xref: /linux/drivers/net/ipa/ipa_endpoint.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 			    const struct ipa_gsi_endpoint_data *all_data,
80 			    const struct ipa_gsi_endpoint_data *data)
81 {
82 	const struct ipa_gsi_endpoint_data *other_data;
83 	struct device *dev = &ipa->pdev->dev;
84 	enum ipa_endpoint_name other_name;
85 
86 	if (ipa_gsi_endpoint_data_empty(data))
87 		return true;
88 
89 	if (!data->toward_ipa) {
90 		if (data->endpoint.filter_support) {
91 			dev_err(dev, "filtering not supported for "
92 					"RX endpoint %u\n",
93 				data->endpoint_id);
94 			return false;
95 		}
96 
97 		return true;	/* Nothing more to check for RX */
98 	}
99 
100 	if (data->endpoint.config.status_enable) {
101 		other_name = data->endpoint.config.tx.status_endpoint;
102 		if (other_name >= count) {
103 			dev_err(dev, "status endpoint name %u out of range "
104 					"for endpoint %u\n",
105 				other_name, data->endpoint_id);
106 			return false;
107 		}
108 
109 		/* Status endpoint must be defined... */
110 		other_data = &all_data[other_name];
111 		if (ipa_gsi_endpoint_data_empty(other_data)) {
112 			dev_err(dev, "DMA endpoint name %u undefined "
113 					"for endpoint %u\n",
114 				other_name, data->endpoint_id);
115 			return false;
116 		}
117 
118 		/* ...and has to be an RX endpoint... */
119 		if (other_data->toward_ipa) {
120 			dev_err(dev,
121 				"status endpoint for endpoint %u not RX\n",
122 				data->endpoint_id);
123 			return false;
124 		}
125 
126 		/* ...and if it's to be an AP endpoint... */
127 		if (other_data->ee_id == GSI_EE_AP) {
128 			/* ...make sure it has status enabled. */
129 			if (!other_data->endpoint.config.status_enable) {
130 				dev_err(dev,
131 					"status not enabled for endpoint %u\n",
132 					other_data->endpoint_id);
133 				return false;
134 			}
135 		}
136 	}
137 
138 	if (data->endpoint.config.dma_mode) {
139 		other_name = data->endpoint.config.dma_endpoint;
140 		if (other_name >= count) {
141 			dev_err(dev, "DMA endpoint name %u out of range "
142 					"for endpoint %u\n",
143 				other_name, data->endpoint_id);
144 			return false;
145 		}
146 
147 		other_data = &all_data[other_name];
148 		if (ipa_gsi_endpoint_data_empty(other_data)) {
149 			dev_err(dev, "DMA endpoint name %u undefined "
150 					"for endpoint %u\n",
151 				other_name, data->endpoint_id);
152 			return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 	if (version < IPA_VERSION_4_5)
162 		return field_max(aggr_byte_limit_fmask(true));
163 
164 	return field_max(aggr_byte_limit_fmask(false));
165 }
166 
167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 				    const struct ipa_gsi_endpoint_data *data)
169 {
170 	const struct ipa_gsi_endpoint_data *dp = data;
171 	struct device *dev = &ipa->pdev->dev;
172 	enum ipa_endpoint_name name;
173 	u32 limit;
174 
175 	if (count > IPA_ENDPOINT_COUNT) {
176 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 			count, IPA_ENDPOINT_COUNT);
178 		return false;
179 	}
180 
181 	/* The aggregation byte limit defines the point at which an
182 	 * aggregation window will close.  It is programmed into the
183 	 * IPA hardware as a number of KB.  We don't use "hard byte
184 	 * limit" aggregation, which means that we need to supply
185 	 * enough space in a receive buffer to hold a complete MTU
186 	 * plus normal skb overhead *after* that aggregation byte
187 	 * limit has been crossed.
188 	 *
189 	 * This check ensures we don't define a receive buffer size
190 	 * that would exceed what we can represent in the field that
191 	 * is used to program its size.
192 	 */
193 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 	if (limit < IPA_RX_BUFFER_SIZE) {
196 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 			IPA_RX_BUFFER_SIZE, limit);
198 		return false;
199 	}
200 
201 	/* Make sure needed endpoints have defined data */
202 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 		dev_err(dev, "command TX endpoint not defined\n");
204 		return false;
205 	}
206 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 		dev_err(dev, "LAN RX endpoint not defined\n");
208 		return false;
209 	}
210 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 		dev_err(dev, "AP->modem TX endpoint not defined\n");
212 		return false;
213 	}
214 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 		return false;
217 	}
218 
219 	for (name = 0; name < count; name++, dp++)
220 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 			return false;
222 
223 	return true;
224 }
225 
226 /* Allocate a transaction to use on a non-command endpoint */
227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 						  u32 tre_count)
229 {
230 	struct gsi *gsi = &endpoint->ipa->gsi;
231 	u32 channel_id = endpoint->channel_id;
232 	enum dma_data_direction direction;
233 
234 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235 
236 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238 
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240  * Note that suspend is not supported starting with IPA v4.0, and
241  * delay mode should not be used starting with IPA v4.2.
242  */
243 static bool
244 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
245 {
246 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
247 	struct ipa *ipa = endpoint->ipa;
248 	bool state;
249 	u32 mask;
250 	u32 val;
251 
252 	if (endpoint->toward_ipa)
253 		WARN_ON(ipa->version >= IPA_VERSION_4_2);
254 	else
255 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
256 
257 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
258 
259 	val = ioread32(ipa->reg_virt + offset);
260 	state = !!(val & mask);
261 
262 	/* Don't bother if it's already in the requested state */
263 	if (suspend_delay != state) {
264 		val ^= mask;
265 		iowrite32(val, ipa->reg_virt + offset);
266 	}
267 
268 	return state;
269 }
270 
271 /* We don't care what the previous state was for delay mode */
272 static void
273 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
274 {
275 	/* Delay mode should not be used for IPA v4.2+ */
276 	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
277 	WARN_ON(!endpoint->toward_ipa);
278 
279 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
280 }
281 
282 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
283 {
284 	u32 mask = BIT(endpoint->endpoint_id);
285 	struct ipa *ipa = endpoint->ipa;
286 	u32 offset;
287 	u32 val;
288 
289 	WARN_ON(!(mask & ipa->available));
290 
291 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
292 	val = ioread32(ipa->reg_virt + offset);
293 
294 	return !!(val & mask);
295 }
296 
297 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
298 {
299 	u32 mask = BIT(endpoint->endpoint_id);
300 	struct ipa *ipa = endpoint->ipa;
301 
302 	WARN_ON(!(mask & ipa->available));
303 
304 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
305 }
306 
307 /**
308  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
309  * @endpoint:	Endpoint on which to emulate a suspend
310  *
311  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
312  *  with an open aggregation frame.  This is to work around a hardware
313  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
314  *  generated when it should be.
315  */
316 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
317 {
318 	struct ipa *ipa = endpoint->ipa;
319 
320 	if (!endpoint->data->aggregation)
321 		return;
322 
323 	/* Nothing to do if the endpoint doesn't have aggregation open */
324 	if (!ipa_endpoint_aggr_active(endpoint))
325 		return;
326 
327 	/* Force close aggregation */
328 	ipa_endpoint_force_close(endpoint);
329 
330 	ipa_interrupt_simulate_suspend(ipa->interrupt);
331 }
332 
333 /* Returns previous suspend state (true means suspend was enabled) */
334 static bool
335 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
336 {
337 	bool suspended;
338 
339 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
340 		return enable;	/* For IPA v4.0+, no change made */
341 
342 	WARN_ON(endpoint->toward_ipa);
343 
344 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
345 
346 	/* A client suspended with an open aggregation frame will not
347 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
348 	 * ipa_endpoint_suspend_aggr() handle this.
349 	 */
350 	if (enable && !suspended)
351 		ipa_endpoint_suspend_aggr(endpoint);
352 
353 	return suspended;
354 }
355 
356 /* Put all modem RX endpoints into suspend mode, and stop transmission
357  * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
358  * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
359  * control instead.
360  */
361 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
362 {
363 	u32 endpoint_id;
364 
365 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
366 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
367 
368 		if (endpoint->ee_id != GSI_EE_MODEM)
369 			continue;
370 
371 		if (!endpoint->toward_ipa)
372 			(void)ipa_endpoint_program_suspend(endpoint, enable);
373 		else if (ipa->version < IPA_VERSION_4_2)
374 			ipa_endpoint_program_delay(endpoint, enable);
375 		else
376 			gsi_modem_channel_flow_control(&ipa->gsi,
377 						       endpoint->channel_id,
378 						       enable);
379 	}
380 }
381 
382 /* Reset all modem endpoints to use the default exception endpoint */
383 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
384 {
385 	u32 initialized = ipa->initialized;
386 	struct gsi_trans *trans;
387 	u32 count;
388 
389 	/* We need one command per modem TX endpoint.  We can get an upper
390 	 * bound on that by assuming all initialized endpoints are modem->IPA.
391 	 * That won't happen, and we could be more precise, but this is fine
392 	 * for now.  End the transaction with commands to clear the pipeline.
393 	 */
394 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
395 	trans = ipa_cmd_trans_alloc(ipa, count);
396 	if (!trans) {
397 		dev_err(&ipa->pdev->dev,
398 			"no transaction to reset modem exception endpoints\n");
399 		return -EBUSY;
400 	}
401 
402 	while (initialized) {
403 		u32 endpoint_id = __ffs(initialized);
404 		struct ipa_endpoint *endpoint;
405 		u32 offset;
406 
407 		initialized ^= BIT(endpoint_id);
408 
409 		/* We only reset modem TX endpoints */
410 		endpoint = &ipa->endpoint[endpoint_id];
411 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
412 			continue;
413 
414 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
415 
416 		/* Value written is 0, and all bits are updated.  That
417 		 * means status is disabled on the endpoint, and as a
418 		 * result all other fields in the register are ignored.
419 		 */
420 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
421 	}
422 
423 	ipa_cmd_pipeline_clear_add(trans);
424 
425 	/* XXX This should have a 1 second timeout */
426 	gsi_trans_commit_wait(trans);
427 
428 	ipa_cmd_pipeline_clear_wait(ipa);
429 
430 	return 0;
431 }
432 
433 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
434 {
435 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
436 	enum ipa_cs_offload_en enabled;
437 	u32 val = 0;
438 
439 	/* FRAG_OFFLOAD_EN is 0 */
440 	if (endpoint->data->checksum) {
441 		enum ipa_version version = endpoint->ipa->version;
442 
443 		if (endpoint->toward_ipa) {
444 			u32 checksum_offset;
445 
446 			/* Checksum header offset is in 4-byte units */
447 			checksum_offset = sizeof(struct rmnet_map_header);
448 			checksum_offset /= sizeof(u32);
449 			val |= u32_encode_bits(checksum_offset,
450 					       CS_METADATA_HDR_OFFSET_FMASK);
451 
452 			enabled = version < IPA_VERSION_4_5
453 					? IPA_CS_OFFLOAD_UL
454 					: IPA_CS_OFFLOAD_INLINE;
455 		} else {
456 			enabled = version < IPA_VERSION_4_5
457 					? IPA_CS_OFFLOAD_DL
458 					: IPA_CS_OFFLOAD_INLINE;
459 		}
460 	} else {
461 		enabled = IPA_CS_OFFLOAD_NONE;
462 	}
463 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
464 	/* CS_GEN_QMB_MASTER_SEL is 0 */
465 
466 	iowrite32(val, endpoint->ipa->reg_virt + offset);
467 }
468 
469 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
470 {
471 	u32 offset;
472 	u32 val;
473 
474 	if (!endpoint->toward_ipa)
475 		return;
476 
477 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
478 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
479 
480 	iowrite32(val, endpoint->ipa->reg_virt + offset);
481 }
482 
483 static u32
484 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
485 {
486 	u32 header_size = sizeof(struct rmnet_map_header);
487 
488 	/* Without checksum offload, we just have the MAP header */
489 	if (!endpoint->data->checksum)
490 		return header_size;
491 
492 	if (version < IPA_VERSION_4_5) {
493 		/* Checksum header inserted for AP TX endpoints only */
494 		if (endpoint->toward_ipa)
495 			header_size += sizeof(struct rmnet_map_ul_csum_header);
496 	} else {
497 		/* Checksum header is used in both directions */
498 		header_size += sizeof(struct rmnet_map_v5_csum_header);
499 	}
500 
501 	return header_size;
502 }
503 
504 /**
505  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
506  * @endpoint:	Endpoint pointer
507  *
508  * We program QMAP endpoints so each packet received is preceded by a QMAP
509  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
510  * packet size field, and we have the IPA hardware populate both for each
511  * received packet.  The header is configured (in the HDR_EXT register)
512  * to use big endian format.
513  *
514  * The packet size is written into the QMAP header's pkt_len field.  That
515  * location is defined here using the HDR_OFST_PKT_SIZE field.
516  *
517  * The mux_id comes from a 4-byte metadata value supplied with each packet
518  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
519  * value that we want, in its low-order byte.  A bitmask defined in the
520  * endpoint's METADATA_MASK register defines which byte within the modem
521  * metadata contains the mux_id.  And the OFST_METADATA field programmed
522  * here indicates where the extracted byte should be placed within the QMAP
523  * header.
524  */
525 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
526 {
527 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
528 	struct ipa *ipa = endpoint->ipa;
529 	u32 val = 0;
530 
531 	if (endpoint->data->qmap) {
532 		enum ipa_version version = ipa->version;
533 		size_t header_size;
534 
535 		header_size = ipa_qmap_header_size(version, endpoint);
536 		val = ipa_header_size_encoded(version, header_size);
537 
538 		/* Define how to fill fields in a received QMAP header */
539 		if (!endpoint->toward_ipa) {
540 			u32 offset;	/* Field offset within header */
541 
542 			/* Where IPA will write the metadata value */
543 			offset = offsetof(struct rmnet_map_header, mux_id);
544 			val |= ipa_metadata_offset_encoded(version, offset);
545 
546 			/* Where IPA will write the length */
547 			offset = offsetof(struct rmnet_map_header, pkt_len);
548 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
549 			if (version >= IPA_VERSION_4_5)
550 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
551 
552 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
553 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
554 		}
555 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
556 		val |= HDR_OFST_METADATA_VALID_FMASK;
557 
558 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
559 		/* HDR_A5_MUX is 0 */
560 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
561 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
562 	}
563 
564 	iowrite32(val, ipa->reg_virt + offset);
565 }
566 
567 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
568 {
569 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
570 	u32 pad_align = endpoint->data->rx.pad_align;
571 	struct ipa *ipa = endpoint->ipa;
572 	u32 val = 0;
573 
574 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
575 
576 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
577 	 * driver assumes this field is meaningful in packets it receives,
578 	 * and assumes the header's payload length includes that padding.
579 	 * The RMNet driver does *not* pad packets it sends, however, so
580 	 * the pad field (although 0) should be ignored.
581 	 */
582 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
583 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
584 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
585 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
586 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
587 	}
588 
589 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
590 	if (!endpoint->toward_ipa)
591 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
592 
593 	/* IPA v4.5 adds some most-significant bits to a few fields,
594 	 * two of which are defined in the HDR (not HDR_EXT) register.
595 	 */
596 	if (ipa->version >= IPA_VERSION_4_5) {
597 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
598 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
599 			u32 offset;
600 
601 			offset = offsetof(struct rmnet_map_header, pkt_len);
602 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
603 			val |= u32_encode_bits(offset,
604 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
605 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
606 		}
607 	}
608 	iowrite32(val, ipa->reg_virt + offset);
609 }
610 
611 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
612 {
613 	u32 endpoint_id = endpoint->endpoint_id;
614 	u32 val = 0;
615 	u32 offset;
616 
617 	if (endpoint->toward_ipa)
618 		return;		/* Register not valid for TX endpoints */
619 
620 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
621 
622 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
623 	if (endpoint->data->qmap)
624 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
625 
626 	iowrite32(val, endpoint->ipa->reg_virt + offset);
627 }
628 
629 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
630 {
631 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
632 	u32 val;
633 
634 	if (!endpoint->toward_ipa)
635 		return;		/* Register not valid for RX endpoints */
636 
637 	if (endpoint->data->dma_mode) {
638 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
639 		u32 dma_endpoint_id;
640 
641 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
642 
643 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
644 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
645 	} else {
646 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
647 	}
648 	/* All other bits unspecified (and 0) */
649 
650 	iowrite32(val, endpoint->ipa->reg_virt + offset);
651 }
652 
653 /* Compute the aggregation size value to use for a given buffer size */
654 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
655 {
656 	/* We don't use "hard byte limit" aggregation, so we define the
657 	 * aggregation limit such that our buffer has enough space *after*
658 	 * that limit to receive a full MTU of data, plus overhead.
659 	 */
660 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
661 
662 	return rx_buffer_size / SZ_1K;
663 }
664 
665 /* Encoded values for AGGR endpoint register fields */
666 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
667 {
668 	if (version < IPA_VERSION_4_5)
669 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
670 
671 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
672 }
673 
674 /* Encode the aggregation timer limit (microseconds) based on IPA version */
675 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
676 {
677 	u32 gran_sel;
678 	u32 fmask;
679 	u32 val;
680 
681 	if (version < IPA_VERSION_4_5) {
682 		/* We set aggregation granularity in ipa_hardware_config() */
683 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
684 
685 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
686 	}
687 
688 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
689 	 * pulse generators 0 and 1 available, which were configured
690 	 * in ipa_qtime_config() to have granularity 100 usec and
691 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
692 	 * otherwise fall back to pulse generator 1.
693 	 */
694 	fmask = aggr_time_limit_fmask(false);
695 	val = DIV_ROUND_CLOSEST(limit, 100);
696 	if (val > field_max(fmask)) {
697 		/* Have to use pulse generator 1 (millisecond granularity) */
698 		gran_sel = AGGR_GRAN_SEL_FMASK;
699 		val = DIV_ROUND_CLOSEST(limit, 1000);
700 	} else {
701 		/* We can use pulse generator 0 (100 usec granularity) */
702 		gran_sel = 0;
703 	}
704 
705 	return gran_sel | u32_encode_bits(val, fmask);
706 }
707 
708 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
709 {
710 	u32 val = enabled ? 1 : 0;
711 
712 	if (version < IPA_VERSION_4_5)
713 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
714 
715 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
716 }
717 
718 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
719 {
720 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
721 	enum ipa_version version = endpoint->ipa->version;
722 	u32 val = 0;
723 
724 	if (endpoint->data->aggregation) {
725 		if (!endpoint->toward_ipa) {
726 			bool close_eof;
727 			u32 limit;
728 
729 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
730 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
731 
732 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
733 			val |= aggr_byte_limit_encoded(version, limit);
734 
735 			limit = IPA_AGGR_TIME_LIMIT;
736 			val |= aggr_time_limit_encoded(version, limit);
737 
738 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
739 
740 			close_eof = endpoint->data->rx.aggr_close_eof;
741 			val |= aggr_sw_eof_active_encoded(version, close_eof);
742 
743 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
744 		} else {
745 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
746 					       AGGR_EN_FMASK);
747 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
748 			/* other fields ignored */
749 		}
750 		/* AGGR_FORCE_CLOSE is 0 */
751 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
752 	} else {
753 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
754 		/* other fields ignored */
755 	}
756 
757 	iowrite32(val, endpoint->ipa->reg_virt + offset);
758 }
759 
760 /* Return the Qtime-based head-of-line blocking timer value that
761  * represents the given number of microseconds.  The result
762  * includes both the timer value and the selected timer granularity.
763  */
764 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
765 {
766 	u32 gran_sel;
767 	u32 val;
768 
769 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
770 	 * pulse generators 0 and 1 available, which were configured
771 	 * in ipa_qtime_config() to have granularity 100 usec and
772 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
773 	 * otherwise fall back to pulse generator 1.
774 	 */
775 	val = DIV_ROUND_CLOSEST(microseconds, 100);
776 	if (val > field_max(TIME_LIMIT_FMASK)) {
777 		/* Have to use pulse generator 1 (millisecond granularity) */
778 		gran_sel = GRAN_SEL_FMASK;
779 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
780 	} else {
781 		/* We can use pulse generator 0 (100 usec granularity) */
782 		gran_sel = 0;
783 	}
784 
785 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
786 }
787 
788 /* The head-of-line blocking timer is defined as a tick count.  For
789  * IPA version 4.5 the tick count is based on the Qtimer, which is
790  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
791  * each tick represents 128 cycles of the IPA core clock.
792  *
793  * Return the encoded value that should be written to that register
794  * that represents the timeout period provided.  For IPA v4.2 this
795  * encodes a base and scale value, while for earlier versions the
796  * value is a simple tick count.
797  */
798 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
799 {
800 	u32 width;
801 	u32 scale;
802 	u64 ticks;
803 	u64 rate;
804 	u32 high;
805 	u32 val;
806 
807 	if (!microseconds)
808 		return 0;	/* Nothing to compute if timer period is 0 */
809 
810 	if (ipa->version >= IPA_VERSION_4_5)
811 		return hol_block_timer_qtime_val(ipa, microseconds);
812 
813 	/* Use 64 bit arithmetic to avoid overflow... */
814 	rate = ipa_core_clock_rate(ipa);
815 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
816 	/* ...but we still need to fit into a 32-bit register */
817 	WARN_ON(ticks > U32_MAX);
818 
819 	/* IPA v3.5.1 through v4.1 just record the tick count */
820 	if (ipa->version < IPA_VERSION_4_2)
821 		return (u32)ticks;
822 
823 	/* For IPA v4.2, the tick count is represented by base and
824 	 * scale fields within the 32-bit timer register, where:
825 	 *     ticks = base << scale;
826 	 * The best precision is achieved when the base value is as
827 	 * large as possible.  Find the highest set bit in the tick
828 	 * count, and extract the number of bits in the base field
829 	 * such that high bit is included.
830 	 */
831 	high = fls(ticks);		/* 1..32 */
832 	width = HWEIGHT32(BASE_VALUE_FMASK);
833 	scale = high > width ? high - width : 0;
834 	if (scale) {
835 		/* If we're scaling, round up to get a closer result */
836 		ticks += 1 << (scale - 1);
837 		/* High bit was set, so rounding might have affected it */
838 		if (fls(ticks) != high)
839 			scale++;
840 	}
841 
842 	val = u32_encode_bits(scale, SCALE_FMASK);
843 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
844 
845 	return val;
846 }
847 
848 /* If microseconds is 0, timeout is immediate */
849 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
850 					      u32 microseconds)
851 {
852 	u32 endpoint_id = endpoint->endpoint_id;
853 	struct ipa *ipa = endpoint->ipa;
854 	u32 offset;
855 	u32 val;
856 
857 	/* This should only be changed when HOL_BLOCK_EN is disabled */
858 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
859 	val = hol_block_timer_val(ipa, microseconds);
860 	iowrite32(val, ipa->reg_virt + offset);
861 }
862 
863 static void
864 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
865 {
866 	u32 endpoint_id = endpoint->endpoint_id;
867 	u32 offset;
868 	u32 val;
869 
870 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
871 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
872 	iowrite32(val, endpoint->ipa->reg_virt + offset);
873 	/* When enabling, the register must be written twice for IPA v4.5+ */
874 	if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
875 		iowrite32(val, endpoint->ipa->reg_virt + offset);
876 }
877 
878 /* Assumes HOL_BLOCK is in disabled state */
879 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
880 					       u32 microseconds)
881 {
882 	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
883 	ipa_endpoint_init_hol_block_en(endpoint, true);
884 }
885 
886 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
887 {
888 	ipa_endpoint_init_hol_block_en(endpoint, false);
889 }
890 
891 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
892 {
893 	u32 i;
894 
895 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
896 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
897 
898 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
899 			continue;
900 
901 		ipa_endpoint_init_hol_block_disable(endpoint);
902 		ipa_endpoint_init_hol_block_enable(endpoint, 0);
903 	}
904 }
905 
906 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
907 {
908 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
909 	u32 val = 0;
910 
911 	if (!endpoint->toward_ipa)
912 		return;		/* Register not valid for RX endpoints */
913 
914 	/* DEAGGR_HDR_LEN is 0 */
915 	/* PACKET_OFFSET_VALID is 0 */
916 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
917 	/* MAX_PACKET_LEN is 0 (not enforced) */
918 
919 	iowrite32(val, endpoint->ipa->reg_virt + offset);
920 }
921 
922 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
923 {
924 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
925 	struct ipa *ipa = endpoint->ipa;
926 	u32 val;
927 
928 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
929 	iowrite32(val, ipa->reg_virt + offset);
930 }
931 
932 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
933 {
934 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
935 	u32 val = 0;
936 
937 	if (!endpoint->toward_ipa)
938 		return;		/* Register not valid for RX endpoints */
939 
940 	/* Low-order byte configures primary packet processing */
941 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
942 
943 	/* Second byte configures replicated packet processing */
944 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
945 			       SEQ_REP_TYPE_FMASK);
946 
947 	iowrite32(val, endpoint->ipa->reg_virt + offset);
948 }
949 
950 /**
951  * ipa_endpoint_skb_tx() - Transmit a socket buffer
952  * @endpoint:	Endpoint pointer
953  * @skb:	Socket buffer to send
954  *
955  * Returns:	0 if successful, or a negative error code
956  */
957 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
958 {
959 	struct gsi_trans *trans;
960 	u32 nr_frags;
961 	int ret;
962 
963 	/* Make sure source endpoint's TLV FIFO has enough entries to
964 	 * hold the linear portion of the skb and all its fragments.
965 	 * If not, see if we can linearize it before giving up.
966 	 */
967 	nr_frags = skb_shinfo(skb)->nr_frags;
968 	if (1 + nr_frags > endpoint->trans_tre_max) {
969 		if (skb_linearize(skb))
970 			return -E2BIG;
971 		nr_frags = 0;
972 	}
973 
974 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
975 	if (!trans)
976 		return -EBUSY;
977 
978 	ret = gsi_trans_skb_add(trans, skb);
979 	if (ret)
980 		goto err_trans_free;
981 	trans->data = skb;	/* transaction owns skb now */
982 
983 	gsi_trans_commit(trans, !netdev_xmit_more());
984 
985 	return 0;
986 
987 err_trans_free:
988 	gsi_trans_free(trans);
989 
990 	return -ENOMEM;
991 }
992 
993 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
994 {
995 	u32 endpoint_id = endpoint->endpoint_id;
996 	struct ipa *ipa = endpoint->ipa;
997 	u32 val = 0;
998 	u32 offset;
999 
1000 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
1001 
1002 	if (endpoint->data->status_enable) {
1003 		val |= STATUS_EN_FMASK;
1004 		if (endpoint->toward_ipa) {
1005 			enum ipa_endpoint_name name;
1006 			u32 status_endpoint_id;
1007 
1008 			name = endpoint->data->tx.status_endpoint;
1009 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1010 
1011 			val |= u32_encode_bits(status_endpoint_id,
1012 					       STATUS_ENDP_FMASK);
1013 		}
1014 		/* STATUS_LOCATION is 0, meaning status element precedes
1015 		 * packet (not present for IPA v4.5)
1016 		 */
1017 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1018 	}
1019 
1020 	iowrite32(val, ipa->reg_virt + offset);
1021 }
1022 
1023 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1024 {
1025 	struct gsi_trans *trans;
1026 	bool doorbell = false;
1027 	struct page *page;
1028 	u32 offset;
1029 	u32 len;
1030 	int ret;
1031 
1032 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1033 	if (!page)
1034 		return -ENOMEM;
1035 
1036 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1037 	if (!trans)
1038 		goto err_free_pages;
1039 
1040 	/* Offset the buffer to make space for skb headroom */
1041 	offset = NET_SKB_PAD;
1042 	len = IPA_RX_BUFFER_SIZE - offset;
1043 
1044 	ret = gsi_trans_page_add(trans, page, len, offset);
1045 	if (ret)
1046 		goto err_trans_free;
1047 	trans->data = page;	/* transaction owns page now */
1048 
1049 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1050 		doorbell = true;
1051 		endpoint->replenish_ready = 0;
1052 	}
1053 
1054 	gsi_trans_commit(trans, doorbell);
1055 
1056 	return 0;
1057 
1058 err_trans_free:
1059 	gsi_trans_free(trans);
1060 err_free_pages:
1061 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1062 
1063 	return -ENOMEM;
1064 }
1065 
1066 /**
1067  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1068  * @endpoint:	Endpoint to be replenished
1069  * @add_one:	Whether this is replacing a just-consumed buffer
1070  *
1071  * The IPA hardware can hold a fixed number of receive buffers for an RX
1072  * endpoint, based on the number of entries in the underlying channel ring
1073  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1074  * more receive buffers can be supplied to the hardware.  Replenishing for
1075  * an endpoint can be disabled, in which case requests to replenish a
1076  * buffer are "saved", and transferred to the backlog once it is re-enabled
1077  * again.
1078  */
1079 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1080 {
1081 	struct gsi *gsi;
1082 	u32 backlog;
1083 
1084 	if (!endpoint->replenish_enabled) {
1085 		if (add_one)
1086 			atomic_inc(&endpoint->replenish_saved);
1087 		return;
1088 	}
1089 
1090 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1091 		if (ipa_endpoint_replenish_one(endpoint))
1092 			goto try_again_later;
1093 	if (add_one)
1094 		atomic_inc(&endpoint->replenish_backlog);
1095 
1096 	return;
1097 
1098 try_again_later:
1099 	/* The last one didn't succeed, so fix the backlog */
1100 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
1101 
1102 	if (add_one)
1103 		atomic_inc(&endpoint->replenish_backlog);
1104 
1105 	/* Whenever a receive buffer transaction completes we'll try to
1106 	 * replenish again.  It's unlikely, but if we fail to supply even
1107 	 * one buffer, nothing will trigger another replenish attempt.
1108 	 * Receive buffer transactions use one TRE, so schedule work to
1109 	 * try replenishing again if our backlog is *all* available TREs.
1110 	 */
1111 	gsi = &endpoint->ipa->gsi;
1112 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1113 		schedule_delayed_work(&endpoint->replenish_work,
1114 				      msecs_to_jiffies(1));
1115 }
1116 
1117 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1118 {
1119 	struct gsi *gsi = &endpoint->ipa->gsi;
1120 	u32 max_backlog;
1121 	u32 saved;
1122 
1123 	endpoint->replenish_enabled = true;
1124 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1125 		atomic_add(saved, &endpoint->replenish_backlog);
1126 
1127 	/* Start replenishing if hardware currently has no buffers */
1128 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1129 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1130 		ipa_endpoint_replenish(endpoint, false);
1131 }
1132 
1133 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1134 {
1135 	u32 backlog;
1136 
1137 	endpoint->replenish_enabled = false;
1138 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1139 		atomic_add(backlog, &endpoint->replenish_saved);
1140 }
1141 
1142 static void ipa_endpoint_replenish_work(struct work_struct *work)
1143 {
1144 	struct delayed_work *dwork = to_delayed_work(work);
1145 	struct ipa_endpoint *endpoint;
1146 
1147 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1148 
1149 	ipa_endpoint_replenish(endpoint, false);
1150 }
1151 
1152 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1153 				  void *data, u32 len, u32 extra)
1154 {
1155 	struct sk_buff *skb;
1156 
1157 	if (!endpoint->netdev)
1158 		return;
1159 
1160 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1161 	if (!skb)
1162 		return;
1163 
1164 	/* Copy the data into the socket buffer and receive it */
1165 	skb_put(skb, len);
1166 	memcpy(skb->data, data, len);
1167 	skb->truesize += extra;
1168 
1169 	ipa_modem_skb_rx(endpoint->netdev, skb);
1170 }
1171 
1172 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1173 				   struct page *page, u32 len)
1174 {
1175 	struct sk_buff *skb;
1176 
1177 	/* Nothing to do if there's no netdev */
1178 	if (!endpoint->netdev)
1179 		return false;
1180 
1181 	WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD));
1182 
1183 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1184 	if (skb) {
1185 		/* Reserve the headroom and account for the data */
1186 		skb_reserve(skb, NET_SKB_PAD);
1187 		skb_put(skb, len);
1188 	}
1189 
1190 	/* Receive the buffer (or record drop if unable to build it) */
1191 	ipa_modem_skb_rx(endpoint->netdev, skb);
1192 
1193 	return skb != NULL;
1194 }
1195 
1196 /* The format of a packet status element is the same for several status
1197  * types (opcodes).  Other types aren't currently supported.
1198  */
1199 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1200 {
1201 	switch (opcode) {
1202 	case IPA_STATUS_OPCODE_PACKET:
1203 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1204 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1205 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1206 		return true;
1207 	default:
1208 		return false;
1209 	}
1210 }
1211 
1212 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1213 				     const struct ipa_status *status)
1214 {
1215 	u32 endpoint_id;
1216 
1217 	if (!ipa_status_format_packet(status->opcode))
1218 		return true;
1219 	if (!status->pkt_len)
1220 		return true;
1221 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1222 				  IPA_STATUS_DST_IDX_FMASK);
1223 	if (endpoint_id != endpoint->endpoint_id)
1224 		return true;
1225 
1226 	return false;	/* Don't skip this packet, process it */
1227 }
1228 
1229 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1230 				    const struct ipa_status *status)
1231 {
1232 	struct ipa_endpoint *command_endpoint;
1233 	struct ipa *ipa = endpoint->ipa;
1234 	u32 endpoint_id;
1235 
1236 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1237 		return false;	/* No valid tag */
1238 
1239 	/* The status contains a valid tag.  We know the packet was sent to
1240 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1241 	 * If the packet came from the AP->command TX endpoint we know
1242 	 * this packet was sent as part of the pipeline clear process.
1243 	 */
1244 	endpoint_id = u8_get_bits(status->endp_src_idx,
1245 				  IPA_STATUS_SRC_IDX_FMASK);
1246 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1247 	if (endpoint_id == command_endpoint->endpoint_id) {
1248 		complete(&ipa->completion);
1249 	} else {
1250 		dev_err(&ipa->pdev->dev,
1251 			"unexpected tagged packet from endpoint %u\n",
1252 			endpoint_id);
1253 	}
1254 
1255 	return true;
1256 }
1257 
1258 /* Return whether the status indicates the packet should be dropped */
1259 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1260 				     const struct ipa_status *status)
1261 {
1262 	u32 val;
1263 
1264 	/* If the status indicates a tagged transfer, we'll drop the packet */
1265 	if (ipa_endpoint_status_tag(endpoint, status))
1266 		return true;
1267 
1268 	/* Deaggregation exceptions we drop; all other types we consume */
1269 	if (status->exception)
1270 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1271 
1272 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1273 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1274 
1275 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1276 }
1277 
1278 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1279 				      struct page *page, u32 total_len)
1280 {
1281 	void *data = page_address(page) + NET_SKB_PAD;
1282 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1283 	u32 resid = total_len;
1284 
1285 	while (resid) {
1286 		const struct ipa_status *status = data;
1287 		u32 align;
1288 		u32 len;
1289 
1290 		if (resid < sizeof(*status)) {
1291 			dev_err(&endpoint->ipa->pdev->dev,
1292 				"short message (%u bytes < %zu byte status)\n",
1293 				resid, sizeof(*status));
1294 			break;
1295 		}
1296 
1297 		/* Skip over status packets that lack packet data */
1298 		if (ipa_endpoint_status_skip(endpoint, status)) {
1299 			data += sizeof(*status);
1300 			resid -= sizeof(*status);
1301 			continue;
1302 		}
1303 
1304 		/* Compute the amount of buffer space consumed by the packet,
1305 		 * including the status element.  If the hardware is configured
1306 		 * to pad packet data to an aligned boundary, account for that.
1307 		 * And if checksum offload is enabled a trailer containing
1308 		 * computed checksum information will be appended.
1309 		 */
1310 		align = endpoint->data->rx.pad_align ? : 1;
1311 		len = le16_to_cpu(status->pkt_len);
1312 		len = sizeof(*status) + ALIGN(len, align);
1313 		if (endpoint->data->checksum)
1314 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1315 
1316 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1317 			void *data2;
1318 			u32 extra;
1319 			u32 len2;
1320 
1321 			/* Client receives only packet data (no status) */
1322 			data2 = data + sizeof(*status);
1323 			len2 = le16_to_cpu(status->pkt_len);
1324 
1325 			/* Have the true size reflect the extra unused space in
1326 			 * the original receive buffer.  Distribute the "cost"
1327 			 * proportionately across all aggregated packets in the
1328 			 * buffer.
1329 			 */
1330 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1331 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1332 		}
1333 
1334 		/* Consume status and the full packet it describes */
1335 		data += len;
1336 		resid -= len;
1337 	}
1338 }
1339 
1340 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1341 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1342 				     struct gsi_trans *trans)
1343 {
1344 }
1345 
1346 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1347 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1348 				     struct gsi_trans *trans)
1349 {
1350 	struct page *page;
1351 
1352 	ipa_endpoint_replenish(endpoint, true);
1353 
1354 	if (trans->cancelled)
1355 		return;
1356 
1357 	/* Parse or build a socket buffer using the actual received length */
1358 	page = trans->data;
1359 	if (endpoint->data->status_enable)
1360 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1361 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1362 		trans->data = NULL;	/* Pages have been consumed */
1363 }
1364 
1365 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1366 				 struct gsi_trans *trans)
1367 {
1368 	if (endpoint->toward_ipa)
1369 		ipa_endpoint_tx_complete(endpoint, trans);
1370 	else
1371 		ipa_endpoint_rx_complete(endpoint, trans);
1372 }
1373 
1374 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1375 				struct gsi_trans *trans)
1376 {
1377 	if (endpoint->toward_ipa) {
1378 		struct ipa *ipa = endpoint->ipa;
1379 
1380 		/* Nothing to do for command transactions */
1381 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1382 			struct sk_buff *skb = trans->data;
1383 
1384 			if (skb)
1385 				dev_kfree_skb_any(skb);
1386 		}
1387 	} else {
1388 		struct page *page = trans->data;
1389 
1390 		if (page)
1391 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1392 	}
1393 }
1394 
1395 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1396 {
1397 	u32 val;
1398 
1399 	/* ROUTE_DIS is 0 */
1400 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1401 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1402 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1403 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1404 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1405 
1406 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1407 }
1408 
1409 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1410 {
1411 	ipa_endpoint_default_route_set(ipa, 0);
1412 }
1413 
1414 /**
1415  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1416  * @endpoint:	Endpoint to be reset
1417  *
1418  * If aggregation is active on an RX endpoint when a reset is performed
1419  * on its underlying GSI channel, a special sequence of actions must be
1420  * taken to ensure the IPA pipeline is properly cleared.
1421  *
1422  * Return:	0 if successful, or a negative error code
1423  */
1424 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1425 {
1426 	struct device *dev = &endpoint->ipa->pdev->dev;
1427 	struct ipa *ipa = endpoint->ipa;
1428 	struct gsi *gsi = &ipa->gsi;
1429 	bool suspended = false;
1430 	dma_addr_t addr;
1431 	u32 retries;
1432 	u32 len = 1;
1433 	void *virt;
1434 	int ret;
1435 
1436 	virt = kzalloc(len, GFP_KERNEL);
1437 	if (!virt)
1438 		return -ENOMEM;
1439 
1440 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1441 	if (dma_mapping_error(dev, addr)) {
1442 		ret = -ENOMEM;
1443 		goto out_kfree;
1444 	}
1445 
1446 	/* Force close aggregation before issuing the reset */
1447 	ipa_endpoint_force_close(endpoint);
1448 
1449 	/* Reset and reconfigure the channel with the doorbell engine
1450 	 * disabled.  Then poll until we know aggregation is no longer
1451 	 * active.  We'll re-enable the doorbell (if appropriate) when
1452 	 * we reset again below.
1453 	 */
1454 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1455 
1456 	/* Make sure the channel isn't suspended */
1457 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1458 
1459 	/* Start channel and do a 1 byte read */
1460 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1461 	if (ret)
1462 		goto out_suspend_again;
1463 
1464 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1465 	if (ret)
1466 		goto err_endpoint_stop;
1467 
1468 	/* Wait for aggregation to be closed on the channel */
1469 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1470 	do {
1471 		if (!ipa_endpoint_aggr_active(endpoint))
1472 			break;
1473 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1474 	} while (retries--);
1475 
1476 	/* Check one last time */
1477 	if (ipa_endpoint_aggr_active(endpoint))
1478 		dev_err(dev, "endpoint %u still active during reset\n",
1479 			endpoint->endpoint_id);
1480 
1481 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1482 
1483 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1484 	if (ret)
1485 		goto out_suspend_again;
1486 
1487 	/* Finally, reset and reconfigure the channel again (re-enabling
1488 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1489 	 * complete the channel reset sequence.  Finish by suspending the
1490 	 * channel again (if necessary).
1491 	 */
1492 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1493 
1494 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1495 
1496 	goto out_suspend_again;
1497 
1498 err_endpoint_stop:
1499 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1500 out_suspend_again:
1501 	if (suspended)
1502 		(void)ipa_endpoint_program_suspend(endpoint, true);
1503 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1504 out_kfree:
1505 	kfree(virt);
1506 
1507 	return ret;
1508 }
1509 
1510 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1511 {
1512 	u32 channel_id = endpoint->channel_id;
1513 	struct ipa *ipa = endpoint->ipa;
1514 	bool special;
1515 	int ret = 0;
1516 
1517 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1518 	 * is active, we need to handle things specially to recover.
1519 	 * All other cases just need to reset the underlying GSI channel.
1520 	 */
1521 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1522 			endpoint->data->aggregation;
1523 	if (special && ipa_endpoint_aggr_active(endpoint))
1524 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1525 	else
1526 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1527 
1528 	if (ret)
1529 		dev_err(&ipa->pdev->dev,
1530 			"error %d resetting channel %u for endpoint %u\n",
1531 			ret, endpoint->channel_id, endpoint->endpoint_id);
1532 }
1533 
1534 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1535 {
1536 	if (endpoint->toward_ipa) {
1537 		/* Newer versions of IPA use GSI channel flow control
1538 		 * instead of endpoint DELAY mode to prevent sending data.
1539 		 * Flow control is disabled for newly-allocated channels,
1540 		 * and we can assume flow control is not (ever) enabled
1541 		 * for AP TX channels.
1542 		 */
1543 		if (endpoint->ipa->version < IPA_VERSION_4_2)
1544 			ipa_endpoint_program_delay(endpoint, false);
1545 	} else {
1546 		/* Ensure suspend mode is off on all AP RX endpoints */
1547 		(void)ipa_endpoint_program_suspend(endpoint, false);
1548 	}
1549 	ipa_endpoint_init_cfg(endpoint);
1550 	ipa_endpoint_init_nat(endpoint);
1551 	ipa_endpoint_init_hdr(endpoint);
1552 	ipa_endpoint_init_hdr_ext(endpoint);
1553 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1554 	ipa_endpoint_init_mode(endpoint);
1555 	ipa_endpoint_init_aggr(endpoint);
1556 	if (!endpoint->toward_ipa)
1557 		ipa_endpoint_init_hol_block_disable(endpoint);
1558 	ipa_endpoint_init_deaggr(endpoint);
1559 	ipa_endpoint_init_rsrc_grp(endpoint);
1560 	ipa_endpoint_init_seq(endpoint);
1561 	ipa_endpoint_status(endpoint);
1562 }
1563 
1564 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1565 {
1566 	struct ipa *ipa = endpoint->ipa;
1567 	struct gsi *gsi = &ipa->gsi;
1568 	int ret;
1569 
1570 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1571 	if (ret) {
1572 		dev_err(&ipa->pdev->dev,
1573 			"error %d starting %cX channel %u for endpoint %u\n",
1574 			ret, endpoint->toward_ipa ? 'T' : 'R',
1575 			endpoint->channel_id, endpoint->endpoint_id);
1576 		return ret;
1577 	}
1578 
1579 	if (!endpoint->toward_ipa) {
1580 		ipa_interrupt_suspend_enable(ipa->interrupt,
1581 					     endpoint->endpoint_id);
1582 		ipa_endpoint_replenish_enable(endpoint);
1583 	}
1584 
1585 	ipa->enabled |= BIT(endpoint->endpoint_id);
1586 
1587 	return 0;
1588 }
1589 
1590 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1591 {
1592 	u32 mask = BIT(endpoint->endpoint_id);
1593 	struct ipa *ipa = endpoint->ipa;
1594 	struct gsi *gsi = &ipa->gsi;
1595 	int ret;
1596 
1597 	if (!(ipa->enabled & mask))
1598 		return;
1599 
1600 	ipa->enabled ^= mask;
1601 
1602 	if (!endpoint->toward_ipa) {
1603 		ipa_endpoint_replenish_disable(endpoint);
1604 		ipa_interrupt_suspend_disable(ipa->interrupt,
1605 					      endpoint->endpoint_id);
1606 	}
1607 
1608 	/* Note that if stop fails, the channel's state is not well-defined */
1609 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1610 	if (ret)
1611 		dev_err(&ipa->pdev->dev,
1612 			"error %d attempting to stop endpoint %u\n", ret,
1613 			endpoint->endpoint_id);
1614 }
1615 
1616 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1617 {
1618 	struct device *dev = &endpoint->ipa->pdev->dev;
1619 	struct gsi *gsi = &endpoint->ipa->gsi;
1620 	int ret;
1621 
1622 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1623 		return;
1624 
1625 	if (!endpoint->toward_ipa) {
1626 		ipa_endpoint_replenish_disable(endpoint);
1627 		(void)ipa_endpoint_program_suspend(endpoint, true);
1628 	}
1629 
1630 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1631 	if (ret)
1632 		dev_err(dev, "error %d suspending channel %u\n", ret,
1633 			endpoint->channel_id);
1634 }
1635 
1636 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1637 {
1638 	struct device *dev = &endpoint->ipa->pdev->dev;
1639 	struct gsi *gsi = &endpoint->ipa->gsi;
1640 	int ret;
1641 
1642 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1643 		return;
1644 
1645 	if (!endpoint->toward_ipa)
1646 		(void)ipa_endpoint_program_suspend(endpoint, false);
1647 
1648 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1649 	if (ret)
1650 		dev_err(dev, "error %d resuming channel %u\n", ret,
1651 			endpoint->channel_id);
1652 	else if (!endpoint->toward_ipa)
1653 		ipa_endpoint_replenish_enable(endpoint);
1654 }
1655 
1656 void ipa_endpoint_suspend(struct ipa *ipa)
1657 {
1658 	if (!ipa->setup_complete)
1659 		return;
1660 
1661 	if (ipa->modem_netdev)
1662 		ipa_modem_suspend(ipa->modem_netdev);
1663 
1664 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1665 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1666 }
1667 
1668 void ipa_endpoint_resume(struct ipa *ipa)
1669 {
1670 	if (!ipa->setup_complete)
1671 		return;
1672 
1673 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1674 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1675 
1676 	if (ipa->modem_netdev)
1677 		ipa_modem_resume(ipa->modem_netdev);
1678 }
1679 
1680 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1681 {
1682 	struct gsi *gsi = &endpoint->ipa->gsi;
1683 	u32 channel_id = endpoint->channel_id;
1684 
1685 	/* Only AP endpoints get set up */
1686 	if (endpoint->ee_id != GSI_EE_AP)
1687 		return;
1688 
1689 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1690 	if (!endpoint->toward_ipa) {
1691 		/* RX transactions require a single TRE, so the maximum
1692 		 * backlog is the same as the maximum outstanding TREs.
1693 		 */
1694 		endpoint->replenish_enabled = false;
1695 		atomic_set(&endpoint->replenish_saved,
1696 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1697 		atomic_set(&endpoint->replenish_backlog, 0);
1698 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1699 				  ipa_endpoint_replenish_work);
1700 	}
1701 
1702 	ipa_endpoint_program(endpoint);
1703 
1704 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1705 }
1706 
1707 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1708 {
1709 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1710 
1711 	if (!endpoint->toward_ipa)
1712 		cancel_delayed_work_sync(&endpoint->replenish_work);
1713 
1714 	ipa_endpoint_reset(endpoint);
1715 }
1716 
1717 void ipa_endpoint_setup(struct ipa *ipa)
1718 {
1719 	u32 initialized = ipa->initialized;
1720 
1721 	ipa->set_up = 0;
1722 	while (initialized) {
1723 		u32 endpoint_id = __ffs(initialized);
1724 
1725 		initialized ^= BIT(endpoint_id);
1726 
1727 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1728 	}
1729 }
1730 
1731 void ipa_endpoint_teardown(struct ipa *ipa)
1732 {
1733 	u32 set_up = ipa->set_up;
1734 
1735 	while (set_up) {
1736 		u32 endpoint_id = __fls(set_up);
1737 
1738 		set_up ^= BIT(endpoint_id);
1739 
1740 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1741 	}
1742 	ipa->set_up = 0;
1743 }
1744 
1745 int ipa_endpoint_config(struct ipa *ipa)
1746 {
1747 	struct device *dev = &ipa->pdev->dev;
1748 	u32 initialized;
1749 	u32 rx_base;
1750 	u32 rx_mask;
1751 	u32 tx_mask;
1752 	int ret = 0;
1753 	u32 max;
1754 	u32 val;
1755 
1756 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1757 	 * Furthermore, the endpoints were not grouped such that TX
1758 	 * endpoint numbers started with 0 and RX endpoints had numbers
1759 	 * higher than all TX endpoints, so we can't do the simple
1760 	 * direction check used for newer hardware below.
1761 	 *
1762 	 * For hardware that doesn't support the FLAVOR_0 register,
1763 	 * just set the available mask to support any endpoint, and
1764 	 * assume the configuration is valid.
1765 	 */
1766 	if (ipa->version < IPA_VERSION_3_5) {
1767 		ipa->available = ~0;
1768 		return 0;
1769 	}
1770 
1771 	/* Find out about the endpoints supplied by the hardware, and ensure
1772 	 * the highest one doesn't exceed the number we support.
1773 	 */
1774 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1775 
1776 	/* Our RX is an IPA producer */
1777 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1778 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1779 	if (max > IPA_ENDPOINT_MAX) {
1780 		dev_err(dev, "too many endpoints (%u > %u)\n",
1781 			max, IPA_ENDPOINT_MAX);
1782 		return -EINVAL;
1783 	}
1784 	rx_mask = GENMASK(max - 1, rx_base);
1785 
1786 	/* Our TX is an IPA consumer */
1787 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1788 	tx_mask = GENMASK(max - 1, 0);
1789 
1790 	ipa->available = rx_mask | tx_mask;
1791 
1792 	/* Check for initialized endpoints not supported by the hardware */
1793 	if (ipa->initialized & ~ipa->available) {
1794 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1795 			ipa->initialized & ~ipa->available);
1796 		ret = -EINVAL;		/* Report other errors too */
1797 	}
1798 
1799 	initialized = ipa->initialized;
1800 	while (initialized) {
1801 		u32 endpoint_id = __ffs(initialized);
1802 		struct ipa_endpoint *endpoint;
1803 
1804 		initialized ^= BIT(endpoint_id);
1805 
1806 		/* Make sure it's pointing in the right direction */
1807 		endpoint = &ipa->endpoint[endpoint_id];
1808 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1809 			dev_err(dev, "endpoint id %u wrong direction\n",
1810 				endpoint_id);
1811 			ret = -EINVAL;
1812 		}
1813 	}
1814 
1815 	return ret;
1816 }
1817 
1818 void ipa_endpoint_deconfig(struct ipa *ipa)
1819 {
1820 	ipa->available = 0;	/* Nothing more to do */
1821 }
1822 
1823 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1824 				  const struct ipa_gsi_endpoint_data *data)
1825 {
1826 	struct ipa_endpoint *endpoint;
1827 
1828 	endpoint = &ipa->endpoint[data->endpoint_id];
1829 
1830 	if (data->ee_id == GSI_EE_AP)
1831 		ipa->channel_map[data->channel_id] = endpoint;
1832 	ipa->name_map[name] = endpoint;
1833 
1834 	endpoint->ipa = ipa;
1835 	endpoint->ee_id = data->ee_id;
1836 	endpoint->channel_id = data->channel_id;
1837 	endpoint->endpoint_id = data->endpoint_id;
1838 	endpoint->toward_ipa = data->toward_ipa;
1839 	endpoint->data = &data->endpoint.config;
1840 
1841 	ipa->initialized |= BIT(endpoint->endpoint_id);
1842 }
1843 
1844 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1845 {
1846 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1847 
1848 	memset(endpoint, 0, sizeof(*endpoint));
1849 }
1850 
1851 void ipa_endpoint_exit(struct ipa *ipa)
1852 {
1853 	u32 initialized = ipa->initialized;
1854 
1855 	while (initialized) {
1856 		u32 endpoint_id = __fls(initialized);
1857 
1858 		initialized ^= BIT(endpoint_id);
1859 
1860 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1861 	}
1862 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1863 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1864 }
1865 
1866 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1867 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1868 		      const struct ipa_gsi_endpoint_data *data)
1869 {
1870 	enum ipa_endpoint_name name;
1871 	u32 filter_map;
1872 
1873 	if (!ipa_endpoint_data_valid(ipa, count, data))
1874 		return 0;	/* Error */
1875 
1876 	ipa->initialized = 0;
1877 
1878 	filter_map = 0;
1879 	for (name = 0; name < count; name++, data++) {
1880 		if (ipa_gsi_endpoint_data_empty(data))
1881 			continue;	/* Skip over empty slots */
1882 
1883 		ipa_endpoint_init_one(ipa, name, data);
1884 
1885 		if (data->endpoint.filter_support)
1886 			filter_map |= BIT(data->endpoint_id);
1887 	}
1888 
1889 	if (!ipa_filter_map_valid(ipa, filter_map))
1890 		goto err_endpoint_exit;
1891 
1892 	return filter_map;	/* Non-zero bitmask */
1893 
1894 err_endpoint_exit:
1895 	ipa_endpoint_exit(ipa);
1896 
1897 	return 0;	/* Error */
1898 }
1899