xref: /linux/drivers/net/ipa/gsi.c (revision e8e507a8ac90d48053dfdea9d4855495b0204956)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* Update the GSI IRQ type register with the cached value */
179 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
180 {
181 	gsi->type_enabled_bitmap = val;
182 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
183 }
184 
185 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
186 {
187 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
188 }
189 
190 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
191 {
192 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
193 }
194 
195 /* Turn off all GSI interrupts initially */
196 static void gsi_irq_setup(struct gsi *gsi)
197 {
198 	u32 adjust;
199 
200 	/* Disable all interrupt types */
201 	gsi_irq_type_update(gsi, 0);
202 
203 	/* Clear all type-specific interrupt masks */
204 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
205 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
206 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
207 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
208 
209 	/* Reverse the offset adjustment for inter-EE register offsets */
210 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
211 	iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
212 	iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
213 
214 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
215 }
216 
217 /* Turn off all GSI interrupts when we're all done */
218 static void gsi_irq_teardown(struct gsi *gsi)
219 {
220 	/* Nothing to do */
221 }
222 
223 /* Event ring commands are performed one at a time.  Their completion
224  * is signaled by the event ring control GSI interrupt type, which is
225  * only enabled when we issue an event ring command.  Only the event
226  * ring being operated on has this interrupt enabled.
227  */
228 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
229 {
230 	u32 val = BIT(evt_ring_id);
231 
232 	/* There's a small chance that a previous command completed
233 	 * after the interrupt was disabled, so make sure we have no
234 	 * pending interrupts before we enable them.
235 	 */
236 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
237 
238 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
239 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
240 }
241 
242 /* Disable event ring control interrupts */
243 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
244 {
245 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
246 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
247 }
248 
249 /* Channel commands are performed one at a time.  Their completion is
250  * signaled by the channel control GSI interrupt type, which is only
251  * enabled when we issue a channel command.  Only the channel being
252  * operated on has this interrupt enabled.
253  */
254 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
255 {
256 	u32 val = BIT(channel_id);
257 
258 	/* There's a small chance that a previous command completed
259 	 * after the interrupt was disabled, so make sure we have no
260 	 * pending interrupts before we enable them.
261 	 */
262 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
263 
264 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
265 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
266 }
267 
268 /* Disable channel control interrupts */
269 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
270 {
271 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
272 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
273 }
274 
275 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
276 {
277 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
278 	u32 val;
279 
280 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
281 	val = gsi->ieob_enabled_bitmap;
282 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
283 
284 	/* Enable the interrupt type if this is the first channel enabled */
285 	if (enable_ieob)
286 		gsi_irq_type_enable(gsi, GSI_IEOB);
287 }
288 
289 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
290 {
291 	u32 val;
292 
293 	gsi->ieob_enabled_bitmap &= ~BIT(evt_ring_id);
294 
295 	/* Disable the interrupt type if this was the last enabled channel */
296 	if (!gsi->ieob_enabled_bitmap)
297 		gsi_irq_type_disable(gsi, GSI_IEOB);
298 
299 	val = gsi->ieob_enabled_bitmap;
300 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
301 }
302 
303 /* Enable all GSI_interrupt types */
304 static void gsi_irq_enable(struct gsi *gsi)
305 {
306 	u32 val;
307 
308 	/* Global interrupts include hardware error reports.  Enable
309 	 * that so we can at least report the error should it occur.
310 	 */
311 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
312 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
313 
314 	/* General GSI interrupts are reported to all EEs; if they occur
315 	 * they are unrecoverable (without reset).  A breakpoint interrupt
316 	 * also exists, but we don't support that.  We want to be notified
317 	 * of errors so we can report them, even if they can't be handled.
318 	 */
319 	val = BIT(BUS_ERROR);
320 	val |= BIT(CMD_FIFO_OVRFLOW);
321 	val |= BIT(MCS_STACK_OVRFLOW);
322 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
323 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
324 }
325 
326 /* Disable all GSI interrupt types */
327 static void gsi_irq_disable(struct gsi *gsi)
328 {
329 	gsi_irq_type_update(gsi, 0);
330 
331 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
332 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
333 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
334 }
335 
336 /* Return the virtual address associated with a ring index */
337 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
338 {
339 	/* Note: index *must* be used modulo the ring count here */
340 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
341 }
342 
343 /* Return the 32-bit DMA address associated with a ring index */
344 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
345 {
346 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
347 }
348 
349 /* Return the ring index of a 32-bit ring offset */
350 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
351 {
352 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
353 }
354 
355 /* Issue a GSI command by writing a value to a register, then wait for
356  * completion to be signaled.  Returns true if the command completes
357  * or false if it times out.
358  */
359 static bool
360 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
361 {
362 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
363 
364 	reinit_completion(completion);
365 
366 	iowrite32(val, gsi->virt + reg);
367 
368 	return !!wait_for_completion_timeout(completion, timeout);
369 }
370 
371 /* Return the hardware's notion of the current state of an event ring */
372 static enum gsi_evt_ring_state
373 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
374 {
375 	u32 val;
376 
377 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
378 
379 	return u32_get_bits(val, EV_CHSTATE_FMASK);
380 }
381 
382 /* Issue an event ring command and wait for it to complete */
383 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
384 				 enum gsi_evt_cmd_opcode opcode)
385 {
386 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
387 	struct completion *completion = &evt_ring->completion;
388 	struct device *dev = gsi->dev;
389 	bool timeout;
390 	u32 val;
391 
392 	/* Enable the completion interrupt for the command */
393 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
394 
395 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
396 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
397 
398 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
399 
400 	gsi_irq_ev_ctrl_disable(gsi);
401 
402 	if (!timeout)
403 		return;
404 
405 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
406 		opcode, evt_ring_id, evt_ring->state);
407 }
408 
409 /* Allocate an event ring in NOT_ALLOCATED state */
410 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
411 {
412 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
413 
414 	/* Get initial event ring state */
415 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
416 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
417 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
418 			evt_ring_id, evt_ring->state);
419 		return -EINVAL;
420 	}
421 
422 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
423 
424 	/* If successful the event ring state will have changed */
425 	if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED)
426 		return 0;
427 
428 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
429 		evt_ring_id, evt_ring->state);
430 
431 	return -EIO;
432 }
433 
434 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
435 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
436 {
437 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
438 	enum gsi_evt_ring_state state = evt_ring->state;
439 
440 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
441 	    state != GSI_EVT_RING_STATE_ERROR) {
442 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
443 			evt_ring_id, evt_ring->state);
444 		return;
445 	}
446 
447 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
448 
449 	/* If successful the event ring state will have changed */
450 	if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED)
451 		return;
452 
453 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
454 		evt_ring_id, evt_ring->state);
455 }
456 
457 /* Issue a hardware de-allocation request for an allocated event ring */
458 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
459 {
460 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
461 
462 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
463 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
464 			evt_ring_id, evt_ring->state);
465 		return;
466 	}
467 
468 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
469 
470 	/* If successful the event ring state will have changed */
471 	if (evt_ring->state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
472 		return;
473 
474 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
475 		evt_ring_id, evt_ring->state);
476 }
477 
478 /* Fetch the current state of a channel from hardware */
479 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
480 {
481 	u32 channel_id = gsi_channel_id(channel);
482 	void *virt = channel->gsi->virt;
483 	u32 val;
484 
485 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
486 
487 	return u32_get_bits(val, CHSTATE_FMASK);
488 }
489 
490 /* Issue a channel command and wait for it to complete */
491 static void
492 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
493 {
494 	struct completion *completion = &channel->completion;
495 	u32 channel_id = gsi_channel_id(channel);
496 	struct gsi *gsi = channel->gsi;
497 	struct device *dev = gsi->dev;
498 	bool timeout;
499 	u32 val;
500 
501 	/* Enable the completion interrupt for the command */
502 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
503 
504 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
505 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
506 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
507 
508 	gsi_irq_ch_ctrl_disable(gsi);
509 
510 	if (!timeout)
511 		return;
512 
513 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
514 		opcode, channel_id, gsi_channel_state(channel));
515 }
516 
517 /* Allocate GSI channel in NOT_ALLOCATED state */
518 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
519 {
520 	struct gsi_channel *channel = &gsi->channel[channel_id];
521 	struct device *dev = gsi->dev;
522 	enum gsi_channel_state state;
523 
524 	/* Get initial channel state */
525 	state = gsi_channel_state(channel);
526 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
527 		dev_err(dev, "channel %u bad state %u before alloc\n",
528 			channel_id, state);
529 		return -EINVAL;
530 	}
531 
532 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
533 
534 	/* If successful the channel state will have changed */
535 	state = gsi_channel_state(channel);
536 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
537 		return 0;
538 
539 	dev_err(dev, "channel %u bad state %u after alloc\n",
540 		channel_id, state);
541 
542 	return -EIO;
543 }
544 
545 /* Start an ALLOCATED channel */
546 static int gsi_channel_start_command(struct gsi_channel *channel)
547 {
548 	struct device *dev = channel->gsi->dev;
549 	enum gsi_channel_state state;
550 
551 	state = gsi_channel_state(channel);
552 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
553 	    state != GSI_CHANNEL_STATE_STOPPED) {
554 		dev_err(dev, "channel %u bad state %u before start\n",
555 			gsi_channel_id(channel), state);
556 		return -EINVAL;
557 	}
558 
559 	gsi_channel_command(channel, GSI_CH_START);
560 
561 	/* If successful the channel state will have changed */
562 	state = gsi_channel_state(channel);
563 	if (state == GSI_CHANNEL_STATE_STARTED)
564 		return 0;
565 
566 	dev_err(dev, "channel %u bad state %u after start\n",
567 		gsi_channel_id(channel), state);
568 
569 	return -EIO;
570 }
571 
572 /* Stop a GSI channel in STARTED state */
573 static int gsi_channel_stop_command(struct gsi_channel *channel)
574 {
575 	struct device *dev = channel->gsi->dev;
576 	enum gsi_channel_state state;
577 
578 	state = gsi_channel_state(channel);
579 
580 	/* Channel could have entered STOPPED state since last call
581 	 * if it timed out.  If so, we're done.
582 	 */
583 	if (state == GSI_CHANNEL_STATE_STOPPED)
584 		return 0;
585 
586 	if (state != GSI_CHANNEL_STATE_STARTED &&
587 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
588 		dev_err(dev, "channel %u bad state %u before stop\n",
589 			gsi_channel_id(channel), state);
590 		return -EINVAL;
591 	}
592 
593 	gsi_channel_command(channel, GSI_CH_STOP);
594 
595 	/* If successful the channel state will have changed */
596 	state = gsi_channel_state(channel);
597 	if (state == GSI_CHANNEL_STATE_STOPPED)
598 		return 0;
599 
600 	/* We may have to try again if stop is in progress */
601 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
602 		return -EAGAIN;
603 
604 	dev_err(dev, "channel %u bad state %u after stop\n",
605 		gsi_channel_id(channel), state);
606 
607 	return -EIO;
608 }
609 
610 /* Reset a GSI channel in ALLOCATED or ERROR state. */
611 static void gsi_channel_reset_command(struct gsi_channel *channel)
612 {
613 	struct device *dev = channel->gsi->dev;
614 	enum gsi_channel_state state;
615 
616 	/* A short delay is required before a RESET command */
617 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
618 
619 	state = gsi_channel_state(channel);
620 	if (state != GSI_CHANNEL_STATE_STOPPED &&
621 	    state != GSI_CHANNEL_STATE_ERROR) {
622 		/* No need to reset a channel already in ALLOCATED state */
623 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
624 			dev_err(dev, "channel %u bad state %u before reset\n",
625 				gsi_channel_id(channel), state);
626 		return;
627 	}
628 
629 	gsi_channel_command(channel, GSI_CH_RESET);
630 
631 	/* If successful the channel state will have changed */
632 	state = gsi_channel_state(channel);
633 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
634 		dev_err(dev, "channel %u bad state %u after reset\n",
635 			gsi_channel_id(channel), state);
636 }
637 
638 /* Deallocate an ALLOCATED GSI channel */
639 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
640 {
641 	struct gsi_channel *channel = &gsi->channel[channel_id];
642 	struct device *dev = gsi->dev;
643 	enum gsi_channel_state state;
644 
645 	state = gsi_channel_state(channel);
646 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
647 		dev_err(dev, "channel %u bad state %u before dealloc\n",
648 			channel_id, state);
649 		return;
650 	}
651 
652 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
653 
654 	/* If successful the channel state will have changed */
655 	state = gsi_channel_state(channel);
656 
657 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
658 		dev_err(dev, "channel %u bad state %u after dealloc\n",
659 			channel_id, state);
660 }
661 
662 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
663  * The index argument (modulo the ring count) is the first unfilled entry, so
664  * we supply one less than that with the doorbell.  Update the event ring
665  * index field with the value provided.
666  */
667 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
668 {
669 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
670 	u32 val;
671 
672 	ring->index = index;	/* Next unused entry */
673 
674 	/* Note: index *must* be used modulo the ring count here */
675 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
676 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
677 }
678 
679 /* Program an event ring for use */
680 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
681 {
682 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
683 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
684 	u32 val;
685 
686 	/* We program all event rings as GPI type/protocol */
687 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
688 	val |= EV_INTYPE_FMASK;
689 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
690 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
691 
692 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
693 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
694 
695 	/* The context 2 and 3 registers store the low-order and
696 	 * high-order 32 bits of the address of the event ring,
697 	 * respectively.
698 	 */
699 	val = evt_ring->ring.addr & GENMASK(31, 0);
700 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
701 
702 	val = evt_ring->ring.addr >> 32;
703 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
704 
705 	/* Enable interrupt moderation by setting the moderation delay */
706 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
707 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
708 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
709 
710 	/* No MSI write data, and MSI address high and low address is 0 */
711 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
712 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
713 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
714 
715 	/* We don't need to get event read pointer updates */
716 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
717 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
718 
719 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
720 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
721 }
722 
723 /* Return the last (most recent) transaction completed on a channel. */
724 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
725 {
726 	struct gsi_trans_info *trans_info = &channel->trans_info;
727 	struct gsi_trans *trans;
728 
729 	spin_lock_bh(&trans_info->spinlock);
730 
731 	if (!list_empty(&trans_info->complete))
732 		trans = list_last_entry(&trans_info->complete,
733 					struct gsi_trans, links);
734 	else if (!list_empty(&trans_info->polled))
735 		trans = list_last_entry(&trans_info->polled,
736 					struct gsi_trans, links);
737 	else
738 		trans = NULL;
739 
740 	/* Caller will wait for this, so take a reference */
741 	if (trans)
742 		refcount_inc(&trans->refcount);
743 
744 	spin_unlock_bh(&trans_info->spinlock);
745 
746 	return trans;
747 }
748 
749 /* Wait for transaction activity on a channel to complete */
750 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
751 {
752 	struct gsi_trans *trans;
753 
754 	/* Get the last transaction, and wait for it to complete */
755 	trans = gsi_channel_trans_last(channel);
756 	if (trans) {
757 		wait_for_completion(&trans->completion);
758 		gsi_trans_free(trans);
759 	}
760 }
761 
762 /* Stop channel activity.  Transactions may not be allocated until thawed. */
763 static void gsi_channel_freeze(struct gsi_channel *channel)
764 {
765 	gsi_channel_trans_quiesce(channel);
766 
767 	napi_disable(&channel->napi);
768 
769 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
770 }
771 
772 /* Allow transactions to be used on the channel again. */
773 static void gsi_channel_thaw(struct gsi_channel *channel)
774 {
775 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
776 
777 	napi_enable(&channel->napi);
778 }
779 
780 /* Program a channel for use */
781 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
782 {
783 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
784 	u32 channel_id = gsi_channel_id(channel);
785 	union gsi_channel_scratch scr = { };
786 	struct gsi_channel_scratch_gpi *gpi;
787 	struct gsi *gsi = channel->gsi;
788 	u32 wrr_weight = 0;
789 	u32 val;
790 
791 	/* Arbitrarily pick TRE 0 as the first channel element to use */
792 	channel->tre_ring.index = 0;
793 
794 	/* We program all channels as GPI type/protocol */
795 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK);
796 	if (channel->toward_ipa)
797 		val |= CHTYPE_DIR_FMASK;
798 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
799 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
800 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
801 
802 	val = u32_encode_bits(size, R_LENGTH_FMASK);
803 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
804 
805 	/* The context 2 and 3 registers store the low-order and
806 	 * high-order 32 bits of the address of the channel ring,
807 	 * respectively.
808 	 */
809 	val = channel->tre_ring.addr & GENMASK(31, 0);
810 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
811 
812 	val = channel->tre_ring.addr >> 32;
813 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
814 
815 	/* Command channel gets low weighted round-robin priority */
816 	if (channel->command)
817 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
818 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
819 
820 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
821 
822 	/* We enable the doorbell engine for IPA v3.5.1 */
823 	if (gsi->version == IPA_VERSION_3_5_1 && doorbell)
824 		val |= USE_DB_ENG_FMASK;
825 
826 	/* v4.0 introduces an escape buffer for prefetch.  We use it
827 	 * on all but the AP command channel.
828 	 */
829 	if (gsi->version != IPA_VERSION_3_5_1 && !channel->command) {
830 		/* If not otherwise set, prefetch buffers are used */
831 		if (gsi->version < IPA_VERSION_4_5)
832 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
833 		else
834 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
835 					       PREFETCH_MODE_FMASK);
836 	}
837 
838 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
839 
840 	/* Now update the scratch registers for GPI protocol */
841 	gpi = &scr.gpi;
842 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
843 					GSI_RING_ELEMENT_SIZE;
844 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
845 
846 	val = scr.data.word1;
847 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
848 
849 	val = scr.data.word2;
850 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
851 
852 	val = scr.data.word3;
853 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
854 
855 	/* We must preserve the upper 16 bits of the last scratch register.
856 	 * The next sequence assumes those bits remain unchanged between the
857 	 * read and the write.
858 	 */
859 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
860 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
861 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
862 
863 	/* All done! */
864 }
865 
866 static void gsi_channel_deprogram(struct gsi_channel *channel)
867 {
868 	/* Nothing to do */
869 }
870 
871 /* Start an allocated GSI channel */
872 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
873 {
874 	struct gsi_channel *channel = &gsi->channel[channel_id];
875 	int ret;
876 
877 	mutex_lock(&gsi->mutex);
878 
879 	ret = gsi_channel_start_command(channel);
880 
881 	mutex_unlock(&gsi->mutex);
882 
883 	gsi_channel_thaw(channel);
884 
885 	return ret;
886 }
887 
888 /* Stop a started channel */
889 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
890 {
891 	struct gsi_channel *channel = &gsi->channel[channel_id];
892 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
893 	int ret;
894 
895 	gsi_channel_freeze(channel);
896 
897 	mutex_lock(&gsi->mutex);
898 
899 	do {
900 		ret = gsi_channel_stop_command(channel);
901 		if (ret != -EAGAIN)
902 			break;
903 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
904 	} while (retries--);
905 
906 	mutex_unlock(&gsi->mutex);
907 
908 	/* Thaw the channel if we need to retry (or on error) */
909 	if (ret)
910 		gsi_channel_thaw(channel);
911 
912 	return ret;
913 }
914 
915 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
916 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
917 {
918 	struct gsi_channel *channel = &gsi->channel[channel_id];
919 
920 	mutex_lock(&gsi->mutex);
921 
922 	gsi_channel_reset_command(channel);
923 	/* Due to a hardware quirk we may need to reset RX channels twice. */
924 	if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa)
925 		gsi_channel_reset_command(channel);
926 
927 	gsi_channel_program(channel, doorbell);
928 	gsi_channel_trans_cancel_pending(channel);
929 
930 	mutex_unlock(&gsi->mutex);
931 }
932 
933 /* Stop a STARTED channel for suspend (using stop if requested) */
934 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
935 {
936 	struct gsi_channel *channel = &gsi->channel[channel_id];
937 
938 	if (stop)
939 		return gsi_channel_stop(gsi, channel_id);
940 
941 	gsi_channel_freeze(channel);
942 
943 	return 0;
944 }
945 
946 /* Resume a suspended channel (starting will be requested if STOPPED) */
947 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
948 {
949 	struct gsi_channel *channel = &gsi->channel[channel_id];
950 
951 	if (start)
952 		return gsi_channel_start(gsi, channel_id);
953 
954 	gsi_channel_thaw(channel);
955 
956 	return 0;
957 }
958 
959 /**
960  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
961  * @channel:	Channel for which to report
962  *
963  * Report to the network stack the number of bytes and transactions that
964  * have been queued to hardware since last call.  This and the next function
965  * supply information used by the network stack for throttling.
966  *
967  * For each channel we track the number of transactions used and bytes of
968  * data those transactions represent.  We also track what those values are
969  * each time this function is called.  Subtracting the two tells us
970  * the number of bytes and transactions that have been added between
971  * successive calls.
972  *
973  * Calling this each time we ring the channel doorbell allows us to
974  * provide accurate information to the network stack about how much
975  * work we've given the hardware at any point in time.
976  */
977 void gsi_channel_tx_queued(struct gsi_channel *channel)
978 {
979 	u32 trans_count;
980 	u32 byte_count;
981 
982 	byte_count = channel->byte_count - channel->queued_byte_count;
983 	trans_count = channel->trans_count - channel->queued_trans_count;
984 	channel->queued_byte_count = channel->byte_count;
985 	channel->queued_trans_count = channel->trans_count;
986 
987 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
988 				  trans_count, byte_count);
989 }
990 
991 /**
992  * gsi_channel_tx_update() - Report completed TX transfers
993  * @channel:	Channel that has completed transmitting packets
994  * @trans:	Last transation known to be complete
995  *
996  * Compute the number of transactions and bytes that have been transferred
997  * over a TX channel since the given transaction was committed.  Report this
998  * information to the network stack.
999  *
1000  * At the time a transaction is committed, we record its channel's
1001  * committed transaction and byte counts *in the transaction*.
1002  * Completions are signaled by the hardware with an interrupt, and
1003  * we can determine the latest completed transaction at that time.
1004  *
1005  * The difference between the byte/transaction count recorded in
1006  * the transaction and the count last time we recorded a completion
1007  * tells us exactly how much data has been transferred between
1008  * completions.
1009  *
1010  * Calling this each time we learn of a newly-completed transaction
1011  * allows us to provide accurate information to the network stack
1012  * about how much work has been completed by the hardware at a given
1013  * point in time.
1014  */
1015 static void
1016 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1017 {
1018 	u64 byte_count = trans->byte_count + trans->len;
1019 	u64 trans_count = trans->trans_count + 1;
1020 
1021 	byte_count -= channel->compl_byte_count;
1022 	channel->compl_byte_count += byte_count;
1023 	trans_count -= channel->compl_trans_count;
1024 	channel->compl_trans_count += trans_count;
1025 
1026 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1027 				     trans_count, byte_count);
1028 }
1029 
1030 /* Channel control interrupt handler */
1031 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1032 {
1033 	u32 channel_mask;
1034 
1035 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1036 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1037 
1038 	while (channel_mask) {
1039 		u32 channel_id = __ffs(channel_mask);
1040 		struct gsi_channel *channel;
1041 
1042 		channel_mask ^= BIT(channel_id);
1043 
1044 		channel = &gsi->channel[channel_id];
1045 
1046 		complete(&channel->completion);
1047 	}
1048 }
1049 
1050 /* Event ring control interrupt handler */
1051 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1052 {
1053 	u32 event_mask;
1054 
1055 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1056 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1057 
1058 	while (event_mask) {
1059 		u32 evt_ring_id = __ffs(event_mask);
1060 		struct gsi_evt_ring *evt_ring;
1061 
1062 		event_mask ^= BIT(evt_ring_id);
1063 
1064 		evt_ring = &gsi->evt_ring[evt_ring_id];
1065 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
1066 
1067 		complete(&evt_ring->completion);
1068 	}
1069 }
1070 
1071 /* Global channel error interrupt handler */
1072 static void
1073 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1074 {
1075 	if (code == GSI_OUT_OF_RESOURCES) {
1076 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1077 		complete(&gsi->channel[channel_id].completion);
1078 		return;
1079 	}
1080 
1081 	/* Report, but otherwise ignore all other error codes */
1082 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1083 		channel_id, err_ee, code);
1084 }
1085 
1086 /* Global event error interrupt handler */
1087 static void
1088 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1089 {
1090 	if (code == GSI_OUT_OF_RESOURCES) {
1091 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1092 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1093 
1094 		complete(&evt_ring->completion);
1095 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1096 			channel_id);
1097 		return;
1098 	}
1099 
1100 	/* Report, but otherwise ignore all other error codes */
1101 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1102 		evt_ring_id, err_ee, code);
1103 }
1104 
1105 /* Global error interrupt handler */
1106 static void gsi_isr_glob_err(struct gsi *gsi)
1107 {
1108 	enum gsi_err_type type;
1109 	enum gsi_err_code code;
1110 	u32 which;
1111 	u32 val;
1112 	u32 ee;
1113 
1114 	/* Get the logged error, then reinitialize the log */
1115 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1116 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1117 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1118 
1119 	ee = u32_get_bits(val, ERR_EE_FMASK);
1120 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1121 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1122 	code = u32_get_bits(val, ERR_CODE_FMASK);
1123 
1124 	if (type == GSI_ERR_TYPE_CHAN)
1125 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1126 	else if (type == GSI_ERR_TYPE_EVT)
1127 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1128 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1129 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1130 }
1131 
1132 /* Generic EE interrupt handler */
1133 static void gsi_isr_gp_int1(struct gsi *gsi)
1134 {
1135 	u32 result;
1136 	u32 val;
1137 
1138 	/* This interrupt is used to handle completions of the two GENERIC
1139 	 * GSI commands.  We use these to allocate and halt channels on
1140 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1141 	 * allocated, the modem "owns" these channels, and as a result we
1142 	 * have no way of knowing the channel's state at any given time.
1143 	 *
1144 	 * It is recommended that we halt the modem channels we allocated
1145 	 * when shutting down, but it's possible the channel isn't running
1146 	 * at the time we issue the HALT command.  We'll get an error in
1147 	 * that case, but it's harmless (the channel is already halted).
1148 	 *
1149 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1150 	 * if we receive it.
1151 	 */
1152 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1153 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1154 
1155 	switch (result) {
1156 	case GENERIC_EE_SUCCESS:
1157 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1158 		gsi->result = 0;
1159 		break;
1160 
1161 	case GENERIC_EE_RETRY:
1162 		gsi->result = -EAGAIN;
1163 		break;
1164 
1165 	default:
1166 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1167 		gsi->result = -EIO;
1168 		break;
1169 	}
1170 
1171 	complete(&gsi->completion);
1172 }
1173 
1174 /* Inter-EE interrupt handler */
1175 static void gsi_isr_glob_ee(struct gsi *gsi)
1176 {
1177 	u32 val;
1178 
1179 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1180 
1181 	if (val & BIT(ERROR_INT))
1182 		gsi_isr_glob_err(gsi);
1183 
1184 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1185 
1186 	val &= ~BIT(ERROR_INT);
1187 
1188 	if (val & BIT(GP_INT1)) {
1189 		val ^= BIT(GP_INT1);
1190 		gsi_isr_gp_int1(gsi);
1191 	}
1192 
1193 	if (val)
1194 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1195 }
1196 
1197 /* I/O completion interrupt event */
1198 static void gsi_isr_ieob(struct gsi *gsi)
1199 {
1200 	u32 event_mask;
1201 
1202 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1203 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1204 
1205 	while (event_mask) {
1206 		u32 evt_ring_id = __ffs(event_mask);
1207 
1208 		event_mask ^= BIT(evt_ring_id);
1209 
1210 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1211 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1212 	}
1213 }
1214 
1215 /* General event interrupts represent serious problems, so report them */
1216 static void gsi_isr_general(struct gsi *gsi)
1217 {
1218 	struct device *dev = gsi->dev;
1219 	u32 val;
1220 
1221 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1222 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1223 
1224 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1225 }
1226 
1227 /**
1228  * gsi_isr() - Top level GSI interrupt service routine
1229  * @irq:	Interrupt number (ignored)
1230  * @dev_id:	GSI pointer supplied to request_irq()
1231  *
1232  * This is the main handler function registered for the GSI IRQ. Each type
1233  * of interrupt has a separate handler function that is called from here.
1234  */
1235 static irqreturn_t gsi_isr(int irq, void *dev_id)
1236 {
1237 	struct gsi *gsi = dev_id;
1238 	u32 intr_mask;
1239 	u32 cnt = 0;
1240 
1241 	/* enum gsi_irq_type_id defines GSI interrupt types */
1242 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1243 		/* intr_mask contains bitmask of pending GSI interrupts */
1244 		do {
1245 			u32 gsi_intr = BIT(__ffs(intr_mask));
1246 
1247 			intr_mask ^= gsi_intr;
1248 
1249 			switch (gsi_intr) {
1250 			case BIT(GSI_CH_CTRL):
1251 				gsi_isr_chan_ctrl(gsi);
1252 				break;
1253 			case BIT(GSI_EV_CTRL):
1254 				gsi_isr_evt_ctrl(gsi);
1255 				break;
1256 			case BIT(GSI_GLOB_EE):
1257 				gsi_isr_glob_ee(gsi);
1258 				break;
1259 			case BIT(GSI_IEOB):
1260 				gsi_isr_ieob(gsi);
1261 				break;
1262 			case BIT(GSI_GENERAL):
1263 				gsi_isr_general(gsi);
1264 				break;
1265 			default:
1266 				dev_err(gsi->dev,
1267 					"unrecognized interrupt type 0x%08x\n",
1268 					gsi_intr);
1269 				break;
1270 			}
1271 		} while (intr_mask);
1272 
1273 		if (++cnt > GSI_ISR_MAX_ITER) {
1274 			dev_err(gsi->dev, "interrupt flood\n");
1275 			break;
1276 		}
1277 	}
1278 
1279 	return IRQ_HANDLED;
1280 }
1281 
1282 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1283 {
1284 	struct device *dev = &pdev->dev;
1285 	unsigned int irq;
1286 	int ret;
1287 
1288 	ret = platform_get_irq_byname(pdev, "gsi");
1289 	if (ret <= 0) {
1290 		dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1291 		return ret ? : -EINVAL;
1292 	}
1293 	irq = ret;
1294 
1295 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1296 	if (ret) {
1297 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1298 		return ret;
1299 	}
1300 	gsi->irq = irq;
1301 
1302 	return 0;
1303 }
1304 
1305 static void gsi_irq_exit(struct gsi *gsi)
1306 {
1307 	free_irq(gsi->irq, gsi);
1308 }
1309 
1310 /* Return the transaction associated with a transfer completion event */
1311 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1312 					 struct gsi_event *event)
1313 {
1314 	u32 tre_offset;
1315 	u32 tre_index;
1316 
1317 	/* Event xfer_ptr records the TRE it's associated with */
1318 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1319 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1320 
1321 	return gsi_channel_trans_mapped(channel, tre_index);
1322 }
1323 
1324 /**
1325  * gsi_evt_ring_rx_update() - Record lengths of received data
1326  * @evt_ring:	Event ring associated with channel that received packets
1327  * @index:	Event index in ring reported by hardware
1328  *
1329  * Events for RX channels contain the actual number of bytes received into
1330  * the buffer.  Every event has a transaction associated with it, and here
1331  * we update transactions to record their actual received lengths.
1332  *
1333  * This function is called whenever we learn that the GSI hardware has filled
1334  * new events since the last time we checked.  The ring's index field tells
1335  * the first entry in need of processing.  The index provided is the
1336  * first *unfilled* event in the ring (following the last filled one).
1337  *
1338  * Events are sequential within the event ring, and transactions are
1339  * sequential within the transaction pool.
1340  *
1341  * Note that @index always refers to an element *within* the event ring.
1342  */
1343 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1344 {
1345 	struct gsi_channel *channel = evt_ring->channel;
1346 	struct gsi_ring *ring = &evt_ring->ring;
1347 	struct gsi_trans_info *trans_info;
1348 	struct gsi_event *event_done;
1349 	struct gsi_event *event;
1350 	struct gsi_trans *trans;
1351 	u32 byte_count = 0;
1352 	u32 old_index;
1353 	u32 event_avail;
1354 
1355 	trans_info = &channel->trans_info;
1356 
1357 	/* We'll start with the oldest un-processed event.  RX channels
1358 	 * replenish receive buffers in single-TRE transactions, so we
1359 	 * can just map that event to its transaction.  Transactions
1360 	 * associated with completion events are consecutive.
1361 	 */
1362 	old_index = ring->index;
1363 	event = gsi_ring_virt(ring, old_index);
1364 	trans = gsi_event_trans(channel, event);
1365 
1366 	/* Compute the number of events to process before we wrap,
1367 	 * and determine when we'll be done processing events.
1368 	 */
1369 	event_avail = ring->count - old_index % ring->count;
1370 	event_done = gsi_ring_virt(ring, index);
1371 	do {
1372 		trans->len = __le16_to_cpu(event->len);
1373 		byte_count += trans->len;
1374 
1375 		/* Move on to the next event and transaction */
1376 		if (--event_avail)
1377 			event++;
1378 		else
1379 			event = gsi_ring_virt(ring, 0);
1380 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1381 	} while (event != event_done);
1382 
1383 	/* We record RX bytes when they are received */
1384 	channel->byte_count += byte_count;
1385 	channel->trans_count++;
1386 }
1387 
1388 /* Initialize a ring, including allocating DMA memory for its entries */
1389 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1390 {
1391 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1392 	struct device *dev = gsi->dev;
1393 	dma_addr_t addr;
1394 
1395 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1396 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1397 	if (ring->virt && addr % size) {
1398 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1399 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1400 			size);
1401 		return -EINVAL;	/* Not a good error value, but distinct */
1402 	} else if (!ring->virt) {
1403 		return -ENOMEM;
1404 	}
1405 	ring->addr = addr;
1406 	ring->count = count;
1407 
1408 	return 0;
1409 }
1410 
1411 /* Free a previously-allocated ring */
1412 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1413 {
1414 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1415 
1416 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1417 }
1418 
1419 /* Allocate an available event ring id */
1420 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1421 {
1422 	u32 evt_ring_id;
1423 
1424 	if (gsi->event_bitmap == ~0U) {
1425 		dev_err(gsi->dev, "event rings exhausted\n");
1426 		return -ENOSPC;
1427 	}
1428 
1429 	evt_ring_id = ffz(gsi->event_bitmap);
1430 	gsi->event_bitmap |= BIT(evt_ring_id);
1431 
1432 	return (int)evt_ring_id;
1433 }
1434 
1435 /* Free a previously-allocated event ring id */
1436 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1437 {
1438 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1439 }
1440 
1441 /* Ring a channel doorbell, reporting the first un-filled entry */
1442 void gsi_channel_doorbell(struct gsi_channel *channel)
1443 {
1444 	struct gsi_ring *tre_ring = &channel->tre_ring;
1445 	u32 channel_id = gsi_channel_id(channel);
1446 	struct gsi *gsi = channel->gsi;
1447 	u32 val;
1448 
1449 	/* Note: index *must* be used modulo the ring count here */
1450 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1451 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1452 }
1453 
1454 /* Consult hardware, move any newly completed transactions to completed list */
1455 static void gsi_channel_update(struct gsi_channel *channel)
1456 {
1457 	u32 evt_ring_id = channel->evt_ring_id;
1458 	struct gsi *gsi = channel->gsi;
1459 	struct gsi_evt_ring *evt_ring;
1460 	struct gsi_trans *trans;
1461 	struct gsi_ring *ring;
1462 	u32 offset;
1463 	u32 index;
1464 
1465 	evt_ring = &gsi->evt_ring[evt_ring_id];
1466 	ring = &evt_ring->ring;
1467 
1468 	/* See if there's anything new to process; if not, we're done.  Note
1469 	 * that index always refers to an entry *within* the event ring.
1470 	 */
1471 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1472 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1473 	if (index == ring->index % ring->count)
1474 		return;
1475 
1476 	/* Get the transaction for the latest completed event.  Take a
1477 	 * reference to keep it from completing before we give the events
1478 	 * for this and previous transactions back to the hardware.
1479 	 */
1480 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1481 	refcount_inc(&trans->refcount);
1482 
1483 	/* For RX channels, update each completed transaction with the number
1484 	 * of bytes that were actually received.  For TX channels, report
1485 	 * the number of transactions and bytes this completion represents
1486 	 * up the network stack.
1487 	 */
1488 	if (channel->toward_ipa)
1489 		gsi_channel_tx_update(channel, trans);
1490 	else
1491 		gsi_evt_ring_rx_update(evt_ring, index);
1492 
1493 	gsi_trans_move_complete(trans);
1494 
1495 	/* Tell the hardware we've handled these events */
1496 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1497 
1498 	gsi_trans_free(trans);
1499 }
1500 
1501 /**
1502  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1503  * @channel:	Channel to be polled
1504  *
1505  * Return:	Transaction pointer, or null if none are available
1506  *
1507  * This function returns the first entry on a channel's completed transaction
1508  * list.  If that list is empty, the hardware is consulted to determine
1509  * whether any new transactions have completed.  If so, they're moved to the
1510  * completed list and the new first entry is returned.  If there are no more
1511  * completed transactions, a null pointer is returned.
1512  */
1513 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1514 {
1515 	struct gsi_trans *trans;
1516 
1517 	/* Get the first transaction from the completed list */
1518 	trans = gsi_channel_trans_complete(channel);
1519 	if (!trans) {
1520 		/* List is empty; see if there's more to do */
1521 		gsi_channel_update(channel);
1522 		trans = gsi_channel_trans_complete(channel);
1523 	}
1524 
1525 	if (trans)
1526 		gsi_trans_move_polled(trans);
1527 
1528 	return trans;
1529 }
1530 
1531 /**
1532  * gsi_channel_poll() - NAPI poll function for a channel
1533  * @napi:	NAPI structure for the channel
1534  * @budget:	Budget supplied by NAPI core
1535  *
1536  * Return:	Number of items polled (<= budget)
1537  *
1538  * Single transactions completed by hardware are polled until either
1539  * the budget is exhausted, or there are no more.  Each transaction
1540  * polled is passed to gsi_trans_complete(), to perform remaining
1541  * completion processing and retire/free the transaction.
1542  */
1543 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1544 {
1545 	struct gsi_channel *channel;
1546 	int count = 0;
1547 
1548 	channel = container_of(napi, struct gsi_channel, napi);
1549 	while (count < budget) {
1550 		struct gsi_trans *trans;
1551 
1552 		count++;
1553 		trans = gsi_channel_poll_one(channel);
1554 		if (!trans)
1555 			break;
1556 		gsi_trans_complete(trans);
1557 	}
1558 
1559 	if (count < budget) {
1560 		napi_complete(&channel->napi);
1561 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1562 	}
1563 
1564 	return count;
1565 }
1566 
1567 /* The event bitmap represents which event ids are available for allocation.
1568  * Set bits are not available, clear bits can be used.  This function
1569  * initializes the map so all events supported by the hardware are available,
1570  * then precludes any reserved events from being allocated.
1571  */
1572 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1573 {
1574 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1575 
1576 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1577 
1578 	return event_bitmap;
1579 }
1580 
1581 /* Setup function for event rings */
1582 static void gsi_evt_ring_setup(struct gsi *gsi)
1583 {
1584 	/* Nothing to do */
1585 }
1586 
1587 /* Inverse of gsi_evt_ring_setup() */
1588 static void gsi_evt_ring_teardown(struct gsi *gsi)
1589 {
1590 	/* Nothing to do */
1591 }
1592 
1593 /* Setup function for a single channel */
1594 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1595 {
1596 	struct gsi_channel *channel = &gsi->channel[channel_id];
1597 	u32 evt_ring_id = channel->evt_ring_id;
1598 	int ret;
1599 
1600 	if (!channel->gsi)
1601 		return 0;	/* Ignore uninitialized channels */
1602 
1603 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1604 	if (ret)
1605 		return ret;
1606 
1607 	gsi_evt_ring_program(gsi, evt_ring_id);
1608 
1609 	ret = gsi_channel_alloc_command(gsi, channel_id);
1610 	if (ret)
1611 		goto err_evt_ring_de_alloc;
1612 
1613 	gsi_channel_program(channel, true);
1614 
1615 	if (channel->toward_ipa)
1616 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1617 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1618 	else
1619 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1620 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1621 
1622 	return 0;
1623 
1624 err_evt_ring_de_alloc:
1625 	/* We've done nothing with the event ring yet so don't reset */
1626 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1627 
1628 	return ret;
1629 }
1630 
1631 /* Inverse of gsi_channel_setup_one() */
1632 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1633 {
1634 	struct gsi_channel *channel = &gsi->channel[channel_id];
1635 	u32 evt_ring_id = channel->evt_ring_id;
1636 
1637 	if (!channel->gsi)
1638 		return;		/* Ignore uninitialized channels */
1639 
1640 	netif_napi_del(&channel->napi);
1641 
1642 	gsi_channel_deprogram(channel);
1643 	gsi_channel_de_alloc_command(gsi, channel_id);
1644 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1645 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1646 }
1647 
1648 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1649 			       enum gsi_generic_cmd_opcode opcode)
1650 {
1651 	struct completion *completion = &gsi->completion;
1652 	bool timeout;
1653 	u32 val;
1654 
1655 	/* The error global interrupt type is always enabled (until we
1656 	 * teardown), so we won't change that.  A generic EE command
1657 	 * completes with a GSI global interrupt of type GP_INT1.  We
1658 	 * only perform one generic command at a time (to allocate or
1659 	 * halt a modem channel) and only from this function.  So we
1660 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1661 	 */
1662 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1663 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1664 
1665 	/* First zero the result code field */
1666 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1667 	val &= ~GENERIC_EE_RESULT_FMASK;
1668 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1669 
1670 	/* Now issue the command */
1671 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1672 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1673 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1674 
1675 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1676 
1677 	/* Disable the GP_INT1 IRQ type again */
1678 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1679 
1680 	if (!timeout)
1681 		return gsi->result;
1682 
1683 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1684 		opcode, channel_id);
1685 
1686 	return -ETIMEDOUT;
1687 }
1688 
1689 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1690 {
1691 	return gsi_generic_command(gsi, channel_id,
1692 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1693 }
1694 
1695 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1696 {
1697 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1698 	int ret;
1699 
1700 	do
1701 		ret = gsi_generic_command(gsi, channel_id,
1702 					  GSI_GENERIC_HALT_CHANNEL);
1703 	while (ret == -EAGAIN && retries--);
1704 
1705 	if (ret)
1706 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1707 			ret, channel_id);
1708 }
1709 
1710 /* Setup function for channels */
1711 static int gsi_channel_setup(struct gsi *gsi)
1712 {
1713 	u32 channel_id = 0;
1714 	u32 mask;
1715 	int ret;
1716 
1717 	gsi_evt_ring_setup(gsi);
1718 	gsi_irq_enable(gsi);
1719 
1720 	mutex_lock(&gsi->mutex);
1721 
1722 	do {
1723 		ret = gsi_channel_setup_one(gsi, channel_id);
1724 		if (ret)
1725 			goto err_unwind;
1726 	} while (++channel_id < gsi->channel_count);
1727 
1728 	/* Make sure no channels were defined that hardware does not support */
1729 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1730 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1731 
1732 		if (!channel->gsi)
1733 			continue;	/* Ignore uninitialized channels */
1734 
1735 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1736 			channel_id - 1);
1737 		channel_id = gsi->channel_count;
1738 		goto err_unwind;
1739 	}
1740 
1741 	/* Allocate modem channels if necessary */
1742 	mask = gsi->modem_channel_bitmap;
1743 	while (mask) {
1744 		u32 modem_channel_id = __ffs(mask);
1745 
1746 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1747 		if (ret)
1748 			goto err_unwind_modem;
1749 
1750 		/* Clear bit from mask only after success (for unwind) */
1751 		mask ^= BIT(modem_channel_id);
1752 	}
1753 
1754 	mutex_unlock(&gsi->mutex);
1755 
1756 	return 0;
1757 
1758 err_unwind_modem:
1759 	/* Compute which modem channels need to be deallocated */
1760 	mask ^= gsi->modem_channel_bitmap;
1761 	while (mask) {
1762 		channel_id = __fls(mask);
1763 
1764 		mask ^= BIT(channel_id);
1765 
1766 		gsi_modem_channel_halt(gsi, channel_id);
1767 	}
1768 
1769 err_unwind:
1770 	while (channel_id--)
1771 		gsi_channel_teardown_one(gsi, channel_id);
1772 
1773 	mutex_unlock(&gsi->mutex);
1774 
1775 	gsi_irq_disable(gsi);
1776 	gsi_evt_ring_teardown(gsi);
1777 
1778 	return ret;
1779 }
1780 
1781 /* Inverse of gsi_channel_setup() */
1782 static void gsi_channel_teardown(struct gsi *gsi)
1783 {
1784 	u32 mask = gsi->modem_channel_bitmap;
1785 	u32 channel_id;
1786 
1787 	mutex_lock(&gsi->mutex);
1788 
1789 	while (mask) {
1790 		channel_id = __fls(mask);
1791 
1792 		mask ^= BIT(channel_id);
1793 
1794 		gsi_modem_channel_halt(gsi, channel_id);
1795 	}
1796 
1797 	channel_id = gsi->channel_count - 1;
1798 	do
1799 		gsi_channel_teardown_one(gsi, channel_id);
1800 	while (channel_id--);
1801 
1802 	mutex_unlock(&gsi->mutex);
1803 
1804 	gsi_irq_disable(gsi);
1805 	gsi_evt_ring_teardown(gsi);
1806 }
1807 
1808 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1809 int gsi_setup(struct gsi *gsi)
1810 {
1811 	struct device *dev = gsi->dev;
1812 	u32 val;
1813 	int ret;
1814 
1815 	/* Here is where we first touch the GSI hardware */
1816 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1817 	if (!(val & ENABLED_FMASK)) {
1818 		dev_err(dev, "GSI has not been enabled\n");
1819 		return -EIO;
1820 	}
1821 
1822 	gsi_irq_setup(gsi);
1823 
1824 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1825 
1826 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1827 	if (!gsi->channel_count) {
1828 		dev_err(dev, "GSI reports zero channels supported\n");
1829 		return -EINVAL;
1830 	}
1831 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1832 		dev_warn(dev,
1833 			 "limiting to %u channels; hardware supports %u\n",
1834 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1835 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1836 	}
1837 
1838 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1839 	if (!gsi->evt_ring_count) {
1840 		dev_err(dev, "GSI reports zero event rings supported\n");
1841 		return -EINVAL;
1842 	}
1843 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1844 		dev_warn(dev,
1845 			 "limiting to %u event rings; hardware supports %u\n",
1846 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1847 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1848 	}
1849 
1850 	/* Initialize the error log */
1851 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1852 
1853 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1854 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1855 
1856 	ret = gsi_channel_setup(gsi);
1857 	if (ret)
1858 		gsi_irq_teardown(gsi);
1859 
1860 	return ret;
1861 }
1862 
1863 /* Inverse of gsi_setup() */
1864 void gsi_teardown(struct gsi *gsi)
1865 {
1866 	gsi_channel_teardown(gsi);
1867 	gsi_irq_teardown(gsi);
1868 }
1869 
1870 /* Initialize a channel's event ring */
1871 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1872 {
1873 	struct gsi *gsi = channel->gsi;
1874 	struct gsi_evt_ring *evt_ring;
1875 	int ret;
1876 
1877 	ret = gsi_evt_ring_id_alloc(gsi);
1878 	if (ret < 0)
1879 		return ret;
1880 	channel->evt_ring_id = ret;
1881 
1882 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1883 	evt_ring->channel = channel;
1884 
1885 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1886 	if (!ret)
1887 		return 0;	/* Success! */
1888 
1889 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1890 		ret, gsi_channel_id(channel));
1891 
1892 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1893 
1894 	return ret;
1895 }
1896 
1897 /* Inverse of gsi_channel_evt_ring_init() */
1898 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1899 {
1900 	u32 evt_ring_id = channel->evt_ring_id;
1901 	struct gsi *gsi = channel->gsi;
1902 	struct gsi_evt_ring *evt_ring;
1903 
1904 	evt_ring = &gsi->evt_ring[evt_ring_id];
1905 	gsi_ring_free(gsi, &evt_ring->ring);
1906 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1907 }
1908 
1909 /* Init function for event rings */
1910 static void gsi_evt_ring_init(struct gsi *gsi)
1911 {
1912 	u32 evt_ring_id = 0;
1913 
1914 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1915 	gsi->ieob_enabled_bitmap = 0;
1916 	do
1917 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1918 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1919 }
1920 
1921 /* Inverse of gsi_evt_ring_init() */
1922 static void gsi_evt_ring_exit(struct gsi *gsi)
1923 {
1924 	/* Nothing to do */
1925 }
1926 
1927 static bool gsi_channel_data_valid(struct gsi *gsi,
1928 				   const struct ipa_gsi_endpoint_data *data)
1929 {
1930 #ifdef IPA_VALIDATION
1931 	u32 channel_id = data->channel_id;
1932 	struct device *dev = gsi->dev;
1933 
1934 	/* Make sure channel ids are in the range driver supports */
1935 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1936 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1937 			channel_id, GSI_CHANNEL_COUNT_MAX);
1938 		return false;
1939 	}
1940 
1941 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1942 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1943 		return false;
1944 	}
1945 
1946 	if (!data->channel.tlv_count ||
1947 	    data->channel.tlv_count > GSI_TLV_MAX) {
1948 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1949 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1950 		return false;
1951 	}
1952 
1953 	/* We have to allow at least one maximally-sized transaction to
1954 	 * be outstanding (which would use tlv_count TREs).  Given how
1955 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1956 	 * twice the TLV FIFO size to satisfy this requirement.
1957 	 */
1958 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1959 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1960 			channel_id, data->channel.tlv_count,
1961 			data->channel.tre_count);
1962 		return false;
1963 	}
1964 
1965 	if (!is_power_of_2(data->channel.tre_count)) {
1966 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1967 			channel_id, data->channel.tre_count);
1968 		return false;
1969 	}
1970 
1971 	if (!is_power_of_2(data->channel.event_count)) {
1972 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1973 			channel_id, data->channel.event_count);
1974 		return false;
1975 	}
1976 #endif /* IPA_VALIDATION */
1977 
1978 	return true;
1979 }
1980 
1981 /* Init function for a single channel */
1982 static int gsi_channel_init_one(struct gsi *gsi,
1983 				const struct ipa_gsi_endpoint_data *data,
1984 				bool command)
1985 {
1986 	struct gsi_channel *channel;
1987 	u32 tre_count;
1988 	int ret;
1989 
1990 	if (!gsi_channel_data_valid(gsi, data))
1991 		return -EINVAL;
1992 
1993 	/* Worst case we need an event for every outstanding TRE */
1994 	if (data->channel.tre_count > data->channel.event_count) {
1995 		tre_count = data->channel.event_count;
1996 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1997 			 data->channel_id, tre_count);
1998 	} else {
1999 		tre_count = data->channel.tre_count;
2000 	}
2001 
2002 	channel = &gsi->channel[data->channel_id];
2003 	memset(channel, 0, sizeof(*channel));
2004 
2005 	channel->gsi = gsi;
2006 	channel->toward_ipa = data->toward_ipa;
2007 	channel->command = command;
2008 	channel->tlv_count = data->channel.tlv_count;
2009 	channel->tre_count = tre_count;
2010 	channel->event_count = data->channel.event_count;
2011 	init_completion(&channel->completion);
2012 
2013 	ret = gsi_channel_evt_ring_init(channel);
2014 	if (ret)
2015 		goto err_clear_gsi;
2016 
2017 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2018 	if (ret) {
2019 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2020 			ret, data->channel_id);
2021 		goto err_channel_evt_ring_exit;
2022 	}
2023 
2024 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2025 	if (ret)
2026 		goto err_ring_free;
2027 
2028 	if (command) {
2029 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2030 
2031 		ret = ipa_cmd_pool_init(channel, tre_max);
2032 	}
2033 	if (!ret)
2034 		return 0;	/* Success! */
2035 
2036 	gsi_channel_trans_exit(channel);
2037 err_ring_free:
2038 	gsi_ring_free(gsi, &channel->tre_ring);
2039 err_channel_evt_ring_exit:
2040 	gsi_channel_evt_ring_exit(channel);
2041 err_clear_gsi:
2042 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2043 
2044 	return ret;
2045 }
2046 
2047 /* Inverse of gsi_channel_init_one() */
2048 static void gsi_channel_exit_one(struct gsi_channel *channel)
2049 {
2050 	if (!channel->gsi)
2051 		return;		/* Ignore uninitialized channels */
2052 
2053 	if (channel->command)
2054 		ipa_cmd_pool_exit(channel);
2055 	gsi_channel_trans_exit(channel);
2056 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2057 	gsi_channel_evt_ring_exit(channel);
2058 }
2059 
2060 /* Init function for channels */
2061 static int gsi_channel_init(struct gsi *gsi, u32 count,
2062 			    const struct ipa_gsi_endpoint_data *data)
2063 {
2064 	bool modem_alloc;
2065 	int ret = 0;
2066 	u32 i;
2067 
2068 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2069 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2070 
2071 	gsi_evt_ring_init(gsi);
2072 
2073 	/* The endpoint data array is indexed by endpoint name */
2074 	for (i = 0; i < count; i++) {
2075 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2076 
2077 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2078 			continue;	/* Skip over empty slots */
2079 
2080 		/* Mark modem channels to be allocated (hardware workaround) */
2081 		if (data[i].ee_id == GSI_EE_MODEM) {
2082 			if (modem_alloc)
2083 				gsi->modem_channel_bitmap |=
2084 						BIT(data[i].channel_id);
2085 			continue;
2086 		}
2087 
2088 		ret = gsi_channel_init_one(gsi, &data[i], command);
2089 		if (ret)
2090 			goto err_unwind;
2091 	}
2092 
2093 	return ret;
2094 
2095 err_unwind:
2096 	while (i--) {
2097 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2098 			continue;
2099 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2100 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2101 			continue;
2102 		}
2103 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2104 	}
2105 	gsi_evt_ring_exit(gsi);
2106 
2107 	return ret;
2108 }
2109 
2110 /* Inverse of gsi_channel_init() */
2111 static void gsi_channel_exit(struct gsi *gsi)
2112 {
2113 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2114 
2115 	do
2116 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2117 	while (channel_id--);
2118 	gsi->modem_channel_bitmap = 0;
2119 
2120 	gsi_evt_ring_exit(gsi);
2121 }
2122 
2123 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2124 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2125 	     enum ipa_version version, u32 count,
2126 	     const struct ipa_gsi_endpoint_data *data)
2127 {
2128 	struct device *dev = &pdev->dev;
2129 	struct resource *res;
2130 	resource_size_t size;
2131 	u32 adjust;
2132 	int ret;
2133 
2134 	gsi_validate_build();
2135 
2136 	gsi->dev = dev;
2137 	gsi->version = version;
2138 
2139 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
2140 	 * network device structure, but the GSI layer does not have one,
2141 	 * so we must create a dummy network device for this purpose.
2142 	 */
2143 	init_dummy_netdev(&gsi->dummy_dev);
2144 
2145 	/* Get GSI memory range and map it */
2146 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2147 	if (!res) {
2148 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2149 		return -ENODEV;
2150 	}
2151 
2152 	size = resource_size(res);
2153 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2154 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2155 		return -EINVAL;
2156 	}
2157 
2158 	/* Make sure we can make our pointer adjustment if necessary */
2159 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2160 	if (res->start < adjust) {
2161 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2162 			adjust);
2163 		return -EINVAL;
2164 	}
2165 
2166 	gsi->virt = ioremap(res->start, size);
2167 	if (!gsi->virt) {
2168 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2169 		return -ENOMEM;
2170 	}
2171 	/* Adjust register range pointer downward for newer IPA versions */
2172 	gsi->virt -= adjust;
2173 
2174 	init_completion(&gsi->completion);
2175 
2176 	ret = gsi_irq_init(gsi, pdev);
2177 	if (ret)
2178 		goto err_iounmap;
2179 
2180 	ret = gsi_channel_init(gsi, count, data);
2181 	if (ret)
2182 		goto err_irq_exit;
2183 
2184 	mutex_init(&gsi->mutex);
2185 
2186 	return 0;
2187 
2188 err_irq_exit:
2189 	gsi_irq_exit(gsi);
2190 err_iounmap:
2191 	iounmap(gsi->virt);
2192 
2193 	return ret;
2194 }
2195 
2196 /* Inverse of gsi_init() */
2197 void gsi_exit(struct gsi *gsi)
2198 {
2199 	mutex_destroy(&gsi->mutex);
2200 	gsi_channel_exit(gsi);
2201 	gsi_irq_exit(gsi);
2202 	iounmap(gsi->virt);
2203 }
2204 
2205 /* The maximum number of outstanding TREs on a channel.  This limits
2206  * a channel's maximum number of transactions outstanding (worst case
2207  * is one TRE per transaction).
2208  *
2209  * The absolute limit is the number of TREs in the channel's TRE ring,
2210  * and in theory we should be able use all of them.  But in practice,
2211  * doing that led to the hardware reporting exhaustion of event ring
2212  * slots for writing completion information.  So the hardware limit
2213  * would be (tre_count - 1).
2214  *
2215  * We reduce it a bit further though.  Transaction resource pools are
2216  * sized to be a little larger than this maximum, to allow resource
2217  * allocations to always be contiguous.  The number of entries in a
2218  * TRE ring buffer is a power of 2, and the extra resources in a pool
2219  * tends to nearly double the memory allocated for it.  Reducing the
2220  * maximum number of outstanding TREs allows the number of entries in
2221  * a pool to avoid crossing that power-of-2 boundary, and this can
2222  * substantially reduce pool memory requirements.  The number we
2223  * reduce it by matches the number added in gsi_trans_pool_init().
2224  */
2225 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2226 {
2227 	struct gsi_channel *channel = &gsi->channel[channel_id];
2228 
2229 	/* Hardware limit is channel->tre_count - 1 */
2230 	return channel->tre_count - (channel->tlv_count - 1);
2231 }
2232 
2233 /* Returns the maximum number of TREs in a single transaction for a channel */
2234 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2235 {
2236 	struct gsi_channel *channel = &gsi->channel[channel_id];
2237 
2238 	return channel->tlv_count;
2239 }
2240