (version < IPA_VERSION_4_5) { 709 /* Checksum header inserted for AP TX endpoints only */ 710 if (endpoint->toward_ipa) 711 header_size += sizeof(struct rmnet_map_ul_csum_header); 712 } else { 713 /* Checksum header is used in both directions */ 714 header_size += sizeof(struct rmnet_map_v5_csum_header); 715 } 716 717 return header_size; 718 } 719 720 /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */ 721 static u32 ipa_header_size_encode(enum ipa_version version, 722 const struct reg *reg, u32 header_size) 723 { 724 u32 field_max = reg_field_max(reg, HDR_LEN); 725 u32 val; 726 727 /* We know field_max can be used as a mask (2^n - 1) */ 728 val = reg_encode(reg, HDR_LEN, header_size & field_max); 729 if (version < IPA_VERSION_4_5) { 730 WARN_ON(header_size > field_max); 731 return val; 732 } 733 734 /* IPA v4.5 adds a few more most-significant bits */ 735 header_size >>= hweight32(field_max); 736 WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB)); 737 val |= reg_encode(reg, HDR_LEN_MSB, header_size); 738 739 return val; 740 } 741 742 /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */ 743 static u32 ipa_metadata_offset_encode(enum ipa_version version, 744 const struct reg *reg, u32 offset) 745 { 746 u32 field_max = reg_field_max(reg, HDR_OFST_METADATA); 747 u32 val; 748 749 /* We know field_max can be used as a mask (2^n - 1) */ 750 val = reg_encode(reg, HDR_OFST_METADATA, offset); 751 if (version < IPA_VERSION_4_5) { 752 WARN_ON(offset > field_max); 753 return val; 754 } 755 756 /* IPA v4.5 adds a few more most-significant bits */ 757 offset >>= hweight32(field_max); 758 WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB)); 759 val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset); 760 761 return val; 762 } 763 764 /** 765 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 766 * @endpoint: Endpoint pointer 767 * 768 * We program QMAP endpoints so each packet received is preceded by a QMAP 769 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 770 * packet size field, and we have the IPA hardware populate both for each 771 * received packet. The header is configured (in the HDR_EXT register) 772 * to use big endian format. 773 * 774 * The packet size is written into the QMAP header's pkt_len field. That 775 * location is defined here using the HDR_OFST_PKT_SIZE field. 776 * 777 * The mux_id comes from a 4-byte metadata value supplied with each packet 778 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 779 * value that we want, in its low-order byte. A bitmask defined in the 780 * endpoint's METADATA_MASK register defines which byte within the modem 781 * metadata contains the mux_id. And the OFST_METADATA field programmed 782 * here indicates where the extracted byte should be placed within the QMAP 783 * header. 784 */ 785 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 786 { 787 u32 endpoint_id = endpoint->endpoint_id; 788 struct ipa *ipa = endpoint->ipa; 789 const struct reg *reg; 790 u32 val = 0; 791 792 reg = ipa_reg(ipa, ENDP_INIT_HDR); 793 if (endpoint->config.qmap) { 794 enum ipa_version version = ipa->version; 795 size_t header_size; 796 797 header_size = ipa_qmap_header_size(version, endpoint); 798 val = ipa_header_size_encode(version, reg, header_size); 799 800 /* Define how to fill fields in a received QMAP header */ 801 if (!endpoint->toward_ipa) { 802 u32 off; /* Field offset within header */ 803 804 /* Where IPA will write the metadata value */ 805 off = offsetof(struct rmnet_map_header, mux_id); 806 val |= ipa_metadata_offset_encode(version, reg, off); 807 808 /* Where IPA will write the length */ 809 off = offsetof(struct rmnet_map_header, pkt_len); 810 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 811 if (version >= IPA_VERSION_4_5) 812 off &= reg_field_max(reg, HDR_OFST_PKT_SIZE); 813 814 val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID); 815 val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off); 816 } 817 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 818 val |= reg_bit(reg, HDR_OFST_METADATA_VALID); 819 820 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 821 /* HDR_A5_MUX is 0 */ 822 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 823 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 824 } 825 826 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 827 } 828 829 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 830 { 831 u32 pad_align = endpoint->config.rx.pad_align; 832 u32 endpoint_id = endpoint->endpoint_id; 833 struct ipa *ipa = endpoint->ipa; 834 const struct reg *reg; 835 u32 val = 0; 836 837 reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT); 838 if (endpoint->config.qmap) { 839 /* We have a header, so we must specify its endianness */ 840 val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */ 841 842 /* A QMAP header contains a 6 bit pad field at offset 0. 843 * The RMNet driver assumes this field is meaningful in 844 * packets it receives, and assumes the header's payload 845 * length includes that padding. The RMNet driver does 846 * *not* pad packets it sends, however, so the pad field 847 * (although 0) should be ignored. 848 */ 849 if (!endpoint->toward_ipa) { 850 val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID); 851 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 852 val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING); 853 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 854 } 855 } 856 857 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 858 if (!endpoint->toward_ipa) 859 val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align); 860 861 /* IPA v4.5 adds some most-significant bits to a few fields, 862 * two of which are defined in the HDR (not HDR_EXT) register. 863 */ 864 if (ipa->version >= IPA_VERSION_4_5) { 865 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 866 if (endpoint->config.qmap && !endpoint->toward_ipa) { 867 u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE); 868 u32 off; /* Field offset within header */ 869 870 off = offsetof(struct rmnet_map_header, pkt_len); 871 /* Low bits are in the ENDP_INIT_HDR register */ 872 off >>= hweight32(mask); 873 val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off); 874 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 875 } 876 } 877 878 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 879 } 880 881 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 882 { 883 u32 endpoint_id = endpoint->endpoint_id; 884 struct ipa *ipa = endpoint->ipa; 885 const struct reg *reg; 886 u32 val = 0; 887 u32 offset; 888 889 if (endpoint->toward_ipa) 890 return; /* Register not valid for TX endpoints */ 891 892 reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK); 893 offset = reg_n_offset(reg, endpoint_id); 894 895 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 896 if (endpoint->config.qmap) 897 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 898 899 iowrite32(val, ipa->reg_virt + offset); 900 } 901 902 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 903 { 904 struct ipa *ipa = endpoint->ipa; 905 const struct reg *reg; 906 u32 offset; 907 u32 val; 908 909 if (!endpoint->toward_ipa) 910 return; /* Register not valid for RX endpoints */ 911 912 reg = ipa_reg(ipa, ENDP_INIT_MODE); 913 if (endpoint->config.dma_mode) { 914 enum ipa_endpoint_name name = endpoint->config.dma_endpoint; 915 u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id; 916 917 val = reg_encode(reg, ENDP_MODE, IPA_DMA); 918 val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id); 919 } else { 920 val = reg_encode(reg, ENDP_MODE, IPA_BASIC); 921 } 922 /* All other bits unspecified (and 0) */ 923 924 offset = reg_n_offset(reg, endpoint->endpoint_id); 925 iowrite32(val, ipa->reg_virt + offset); 926 } 927 928 /* For IPA v4.5+, times are expressed using Qtime. A time is represented 929 * at one of several available granularities, which are configured in 930 * ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse 931 * generators are set up with different "tick" periods. A Qtime value 932 * encodes a tick count along with an indication of a pulse generator 933 * (which has a fixed tick period). Two pulse generators are always 934 * available to the AP; a third is available starting with IPA v5.0. 935 * This function determines which pulse generator most accurately 936 * represents the time period provided, and returns the tick count to 937 * use to represent that time. 938 */ 939 static u32 940 ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select) 941 { 942 u32 which = 0; 943 u32 ticks; 944 945 /* Pulse generator 0 has 100 microsecond granularity */ 946 ticks = DIV_ROUND_CLOSEST(microseconds, 100); 947 if (ticks <= max) 948 goto out; 949 950 /* Pulse generator 1 has millisecond granularity */ 951 which = 1; 952 ticks = DIV_ROUND_CLOSEST(microseconds, 1000); 953 if (ticks <= max) 954 goto out; 955 956 if (ipa->version >= IPA_VERSION_5_0) { 957 /* Pulse generator 2 has 10 millisecond granularity */ 958 which = 2; 959 ticks = DIV_ROUND_CLOSEST(microseconds, 100); 960 } 961 WARN_ON(ticks > max); 962 out: 963 *select = which; 964 965 return ticks; 966 } 967 968 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 969 static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg, 970 u32 microseconds) 971 { 972 u32 ticks; 973 u32 max; 974 975 if (!microseconds) 976 return 0; /* Nothing to compute if time limit is 0 */ 977 978 max = reg_field_max(reg, TIME_LIMIT); 979 if (ipa->version >= IPA_VERSION_4_5) { 980 u32 select; 981 982 ticks = ipa_qtime_val(ipa, microseconds, max, &select); 983 984 return reg_encode(reg, AGGR_GRAN_SEL, select) | 985 reg_encode(reg, TIME_LIMIT, ticks); 986 } 987 988 /* We program aggregation granularity in ipa_hardware_config() */ 989 ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY); 990 WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n", 991 microseconds, max * IPA_AGGR_GRANULARITY); 992 993 return reg_encode(reg, TIME_LIMIT, ticks); 994 } 995 996 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 997 { 998 u32 endpoint_id = endpoint->endpoint_id; 999 struct ipa *ipa = endpoint->ipa; 1000 const struct reg *reg; 1001 u32 val = 0; 1002 1003 reg = ipa_reg(ipa, ENDP_INIT_AGGR); 1004 if (endpoint->config.aggregation) { 1005 if (!endpoint->toward_ipa) { 1006 const struct ipa_endpoint_rx *rx_config; 1007 u32 buffer_size; 1008 u32 limit; 1009 1010 rx_config = &endpoint->config.rx; 1011 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR); 1012 val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC); 1013 1014 buffer_size = rx_config->buffer_size; 1015 limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 1016 rx_config->aggr_hard_limit); 1017 val |= reg_encode(reg, BYTE_LIMIT, limit); 1018 1019 limit = rx_config->aggr_time_limit; 1020 val |= aggr_time_limit_encode(ipa, reg, limit); 1021 1022 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 1023 1024 if (rx_config->aggr_close_eof) 1025 val |= reg_bit(reg, SW_EOF_ACTIVE); 1026 } else { 1027 val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR); 1028 val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP); 1029 /* other fields ignored */ 1030 } 1031 /* AGGR_FORCE_CLOSE is 0 */ 1032 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 1033 } else { 1034 val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR); 1035 /* other fields ignored */ 1036 } 1037 1038 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1039 } 1040 1041 /* The head-of-line blocking timer is defined as a tick count. For 1042 * IPA version 4.5 the tick count is based on the Qtimer, which is 1043 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 1044 * each tick represents 128 cycles of the IPA core clock. 1045 * 1046 * Return the encoded value representing the timeout period provided 1047 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register. 1048 */ 1049 static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg, 1050 u32 microseconds) 1051 { 1052 u32 width; 1053 u32 scale; 1054 u64 ticks; 1055 u64 rate; 1056 u32 high; 1057 u32 val; 1058 1059 if (!microseconds) 1060 return 0; /* Nothing to compute if timer period is 0 */ 1061 1062 if (ipa->version >= IPA_VERSION_4_5) { 1063 u32 max = reg_field_max(reg, TIMER_LIMIT); 1064 u32 select; 1065 u32 ticks; 1066 1067 ticks = ipa_qtime_val(ipa, microseconds, max, &select); 1068 1069 return reg_encode(reg, TIMER_GRAN_SEL, 1) | 1070 reg_encode(reg, TIMER_LIMIT, ticks); 1071 } 1072 1073 /* Use 64 bit arithmetic to avoid overflow */ 1074 rate = ipa_core_clock_rate(ipa); 1075 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 1076 1077 /* We still need the result to fit into the field */ 1078 WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE)); 1079 1080 /* IPA v3.5.1 through v4.1 just record the tick count */ 1081 if (ipa->version < IPA_VERSION_4_2) 1082 return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks); 1083 1084 /* For IPA v4.2, the tick count is represented by base and 1085 * scale fields within the 32-bit timer register, where: 1086 * ticks = base << scale; 1087 * The best precision is achieved when the base value is as 1088 * large as possible. Find the highest set bit in the tick 1089 * count, and extract the number of bits in the base field 1090 * such that high bit is included. 1091 */ 1092 high = fls(ticks); /* 1..32 (or warning above) */ 1093 width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE)); 1094 scale = high > width ? high - width : 0; 1095 if (scale) { 1096 /* If we're scaling, round up to get a closer result */ 1097 ticks += 1 << (scale - 1); 1098 /* High bit was set, so rounding might have affected it */ 1099 if (fls(ticks) != high) 1100 scale++; 1101 } 1102 1103 val = reg_encode(reg, TIMER_SCALE, scale); 1104 val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale); 1105 1106 return val; 1107 } 1108 1109 /* If microseconds is 0, timeout is immediate */ 1110 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 1111 u32 microseconds) 1112 { 1113 u32 endpoint_id = endpoint->endpoint_id; 1114 struct ipa *ipa = endpoint->ipa; 1115 const struct reg *reg; 1116 u32 val; 1117 1118 /* This should only be changed when HOL_BLOCK_EN is disabled */ 1119 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER); 1120 val = hol_block_timer_encode(ipa, reg, microseconds); 1121 1122 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1123 } 1124 1125 static void 1126 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) 1127 { 1128 u32 endpoint_id = endpoint->endpoint_id; 1129 struct ipa *ipa = endpoint->ipa; 1130 const struct reg *reg; 1131 u32 offset; 1132 u32 val; 1133 1134 reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN); 1135 offset = reg_n_offset(reg, endpoint_id); 1136 val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0; 1137 1138 iowrite32(val, ipa->reg_virt + offset); 1139 1140 /* When enabling, the register must be written twice for IPA v4.5+ */ 1141 if (enable && ipa->version >= IPA_VERSION_4_5) 1142 iowrite32(val, ipa->reg_virt + offset); 1143 } 1144 1145 /* Assumes HOL_BLOCK is in disabled state */ 1146 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, 1147 u32 microseconds) 1148 { 1149 ipa_endpoint_init_hol_block_timer(endpoint, microseconds); 1150 ipa_endpoint_init_hol_block_en(endpoint, true); 1151 } 1152 1153 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) 1154 { 1155 ipa_endpoint_init_hol_block_en(endpoint, false); 1156 } 1157 1158 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 1159 { 1160 u32 endpoint_id = 0; 1161 1162 while (endpoint_id < ipa->endpoint_count) { 1163 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; 1164 1165 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 1166 continue; 1167 1168 ipa_endpoint_init_hol_block_disable(endpoint); 1169 ipa_endpoint_init_hol_block_enable(endpoint, 0); 1170 } 1171 } 1172 1173 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 1174 { 1175 u32 endpoint_id = endpoint->endpoint_id; 1176 struct ipa *ipa = endpoint->ipa; 1177 const struct reg *reg; 1178 u32 val = 0; 1179 1180 if (!endpoint->toward_ipa) 1181 return; /* Register not valid for RX endpoints */ 1182 1183 reg = ipa_reg(ipa, ENDP_INIT_DEAGGR); 1184 /* DEAGGR_HDR_LEN is 0 */ 1185 /* PACKET_OFFSET_VALID is 0 */ 1186 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 1187 /* MAX_PACKET_LEN is 0 (not enforced) */ 1188 1189 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1190 } 1191 1192 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 1193 { 1194 u32 resource_group = endpoint->config.resource_group; 1195 u32 endpoint_id = endpoint->endpoint_id; 1196 struct ipa *ipa = endpoint->ipa; 1197 const struct reg *reg; 1198 u32 val; 1199 1200 reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP); 1201 val = reg_encode(reg, ENDP_RSRC_GRP, resource_group); 1202 1203 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1204 } 1205 1206 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 1207 { 1208 u32 endpoint_id = endpoint->endpoint_id; 1209 struct ipa *ipa = endpoint->ipa; 1210 const struct reg *reg; 1211 u32 val; 1212 1213 if (!endpoint->toward_ipa) 1214 return; /* Register not valid for RX endpoints */ 1215 1216 reg = ipa_reg(ipa, ENDP_INIT_SEQ); 1217 1218 /* Low-order byte configures primary packet processing */ 1219 val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type); 1220 1221 /* Second byte (if supported) configures replicated packet processing */ 1222 if (ipa->version < IPA_VERSION_4_5) 1223 val |= reg_encode(reg, SEQ_REP_TYPE, 1224 endpoint->config.tx.seq_rep_type); 1225 1226 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1227 } 1228 1229 /** 1230 * ipa_endpoint_skb_tx() - Transmit a socket buffer 1231 * @endpoint: Endpoint pointer 1232 * @skb: Socket buffer to send 1233 * 1234 * Returns: 0 if successful, or a negative error code 1235 */ 1236 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 1237 { 1238 struct gsi_trans *trans; 1239 u32 nr_frags; 1240 int ret; 1241 1242 /* Make sure source endpoint's TLV FIFO has enough entries to 1243 * hold the linear portion of the skb and all its fragments. 1244 * If not, see if we can linearize it before giving up. 1245 */ 1246 nr_frags = skb_shinfo(skb)->nr_frags; 1247 if (nr_frags > endpoint->skb_frag_max) { 1248 if (skb_linearize(skb)) 1249 return -E2BIG; 1250 nr_frags = 0; 1251 } 1252 1253 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 1254 if (!trans) 1255 return -EBUSY; 1256 1257 ret = gsi_trans_skb_add(trans, skb); 1258 if (ret) 1259 goto err_trans_free; 1260 trans->data = skb; /* transaction owns skb now */ 1261 1262 gsi_trans_commit(trans, !netdev_xmit_more()); 1263 1264 return 0; 1265 1266 err_trans_free: 1267 gsi_trans_free(trans); 1268 1269 return -ENOMEM; 1270 } 1271 1272 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 1273 { 1274 u32 endpoint_id = endpoint->endpoint_id; 1275 struct ipa *ipa = endpoint->ipa; 1276 const struct reg *reg; 1277 u32 val = 0; 1278 1279 reg = ipa_reg(ipa, ENDP_STATUS); 1280 if (endpoint->config.status_enable) { 1281 val |= reg_bit(reg, STATUS_EN); 1282 if (endpoint->toward_ipa) { 1283 enum ipa_endpoint_name name; 1284 u32 status_endpoint_id; 1285 1286 name = endpoint->config.tx.status_endpoint; 1287 status_endpoint_id = ipa->name_map[name]->endpoint_id; 1288 1289 val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id); 1290 } 1291 /* STATUS_LOCATION is 0, meaning IPA packet status 1292 * precedes the packet (not present for IPA v4.5+) 1293 */ 1294 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */ 1295 } 1296 1297 iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); 1298 } 1299 1300 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, 1301 struct gsi_trans *trans) 1302 { 1303 struct page *page; 1304 u32 buffer_size; 1305 u32 offset; 1306 u32 len; 1307 int ret; 1308 1309 buffer_size = endpoint->config.rx.buffer_size; 1310 page = dev_alloc_pages(get_order(buffer_size)); 1311 if (!page) 1312 return -ENOMEM; 1313 1314 /* Offset the buffer to make space for skb headroom */ 1315 offset = NET_SKB_PAD; 1316 len = buffer_size - offset; 1317 1318 ret = gsi_trans_page_add(trans, page, len, offset); 1319 if (ret) 1320 put_page(page); 1321 else 1322 trans->data = page; /* transaction owns page now */ 1323 1324 return ret; 1325 } 1326 1327 /** 1328 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1329 * @endpoint: Endpoint to be replenished 1330 * 1331 * The IPA hardware can hold a fixed number of receive buffers for an RX 1332 * endpoint, based on the number of entries in the underlying channel ring 1333 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1334 * more receive buffers can be supplied to the hardware. Replenishing for 1335 * an endpoint can be disabled, in which case buffers are not queued to 1336 * the hardware. 1337 */ 1338 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) 1339 { 1340 struct gsi_trans *trans; 1341 1342 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) 1343 return; 1344 1345 /* Skip it if it's already active */ 1346 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) 1347 return; 1348 1349 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { 1350 bool doorbell; 1351 1352 if (ipa_endpoint_replenish_one(endpoint, trans)) 1353 goto try_again_later; 1354 1355 1356 /* Ring the doorbell if we've got a full batch */ 1357 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); 1358 gsi_trans_commit(trans, doorbell); 1359 } 1360 1361 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1362 1363 return; 1364 1365 try_again_later: 1366 gsi_trans_free(trans); 1367 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1368 1369 /* Whenever a receive buffer transaction completes we'll try to 1370 * replenish again. It's unlikely, but if we fail to supply even 1371 * one buffer, nothing will trigger another replenish attempt. 1372 * If the hardware has no receive buffers queued, schedule work to 1373 * try replenishing again. 1374 */ 1375 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1376 schedule_delayed_work(&endpoint->replenish_work, 1377 msecs_to_jiffies(1)); 1378 } 1379 1380 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1381 { 1382 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1383 1384 /* Start replenishing if hardware currently has no buffers */ 1385 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1386 ipa_endpoint_replenish(endpoint); 1387 } 1388 1389 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1390 { 1391 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1392 } 1393 1394 static void ipa_endpoint_replenish_work(struct work_struct *work) 1395 { 1396 struct delayed_work *dwork = to_delayed_work(work); 1397 struct ipa_endpoint *endpoint; 1398 1399 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1400 1401 ipa_endpoint_replenish(endpoint); 1402 } 1403 1404 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1405 void *data, u32 len, u32 extra) 1406 { 1407 struct sk_buff *skb; 1408 1409 if (!endpoint->netdev) 1410 return; 1411 1412 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1413 if (skb) { 1414 /* Copy the data into the socket buffer and receive it */ 1415 skb_put(skb, len); 1416 memcpy(skb->data, data, len); 1417 skb->truesize += extra; 1418 } 1419 1420 ipa_modem_skb_rx(endpoint->netdev, skb); 1421 } 1422 1423 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1424 struct page *page, u32 len) 1425 { 1426 u32 buffer_size = endpoint->config.rx.buffer_size; 1427 struct sk_buff *skb; 1428 1429 /* Nothing to do if there's no netdev */ 1430 if (!endpoint->netdev) 1431 return false; 1432 1433 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); 1434 1435 skb = build_skb(page_address(page), buffer_size); 1436 if (skb) { 1437 /* Reserve the headroom and account for the data */ 1438 skb_reserve(skb, NET_SKB_PAD); 1439 skb_put(skb, len); 1440 } 1441 1442 /* Receive the buffer (or record drop if unable to build it) */ 1443 ipa_modem_skb_rx(endpoint->netdev, skb); 1444 1445 return skb != NULL; 1446 } 1447 1448 /* The format of an IPA packet status structure is the same for several 1449 * status types (opcodes). Other types aren't currently supported. 1450 */ 1451 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1452 { 1453 switch (opcode) { 1454 case IPA_STATUS_OPCODE_PACKET: 1455 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1456 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1457 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1458 return true; 1459 default: 1460 return false; 1461 } 1462 } 1463 1464 static bool 1465 ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data) 1466 { 1467 struct ipa *ipa = endpoint->ipa; 1468 enum ipa_status_opcode opcode; 1469 u32 endpoint_id; 1470 1471 opcode = ipa_status_extract(ipa, data, STATUS_OPCODE); 1472 if (!ipa_status_format_packet(opcode)) 1473 return true; 1474 1475 endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT); 1476 if (endpoint_id != endpoint->endpoint_id) 1477 return true; 1478 1479 return false; /* Don't skip this packet, process it */ 1480 } 1481 1482 static bool 1483 ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data) 1484 { 1485 struct ipa_endpoint *command_endpoint; 1486 enum ipa_status_mask status_mask; 1487 struct ipa *ipa = endpoint->ipa; 1488 u32 endpoint_id; 1489 1490 status_mask = ipa_status_extract(ipa, data, STATUS_MASK); 1491 if (!status_mask) 1492 return false; /* No valid tag */ 1493 1494 /* The status contains a valid tag. We know the packet was sent to 1495 * this endpoint (already verified by ipa_endpoint_status_skip()). 1496 * If the packet came from the AP->command TX endpoint we know 1497 * this packet was sent as part of the pipeline clear process. 1498 */ 1499 endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT); 1500 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1501 if (endpoint_id == command_endpoint->endpoint_id) { 1502 complete(&ipa->completion); 1503 } else { 1504 dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n", 1505 endpoint_id); 1506 } 1507 1508 return true; 1509 } 1510 1511 /* Return whether the status indicates the packet should be dropped */ 1512 static bool 1513 ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data) 1514 { 1515 enum ipa_status_exception exception; 1516 struct ipa *ipa = endpoint->ipa; 1517 u32 rule; 1518 1519 /* If the status indicates a tagged transfer, we'll drop the packet */ 1520 if (ipa_endpoint_status_tag_valid(endpoint, data)) 1521 return true; 1522 1523 /* Deaggregation exceptions we drop; all other types we consume */ 1524 exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION); 1525 if (exception) 1526 return exception == IPA_STATUS_EXCEPTION_DEAGGR; 1527 1528 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1529 rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX); 1530 1531 return rule == IPA_STATUS_RULE_MISS; 1532 } 1533 1534 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1535 struct page *page, u32 total_len) 1536 { 1537 u32 buffer_size = endpoint->config.rx.buffer_size; 1538 void *data = page_address(page) + NET_SKB_PAD; 1539 u32 unused = buffer_size - total_len; 1540 struct ipa *ipa = endpoint->ipa; 1541 struct device *dev = ipa->dev; 1542 u32 resid = total_len; 1543 1544 while (resid) { 1545 u32 length; 1546 u32 align; 1547 u32 len; 1548 1549 if (resid < IPA_STATUS_SIZE) { 1550 dev_err(dev, 1551 "short message (%u bytes < %zu byte status)\n", 1552 resid, IPA_STATUS_SIZE); 1553 break; 1554 } 1555 1556 /* Skip over status packets that lack packet data */ 1557 length = ipa_status_extract(ipa, data, STATUS_LENGTH); 1558 if (!length || ipa_endpoint_status_skip(endpoint, data)) { 1559 data += IPA_STATUS_SIZE; 1560 resid -= IPA_STATUS_SIZE; 1561 continue; 1562 } 1563 1564 /* Compute the amount of buffer space consumed by the packet, 1565 * including the status. If the hardware is configured to 1566 * pad packet data to an aligned boundary, account for that. 1567 * And if checksum offload is enabled a trailer containing 1568 * computed checksum information will be appended. 1569 */ 1570 align = endpoint->config.rx.pad_align ? : 1; 1571 len = IPA_STATUS_SIZE + ALIGN(length, align); 1572 if (endpoint->config.checksum) 1573 len += sizeof(struct rmnet_map_dl_csum_trailer); 1574 1575 if (!ipa_endpoint_status_drop(endpoint, data)) { 1576 void *data2; 1577 u32 extra; 1578 1579 /* Client receives only packet data (no status) */ 1580 data2 = data + IPA_STATUS_SIZE; 1581 1582 /* Have the true size reflect the extra unused space in 1583 * the original receive buffer. Distribute the "cost" 1584 * proportionately across all aggregated packets in the 1585 * buffer. 1586 */ 1587 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1588 ipa_endpoint_skb_copy(endpoint, data2, length, extra); 1589 } 1590 1591 /* Consume status and the full packet it describes */ 1592 data += len; 1593 resid -= len; 1594 } 1595 } 1596 1597 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1598 struct gsi_trans *trans) 1599 { 1600 struct page *page; 1601 1602 if (endpoint->toward_ipa) 1603 return; 1604 1605 if (trans->cancelled) 1606 goto done; 1607 1608 /* Parse or build a socket buffer using the actual received length */ 1609 page = trans->data; 1610 if (endpoint->config.status_enable) 1611 ipa_endpoint_status_parse(endpoint, page, trans->len); 1612 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1613 trans->data = NULL; /* Pages have been consumed */ 1614 done: 1615 ipa_endpoint_replenish(endpoint); 1616 } 1617 1618 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1619 struct gsi_trans *trans) 1620 { 1621 if (endpoint->toward_ipa) { 1622 struct ipa *ipa = endpoint->ipa; 1623 1624 /* Nothing to do for command transactions */ 1625 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1626 struct sk_buff *skb = trans->data; 1627 1628 if (skb) 1629 dev_kfree_skb_any(skb); 1630 } 1631 } else { 1632 struct page *page = trans->data; 1633 1634 if (page) 1635 put_page(page); 1636 } 1637 } 1638 1639 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1640 { 1641 const struct reg *reg; 1642 u32 val; 1643 1644 reg = ipa_reg(ipa, ROUTE); 1645 /* ROUTE_DIS is 0 */ 1646 val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id); 1647 val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE); 1648 /* ROUTE_DEF_HDR_OFST is 0 */ 1649 val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id); 1650 val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR); 1651 1652 iowrite32(val, ipa->reg_virt + reg_offset(reg)); 1653 } 1654 1655 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1656 { 1657 ipa_endpoint_default_route_set(ipa, 0); 1658 } 1659 1660 /** 1661 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1662 * @endpoint: Endpoint to be reset 1663 * 1664 * If aggregation is active on an RX endpoint when a reset is performed 1665 * on its underlying GSI channel, a special sequence of actions must be 1666 * taken to ensure the IPA pipeline is properly cleared. 1667 * 1668 * Return: 0 if successful, or a negative error code 1669 */ 1670 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1671 { 1672 struct ipa *ipa = endpoint->ipa; 1673 struct device *dev = ipa->dev; 1674 struct gsi *gsi = &ipa->gsi; 1675 bool suspended = false; 1676 dma_addr_t addr; 1677 u32 retries; 1678 u32 len = 1; 1679 void *virt; 1680 int ret; 1681 1682 virt = kzalloc(len, GFP_KERNEL); 1683 if (!virt) 1684 return -ENOMEM; 1685 1686 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1687 if (dma_mapping_error(dev, addr)) { 1688 ret = -ENOMEM; 1689 goto out_kfree; 1690 } 1691 1692 /* Force close aggregation before issuing the reset */ 1693 ipa_endpoint_force_close(endpoint); 1694 1695 /* Reset and reconfigure the channel with the doorbell engine 1696 * disabled. Then poll until we know aggregation is no longer 1697 * active. We'll re-enable the doorbell (if appropriate) when 1698 * we reset again below. 1699 */ 1700 gsi_channel_reset(gsi, endpoint->channel_id, false); 1701 1702 /* Make sure the channel isn't suspended */ 1703 suspended = ipa_endpoint_program_suspend(endpoint, false); 1704 1705 /* Start channel and do a 1 byte read */ 1706 ret = gsi_channel_start(gsi, endpoint->channel_id); 1707 if (ret) 1708 goto out_suspend_again; 1709 1710 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1711 if (ret) 1712 goto err_endpoint_stop; 1713 1714 /* Wait for aggregation to be closed on the channel */ 1715 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1716 do { 1717 if (!ipa_endpoint_aggr_active(endpoint)) 1718 break; 1719 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1720 } while (retries--); 1721 1722 /* Check one last time */ 1723 if (ipa_endpoint_aggr_active(endpoint)) 1724 dev_err(dev, "endpoint %u still active during reset\n", 1725 endpoint->endpoint_id); 1726 1727 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1728 1729 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1730 if (ret) 1731 goto out_suspend_again; 1732 1733 /* Finally, reset and reconfigure the channel again (re-enabling 1734 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1735 * complete the channel reset sequence. Finish by suspending the 1736 * channel again (if necessary). 1737 */ 1738 gsi_channel_reset(gsi, endpoint->channel_id, true); 1739 1740 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1741 1742 goto out_suspend_again; 1743 1744 err_endpoint_stop: 1745 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1746 out_suspend_again: 1747 if (suspended) 1748 (void)ipa_endpoint_program_suspend(endpoint, true); 1749 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1750 out_kfree: 1751 kfree(virt); 1752 1753 return ret; 1754 } 1755 1756 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1757 { 1758 u32 channel_id = endpoint->channel_id; 1759 struct ipa *ipa = endpoint->ipa; 1760 bool special; 1761 int ret = 0; 1762 1763 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1764 * is active, we need to handle things specially to recover. 1765 * All other cases just need to reset the underlying GSI channel. 1766 */ 1767 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1768 endpoint->config.aggregation; 1769 if (special && ipa_endpoint_aggr_active(endpoint)) 1770 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1771 else 1772 gsi_channel_reset(&ipa->gsi, channel_id, true); 1773 1774 if (ret) 1775 dev_err(ipa->dev, 1776 "error %d resetting channel %u for endpoint %u\n", 1777 ret, endpoint->channel_id, endpoint->endpoint_id); 1778 } 1779 1780 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1781 { 1782 if (endpoint->toward_ipa) { 1783 /* Newer versions of IPA use GSI channel flow control 1784 * instead of endpoint DELAY mode to prevent sending data. 1785 * Flow control is disabled for newly-allocated channels, 1786 * and we can assume flow control is not (ever) enabled 1787 * for AP TX channels. 1788 */ 1789 if (endpoint->ipa->version < IPA_VERSION_4_2) 1790 ipa_endpoint_program_delay(endpoint, false); 1791 } else { 1792 /* Ensure suspend mode is off on all AP RX endpoints */ 1793 (void)ipa_endpoint_program_suspend(endpoint, false); 1794 } 1795 ipa_endpoint_init_cfg(endpoint); 1796 ipa_endpoint_init_nat(endpoint); 1797 ipa_endpoint_init_hdr(endpoint); 1798 ipa_endpoint_init_hdr_ext(endpoint); 1799 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1800 ipa_endpoint_init_mode(endpoint); 1801 ipa_endpoint_init_aggr(endpoint); 1802 if (!endpoint->toward_ipa) { 1803 if (endpoint->config.rx.holb_drop) 1804 ipa_endpoint_init_hol_block_enable(endpoint, 0); 1805 else 1806 ipa_endpoint_init_hol_block_disable(endpoint); 1807 } 1808 ipa_endpoint_init_deaggr(endpoint); 1809 ipa_endpoint_init_rsrc_grp(endpoint); 1810 ipa_endpoint_init_seq(endpoint); 1811 ipa_endpoint_status(endpoint); 1812 } 1813 1814 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1815 { 1816 u32 endpoint_id = endpoint->endpoint_id; 1817 struct ipa *ipa = endpoint->ipa; 1818 struct gsi *gsi = &ipa->gsi; 1819 int ret; 1820 1821 ret = gsi_channel_start(gsi, endpoint->channel_id); 1822 if (ret) { 1823 dev_err(ipa->dev, 1824 "error %d starting %cX channel %u for endpoint %u\n", 1825 ret, endpoint->toward_ipa ? 'T' : 'R', 1826 endpoint->channel_id, endpoint_id); 1827 return ret; 1828 } 1829 1830 if (!endpoint->toward_ipa) { 1831 ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id); 1832 ipa_endpoint_replenish_enable(endpoint); 1833 } 1834 1835 __set_bit(endpoint_id, ipa->enabled); 1836 1837 return 0; 1838 } 1839 1840 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1841 { 1842 u32 endpoint_id = endpoint->endpoint_id; 1843 struct ipa *ipa = endpoint->ipa; 1844 struct gsi *gsi = &ipa->gsi; 1845 int ret; 1846 1847 if (!test_bit(endpoint_id, ipa->enabled)) 1848 return; 1849 1850 __clear_bit(endpoint_id, endpoint->ipa->enabled); 1851 1852 if (!endpoint->toward_ipa) { 1853 ipa_endpoint_replenish_disable(endpoint); 1854 ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id); 1855 } 1856 1857 /* Note that if stop fails, the channel's state is not well-defined */ 1858 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1859 if (ret) 1860 dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n", 1861 ret, endpoint_id); 1862 } 1863 1864 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1865 { 1866 struct device *dev = endpoint->ipa->dev; 1867 struct gsi *gsi = &endpoint->ipa->gsi; 1868 int ret; 1869 1870 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) 1871 return; 1872 1873 if (!endpoint->toward_ipa) { 1874 ipa_endpoint_replenish_disable(endpoint); 1875 (void)ipa_endpoint_program_suspend(endpoint, true); 1876 } 1877 1878 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1879 if (ret) 1880 dev_err(dev, "error %d suspending channel %u\n", ret, 1881 endpoint->channel_id); 1882 } 1883 1884 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1885 { 1886 struct device *dev = endpoint->ipa->dev; 1887 struct gsi *gsi = &endpoint->ipa->gsi; 1888 int ret; 1889 1890 if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) 1891 return; 1892 1893 if (!endpoint->toward_ipa) 1894 (void)ipa_endpoint_program_suspend(endpoint, false); 1895 1896 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1897 if (ret) 1898 dev_err(dev, "error %d resuming channel %u\n", ret, 1899 endpoint->channel_id); 1900 else if (!endpoint->toward_ipa) 1901 ipa_endpoint_replenish_enable(endpoint); 1902 } 1903 1904 void ipa_endpoint_suspend(struct ipa *ipa) 1905 { 1906 if (!ipa->setup_complete) 1907 return; 1908 1909 if (ipa->modem_netdev) 1910 ipa_modem_suspend(ipa->modem_netdev); 1911 1912 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1913 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1914 } 1915 1916 void ipa_endpoint_resume(struct ipa *ipa) 1917 { 1918 if (!ipa->setup_complete) 1919 return; 1920 1921 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1922 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1923 1924 if (ipa->modem_netdev) 1925 ipa_modem_resume(ipa->modem_netdev); 1926 } 1927 1928 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1929 { 1930 struct gsi *gsi = &endpoint->ipa->gsi; 1931 u32 channel_id = endpoint->channel_id; 1932 1933 /* Only AP endpoints get set up */ 1934 if (endpoint->ee_id != GSI_EE_AP) 1935 return; 1936 1937 endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; 1938 if (!endpoint->toward_ipa) { 1939 /* RX transactions require a single TRE, so the maximum 1940 * backlog is the same as the maximum outstanding TREs. 1941 */ 1942 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1943 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1944 INIT_DELAYED_WORK(&endpoint->replenish_work, 1945 ipa_endpoint_replenish_work); 1946 } 1947 1948 ipa_endpoint_program(endpoint); 1949 1950 __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up); 1951 } 1952 1953 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1954 { 1955 __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up); 1956 1957 if (!endpoint->toward_ipa) 1958 cancel_delayed_work_sync(&endpoint->replenish_work); 1959 1960 ipa_endpoint_reset(endpoint); 1961 } 1962 1963 void ipa_endpoint_setup(struct ipa *ipa) 1964 { 1965 u32 endpoint_id; 1966 1967 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) 1968 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1969 } 1970 1971 void ipa_endpoint_teardown(struct ipa *ipa) 1972 { 1973 u32 endpoint_id; 1974 1975 for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count) 1976 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1977 } 1978 1979 void ipa_endpoint_deconfig(struct ipa *ipa) 1980 { 1981 ipa->available_count = 0; 1982 bitmap_free(ipa->available); 1983 ipa->available = NULL; 1984 } 1985 1986 int ipa_endpoint_config(struct ipa *ipa) 1987 { 1988 struct device *dev = ipa->dev; 1989 const struct reg *reg; 1990 u32 endpoint_id; 1991 u32 hw_limit; 1992 u32 tx_count; 1993 u32 rx_count; 1994 u32 rx_base; 1995 u32 limit; 1996 u32 val; 1997 1998 /* Prior to IPA v3.5, the FLAVOR_0 register was not supported. 1999 * Furthermore, the endpoints were not grouped such that TX 2000 * endpoint numbers started with 0 and RX endpoints had numbers 2001 * higher than all TX endpoints, so we can't do the simple 2002 * direction check used for newer hardware below. 2003 * 2004 * For hardware that doesn't support the FLAVOR_0 register, 2005 * just set the available mask to support any endpoint, and 2006 * assume the configuration is valid. 2007 */ 2008 if (ipa->version < IPA_VERSION_3_5) { 2009 ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL); 2010 if (!ipa->available) 2011 return -ENOMEM; 2012 ipa->available_count = IPA_ENDPOINT_MAX; 2013 2014 bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX); 2015 2016 return 0; 2017 } 2018 2019 /* Find out about the endpoints supplied by the hardware, and ensure 2020 * the highest one doesn't exceed the number supported by software. 2021 */ 2022 reg = ipa_reg(ipa, FLAVOR_0); 2023 val = ioread32(ipa->reg_virt + reg_offset(reg)); 2024 2025 /* Our RX is an IPA producer; our TX is an IPA consumer. */ 2026 tx_count = reg_decode(reg, MAX_CONS_PIPES, val); 2027 rx_count = reg_decode(reg, MAX_PROD_PIPES, val); 2028 rx_base = reg_decode(reg, PROD_LOWEST, val); 2029 2030 limit = rx_base + rx_count; 2031 if (limit > IPA_ENDPOINT_MAX) { 2032 dev_err(dev, "too many endpoints, %u > %u\n", 2033 limit, IPA_ENDPOINT_MAX); 2034 return -EINVAL; 2035 } 2036 2037 /* Until IPA v5.0, the max endpoint ID was 32 */ 2038 hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1; 2039 if (limit > hw_limit) { 2040 dev_err(dev, "unexpected endpoint count, %u > %u\n", 2041 limit, hw_limit); 2042 return -EINVAL; 2043 } 2044 2045 /* Allocate and initialize the available endpoint bitmap */ 2046 ipa->available = bitmap_zalloc(limit, GFP_KERNEL); 2047 if (!ipa->available) 2048 return -ENOMEM; 2049 ipa->available_count = limit; 2050 2051 /* Mark all supported RX and TX endpoints as available */ 2052 bitmap_set(ipa->available, 0, tx_count); 2053 bitmap_set(ipa->available, rx_base, rx_count); 2054 2055 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { 2056 struct ipa_endpoint *endpoint; 2057 2058 if (endpoint_id >= limit) { 2059 dev_err(dev, "invalid endpoint id, %u > %u\n", 2060 endpoint_id, limit - 1); 2061 goto err_free_bitmap; 2062 } 2063 2064 if (!test_bit(endpoint_id, ipa->available)) { 2065 dev_err(dev, "unavailable endpoint id %u\n", 2066 endpoint_id); 2067 goto err_free_bitmap; 2068 } 2069 2070 /* Make sure it's pointing in the right direction */ 2071 endpoint = &ipa->endpoint[endpoint_id]; 2072 if (endpoint->toward_ipa) { 2073 if (endpoint_id < tx_count) 2074 continue; 2075 } else if (endpoint_id >= rx_base) { 2076 continue; 2077 } 2078 2079 dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id); 2080 goto err_free_bitmap; 2081 } 2082 2083 return 0; 2084 2085 err_free_bitmap: 2086 ipa_endpoint_deconfig(ipa); 2087 2088 return -EINVAL; 2089 } 2090 2091 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 2092 const struct ipa_gsi_endpoint_data *data) 2093 { 2094 struct ipa_endpoint *endpoint; 2095 2096 endpoint = &ipa->endpoint[data->endpoint_id]; 2097 2098 if (data->ee_id == GSI_EE_AP) 2099 ipa->channel_map[data->channel_id] = endpoint; 2100 ipa->name_map[name] = endpoint; 2101 2102 endpoint->ipa = ipa; 2103 endpoint->ee_id = data->ee_id; 2104 endpoint->channel_id = data->channel_id; 2105 endpoint->endpoint_id = data->endpoint_id; 2106 endpoint->toward_ipa = data->toward_ipa; 2107 endpoint->config = data->endpoint.config; 2108 2109 __set_bit(endpoint->endpoint_id, ipa->defined); 2110 } 2111 2112 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 2113 { 2114 __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined); 2115 2116 memset(endpoint, 0, sizeof(*endpoint)); 2117 } 2118 2119 void ipa_endpoint_exit(struct ipa *ipa) 2120 { 2121 u32 endpoint_id; 2122 2123 ipa->filtered = 0; 2124 2125 for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) 2126 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 2127 2128 bitmap_free(ipa->enabled); 2129 ipa->enabled = NULL; 2130 bitmap_free(ipa->set_up); 2131 ipa->set_up = NULL; 2132 bitmap_free(ipa->defined); 2133 ipa->defined = NULL; 2134 2135 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 2136 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 2137 } 2138 2139 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 2140 int ipa_endpoint_init(struct ipa *ipa, u32 count, 2141 const struct ipa_gsi_endpoint_data *data) 2142 { 2143 enum ipa_endpoint_name name; 2144 u32 filtered; 2145 2146 BUILD_BUG_ON(!IPA_REPLENISH_BATCH); 2147 2148 /* Number of endpoints is one more than the maximum ID */ 2149 ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1; 2150 if (!ipa->endpoint_count) 2151 return -EINVAL; 2152 2153 /* Initialize endpoint state bitmaps */ 2154 ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); 2155 if (!ipa->defined) 2156 return -ENOMEM; 2157 2158 ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); 2159 if (!ipa->set_up) 2160 goto err_free_defined; 2161 2162 ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); 2163 if (!ipa->enabled) 2164 goto err_free_set_up; 2165 2166 filtered = 0; 2167 for (name = 0; name < count; name++, data++) { 2168 if (ipa_gsi_endpoint_data_empty(data)) 2169 continue; /* Skip over empty slots */ 2170 2171 ipa_endpoint_init_one(ipa, name, data); 2172 2173 if (data->endpoint.filter_support) 2174 filtered |= BIT(data->endpoint_id); 2175 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) 2176 ipa->modem_tx_count++; 2177 } 2178 2179 /* Make sure the set of filtered endpoints is valid */ 2180 if (!ipa_filtered_valid(ipa, filtered)) { 2181 ipa_endpoint_exit(ipa); 2182 2183 return -EINVAL; 2184 } 2185 2186 ipa->filtered = filtered; 2187 2188 return 0; 2189 2190 err_free_set_up: 2191 bitmap_free(ipa->set_up); 2192 ipa->set_up = NULL; 2193 err_free_defined: 2194 bitmap_free(ipa->defined); 2195 ipa->defined = NULL; 2196 2197 return -ENOMEM; 2198 } 2199