1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2022 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/refcount.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_private.h" 16 #include "gsi_trans.h" 17 #include "ipa_gsi.h" 18 #include "ipa_data.h" 19 #include "ipa_cmd.h" 20 21 /** 22 * DOC: GSI Transactions 23 * 24 * A GSI transaction abstracts the behavior of a GSI channel by representing 25 * everything about a related group of IPA operations in a single structure. 26 * (A "operation" in this sense is either a data transfer or an IPA immediate 27 * command.) Most details of interaction with the GSI hardware are managed 28 * by the GSI transaction core, allowing users to simply describe operations 29 * to be performed. When a transaction has completed a callback function 30 * (dependent on the type of endpoint associated with the channel) allows 31 * cleanup of resources associated with the transaction. 32 * 33 * To perform an operation (or set of them), a user of the GSI transaction 34 * interface allocates a transaction, indicating the number of TREs required 35 * (one per operation). If sufficient TREs are available, they are reserved 36 * for use in the transaction and the allocation succeeds. This way 37 * exhaustion of the available TREs in a channel ring is detected as early 38 * as possible. Any other resources that might be needed to complete a 39 * transaction are also allocated when the transaction is allocated. 40 * 41 * Operations performed as part of a transaction are represented in an array 42 * of Linux scatterlist structures, allocated with the transaction. These 43 * scatterlist structures are initialized by "adding" operations to the 44 * transaction. If a buffer in an operation must be mapped for DMA, this is 45 * done at the time it is added to the transaction. It is possible for a 46 * mapping error to occur when an operation is added. In this case the 47 * transaction should simply be freed; this correctly releases resources 48 * associated with the transaction. 49 * 50 * Once all operations have been successfully added to a transaction, the 51 * transaction is committed. Committing transfers ownership of the entire 52 * transaction to the GSI transaction core. The GSI transaction code 53 * formats the content of the scatterlist array into the channel ring 54 * buffer and informs the hardware that new TREs are available to process. 55 * 56 * The last TRE in each transaction is marked to interrupt the AP when the 57 * GSI hardware has completed it. Because transfers described by TREs are 58 * performed strictly in order, signaling the completion of just the last 59 * TRE in the transaction is sufficient to indicate the full transaction 60 * is complete. 61 * 62 * When a transaction is complete, ipa_gsi_trans_complete() is called by the 63 * GSI code into the IPA layer, allowing it to perform any final cleanup 64 * required before the transaction is freed. 65 */ 66 67 /* Hardware values representing a transfer element type */ 68 enum gsi_tre_type { 69 GSI_RE_XFER = 0x2, 70 GSI_RE_IMMD_CMD = 0x3, 71 }; 72 73 /* An entry in a channel ring */ 74 struct gsi_tre { 75 __le64 addr; /* DMA address */ 76 __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ 77 __le16 reserved; 78 __le32 flags; /* TRE_FLAGS_* */ 79 }; 80 81 /* gsi_tre->flags mask values (in CPU byte order) */ 82 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) 83 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) 84 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) 85 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) 86 87 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, 88 u32 max_alloc) 89 { 90 void *virt; 91 92 if (!size) 93 return -EINVAL; 94 if (count < max_alloc) 95 return -EINVAL; 96 if (!max_alloc) 97 return -EINVAL; 98 99 /* By allocating a few extra entries in our pool (one less 100 * than the maximum number that will be requested in a 101 * single allocation), we can always satisfy requests without 102 * ever worrying about straddling the end of the pool array. 103 * If there aren't enough entries starting at the free index, 104 * we just allocate free entries from the beginning of the pool. 105 */ 106 virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); 107 if (!virt) 108 return -ENOMEM; 109 110 pool->base = virt; 111 /* If the allocator gave us any extra memory, use it */ 112 pool->count = ksize(pool->base) / size; 113 pool->free = 0; 114 pool->max_alloc = max_alloc; 115 pool->size = size; 116 pool->addr = 0; /* Only used for DMA pools */ 117 118 return 0; 119 } 120 121 void gsi_trans_pool_exit(struct gsi_trans_pool *pool) 122 { 123 kfree(pool->base); 124 memset(pool, 0, sizeof(*pool)); 125 } 126 127 /* Home-grown DMA pool. This way we can preallocate the pool, and guarantee 128 * allocations will succeed. The immediate commands in a transaction can 129 * require up to max_alloc elements from the pool. But we only allow 130 * allocation of a single element from a DMA pool at a time. 131 */ 132 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, 133 size_t size, u32 count, u32 max_alloc) 134 { 135 size_t total_size; 136 dma_addr_t addr; 137 void *virt; 138 139 if (!size) 140 return -EINVAL; 141 if (count < max_alloc) 142 return -EINVAL; 143 if (!max_alloc) 144 return -EINVAL; 145 146 /* Don't let allocations cross a power-of-two boundary */ 147 size = __roundup_pow_of_two(size); 148 total_size = (count + max_alloc - 1) * size; 149 150 /* The allocator will give us a power-of-2 number of pages 151 * sufficient to satisfy our request. Round up our requested 152 * size to avoid any unused space in the allocation. This way 153 * gsi_trans_pool_exit_dma() can assume the total allocated 154 * size is exactly (count * size). 155 */ 156 total_size = get_order(total_size) << PAGE_SHIFT; 157 158 virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); 159 if (!virt) 160 return -ENOMEM; 161 162 pool->base = virt; 163 pool->count = total_size / size; 164 pool->free = 0; 165 pool->size = size; 166 pool->max_alloc = max_alloc; 167 pool->addr = addr; 168 169 return 0; 170 } 171 172 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) 173 { 174 size_t total_size = pool->count * pool->size; 175 176 dma_free_coherent(dev, total_size, pool->base, pool->addr); 177 memset(pool, 0, sizeof(*pool)); 178 } 179 180 /* Return the byte offset of the next free entry in the pool */ 181 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) 182 { 183 u32 offset; 184 185 WARN_ON(!count); 186 WARN_ON(count > pool->max_alloc); 187 188 /* Allocate from beginning if wrap would occur */ 189 if (count > pool->count - pool->free) 190 pool->free = 0; 191 192 offset = pool->free * pool->size; 193 pool->free += count; 194 memset(pool->base + offset, 0, count * pool->size); 195 196 return offset; 197 } 198 199 /* Allocate a contiguous block of zeroed entries from a pool */ 200 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) 201 { 202 return pool->base + gsi_trans_pool_alloc_common(pool, count); 203 } 204 205 /* Allocate a single zeroed entry from a DMA pool */ 206 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) 207 { 208 u32 offset = gsi_trans_pool_alloc_common(pool, 1); 209 210 *addr = pool->addr + offset; 211 212 return pool->base + offset; 213 } 214 215 /* Map a TRE ring entry index to the transaction it is associated with */ 216 static void gsi_trans_map(struct gsi_trans *trans, u32 index) 217 { 218 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 219 220 /* The completion event will indicate the last TRE used */ 221 index += trans->used_count - 1; 222 223 /* Note: index *must* be used modulo the ring count here */ 224 channel->trans_info.map[index % channel->tre_ring.count] = trans; 225 } 226 227 /* Return the transaction mapped to a given ring entry */ 228 struct gsi_trans * 229 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) 230 { 231 /* Note: index *must* be used modulo the ring count here */ 232 return channel->trans_info.map[index % channel->tre_ring.count]; 233 } 234 235 /* Return the oldest completed transaction for a channel (or null) */ 236 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) 237 { 238 struct gsi_trans_info *trans_info = &channel->trans_info; 239 u16 trans_id = trans_info->completed_id; 240 241 if (trans_id == trans_info->pending_id) { 242 gsi_channel_update(channel); 243 if (trans_id == trans_info->pending_id) 244 return NULL; 245 } 246 247 return &trans_info->trans[trans_id %= channel->tre_count]; 248 } 249 250 /* Move a transaction from allocated to committed state */ 251 static void gsi_trans_move_committed(struct gsi_trans *trans) 252 { 253 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 254 struct gsi_trans_info *trans_info = &channel->trans_info; 255 256 /* This allocated transaction is now committed */ 257 trans_info->allocated_id++; 258 } 259 260 /* Move committed transactions to pending state */ 261 static void gsi_trans_move_pending(struct gsi_trans *trans) 262 { 263 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 264 struct gsi_trans_info *trans_info = &channel->trans_info; 265 u16 trans_index = trans - &trans_info->trans[0]; 266 u16 delta; 267 268 /* These committed transactions are now pending */ 269 delta = trans_index - trans_info->committed_id + 1; 270 trans_info->committed_id += delta % channel->tre_count; 271 } 272 273 /* Move pending transactions to completed state */ 274 void gsi_trans_move_complete(struct gsi_trans *trans) 275 { 276 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 277 struct gsi_trans_info *trans_info = &channel->trans_info; 278 u16 trans_index = trans - trans_info->trans; 279 u16 delta; 280 281 /* These pending transactions are now completed */ 282 delta = trans_index - trans_info->pending_id + 1; 283 delta %= channel->tre_count; 284 trans_info->pending_id += delta; 285 } 286 287 /* Move a transaction from completed to polled state */ 288 void gsi_trans_move_polled(struct gsi_trans *trans) 289 { 290 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 291 struct gsi_trans_info *trans_info = &channel->trans_info; 292 293 /* This completed transaction is now polled */ 294 trans_info->completed_id++; 295 } 296 297 /* Reserve some number of TREs on a channel. Returns true if successful */ 298 static bool 299 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) 300 { 301 int avail = atomic_read(&trans_info->tre_avail); 302 int new; 303 304 do { 305 new = avail - (int)tre_count; 306 if (unlikely(new < 0)) 307 return false; 308 } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); 309 310 return true; 311 } 312 313 /* Release previously-reserved TRE entries to a channel */ 314 static void 315 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) 316 { 317 atomic_add(tre_count, &trans_info->tre_avail); 318 } 319 320 /* Return true if no transactions are allocated, false otherwise */ 321 bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id) 322 { 323 u32 tre_max = gsi_channel_tre_max(gsi, channel_id); 324 struct gsi_trans_info *trans_info; 325 326 trans_info = &gsi->channel[channel_id].trans_info; 327 328 return atomic_read(&trans_info->tre_avail) == tre_max; 329 } 330 331 /* Allocate a GSI transaction on a channel */ 332 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, 333 u32 tre_count, 334 enum dma_data_direction direction) 335 { 336 struct gsi_channel *channel = &gsi->channel[channel_id]; 337 struct gsi_trans_info *trans_info; 338 struct gsi_trans *trans; 339 u16 trans_index; 340 341 if (WARN_ON(tre_count > channel->trans_tre_max)) 342 return NULL; 343 344 trans_info = &channel->trans_info; 345 346 /* If we can't reserve the TREs for the transaction, we're done */ 347 if (!gsi_trans_tre_reserve(trans_info, tre_count)) 348 return NULL; 349 350 trans_index = trans_info->free_id % channel->tre_count; 351 trans = &trans_info->trans[trans_index]; 352 memset(trans, 0, sizeof(*trans)); 353 354 /* Initialize non-zero fields in the transaction */ 355 trans->gsi = gsi; 356 trans->channel_id = channel_id; 357 trans->rsvd_count = tre_count; 358 init_completion(&trans->completion); 359 360 /* Allocate the scatterlist */ 361 trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); 362 sg_init_marker(trans->sgl, tre_count); 363 364 trans->direction = direction; 365 refcount_set(&trans->refcount, 1); 366 367 /* This free transaction is now allocated */ 368 trans_info->free_id++; 369 370 return trans; 371 } 372 373 /* Free a previously-allocated transaction */ 374 void gsi_trans_free(struct gsi_trans *trans) 375 { 376 struct gsi_trans_info *trans_info; 377 378 if (!refcount_dec_and_test(&trans->refcount)) 379 return; 380 381 /* Unused transactions are allocated but never committed, pending, 382 * completed, or polled. 383 */ 384 trans_info = &trans->gsi->channel[trans->channel_id].trans_info; 385 if (!trans->used_count) { 386 trans_info->allocated_id++; 387 trans_info->committed_id++; 388 trans_info->pending_id++; 389 trans_info->completed_id++; 390 } else { 391 ipa_gsi_trans_release(trans); 392 } 393 394 /* This transaction is now free */ 395 trans_info->polled_id++; 396 397 /* Releasing the reserved TREs implicitly frees the sgl[] and 398 * (if present) info[] arrays, plus the transaction itself. 399 */ 400 gsi_trans_tre_release(trans_info, trans->rsvd_count); 401 } 402 403 /* Add an immediate command to a transaction */ 404 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, 405 dma_addr_t addr, enum ipa_cmd_opcode opcode) 406 { 407 u32 which = trans->used_count++; 408 struct scatterlist *sg; 409 410 WARN_ON(which >= trans->rsvd_count); 411 412 /* Commands are quite different from data transfer requests. 413 * Their payloads come from a pool whose memory is allocated 414 * using dma_alloc_coherent(). We therefore do *not* map them 415 * for DMA (unlike what we do for pages and skbs). 416 * 417 * When a transaction completes, the SGL is normally unmapped. 418 * A command transaction has direction DMA_NONE, which tells 419 * gsi_trans_complete() to skip the unmapping step. 420 * 421 * The only things we use directly in a command scatter/gather 422 * entry are the DMA address and length. We still need the SG 423 * table flags to be maintained though, so assign a NULL page 424 * pointer for that purpose. 425 */ 426 sg = &trans->sgl[which]; 427 sg_assign_page(sg, NULL); 428 sg_dma_address(sg) = addr; 429 sg_dma_len(sg) = size; 430 431 trans->cmd_opcode[which] = opcode; 432 } 433 434 /* Add a page transfer to a transaction. It will fill the only TRE. */ 435 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, 436 u32 offset) 437 { 438 struct scatterlist *sg = &trans->sgl[0]; 439 int ret; 440 441 if (WARN_ON(trans->rsvd_count != 1)) 442 return -EINVAL; 443 if (WARN_ON(trans->used_count)) 444 return -EINVAL; 445 446 sg_set_page(sg, page, size, offset); 447 ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); 448 if (!ret) 449 return -ENOMEM; 450 451 trans->used_count++; /* Transaction now owns the (DMA mapped) page */ 452 453 return 0; 454 } 455 456 /* Add an SKB transfer to a transaction. No other TREs will be used. */ 457 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) 458 { 459 struct scatterlist *sg = &trans->sgl[0]; 460 u32 used_count; 461 int ret; 462 463 if (WARN_ON(trans->rsvd_count != 1)) 464 return -EINVAL; 465 if (WARN_ON(trans->used_count)) 466 return -EINVAL; 467 468 /* skb->len will not be 0 (checked early) */ 469 ret = skb_to_sgvec(skb, sg, 0, skb->len); 470 if (ret < 0) 471 return ret; 472 used_count = ret; 473 474 ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction); 475 if (!ret) 476 return -ENOMEM; 477 478 /* Transaction now owns the (DMA mapped) skb */ 479 trans->used_count += used_count; 480 481 return 0; 482 } 483 484 /* Compute the length/opcode value to use for a TRE */ 485 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) 486 { 487 return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) 488 : cpu_to_le16((u16)opcode); 489 } 490 491 /* Compute the flags value to use for a given TRE */ 492 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) 493 { 494 enum gsi_tre_type tre_type; 495 u32 tre_flags; 496 497 tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; 498 tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); 499 500 /* Last TRE contains interrupt flags */ 501 if (last_tre) { 502 /* All transactions end in a transfer completion interrupt */ 503 tre_flags |= TRE_FLAGS_IEOT_FMASK; 504 /* Don't interrupt when outbound commands are acknowledged */ 505 if (bei) 506 tre_flags |= TRE_FLAGS_BEI_FMASK; 507 } else { /* All others indicate there's more to come */ 508 tre_flags |= TRE_FLAGS_CHAIN_FMASK; 509 } 510 511 return cpu_to_le32(tre_flags); 512 } 513 514 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, 515 u32 len, bool last_tre, bool bei, 516 enum ipa_cmd_opcode opcode) 517 { 518 struct gsi_tre tre; 519 520 tre.addr = cpu_to_le64(addr); 521 tre.len_opcode = gsi_tre_len_opcode(opcode, len); 522 tre.reserved = 0; 523 tre.flags = gsi_tre_flags(last_tre, bei, opcode); 524 525 /* ARM64 can write 16 bytes as a unit with a single instruction. 526 * Doing the assignment this way is an attempt to make that happen. 527 */ 528 *dest_tre = tre; 529 } 530 531 /** 532 * __gsi_trans_commit() - Common GSI transaction commit code 533 * @trans: Transaction to commit 534 * @ring_db: Whether to tell the hardware about these queued transfers 535 * 536 * Formats channel ring TRE entries based on the content of the scatterlist. 537 * Maps a transaction pointer to the last ring entry used for the transaction, 538 * so it can be recovered when it completes. Moves the transaction to 539 * pending state. Finally, updates the channel ring pointer and optionally 540 * rings the doorbell. 541 */ 542 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 543 { 544 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 545 struct gsi_ring *tre_ring = &channel->tre_ring; 546 enum ipa_cmd_opcode opcode = IPA_CMD_NONE; 547 bool bei = channel->toward_ipa; 548 struct gsi_tre *dest_tre; 549 struct scatterlist *sg; 550 u32 byte_count = 0; 551 u8 *cmd_opcode; 552 u32 avail; 553 u32 i; 554 555 WARN_ON(!trans->used_count); 556 557 /* Consume the entries. If we cross the end of the ring while 558 * filling them we'll switch to the beginning to finish. 559 * If there is no info array we're doing a simple data 560 * transfer request, whose opcode is IPA_CMD_NONE. 561 */ 562 cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL; 563 avail = tre_ring->count - tre_ring->index % tre_ring->count; 564 dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); 565 for_each_sg(trans->sgl, sg, trans->used_count, i) { 566 bool last_tre = i == trans->used_count - 1; 567 dma_addr_t addr = sg_dma_address(sg); 568 u32 len = sg_dma_len(sg); 569 570 byte_count += len; 571 if (!avail--) 572 dest_tre = gsi_ring_virt(tre_ring, 0); 573 if (cmd_opcode) 574 opcode = *cmd_opcode++; 575 576 gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); 577 dest_tre++; 578 } 579 /* Associate the TRE with the transaction */ 580 gsi_trans_map(trans, tre_ring->index); 581 582 tre_ring->index += trans->used_count; 583 584 trans->len = byte_count; 585 if (channel->toward_ipa) 586 gsi_trans_tx_committed(trans); 587 588 gsi_trans_move_committed(trans); 589 590 /* Ring doorbell if requested, or if all TREs are allocated */ 591 if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { 592 /* Report what we're handing off to hardware for TX channels */ 593 if (channel->toward_ipa) 594 gsi_trans_tx_queued(trans); 595 gsi_trans_move_pending(trans); 596 gsi_channel_doorbell(channel); 597 } 598 } 599 600 /* Commit a GSI transaction */ 601 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 602 { 603 if (trans->used_count) 604 __gsi_trans_commit(trans, ring_db); 605 else 606 gsi_trans_free(trans); 607 } 608 609 /* Commit a GSI transaction and wait for it to complete */ 610 void gsi_trans_commit_wait(struct gsi_trans *trans) 611 { 612 if (!trans->used_count) 613 goto out_trans_free; 614 615 refcount_inc(&trans->refcount); 616 617 __gsi_trans_commit(trans, true); 618 619 wait_for_completion(&trans->completion); 620 621 out_trans_free: 622 gsi_trans_free(trans); 623 } 624 625 /* Process the completion of a transaction; called while polling */ 626 void gsi_trans_complete(struct gsi_trans *trans) 627 { 628 /* If the entire SGL was mapped when added, unmap it now */ 629 if (trans->direction != DMA_NONE) 630 dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count, 631 trans->direction); 632 633 ipa_gsi_trans_complete(trans); 634 635 complete(&trans->completion); 636 637 gsi_trans_free(trans); 638 } 639 640 /* Cancel a channel's pending transactions */ 641 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) 642 { 643 struct gsi_trans_info *trans_info = &channel->trans_info; 644 u16 trans_id = trans_info->pending_id; 645 646 /* channel->gsi->mutex is held by caller */ 647 648 /* If there are no pending transactions, we're done */ 649 if (trans_id == trans_info->committed_id) 650 return; 651 652 /* Mark all pending transactions cancelled */ 653 do { 654 struct gsi_trans *trans; 655 656 trans = &trans_info->trans[trans_id % channel->tre_count]; 657 trans->cancelled = true; 658 } while (++trans_id != trans_info->committed_id); 659 660 /* All pending transactions are now completed */ 661 trans_info->pending_id = trans_info->committed_id; 662 663 /* Schedule NAPI polling to complete the cancelled transactions */ 664 napi_schedule(&channel->napi); 665 } 666 667 /* Issue a command to read a single byte from a channel */ 668 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) 669 { 670 struct gsi_channel *channel = &gsi->channel[channel_id]; 671 struct gsi_ring *tre_ring = &channel->tre_ring; 672 struct gsi_trans_info *trans_info; 673 struct gsi_tre *dest_tre; 674 675 trans_info = &channel->trans_info; 676 677 /* First reserve the TRE, if possible */ 678 if (!gsi_trans_tre_reserve(trans_info, 1)) 679 return -EBUSY; 680 681 /* Now fill the reserved TRE and tell the hardware */ 682 683 dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); 684 gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); 685 686 tre_ring->index++; 687 gsi_channel_doorbell(channel); 688 689 return 0; 690 } 691 692 /* Mark a gsi_trans_read_byte() request done */ 693 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) 694 { 695 struct gsi_channel *channel = &gsi->channel[channel_id]; 696 697 gsi_trans_tre_release(&channel->trans_info, 1); 698 } 699 700 /* Initialize a channel's GSI transaction info */ 701 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) 702 { 703 struct gsi_channel *channel = &gsi->channel[channel_id]; 704 u32 tre_count = channel->tre_count; 705 struct gsi_trans_info *trans_info; 706 u32 tre_max; 707 int ret; 708 709 /* Ensure the size of a channel element is what's expected */ 710 BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); 711 712 trans_info = &channel->trans_info; 713 714 /* The tre_avail field is what ultimately limits the number of 715 * outstanding transactions and their resources. A transaction 716 * allocation succeeds only if the TREs available are sufficient 717 * for what the transaction might need. 718 */ 719 tre_max = gsi_channel_tre_max(channel->gsi, channel_id); 720 atomic_set(&trans_info->tre_avail, tre_max); 721 722 /* We can't use more TREs than the number available in the ring. 723 * This limits the number of transactions that can be outstanding. 724 * Worst case is one TRE per transaction (but we actually limit 725 * it to something a little less than that). By allocating a 726 * power-of-two number of transactions we can use an index 727 * modulo that number to determine the next one that's free. 728 * Transactions are allocated one at a time. 729 */ 730 trans_info->trans = kcalloc(tre_count, sizeof(*trans_info->trans), 731 GFP_KERNEL); 732 if (!trans_info->trans) 733 return -ENOMEM; 734 trans_info->free_id = 0; /* all modulo channel->tre_count */ 735 trans_info->allocated_id = 0; 736 trans_info->committed_id = 0; 737 trans_info->pending_id = 0; 738 trans_info->completed_id = 0; 739 trans_info->polled_id = 0; 740 741 /* A completion event contains a pointer to the TRE that caused 742 * the event (which will be the last one used by the transaction). 743 * Each entry in this map records the transaction associated 744 * with a corresponding completed TRE. 745 */ 746 trans_info->map = kcalloc(tre_count, sizeof(*trans_info->map), 747 GFP_KERNEL); 748 if (!trans_info->map) { 749 ret = -ENOMEM; 750 goto err_trans_free; 751 } 752 753 /* A transaction uses a scatterlist array to represent the data 754 * transfers implemented by the transaction. Each scatterlist 755 * element is used to fill a single TRE when the transaction is 756 * committed. So we need as many scatterlist elements as the 757 * maximum number of TREs that can be outstanding. 758 */ 759 ret = gsi_trans_pool_init(&trans_info->sg_pool, 760 sizeof(struct scatterlist), 761 tre_max, channel->trans_tre_max); 762 if (ret) 763 goto err_map_free; 764 765 766 return 0; 767 768 err_map_free: 769 kfree(trans_info->map); 770 err_trans_free: 771 kfree(trans_info->trans); 772 773 dev_err(gsi->dev, "error %d initializing channel %u transactions\n", 774 ret, channel_id); 775 776 return ret; 777 } 778 779 /* Inverse of gsi_channel_trans_init() */ 780 void gsi_channel_trans_exit(struct gsi_channel *channel) 781 { 782 struct gsi_trans_info *trans_info = &channel->trans_info; 783 784 gsi_trans_pool_exit(&trans_info->sg_pool); 785 kfree(trans_info->trans); 786 kfree(trans_info->map); 787 } 788