1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 #ifndef _GSI_H_ 7 #define _GSI_H_ 8 9 #include <linux/types.h> 10 #include <linux/spinlock.h> 11 #include <linux/mutex.h> 12 #include <linux/completion.h> 13 #include <linux/platform_device.h> 14 #include <linux/netdevice.h> 15 16 #include "ipa_version.h" 17 18 /* Maximum number of channels and event rings supported by the driver */ 19 #define GSI_CHANNEL_COUNT_MAX 23 20 #define GSI_EVT_RING_COUNT_MAX 24 21 22 /* Maximum TLV FIFO size for a channel; 64 here is arbitrary (and high) */ 23 #define GSI_TLV_MAX 64 24 25 struct device; 26 struct scatterlist; 27 struct platform_device; 28 29 struct gsi; 30 struct gsi_trans; 31 struct gsi_channel_data; 32 struct ipa_gsi_endpoint_data; 33 34 /* Execution environment IDs */ 35 enum gsi_ee_id { 36 GSI_EE_AP = 0x0, 37 GSI_EE_MODEM = 0x1, 38 GSI_EE_UC = 0x2, 39 GSI_EE_TZ = 0x3, 40 }; 41 42 struct gsi_ring { 43 void *virt; /* ring array base address */ 44 dma_addr_t addr; /* primarily low 32 bits used */ 45 u32 count; /* number of elements in ring */ 46 47 /* The ring index value indicates the next "open" entry in the ring. 48 * 49 * A channel ring consists of TRE entries filled by the AP and passed 50 * to the hardware for processing. For a channel ring, the ring index 51 * identifies the next unused entry to be filled by the AP. 52 * 53 * An event ring consists of event structures filled by the hardware 54 * and passed to the AP. For event rings, the ring index identifies 55 * the next ring entry that is not known to have been filled by the 56 * hardware. 57 */ 58 u32 index; 59 }; 60 61 /* Transactions use several resources that can be allocated dynamically 62 * but taken from a fixed-size pool. The number of elements required for 63 * the pool is limited by the total number of TREs that can be outstanding. 64 * 65 * If sufficient TREs are available to reserve for a transaction, 66 * allocation from these pools is guaranteed to succeed. Furthermore, 67 * these resources are implicitly freed whenever the TREs in the 68 * transaction they're associated with are released. 69 * 70 * The result of a pool allocation of multiple elements is always 71 * contiguous. 72 */ 73 struct gsi_trans_pool { 74 void *base; /* base address of element pool */ 75 u32 count; /* # elements in the pool */ 76 u32 free; /* next free element in pool (modulo) */ 77 u32 size; /* size (bytes) of an element */ 78 u32 max_alloc; /* max allocation request */ 79 dma_addr_t addr; /* DMA address if DMA pool (or 0) */ 80 }; 81 82 struct gsi_trans_info { 83 atomic_t tre_avail; /* TREs available for allocation */ 84 struct gsi_trans_pool pool; /* transaction pool */ 85 struct gsi_trans_pool sg_pool; /* scatterlist pool */ 86 struct gsi_trans_pool cmd_pool; /* command payload DMA pool */ 87 struct gsi_trans_pool info_pool;/* command information pool */ 88 struct gsi_trans **map; /* TRE -> transaction map */ 89 90 spinlock_t spinlock; /* protects updates to the lists */ 91 struct list_head alloc; /* allocated, not committed */ 92 struct list_head pending; /* committed, awaiting completion */ 93 struct list_head complete; /* completed, awaiting poll */ 94 struct list_head polled; /* returned by gsi_channel_poll_one() */ 95 }; 96 97 /* Hardware values signifying the state of a channel */ 98 enum gsi_channel_state { 99 GSI_CHANNEL_STATE_NOT_ALLOCATED = 0x0, 100 GSI_CHANNEL_STATE_ALLOCATED = 0x1, 101 GSI_CHANNEL_STATE_STARTED = 0x2, 102 GSI_CHANNEL_STATE_STOPPED = 0x3, 103 GSI_CHANNEL_STATE_STOP_IN_PROC = 0x4, 104 GSI_CHANNEL_STATE_ERROR = 0xf, 105 }; 106 107 /* We only care about channels between IPA and AP */ 108 struct gsi_channel { 109 struct gsi *gsi; 110 bool toward_ipa; 111 bool command; /* AP command TX channel or not */ 112 113 u8 tlv_count; /* # entries in TLV FIFO */ 114 u16 tre_count; 115 u16 event_count; 116 117 struct completion completion; /* signals channel command completion */ 118 119 struct gsi_ring tre_ring; 120 u32 evt_ring_id; 121 122 u64 byte_count; /* total # bytes transferred */ 123 u64 trans_count; /* total # transactions */ 124 /* The following counts are used only for TX endpoints */ 125 u64 queued_byte_count; /* last reported queued byte count */ 126 u64 queued_trans_count; /* ...and queued trans count */ 127 u64 compl_byte_count; /* last reported completed byte count */ 128 u64 compl_trans_count; /* ...and completed trans count */ 129 130 struct gsi_trans_info trans_info; 131 132 struct napi_struct napi; 133 }; 134 135 /* Hardware values signifying the state of an event ring */ 136 enum gsi_evt_ring_state { 137 GSI_EVT_RING_STATE_NOT_ALLOCATED = 0x0, 138 GSI_EVT_RING_STATE_ALLOCATED = 0x1, 139 GSI_EVT_RING_STATE_ERROR = 0xf, 140 }; 141 142 struct gsi_evt_ring { 143 struct gsi_channel *channel; 144 struct completion completion; /* signals event ring state changes */ 145 struct gsi_ring ring; 146 }; 147 148 struct gsi { 149 struct device *dev; /* Same as IPA device */ 150 enum ipa_version version; 151 struct net_device dummy_dev; /* needed for NAPI */ 152 void __iomem *virt_raw; /* I/O mapped address range */ 153 void __iomem *virt; /* Adjusted for most registers */ 154 u32 irq; 155 u32 channel_count; 156 u32 evt_ring_count; 157 struct gsi_channel channel[GSI_CHANNEL_COUNT_MAX]; 158 struct gsi_evt_ring evt_ring[GSI_EVT_RING_COUNT_MAX]; 159 u32 event_bitmap; /* allocated event rings */ 160 u32 modem_channel_bitmap; /* modem channels to allocate */ 161 u32 type_enabled_bitmap; /* GSI IRQ types enabled */ 162 u32 ieob_enabled_bitmap; /* IEOB IRQ enabled (event rings) */ 163 struct completion completion; /* for global EE commands */ 164 int result; /* Negative errno (generic commands) */ 165 struct mutex mutex; /* protects commands, programming */ 166 }; 167 168 /** 169 * gsi_setup() - Set up the GSI subsystem 170 * @gsi: Address of GSI structure embedded in an IPA structure 171 * 172 * Return: 0 if successful, or a negative error code 173 * 174 * Performs initialization that must wait until the GSI hardware is 175 * ready (including firmware loaded). 176 */ 177 int gsi_setup(struct gsi *gsi); 178 179 /** 180 * gsi_teardown() - Tear down GSI subsystem 181 * @gsi: GSI address previously passed to a successful gsi_setup() call 182 */ 183 void gsi_teardown(struct gsi *gsi); 184 185 /** 186 * gsi_channel_tre_max() - Channel maximum number of in-flight TREs 187 * @gsi: GSI pointer 188 * @channel_id: Channel whose limit is to be returned 189 * 190 * Return: The maximum number of TREs oustanding on the channel 191 */ 192 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id); 193 194 /** 195 * gsi_channel_trans_tre_max() - Maximum TREs in a single transaction 196 * @gsi: GSI pointer 197 * @channel_id: Channel whose limit is to be returned 198 * 199 * Return: The maximum TRE count per transaction on the channel 200 */ 201 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id); 202 203 /** 204 * gsi_channel_start() - Start an allocated GSI channel 205 * @gsi: GSI pointer 206 * @channel_id: Channel to start 207 * 208 * Return: 0 if successful, or a negative error code 209 */ 210 int gsi_channel_start(struct gsi *gsi, u32 channel_id); 211 212 /** 213 * gsi_channel_stop() - Stop a started GSI channel 214 * @gsi: GSI pointer returned by gsi_setup() 215 * @channel_id: Channel to stop 216 * 217 * Return: 0 if successful, or a negative error code 218 */ 219 int gsi_channel_stop(struct gsi *gsi, u32 channel_id); 220 221 /** 222 * gsi_channel_reset() - Reset an allocated GSI channel 223 * @gsi: GSI pointer 224 * @channel_id: Channel to be reset 225 * @doorbell: Whether to (possibly) enable the doorbell engine 226 * 227 * Reset a channel and reconfigure it. The @doorbell flag indicates 228 * that the doorbell engine should be enabled if needed. 229 * 230 * GSI hardware relinquishes ownership of all pending receive buffer 231 * transactions and they will complete with their cancelled flag set. 232 */ 233 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell); 234 235 /** 236 * gsi_suspend() - Prepare the GSI subsystem for suspend 237 * @gsi: GSI pointer 238 */ 239 void gsi_suspend(struct gsi *gsi); 240 241 /** 242 * gsi_resume() - Resume the GSI subsystem following suspend 243 * @gsi: GSI pointer 244 */ 245 void gsi_resume(struct gsi *gsi); 246 247 /** 248 * gsi_channel_suspend() - Suspend a GSI channel 249 * @gsi: GSI pointer 250 * @channel_id: Channel to suspend 251 * 252 * For IPA v4.0+, suspend is implemented by stopping the channel. 253 */ 254 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id); 255 256 /** 257 * gsi_channel_resume() - Resume a suspended GSI channel 258 * @gsi: GSI pointer 259 * @channel_id: Channel to resume 260 * 261 * For IPA v4.0+, the stopped channel is started again. 262 */ 263 int gsi_channel_resume(struct gsi *gsi, u32 channel_id); 264 265 /** 266 * gsi_init() - Initialize the GSI subsystem 267 * @gsi: Address of GSI structure embedded in an IPA structure 268 * @pdev: IPA platform device 269 * @version: IPA hardware version (implies GSI version) 270 * @count: Number of entries in the configuration data array 271 * @data: Endpoint and channel configuration data 272 * 273 * Return: 0 if successful, or a negative error code 274 * 275 * Early stage initialization of the GSI subsystem, performing tasks 276 * that can be done before the GSI hardware is ready to use. 277 */ 278 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 279 enum ipa_version version, u32 count, 280 const struct ipa_gsi_endpoint_data *data); 281 282 /** 283 * gsi_exit() - Exit the GSI subsystem 284 * @gsi: GSI address previously passed to a successful gsi_init() call 285 */ 286 void gsi_exit(struct gsi *gsi); 287 288 #endif /* _GSI_H_ */ 289