1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_power.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 #define IPA_REPLENISH_BATCH 16 29 30 /* The amount of RX buffer space consumed by standard skb overhead */ 31 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 32 33 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 34 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 35 36 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 37 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 38 39 /** enum ipa_status_opcode - status element opcode hardware values */ 40 enum ipa_status_opcode { 41 IPA_STATUS_OPCODE_PACKET = 0x01, 42 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 43 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 44 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 45 }; 46 47 /** enum ipa_status_exception - status element exception type */ 48 enum ipa_status_exception { 49 /* 0 means no exception */ 50 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 51 }; 52 53 /* Status element provided by hardware */ 54 struct ipa_status { 55 u8 opcode; /* enum ipa_status_opcode */ 56 u8 exception; /* enum ipa_status_exception */ 57 __le16 mask; 58 __le16 pkt_len; 59 u8 endp_src_idx; 60 u8 endp_dst_idx; 61 __le32 metadata; 62 __le32 flags1; 63 __le64 flags2; 64 __le32 flags3; 65 __le32 flags4; 66 }; 67 68 /* Field masks for struct ipa_status structure fields */ 69 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 70 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 71 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 72 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 73 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 74 75 static u32 aggr_byte_limit_max(enum ipa_version version) 76 { 77 if (version < IPA_VERSION_4_5) 78 return field_max(aggr_byte_limit_fmask(true)); 79 80 return field_max(aggr_byte_limit_fmask(false)); 81 } 82 83 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 84 const struct ipa_gsi_endpoint_data *all_data, 85 const struct ipa_gsi_endpoint_data *data) 86 { 87 const struct ipa_gsi_endpoint_data *other_data; 88 struct device *dev = &ipa->pdev->dev; 89 enum ipa_endpoint_name other_name; 90 91 if (ipa_gsi_endpoint_data_empty(data)) 92 return true; 93 94 if (!data->toward_ipa) { 95 u32 buffer_size; 96 u32 limit; 97 98 if (data->endpoint.filter_support) { 99 dev_err(dev, "filtering not supported for " 100 "RX endpoint %u\n", 101 data->endpoint_id); 102 return false; 103 } 104 105 /* Nothing more to check for non-AP RX */ 106 if (data->ee_id != GSI_EE_AP) 107 return true; 108 109 buffer_size = data->endpoint.config.rx.buffer_size; 110 /* The buffer size must hold an MTU plus overhead */ 111 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 112 if (buffer_size < limit) { 113 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", 114 data->endpoint_id, buffer_size, limit); 115 return false; 116 } 117 118 /* For an endpoint supporting receive aggregation, the 119 * aggregation byte limit defines the point at which an 120 * aggregation window will close. It is programmed into the 121 * IPA hardware as a number of KB. We don't use "hard byte 122 * limit" aggregation, so we need to supply enough space in 123 * a receive buffer to hold a complete MTU plus normal skb 124 * overhead *after* that aggregation byte limit has been 125 * crossed. 126 * 127 * This check just ensures the receive buffer size doesn't 128 * exceed what's representable in the aggregation limit field. 129 */ 130 if (data->endpoint.config.aggregation) { 131 limit += SZ_1K * aggr_byte_limit_max(ipa->version); 132 if (buffer_size > limit) { 133 dev_err(dev, "RX buffer size too large for aggregated RX endpoint %u (%u > %u)\n", 134 data->endpoint_id, buffer_size, limit); 135 136 return false; 137 } 138 } 139 140 return true; /* Nothing more to check for RX */ 141 } 142 143 if (data->endpoint.config.status_enable) { 144 other_name = data->endpoint.config.tx.status_endpoint; 145 if (other_name >= count) { 146 dev_err(dev, "status endpoint name %u out of range " 147 "for endpoint %u\n", 148 other_name, data->endpoint_id); 149 return false; 150 } 151 152 /* Status endpoint must be defined... */ 153 other_data = &all_data[other_name]; 154 if (ipa_gsi_endpoint_data_empty(other_data)) { 155 dev_err(dev, "DMA endpoint name %u undefined " 156 "for endpoint %u\n", 157 other_name, data->endpoint_id); 158 return false; 159 } 160 161 /* ...and has to be an RX endpoint... */ 162 if (other_data->toward_ipa) { 163 dev_err(dev, 164 "status endpoint for endpoint %u not RX\n", 165 data->endpoint_id); 166 return false; 167 } 168 169 /* ...and if it's to be an AP endpoint... */ 170 if (other_data->ee_id == GSI_EE_AP) { 171 /* ...make sure it has status enabled. */ 172 if (!other_data->endpoint.config.status_enable) { 173 dev_err(dev, 174 "status not enabled for endpoint %u\n", 175 other_data->endpoint_id); 176 return false; 177 } 178 } 179 } 180 181 if (data->endpoint.config.dma_mode) { 182 other_name = data->endpoint.config.dma_endpoint; 183 if (other_name >= count) { 184 dev_err(dev, "DMA endpoint name %u out of range " 185 "for endpoint %u\n", 186 other_name, data->endpoint_id); 187 return false; 188 } 189 190 other_data = &all_data[other_name]; 191 if (ipa_gsi_endpoint_data_empty(other_data)) { 192 dev_err(dev, "DMA endpoint name %u undefined " 193 "for endpoint %u\n", 194 other_name, data->endpoint_id); 195 return false; 196 } 197 } 198 199 return true; 200 } 201 202 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 203 const struct ipa_gsi_endpoint_data *data) 204 { 205 const struct ipa_gsi_endpoint_data *dp = data; 206 struct device *dev = &ipa->pdev->dev; 207 enum ipa_endpoint_name name; 208 209 if (count > IPA_ENDPOINT_COUNT) { 210 dev_err(dev, "too many endpoints specified (%u > %u)\n", 211 count, IPA_ENDPOINT_COUNT); 212 return false; 213 } 214 215 /* Make sure needed endpoints have defined data */ 216 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 217 dev_err(dev, "command TX endpoint not defined\n"); 218 return false; 219 } 220 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 221 dev_err(dev, "LAN RX endpoint not defined\n"); 222 return false; 223 } 224 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 225 dev_err(dev, "AP->modem TX endpoint not defined\n"); 226 return false; 227 } 228 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 229 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 230 return false; 231 } 232 233 for (name = 0; name < count; name++, dp++) 234 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 235 return false; 236 237 return true; 238 } 239 240 /* Allocate a transaction to use on a non-command endpoint */ 241 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 242 u32 tre_count) 243 { 244 struct gsi *gsi = &endpoint->ipa->gsi; 245 u32 channel_id = endpoint->channel_id; 246 enum dma_data_direction direction; 247 248 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 249 250 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 251 } 252 253 /* suspend_delay represents suspend for RX, delay for TX endpoints. 254 * Note that suspend is not supported starting with IPA v4.0, and 255 * delay mode should not be used starting with IPA v4.2. 256 */ 257 static bool 258 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 259 { 260 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 261 struct ipa *ipa = endpoint->ipa; 262 bool state; 263 u32 mask; 264 u32 val; 265 266 if (endpoint->toward_ipa) 267 WARN_ON(ipa->version >= IPA_VERSION_4_2); 268 else 269 WARN_ON(ipa->version >= IPA_VERSION_4_0); 270 271 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 272 273 val = ioread32(ipa->reg_virt + offset); 274 state = !!(val & mask); 275 276 /* Don't bother if it's already in the requested state */ 277 if (suspend_delay != state) { 278 val ^= mask; 279 iowrite32(val, ipa->reg_virt + offset); 280 } 281 282 return state; 283 } 284 285 /* We don't care what the previous state was for delay mode */ 286 static void 287 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 288 { 289 /* Delay mode should not be used for IPA v4.2+ */ 290 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); 291 WARN_ON(!endpoint->toward_ipa); 292 293 (void)ipa_endpoint_init_ctrl(endpoint, enable); 294 } 295 296 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 297 { 298 u32 mask = BIT(endpoint->endpoint_id); 299 struct ipa *ipa = endpoint->ipa; 300 u32 offset; 301 u32 val; 302 303 WARN_ON(!(mask & ipa->available)); 304 305 offset = ipa_reg_state_aggr_active_offset(ipa->version); 306 val = ioread32(ipa->reg_virt + offset); 307 308 return !!(val & mask); 309 } 310 311 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 312 { 313 u32 mask = BIT(endpoint->endpoint_id); 314 struct ipa *ipa = endpoint->ipa; 315 316 WARN_ON(!(mask & ipa->available)); 317 318 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 319 } 320 321 /** 322 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 323 * @endpoint: Endpoint on which to emulate a suspend 324 * 325 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 326 * with an open aggregation frame. This is to work around a hardware 327 * issue in IPA version 3.5.1 where the suspend interrupt will not be 328 * generated when it should be. 329 */ 330 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 331 { 332 struct ipa *ipa = endpoint->ipa; 333 334 if (!endpoint->data->aggregation) 335 return; 336 337 /* Nothing to do if the endpoint doesn't have aggregation open */ 338 if (!ipa_endpoint_aggr_active(endpoint)) 339 return; 340 341 /* Force close aggregation */ 342 ipa_endpoint_force_close(endpoint); 343 344 ipa_interrupt_simulate_suspend(ipa->interrupt); 345 } 346 347 /* Returns previous suspend state (true means suspend was enabled) */ 348 static bool 349 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 350 { 351 bool suspended; 352 353 if (endpoint->ipa->version >= IPA_VERSION_4_0) 354 return enable; /* For IPA v4.0+, no change made */ 355 356 WARN_ON(endpoint->toward_ipa); 357 358 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 359 360 /* A client suspended with an open aggregation frame will not 361 * generate a SUSPEND IPA interrupt. If enabling suspend, have 362 * ipa_endpoint_suspend_aggr() handle this. 363 */ 364 if (enable && !suspended) 365 ipa_endpoint_suspend_aggr(endpoint); 366 367 return suspended; 368 } 369 370 /* Put all modem RX endpoints into suspend mode, and stop transmission 371 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is 372 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow 373 * control instead. 374 */ 375 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 376 { 377 u32 endpoint_id; 378 379 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 380 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 381 382 if (endpoint->ee_id != GSI_EE_MODEM) 383 continue; 384 385 if (!endpoint->toward_ipa) 386 (void)ipa_endpoint_program_suspend(endpoint, enable); 387 else if (ipa->version < IPA_VERSION_4_2) 388 ipa_endpoint_program_delay(endpoint, enable); 389 else 390 gsi_modem_channel_flow_control(&ipa->gsi, 391 endpoint->channel_id, 392 enable); 393 } 394 } 395 396 /* Reset all modem endpoints to use the default exception endpoint */ 397 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 398 { 399 u32 initialized = ipa->initialized; 400 struct gsi_trans *trans; 401 u32 count; 402 403 /* We need one command per modem TX endpoint. We can get an upper 404 * bound on that by assuming all initialized endpoints are modem->IPA. 405 * That won't happen, and we could be more precise, but this is fine 406 * for now. End the transaction with commands to clear the pipeline. 407 */ 408 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 409 trans = ipa_cmd_trans_alloc(ipa, count); 410 if (!trans) { 411 dev_err(&ipa->pdev->dev, 412 "no transaction to reset modem exception endpoints\n"); 413 return -EBUSY; 414 } 415 416 while (initialized) { 417 u32 endpoint_id = __ffs(initialized); 418 struct ipa_endpoint *endpoint; 419 u32 offset; 420 421 initialized ^= BIT(endpoint_id); 422 423 /* We only reset modem TX endpoints */ 424 endpoint = &ipa->endpoint[endpoint_id]; 425 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 426 continue; 427 428 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 429 430 /* Value written is 0, and all bits are updated. That 431 * means status is disabled on the endpoint, and as a 432 * result all other fields in the register are ignored. 433 */ 434 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 435 } 436 437 ipa_cmd_pipeline_clear_add(trans); 438 439 /* XXX This should have a 1 second timeout */ 440 gsi_trans_commit_wait(trans); 441 442 ipa_cmd_pipeline_clear_wait(ipa); 443 444 return 0; 445 } 446 447 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 448 { 449 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 450 enum ipa_cs_offload_en enabled; 451 u32 val = 0; 452 453 /* FRAG_OFFLOAD_EN is 0 */ 454 if (endpoint->data->checksum) { 455 enum ipa_version version = endpoint->ipa->version; 456 457 if (endpoint->toward_ipa) { 458 u32 checksum_offset; 459 460 /* Checksum header offset is in 4-byte units */ 461 checksum_offset = sizeof(struct rmnet_map_header); 462 checksum_offset /= sizeof(u32); 463 val |= u32_encode_bits(checksum_offset, 464 CS_METADATA_HDR_OFFSET_FMASK); 465 466 enabled = version < IPA_VERSION_4_5 467 ? IPA_CS_OFFLOAD_UL 468 : IPA_CS_OFFLOAD_INLINE; 469 } else { 470 enabled = version < IPA_VERSION_4_5 471 ? IPA_CS_OFFLOAD_DL 472 : IPA_CS_OFFLOAD_INLINE; 473 } 474 } else { 475 enabled = IPA_CS_OFFLOAD_NONE; 476 } 477 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 478 /* CS_GEN_QMB_MASTER_SEL is 0 */ 479 480 iowrite32(val, endpoint->ipa->reg_virt + offset); 481 } 482 483 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 484 { 485 u32 offset; 486 u32 val; 487 488 if (!endpoint->toward_ipa) 489 return; 490 491 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 492 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 493 494 iowrite32(val, endpoint->ipa->reg_virt + offset); 495 } 496 497 static u32 498 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 499 { 500 u32 header_size = sizeof(struct rmnet_map_header); 501 502 /* Without checksum offload, we just have the MAP header */ 503 if (!endpoint->data->checksum) 504 return header_size; 505 506 if (version < IPA_VERSION_4_5) { 507 /* Checksum header inserted for AP TX endpoints only */ 508 if (endpoint->toward_ipa) 509 header_size += sizeof(struct rmnet_map_ul_csum_header); 510 } else { 511 /* Checksum header is used in both directions */ 512 header_size += sizeof(struct rmnet_map_v5_csum_header); 513 } 514 515 return header_size; 516 } 517 518 /** 519 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 520 * @endpoint: Endpoint pointer 521 * 522 * We program QMAP endpoints so each packet received is preceded by a QMAP 523 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 524 * packet size field, and we have the IPA hardware populate both for each 525 * received packet. The header is configured (in the HDR_EXT register) 526 * to use big endian format. 527 * 528 * The packet size is written into the QMAP header's pkt_len field. That 529 * location is defined here using the HDR_OFST_PKT_SIZE field. 530 * 531 * The mux_id comes from a 4-byte metadata value supplied with each packet 532 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 533 * value that we want, in its low-order byte. A bitmask defined in the 534 * endpoint's METADATA_MASK register defines which byte within the modem 535 * metadata contains the mux_id. And the OFST_METADATA field programmed 536 * here indicates where the extracted byte should be placed within the QMAP 537 * header. 538 */ 539 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 540 { 541 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 542 struct ipa *ipa = endpoint->ipa; 543 u32 val = 0; 544 545 if (endpoint->data->qmap) { 546 enum ipa_version version = ipa->version; 547 size_t header_size; 548 549 header_size = ipa_qmap_header_size(version, endpoint); 550 val = ipa_header_size_encoded(version, header_size); 551 552 /* Define how to fill fields in a received QMAP header */ 553 if (!endpoint->toward_ipa) { 554 u32 offset; /* Field offset within header */ 555 556 /* Where IPA will write the metadata value */ 557 offset = offsetof(struct rmnet_map_header, mux_id); 558 val |= ipa_metadata_offset_encoded(version, offset); 559 560 /* Where IPA will write the length */ 561 offset = offsetof(struct rmnet_map_header, pkt_len); 562 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 563 if (version >= IPA_VERSION_4_5) 564 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 565 566 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 567 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 568 } 569 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 570 val |= HDR_OFST_METADATA_VALID_FMASK; 571 572 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 573 /* HDR_A5_MUX is 0 */ 574 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 575 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 576 } 577 578 iowrite32(val, ipa->reg_virt + offset); 579 } 580 581 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 582 { 583 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 584 u32 pad_align = endpoint->data->rx.pad_align; 585 struct ipa *ipa = endpoint->ipa; 586 u32 val = 0; 587 588 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 589 590 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 591 * driver assumes this field is meaningful in packets it receives, 592 * and assumes the header's payload length includes that padding. 593 * The RMNet driver does *not* pad packets it sends, however, so 594 * the pad field (although 0) should be ignored. 595 */ 596 if (endpoint->data->qmap && !endpoint->toward_ipa) { 597 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 598 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 599 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 600 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 601 } 602 603 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 604 if (!endpoint->toward_ipa) 605 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 606 607 /* IPA v4.5 adds some most-significant bits to a few fields, 608 * two of which are defined in the HDR (not HDR_EXT) register. 609 */ 610 if (ipa->version >= IPA_VERSION_4_5) { 611 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 612 if (endpoint->data->qmap && !endpoint->toward_ipa) { 613 u32 offset; 614 615 offset = offsetof(struct rmnet_map_header, pkt_len); 616 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 617 val |= u32_encode_bits(offset, 618 HDR_OFST_PKT_SIZE_MSB_FMASK); 619 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 620 } 621 } 622 iowrite32(val, ipa->reg_virt + offset); 623 } 624 625 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 626 { 627 u32 endpoint_id = endpoint->endpoint_id; 628 u32 val = 0; 629 u32 offset; 630 631 if (endpoint->toward_ipa) 632 return; /* Register not valid for TX endpoints */ 633 634 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 635 636 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 637 if (endpoint->data->qmap) 638 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 639 640 iowrite32(val, endpoint->ipa->reg_virt + offset); 641 } 642 643 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 644 { 645 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 646 u32 val; 647 648 if (!endpoint->toward_ipa) 649 return; /* Register not valid for RX endpoints */ 650 651 if (endpoint->data->dma_mode) { 652 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 653 u32 dma_endpoint_id; 654 655 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 656 657 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 658 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 659 } else { 660 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 661 } 662 /* All other bits unspecified (and 0) */ 663 664 iowrite32(val, endpoint->ipa->reg_virt + offset); 665 } 666 667 /* Compute the aggregation size value to use for a given buffer size */ 668 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 669 { 670 /* We don't use "hard byte limit" aggregation, so we define the 671 * aggregation limit such that our buffer has enough space *after* 672 * that limit to receive a full MTU of data, plus overhead. 673 */ 674 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 675 676 return rx_buffer_size / SZ_1K; 677 } 678 679 /* Encoded values for AGGR endpoint register fields */ 680 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 681 { 682 if (version < IPA_VERSION_4_5) 683 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 684 685 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 686 } 687 688 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 689 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 690 { 691 u32 gran_sel; 692 u32 fmask; 693 u32 val; 694 695 if (version < IPA_VERSION_4_5) { 696 /* We set aggregation granularity in ipa_hardware_config() */ 697 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 698 699 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 700 } 701 702 /* IPA v4.5 expresses the time limit using Qtime. The AP has 703 * pulse generators 0 and 1 available, which were configured 704 * in ipa_qtime_config() to have granularity 100 usec and 705 * 1 msec, respectively. Use pulse generator 0 if possible, 706 * otherwise fall back to pulse generator 1. 707 */ 708 fmask = aggr_time_limit_fmask(false); 709 val = DIV_ROUND_CLOSEST(limit, 100); 710 if (val > field_max(fmask)) { 711 /* Have to use pulse generator 1 (millisecond granularity) */ 712 gran_sel = AGGR_GRAN_SEL_FMASK; 713 val = DIV_ROUND_CLOSEST(limit, 1000); 714 } else { 715 /* We can use pulse generator 0 (100 usec granularity) */ 716 gran_sel = 0; 717 } 718 719 return gran_sel | u32_encode_bits(val, fmask); 720 } 721 722 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 723 { 724 u32 val = enabled ? 1 : 0; 725 726 if (version < IPA_VERSION_4_5) 727 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 728 729 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 730 } 731 732 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 733 { 734 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 735 enum ipa_version version = endpoint->ipa->version; 736 u32 val = 0; 737 738 if (endpoint->data->aggregation) { 739 if (!endpoint->toward_ipa) { 740 const struct ipa_endpoint_rx_data *rx_data; 741 bool close_eof; 742 u32 limit; 743 744 rx_data = &endpoint->data->rx; 745 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 746 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 747 748 limit = ipa_aggr_size_kb(rx_data->buffer_size); 749 val |= aggr_byte_limit_encoded(version, limit); 750 751 limit = IPA_AGGR_TIME_LIMIT; 752 val |= aggr_time_limit_encoded(version, limit); 753 754 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 755 756 close_eof = rx_data->aggr_close_eof; 757 val |= aggr_sw_eof_active_encoded(version, close_eof); 758 759 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 760 } else { 761 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 762 AGGR_EN_FMASK); 763 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 764 /* other fields ignored */ 765 } 766 /* AGGR_FORCE_CLOSE is 0 */ 767 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 768 } else { 769 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 770 /* other fields ignored */ 771 } 772 773 iowrite32(val, endpoint->ipa->reg_virt + offset); 774 } 775 776 /* Return the Qtime-based head-of-line blocking timer value that 777 * represents the given number of microseconds. The result 778 * includes both the timer value and the selected timer granularity. 779 */ 780 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 781 { 782 u32 gran_sel; 783 u32 val; 784 785 /* IPA v4.5 expresses time limits using Qtime. The AP has 786 * pulse generators 0 and 1 available, which were configured 787 * in ipa_qtime_config() to have granularity 100 usec and 788 * 1 msec, respectively. Use pulse generator 0 if possible, 789 * otherwise fall back to pulse generator 1. 790 */ 791 val = DIV_ROUND_CLOSEST(microseconds, 100); 792 if (val > field_max(TIME_LIMIT_FMASK)) { 793 /* Have to use pulse generator 1 (millisecond granularity) */ 794 gran_sel = GRAN_SEL_FMASK; 795 val = DIV_ROUND_CLOSEST(microseconds, 1000); 796 } else { 797 /* We can use pulse generator 0 (100 usec granularity) */ 798 gran_sel = 0; 799 } 800 801 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 802 } 803 804 /* The head-of-line blocking timer is defined as a tick count. For 805 * IPA version 4.5 the tick count is based on the Qtimer, which is 806 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 807 * each tick represents 128 cycles of the IPA core clock. 808 * 809 * Return the encoded value that should be written to that register 810 * that represents the timeout period provided. For IPA v4.2 this 811 * encodes a base and scale value, while for earlier versions the 812 * value is a simple tick count. 813 */ 814 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 815 { 816 u32 width; 817 u32 scale; 818 u64 ticks; 819 u64 rate; 820 u32 high; 821 u32 val; 822 823 if (!microseconds) 824 return 0; /* Nothing to compute if timer period is 0 */ 825 826 if (ipa->version >= IPA_VERSION_4_5) 827 return hol_block_timer_qtime_val(ipa, microseconds); 828 829 /* Use 64 bit arithmetic to avoid overflow... */ 830 rate = ipa_core_clock_rate(ipa); 831 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 832 /* ...but we still need to fit into a 32-bit register */ 833 WARN_ON(ticks > U32_MAX); 834 835 /* IPA v3.5.1 through v4.1 just record the tick count */ 836 if (ipa->version < IPA_VERSION_4_2) 837 return (u32)ticks; 838 839 /* For IPA v4.2, the tick count is represented by base and 840 * scale fields within the 32-bit timer register, where: 841 * ticks = base << scale; 842 * The best precision is achieved when the base value is as 843 * large as possible. Find the highest set bit in the tick 844 * count, and extract the number of bits in the base field 845 * such that high bit is included. 846 */ 847 high = fls(ticks); /* 1..32 */ 848 width = HWEIGHT32(BASE_VALUE_FMASK); 849 scale = high > width ? high - width : 0; 850 if (scale) { 851 /* If we're scaling, round up to get a closer result */ 852 ticks += 1 << (scale - 1); 853 /* High bit was set, so rounding might have affected it */ 854 if (fls(ticks) != high) 855 scale++; 856 } 857 858 val = u32_encode_bits(scale, SCALE_FMASK); 859 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 860 861 return val; 862 } 863 864 /* If microseconds is 0, timeout is immediate */ 865 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 866 u32 microseconds) 867 { 868 u32 endpoint_id = endpoint->endpoint_id; 869 struct ipa *ipa = endpoint->ipa; 870 u32 offset; 871 u32 val; 872 873 /* This should only be changed when HOL_BLOCK_EN is disabled */ 874 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 875 val = hol_block_timer_val(ipa, microseconds); 876 iowrite32(val, ipa->reg_virt + offset); 877 } 878 879 static void 880 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) 881 { 882 u32 endpoint_id = endpoint->endpoint_id; 883 u32 offset; 884 u32 val; 885 886 val = enable ? HOL_BLOCK_EN_FMASK : 0; 887 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 888 iowrite32(val, endpoint->ipa->reg_virt + offset); 889 /* When enabling, the register must be written twice for IPA v4.5+ */ 890 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) 891 iowrite32(val, endpoint->ipa->reg_virt + offset); 892 } 893 894 /* Assumes HOL_BLOCK is in disabled state */ 895 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, 896 u32 microseconds) 897 { 898 ipa_endpoint_init_hol_block_timer(endpoint, microseconds); 899 ipa_endpoint_init_hol_block_en(endpoint, true); 900 } 901 902 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) 903 { 904 ipa_endpoint_init_hol_block_en(endpoint, false); 905 } 906 907 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 908 { 909 u32 i; 910 911 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 912 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 913 914 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 915 continue; 916 917 ipa_endpoint_init_hol_block_disable(endpoint); 918 ipa_endpoint_init_hol_block_enable(endpoint, 0); 919 } 920 } 921 922 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 923 { 924 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 925 u32 val = 0; 926 927 if (!endpoint->toward_ipa) 928 return; /* Register not valid for RX endpoints */ 929 930 /* DEAGGR_HDR_LEN is 0 */ 931 /* PACKET_OFFSET_VALID is 0 */ 932 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 933 /* MAX_PACKET_LEN is 0 (not enforced) */ 934 935 iowrite32(val, endpoint->ipa->reg_virt + offset); 936 } 937 938 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 939 { 940 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 941 struct ipa *ipa = endpoint->ipa; 942 u32 val; 943 944 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 945 iowrite32(val, ipa->reg_virt + offset); 946 } 947 948 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 949 { 950 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 951 u32 val = 0; 952 953 if (!endpoint->toward_ipa) 954 return; /* Register not valid for RX endpoints */ 955 956 /* Low-order byte configures primary packet processing */ 957 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); 958 959 /* Second byte configures replicated packet processing */ 960 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, 961 SEQ_REP_TYPE_FMASK); 962 963 iowrite32(val, endpoint->ipa->reg_virt + offset); 964 } 965 966 /** 967 * ipa_endpoint_skb_tx() - Transmit a socket buffer 968 * @endpoint: Endpoint pointer 969 * @skb: Socket buffer to send 970 * 971 * Returns: 0 if successful, or a negative error code 972 */ 973 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 974 { 975 struct gsi_trans *trans; 976 u32 nr_frags; 977 int ret; 978 979 /* Make sure source endpoint's TLV FIFO has enough entries to 980 * hold the linear portion of the skb and all its fragments. 981 * If not, see if we can linearize it before giving up. 982 */ 983 nr_frags = skb_shinfo(skb)->nr_frags; 984 if (1 + nr_frags > endpoint->trans_tre_max) { 985 if (skb_linearize(skb)) 986 return -E2BIG; 987 nr_frags = 0; 988 } 989 990 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 991 if (!trans) 992 return -EBUSY; 993 994 ret = gsi_trans_skb_add(trans, skb); 995 if (ret) 996 goto err_trans_free; 997 trans->data = skb; /* transaction owns skb now */ 998 999 gsi_trans_commit(trans, !netdev_xmit_more()); 1000 1001 return 0; 1002 1003 err_trans_free: 1004 gsi_trans_free(trans); 1005 1006 return -ENOMEM; 1007 } 1008 1009 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 1010 { 1011 u32 endpoint_id = endpoint->endpoint_id; 1012 struct ipa *ipa = endpoint->ipa; 1013 u32 val = 0; 1014 u32 offset; 1015 1016 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 1017 1018 if (endpoint->data->status_enable) { 1019 val |= STATUS_EN_FMASK; 1020 if (endpoint->toward_ipa) { 1021 enum ipa_endpoint_name name; 1022 u32 status_endpoint_id; 1023 1024 name = endpoint->data->tx.status_endpoint; 1025 status_endpoint_id = ipa->name_map[name]->endpoint_id; 1026 1027 val |= u32_encode_bits(status_endpoint_id, 1028 STATUS_ENDP_FMASK); 1029 } 1030 /* STATUS_LOCATION is 0, meaning status element precedes 1031 * packet (not present for IPA v4.5) 1032 */ 1033 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 1034 } 1035 1036 iowrite32(val, ipa->reg_virt + offset); 1037 } 1038 1039 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 1040 { 1041 struct gsi_trans *trans; 1042 bool doorbell = false; 1043 struct page *page; 1044 u32 buffer_size; 1045 u32 offset; 1046 u32 len; 1047 int ret; 1048 1049 buffer_size = endpoint->data->rx.buffer_size; 1050 page = dev_alloc_pages(get_order(buffer_size)); 1051 if (!page) 1052 return -ENOMEM; 1053 1054 trans = ipa_endpoint_trans_alloc(endpoint, 1); 1055 if (!trans) 1056 goto err_free_pages; 1057 1058 /* Offset the buffer to make space for skb headroom */ 1059 offset = NET_SKB_PAD; 1060 len = buffer_size - offset; 1061 1062 ret = gsi_trans_page_add(trans, page, len, offset); 1063 if (ret) 1064 goto err_trans_free; 1065 trans->data = page; /* transaction owns page now */ 1066 1067 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 1068 doorbell = true; 1069 endpoint->replenish_ready = 0; 1070 } 1071 1072 gsi_trans_commit(trans, doorbell); 1073 1074 return 0; 1075 1076 err_trans_free: 1077 gsi_trans_free(trans); 1078 err_free_pages: 1079 __free_pages(page, get_order(buffer_size)); 1080 1081 return -ENOMEM; 1082 } 1083 1084 /** 1085 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1086 * @endpoint: Endpoint to be replenished 1087 * @add_one: Whether this is replacing a just-consumed buffer 1088 * 1089 * The IPA hardware can hold a fixed number of receive buffers for an RX 1090 * endpoint, based on the number of entries in the underlying channel ring 1091 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1092 * more receive buffers can be supplied to the hardware. Replenishing for 1093 * an endpoint can be disabled, in which case requests to replenish a 1094 * buffer are "saved", and transferred to the backlog once it is re-enabled 1095 * again. 1096 */ 1097 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) 1098 { 1099 struct gsi *gsi; 1100 u32 backlog; 1101 int delta; 1102 1103 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) { 1104 if (add_one) 1105 atomic_inc(&endpoint->replenish_saved); 1106 return; 1107 } 1108 1109 /* If already active, just update the backlog */ 1110 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) { 1111 if (add_one) 1112 atomic_inc(&endpoint->replenish_backlog); 1113 return; 1114 } 1115 1116 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 1117 if (ipa_endpoint_replenish_one(endpoint)) 1118 goto try_again_later; 1119 1120 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1121 1122 if (add_one) 1123 atomic_inc(&endpoint->replenish_backlog); 1124 1125 return; 1126 1127 try_again_later: 1128 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1129 1130 /* The last one didn't succeed, so fix the backlog */ 1131 delta = add_one ? 2 : 1; 1132 backlog = atomic_add_return(delta, &endpoint->replenish_backlog); 1133 1134 /* Whenever a receive buffer transaction completes we'll try to 1135 * replenish again. It's unlikely, but if we fail to supply even 1136 * one buffer, nothing will trigger another replenish attempt. 1137 * Receive buffer transactions use one TRE, so schedule work to 1138 * try replenishing again if our backlog is *all* available TREs. 1139 */ 1140 gsi = &endpoint->ipa->gsi; 1141 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 1142 schedule_delayed_work(&endpoint->replenish_work, 1143 msecs_to_jiffies(1)); 1144 } 1145 1146 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1147 { 1148 struct gsi *gsi = &endpoint->ipa->gsi; 1149 u32 max_backlog; 1150 u32 saved; 1151 1152 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1153 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 1154 atomic_add(saved, &endpoint->replenish_backlog); 1155 1156 /* Start replenishing if hardware currently has no buffers */ 1157 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 1158 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 1159 ipa_endpoint_replenish(endpoint, false); 1160 } 1161 1162 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1163 { 1164 u32 backlog; 1165 1166 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1167 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 1168 atomic_add(backlog, &endpoint->replenish_saved); 1169 } 1170 1171 static void ipa_endpoint_replenish_work(struct work_struct *work) 1172 { 1173 struct delayed_work *dwork = to_delayed_work(work); 1174 struct ipa_endpoint *endpoint; 1175 1176 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1177 1178 ipa_endpoint_replenish(endpoint, false); 1179 } 1180 1181 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1182 void *data, u32 len, u32 extra) 1183 { 1184 struct sk_buff *skb; 1185 1186 if (!endpoint->netdev) 1187 return; 1188 1189 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1190 if (!skb) 1191 return; 1192 1193 /* Copy the data into the socket buffer and receive it */ 1194 skb_put(skb, len); 1195 memcpy(skb->data, data, len); 1196 skb->truesize += extra; 1197 1198 ipa_modem_skb_rx(endpoint->netdev, skb); 1199 } 1200 1201 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1202 struct page *page, u32 len) 1203 { 1204 u32 buffer_size = endpoint->data->rx.buffer_size; 1205 struct sk_buff *skb; 1206 1207 /* Nothing to do if there's no netdev */ 1208 if (!endpoint->netdev) 1209 return false; 1210 1211 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); 1212 1213 skb = build_skb(page_address(page), buffer_size); 1214 if (skb) { 1215 /* Reserve the headroom and account for the data */ 1216 skb_reserve(skb, NET_SKB_PAD); 1217 skb_put(skb, len); 1218 } 1219 1220 /* Receive the buffer (or record drop if unable to build it) */ 1221 ipa_modem_skb_rx(endpoint->netdev, skb); 1222 1223 return skb != NULL; 1224 } 1225 1226 /* The format of a packet status element is the same for several status 1227 * types (opcodes). Other types aren't currently supported. 1228 */ 1229 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1230 { 1231 switch (opcode) { 1232 case IPA_STATUS_OPCODE_PACKET: 1233 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1234 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1235 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1236 return true; 1237 default: 1238 return false; 1239 } 1240 } 1241 1242 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1243 const struct ipa_status *status) 1244 { 1245 u32 endpoint_id; 1246 1247 if (!ipa_status_format_packet(status->opcode)) 1248 return true; 1249 if (!status->pkt_len) 1250 return true; 1251 endpoint_id = u8_get_bits(status->endp_dst_idx, 1252 IPA_STATUS_DST_IDX_FMASK); 1253 if (endpoint_id != endpoint->endpoint_id) 1254 return true; 1255 1256 return false; /* Don't skip this packet, process it */ 1257 } 1258 1259 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1260 const struct ipa_status *status) 1261 { 1262 struct ipa_endpoint *command_endpoint; 1263 struct ipa *ipa = endpoint->ipa; 1264 u32 endpoint_id; 1265 1266 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1267 return false; /* No valid tag */ 1268 1269 /* The status contains a valid tag. We know the packet was sent to 1270 * this endpoint (already verified by ipa_endpoint_status_skip()). 1271 * If the packet came from the AP->command TX endpoint we know 1272 * this packet was sent as part of the pipeline clear process. 1273 */ 1274 endpoint_id = u8_get_bits(status->endp_src_idx, 1275 IPA_STATUS_SRC_IDX_FMASK); 1276 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1277 if (endpoint_id == command_endpoint->endpoint_id) { 1278 complete(&ipa->completion); 1279 } else { 1280 dev_err(&ipa->pdev->dev, 1281 "unexpected tagged packet from endpoint %u\n", 1282 endpoint_id); 1283 } 1284 1285 return true; 1286 } 1287 1288 /* Return whether the status indicates the packet should be dropped */ 1289 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1290 const struct ipa_status *status) 1291 { 1292 u32 val; 1293 1294 /* If the status indicates a tagged transfer, we'll drop the packet */ 1295 if (ipa_endpoint_status_tag(endpoint, status)) 1296 return true; 1297 1298 /* Deaggregation exceptions we drop; all other types we consume */ 1299 if (status->exception) 1300 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1301 1302 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1303 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1304 1305 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1306 } 1307 1308 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1309 struct page *page, u32 total_len) 1310 { 1311 u32 buffer_size = endpoint->data->rx.buffer_size; 1312 void *data = page_address(page) + NET_SKB_PAD; 1313 u32 unused = buffer_size - total_len; 1314 u32 resid = total_len; 1315 1316 while (resid) { 1317 const struct ipa_status *status = data; 1318 u32 align; 1319 u32 len; 1320 1321 if (resid < sizeof(*status)) { 1322 dev_err(&endpoint->ipa->pdev->dev, 1323 "short message (%u bytes < %zu byte status)\n", 1324 resid, sizeof(*status)); 1325 break; 1326 } 1327 1328 /* Skip over status packets that lack packet data */ 1329 if (ipa_endpoint_status_skip(endpoint, status)) { 1330 data += sizeof(*status); 1331 resid -= sizeof(*status); 1332 continue; 1333 } 1334 1335 /* Compute the amount of buffer space consumed by the packet, 1336 * including the status element. If the hardware is configured 1337 * to pad packet data to an aligned boundary, account for that. 1338 * And if checksum offload is enabled a trailer containing 1339 * computed checksum information will be appended. 1340 */ 1341 align = endpoint->data->rx.pad_align ? : 1; 1342 len = le16_to_cpu(status->pkt_len); 1343 len = sizeof(*status) + ALIGN(len, align); 1344 if (endpoint->data->checksum) 1345 len += sizeof(struct rmnet_map_dl_csum_trailer); 1346 1347 if (!ipa_endpoint_status_drop(endpoint, status)) { 1348 void *data2; 1349 u32 extra; 1350 u32 len2; 1351 1352 /* Client receives only packet data (no status) */ 1353 data2 = data + sizeof(*status); 1354 len2 = le16_to_cpu(status->pkt_len); 1355 1356 /* Have the true size reflect the extra unused space in 1357 * the original receive buffer. Distribute the "cost" 1358 * proportionately across all aggregated packets in the 1359 * buffer. 1360 */ 1361 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1362 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1363 } 1364 1365 /* Consume status and the full packet it describes */ 1366 data += len; 1367 resid -= len; 1368 } 1369 } 1370 1371 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1372 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1373 struct gsi_trans *trans) 1374 { 1375 } 1376 1377 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1378 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1379 struct gsi_trans *trans) 1380 { 1381 struct page *page; 1382 1383 ipa_endpoint_replenish(endpoint, true); 1384 1385 if (trans->cancelled) 1386 return; 1387 1388 /* Parse or build a socket buffer using the actual received length */ 1389 page = trans->data; 1390 if (endpoint->data->status_enable) 1391 ipa_endpoint_status_parse(endpoint, page, trans->len); 1392 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1393 trans->data = NULL; /* Pages have been consumed */ 1394 } 1395 1396 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1397 struct gsi_trans *trans) 1398 { 1399 if (endpoint->toward_ipa) 1400 ipa_endpoint_tx_complete(endpoint, trans); 1401 else 1402 ipa_endpoint_rx_complete(endpoint, trans); 1403 } 1404 1405 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1406 struct gsi_trans *trans) 1407 { 1408 if (endpoint->toward_ipa) { 1409 struct ipa *ipa = endpoint->ipa; 1410 1411 /* Nothing to do for command transactions */ 1412 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1413 struct sk_buff *skb = trans->data; 1414 1415 if (skb) 1416 dev_kfree_skb_any(skb); 1417 } 1418 } else { 1419 struct page *page = trans->data; 1420 1421 if (page) { 1422 u32 buffer_size = endpoint->data->rx.buffer_size; 1423 1424 __free_pages(page, get_order(buffer_size)); 1425 } 1426 } 1427 } 1428 1429 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1430 { 1431 u32 val; 1432 1433 /* ROUTE_DIS is 0 */ 1434 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1435 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1436 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1437 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1438 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1439 1440 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1441 } 1442 1443 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1444 { 1445 ipa_endpoint_default_route_set(ipa, 0); 1446 } 1447 1448 /** 1449 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1450 * @endpoint: Endpoint to be reset 1451 * 1452 * If aggregation is active on an RX endpoint when a reset is performed 1453 * on its underlying GSI channel, a special sequence of actions must be 1454 * taken to ensure the IPA pipeline is properly cleared. 1455 * 1456 * Return: 0 if successful, or a negative error code 1457 */ 1458 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1459 { 1460 struct device *dev = &endpoint->ipa->pdev->dev; 1461 struct ipa *ipa = endpoint->ipa; 1462 struct gsi *gsi = &ipa->gsi; 1463 bool suspended = false; 1464 dma_addr_t addr; 1465 u32 retries; 1466 u32 len = 1; 1467 void *virt; 1468 int ret; 1469 1470 virt = kzalloc(len, GFP_KERNEL); 1471 if (!virt) 1472 return -ENOMEM; 1473 1474 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1475 if (dma_mapping_error(dev, addr)) { 1476 ret = -ENOMEM; 1477 goto out_kfree; 1478 } 1479 1480 /* Force close aggregation before issuing the reset */ 1481 ipa_endpoint_force_close(endpoint); 1482 1483 /* Reset and reconfigure the channel with the doorbell engine 1484 * disabled. Then poll until we know aggregation is no longer 1485 * active. We'll re-enable the doorbell (if appropriate) when 1486 * we reset again below. 1487 */ 1488 gsi_channel_reset(gsi, endpoint->channel_id, false); 1489 1490 /* Make sure the channel isn't suspended */ 1491 suspended = ipa_endpoint_program_suspend(endpoint, false); 1492 1493 /* Start channel and do a 1 byte read */ 1494 ret = gsi_channel_start(gsi, endpoint->channel_id); 1495 if (ret) 1496 goto out_suspend_again; 1497 1498 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1499 if (ret) 1500 goto err_endpoint_stop; 1501 1502 /* Wait for aggregation to be closed on the channel */ 1503 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1504 do { 1505 if (!ipa_endpoint_aggr_active(endpoint)) 1506 break; 1507 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1508 } while (retries--); 1509 1510 /* Check one last time */ 1511 if (ipa_endpoint_aggr_active(endpoint)) 1512 dev_err(dev, "endpoint %u still active during reset\n", 1513 endpoint->endpoint_id); 1514 1515 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1516 1517 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1518 if (ret) 1519 goto out_suspend_again; 1520 1521 /* Finally, reset and reconfigure the channel again (re-enabling 1522 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1523 * complete the channel reset sequence. Finish by suspending the 1524 * channel again (if necessary). 1525 */ 1526 gsi_channel_reset(gsi, endpoint->channel_id, true); 1527 1528 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1529 1530 goto out_suspend_again; 1531 1532 err_endpoint_stop: 1533 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1534 out_suspend_again: 1535 if (suspended) 1536 (void)ipa_endpoint_program_suspend(endpoint, true); 1537 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1538 out_kfree: 1539 kfree(virt); 1540 1541 return ret; 1542 } 1543 1544 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1545 { 1546 u32 channel_id = endpoint->channel_id; 1547 struct ipa *ipa = endpoint->ipa; 1548 bool special; 1549 int ret = 0; 1550 1551 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1552 * is active, we need to handle things specially to recover. 1553 * All other cases just need to reset the underlying GSI channel. 1554 */ 1555 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1556 endpoint->data->aggregation; 1557 if (special && ipa_endpoint_aggr_active(endpoint)) 1558 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1559 else 1560 gsi_channel_reset(&ipa->gsi, channel_id, true); 1561 1562 if (ret) 1563 dev_err(&ipa->pdev->dev, 1564 "error %d resetting channel %u for endpoint %u\n", 1565 ret, endpoint->channel_id, endpoint->endpoint_id); 1566 } 1567 1568 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1569 { 1570 if (endpoint->toward_ipa) { 1571 /* Newer versions of IPA use GSI channel flow control 1572 * instead of endpoint DELAY mode to prevent sending data. 1573 * Flow control is disabled for newly-allocated channels, 1574 * and we can assume flow control is not (ever) enabled 1575 * for AP TX channels. 1576 */ 1577 if (endpoint->ipa->version < IPA_VERSION_4_2) 1578 ipa_endpoint_program_delay(endpoint, false); 1579 } else { 1580 /* Ensure suspend mode is off on all AP RX endpoints */ 1581 (void)ipa_endpoint_program_suspend(endpoint, false); 1582 } 1583 ipa_endpoint_init_cfg(endpoint); 1584 ipa_endpoint_init_nat(endpoint); 1585 ipa_endpoint_init_hdr(endpoint); 1586 ipa_endpoint_init_hdr_ext(endpoint); 1587 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1588 ipa_endpoint_init_mode(endpoint); 1589 ipa_endpoint_init_aggr(endpoint); 1590 if (!endpoint->toward_ipa) 1591 ipa_endpoint_init_hol_block_disable(endpoint); 1592 ipa_endpoint_init_deaggr(endpoint); 1593 ipa_endpoint_init_rsrc_grp(endpoint); 1594 ipa_endpoint_init_seq(endpoint); 1595 ipa_endpoint_status(endpoint); 1596 } 1597 1598 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1599 { 1600 struct ipa *ipa = endpoint->ipa; 1601 struct gsi *gsi = &ipa->gsi; 1602 int ret; 1603 1604 ret = gsi_channel_start(gsi, endpoint->channel_id); 1605 if (ret) { 1606 dev_err(&ipa->pdev->dev, 1607 "error %d starting %cX channel %u for endpoint %u\n", 1608 ret, endpoint->toward_ipa ? 'T' : 'R', 1609 endpoint->channel_id, endpoint->endpoint_id); 1610 return ret; 1611 } 1612 1613 if (!endpoint->toward_ipa) { 1614 ipa_interrupt_suspend_enable(ipa->interrupt, 1615 endpoint->endpoint_id); 1616 ipa_endpoint_replenish_enable(endpoint); 1617 } 1618 1619 ipa->enabled |= BIT(endpoint->endpoint_id); 1620 1621 return 0; 1622 } 1623 1624 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1625 { 1626 u32 mask = BIT(endpoint->endpoint_id); 1627 struct ipa *ipa = endpoint->ipa; 1628 struct gsi *gsi = &ipa->gsi; 1629 int ret; 1630 1631 if (!(ipa->enabled & mask)) 1632 return; 1633 1634 ipa->enabled ^= mask; 1635 1636 if (!endpoint->toward_ipa) { 1637 ipa_endpoint_replenish_disable(endpoint); 1638 ipa_interrupt_suspend_disable(ipa->interrupt, 1639 endpoint->endpoint_id); 1640 } 1641 1642 /* Note that if stop fails, the channel's state is not well-defined */ 1643 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1644 if (ret) 1645 dev_err(&ipa->pdev->dev, 1646 "error %d attempting to stop endpoint %u\n", ret, 1647 endpoint->endpoint_id); 1648 } 1649 1650 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1651 { 1652 struct device *dev = &endpoint->ipa->pdev->dev; 1653 struct gsi *gsi = &endpoint->ipa->gsi; 1654 int ret; 1655 1656 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1657 return; 1658 1659 if (!endpoint->toward_ipa) { 1660 ipa_endpoint_replenish_disable(endpoint); 1661 (void)ipa_endpoint_program_suspend(endpoint, true); 1662 } 1663 1664 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1665 if (ret) 1666 dev_err(dev, "error %d suspending channel %u\n", ret, 1667 endpoint->channel_id); 1668 } 1669 1670 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1671 { 1672 struct device *dev = &endpoint->ipa->pdev->dev; 1673 struct gsi *gsi = &endpoint->ipa->gsi; 1674 int ret; 1675 1676 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1677 return; 1678 1679 if (!endpoint->toward_ipa) 1680 (void)ipa_endpoint_program_suspend(endpoint, false); 1681 1682 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1683 if (ret) 1684 dev_err(dev, "error %d resuming channel %u\n", ret, 1685 endpoint->channel_id); 1686 else if (!endpoint->toward_ipa) 1687 ipa_endpoint_replenish_enable(endpoint); 1688 } 1689 1690 void ipa_endpoint_suspend(struct ipa *ipa) 1691 { 1692 if (!ipa->setup_complete) 1693 return; 1694 1695 if (ipa->modem_netdev) 1696 ipa_modem_suspend(ipa->modem_netdev); 1697 1698 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1699 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1700 } 1701 1702 void ipa_endpoint_resume(struct ipa *ipa) 1703 { 1704 if (!ipa->setup_complete) 1705 return; 1706 1707 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1708 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1709 1710 if (ipa->modem_netdev) 1711 ipa_modem_resume(ipa->modem_netdev); 1712 } 1713 1714 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1715 { 1716 struct gsi *gsi = &endpoint->ipa->gsi; 1717 u32 channel_id = endpoint->channel_id; 1718 1719 /* Only AP endpoints get set up */ 1720 if (endpoint->ee_id != GSI_EE_AP) 1721 return; 1722 1723 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1724 if (!endpoint->toward_ipa) { 1725 /* RX transactions require a single TRE, so the maximum 1726 * backlog is the same as the maximum outstanding TREs. 1727 */ 1728 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1729 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1730 atomic_set(&endpoint->replenish_saved, 1731 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1732 atomic_set(&endpoint->replenish_backlog, 0); 1733 INIT_DELAYED_WORK(&endpoint->replenish_work, 1734 ipa_endpoint_replenish_work); 1735 } 1736 1737 ipa_endpoint_program(endpoint); 1738 1739 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1740 } 1741 1742 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1743 { 1744 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1745 1746 if (!endpoint->toward_ipa) 1747 cancel_delayed_work_sync(&endpoint->replenish_work); 1748 1749 ipa_endpoint_reset(endpoint); 1750 } 1751 1752 void ipa_endpoint_setup(struct ipa *ipa) 1753 { 1754 u32 initialized = ipa->initialized; 1755 1756 ipa->set_up = 0; 1757 while (initialized) { 1758 u32 endpoint_id = __ffs(initialized); 1759 1760 initialized ^= BIT(endpoint_id); 1761 1762 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1763 } 1764 } 1765 1766 void ipa_endpoint_teardown(struct ipa *ipa) 1767 { 1768 u32 set_up = ipa->set_up; 1769 1770 while (set_up) { 1771 u32 endpoint_id = __fls(set_up); 1772 1773 set_up ^= BIT(endpoint_id); 1774 1775 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1776 } 1777 ipa->set_up = 0; 1778 } 1779 1780 int ipa_endpoint_config(struct ipa *ipa) 1781 { 1782 struct device *dev = &ipa->pdev->dev; 1783 u32 initialized; 1784 u32 rx_base; 1785 u32 rx_mask; 1786 u32 tx_mask; 1787 int ret = 0; 1788 u32 max; 1789 u32 val; 1790 1791 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1792 * Furthermore, the endpoints were not grouped such that TX 1793 * endpoint numbers started with 0 and RX endpoints had numbers 1794 * higher than all TX endpoints, so we can't do the simple 1795 * direction check used for newer hardware below. 1796 * 1797 * For hardware that doesn't support the FLAVOR_0 register, 1798 * just set the available mask to support any endpoint, and 1799 * assume the configuration is valid. 1800 */ 1801 if (ipa->version < IPA_VERSION_3_5) { 1802 ipa->available = ~0; 1803 return 0; 1804 } 1805 1806 /* Find out about the endpoints supplied by the hardware, and ensure 1807 * the highest one doesn't exceed the number we support. 1808 */ 1809 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1810 1811 /* Our RX is an IPA producer */ 1812 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1813 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1814 if (max > IPA_ENDPOINT_MAX) { 1815 dev_err(dev, "too many endpoints (%u > %u)\n", 1816 max, IPA_ENDPOINT_MAX); 1817 return -EINVAL; 1818 } 1819 rx_mask = GENMASK(max - 1, rx_base); 1820 1821 /* Our TX is an IPA consumer */ 1822 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1823 tx_mask = GENMASK(max - 1, 0); 1824 1825 ipa->available = rx_mask | tx_mask; 1826 1827 /* Check for initialized endpoints not supported by the hardware */ 1828 if (ipa->initialized & ~ipa->available) { 1829 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1830 ipa->initialized & ~ipa->available); 1831 ret = -EINVAL; /* Report other errors too */ 1832 } 1833 1834 initialized = ipa->initialized; 1835 while (initialized) { 1836 u32 endpoint_id = __ffs(initialized); 1837 struct ipa_endpoint *endpoint; 1838 1839 initialized ^= BIT(endpoint_id); 1840 1841 /* Make sure it's pointing in the right direction */ 1842 endpoint = &ipa->endpoint[endpoint_id]; 1843 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1844 dev_err(dev, "endpoint id %u wrong direction\n", 1845 endpoint_id); 1846 ret = -EINVAL; 1847 } 1848 } 1849 1850 return ret; 1851 } 1852 1853 void ipa_endpoint_deconfig(struct ipa *ipa) 1854 { 1855 ipa->available = 0; /* Nothing more to do */ 1856 } 1857 1858 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1859 const struct ipa_gsi_endpoint_data *data) 1860 { 1861 struct ipa_endpoint *endpoint; 1862 1863 endpoint = &ipa->endpoint[data->endpoint_id]; 1864 1865 if (data->ee_id == GSI_EE_AP) 1866 ipa->channel_map[data->channel_id] = endpoint; 1867 ipa->name_map[name] = endpoint; 1868 1869 endpoint->ipa = ipa; 1870 endpoint->ee_id = data->ee_id; 1871 endpoint->channel_id = data->channel_id; 1872 endpoint->endpoint_id = data->endpoint_id; 1873 endpoint->toward_ipa = data->toward_ipa; 1874 endpoint->data = &data->endpoint.config; 1875 1876 ipa->initialized |= BIT(endpoint->endpoint_id); 1877 } 1878 1879 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1880 { 1881 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1882 1883 memset(endpoint, 0, sizeof(*endpoint)); 1884 } 1885 1886 void ipa_endpoint_exit(struct ipa *ipa) 1887 { 1888 u32 initialized = ipa->initialized; 1889 1890 while (initialized) { 1891 u32 endpoint_id = __fls(initialized); 1892 1893 initialized ^= BIT(endpoint_id); 1894 1895 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1896 } 1897 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1898 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1899 } 1900 1901 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1902 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1903 const struct ipa_gsi_endpoint_data *data) 1904 { 1905 enum ipa_endpoint_name name; 1906 u32 filter_map; 1907 1908 if (!ipa_endpoint_data_valid(ipa, count, data)) 1909 return 0; /* Error */ 1910 1911 ipa->initialized = 0; 1912 1913 filter_map = 0; 1914 for (name = 0; name < count; name++, data++) { 1915 if (ipa_gsi_endpoint_data_empty(data)) 1916 continue; /* Skip over empty slots */ 1917 1918 ipa_endpoint_init_one(ipa, name, data); 1919 1920 if (data->endpoint.filter_support) 1921 filter_map |= BIT(data->endpoint_id); 1922 } 1923 1924 if (!ipa_filter_map_valid(ipa, filter_map)) 1925 goto err_endpoint_exit; 1926 1927 return filter_map; /* Non-zero bitmask */ 1928 1929 err_endpoint_exit: 1930 ipa_endpoint_exit(ipa); 1931 1932 return 0; /* Error */ 1933 } 1934