1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 25 /** 26 * DOC: The IPA Generic Software Interface 27 * 28 * The generic software interface (GSI) is an integral component of the IPA, 29 * providing a well-defined communication layer between the AP subsystem 30 * and the IPA core. The modem uses the GSI layer as well. 31 * 32 * -------- --------- 33 * | | | | 34 * | AP +<---. .----+ Modem | 35 * | +--. | | .->+ | 36 * | | | | | | | | 37 * -------- | | | | --------- 38 * v | v | 39 * --+-+---+-+-- 40 * | GSI | 41 * |-----------| 42 * | | 43 * | IPA | 44 * | | 45 * ------------- 46 * 47 * In the above diagram, the AP and Modem represent "execution environments" 48 * (EEs), which are independent operating environments that use the IPA for 49 * data transfer. 50 * 51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 52 * of data to or from the IPA. A channel is implemented as a ring buffer, 53 * with a DRAM-resident array of "transfer elements" (TREs) available to 54 * describe transfers to or from other EEs through the IPA. A transfer 55 * element can also contain an immediate command, requesting the IPA perform 56 * actions other than data transfer. 57 * 58 * Each TRE refers to a block of data--also located DRAM. After writing one 59 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 60 * doorbell register to inform the receiving side how many elements have 61 * been written. 62 * 63 * Each channel has a GSI "event ring" associated with it. An event ring 64 * is implemented very much like a channel ring, but is always directed from 65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 66 * events by adding an entry to the event ring associated with the channel. 67 * The GSI then writes its doorbell for the event ring, causing the target 68 * EE to be interrupted. Each entry in an event ring contains a pointer 69 * to the channel TRE whose completion the event represents. 70 * 71 * Each TRE in a channel ring has a set of flags. One flag indicates whether 72 * the completion of the transfer operation generates an entry (and possibly 73 * an interrupt) in the channel's event ring. Other flags allow transfer 74 * elements to be chained together, forming a single logical transaction. 75 * TRE flags are used to control whether and when interrupts are generated 76 * to signal completion of channel transfers. 77 * 78 * Elements in channel and event rings are completed (or consumed) strictly 79 * in order. Completion of one entry implies the completion of all preceding 80 * entries. A single completion interrupt can therefore communicate the 81 * completion of many transfers. 82 * 83 * Note that all GSI registers are little-endian, which is the assumed 84 * endianness of I/O space accesses. The accessor functions perform byte 85 * swapping if needed (i.e., for a big endian CPU). 86 */ 87 88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 89 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 90 91 #define GSI_CMD_TIMEOUT 5 /* seconds */ 92 93 #define GSI_CHANNEL_STOP_RX_RETRIES 10 94 95 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 96 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 97 98 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 99 100 /* An entry in an event ring */ 101 struct gsi_event { 102 __le64 xfer_ptr; 103 __le16 len; 104 u8 reserved1; 105 u8 code; 106 __le16 reserved2; 107 u8 type; 108 u8 chid; 109 }; 110 111 /* Hardware values from the error log register error code field */ 112 enum gsi_err_code { 113 GSI_INVALID_TRE_ERR = 0x1, 114 GSI_OUT_OF_BUFFERS_ERR = 0x2, 115 GSI_OUT_OF_RESOURCES_ERR = 0x3, 116 GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, 117 GSI_EVT_RING_EMPTY_ERR = 0x5, 118 GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, 119 GSI_HWO_1_ERR = 0x8, 120 }; 121 122 /* Hardware values from the error log register error type field */ 123 enum gsi_err_type { 124 GSI_ERR_TYPE_GLOB = 0x1, 125 GSI_ERR_TYPE_CHAN = 0x2, 126 GSI_ERR_TYPE_EVT = 0x3, 127 }; 128 129 /* Hardware values used when programming an event ring */ 130 enum gsi_evt_chtype { 131 GSI_EVT_CHTYPE_MHI_EV = 0x0, 132 GSI_EVT_CHTYPE_XHCI_EV = 0x1, 133 GSI_EVT_CHTYPE_GPI_EV = 0x2, 134 GSI_EVT_CHTYPE_XDCI_EV = 0x3, 135 }; 136 137 /* Hardware values used when programming a channel */ 138 enum gsi_channel_protocol { 139 GSI_CHANNEL_PROTOCOL_MHI = 0x0, 140 GSI_CHANNEL_PROTOCOL_XHCI = 0x1, 141 GSI_CHANNEL_PROTOCOL_GPI = 0x2, 142 GSI_CHANNEL_PROTOCOL_XDCI = 0x3, 143 }; 144 145 /* Hardware values representing an event ring immediate command opcode */ 146 enum gsi_evt_cmd_opcode { 147 GSI_EVT_ALLOCATE = 0x0, 148 GSI_EVT_RESET = 0x9, 149 GSI_EVT_DE_ALLOC = 0xa, 150 }; 151 152 /* Hardware values representing a generic immediate command opcode */ 153 enum gsi_generic_cmd_opcode { 154 GSI_GENERIC_HALT_CHANNEL = 0x1, 155 GSI_GENERIC_ALLOCATE_CHANNEL = 0x2, 156 }; 157 158 /* Hardware values representing a channel immediate command opcode */ 159 enum gsi_ch_cmd_opcode { 160 GSI_CH_ALLOCATE = 0x0, 161 GSI_CH_START = 0x1, 162 GSI_CH_STOP = 0x2, 163 GSI_CH_RESET = 0x9, 164 GSI_CH_DE_ALLOC = 0xa, 165 }; 166 167 /** gsi_channel_scratch_gpi - GPI protocol scratch register 168 * @max_outstanding_tre: 169 * Defines the maximum number of TREs allowed in a single transaction 170 * on a channel (in bytes). This determines the amount of prefetch 171 * performed by the hardware. We configure this to equal the size of 172 * the TLV FIFO for the channel. 173 * @outstanding_threshold: 174 * Defines the threshold (in bytes) determining when the sequencer 175 * should update the channel doorbell. We configure this to equal 176 * the size of two TREs. 177 */ 178 struct gsi_channel_scratch_gpi { 179 u64 reserved1; 180 u16 reserved2; 181 u16 max_outstanding_tre; 182 u16 reserved3; 183 u16 outstanding_threshold; 184 }; 185 186 /** gsi_channel_scratch - channel scratch configuration area 187 * 188 * The exact interpretation of this register is protocol-specific. 189 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 190 */ 191 union gsi_channel_scratch { 192 struct gsi_channel_scratch_gpi gpi; 193 struct { 194 u32 word1; 195 u32 word2; 196 u32 word3; 197 u32 word4; 198 } data; 199 }; 200 201 /* Check things that can be validated at build time. */ 202 static void gsi_validate_build(void) 203 { 204 /* This is used as a divisor */ 205 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 206 207 /* Code assumes the size of channel and event ring element are 208 * the same (and fixed). Make sure the size of an event ring 209 * element is what's expected. 210 */ 211 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 212 213 /* Hardware requires a 2^n ring size. We ensure the number of 214 * elements in an event ring is a power of 2 elsewhere; this 215 * ensure the elements themselves meet the requirement. 216 */ 217 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 218 219 /* The channel element size must fit in this field */ 220 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 221 222 /* The event ring element size must fit in this field */ 223 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 224 } 225 226 /* Return the channel id associated with a given channel */ 227 static u32 gsi_channel_id(struct gsi_channel *channel) 228 { 229 return channel - &channel->gsi->channel[0]; 230 } 231 232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) 233 { 234 u32 val; 235 236 gsi->event_enable_bitmap |= BIT(evt_ring_id); 237 val = gsi->event_enable_bitmap; 238 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 239 } 240 241 static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask) 242 { 243 iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 244 } 245 246 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) 247 { 248 u32 val; 249 250 gsi->event_enable_bitmap &= ~BIT(evt_ring_id); 251 val = gsi->event_enable_bitmap; 252 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 253 } 254 255 /* Enable all GSI_interrupt types */ 256 static void gsi_irq_enable(struct gsi *gsi) 257 { 258 u32 val; 259 260 /* We don't use inter-EE channel or event interrupts */ 261 val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; 262 val &= ~MSK_INTER_EE_CH_CTRL_FMASK; 263 val &= ~MSK_INTER_EE_EV_CTRL_FMASK; 264 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 265 266 val = GENMASK(gsi->channel_count - 1, 0); 267 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 268 269 val = GENMASK(gsi->evt_ring_count - 1, 0); 270 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 271 272 /* Each IEOB interrupt is enabled (later) as needed by channels */ 273 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 274 275 val = GSI_CNTXT_GLOB_IRQ_ALL; 276 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 277 278 /* Never enable GSI_BREAK_POINT */ 279 val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK; 280 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 281 } 282 283 /* Disable all GSI_interrupt types */ 284 static void gsi_irq_disable(struct gsi *gsi) 285 { 286 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 287 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 288 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 289 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 290 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 291 iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 292 } 293 294 /* Return the virtual address associated with a ring index */ 295 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 296 { 297 /* Note: index *must* be used modulo the ring count here */ 298 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 299 } 300 301 /* Return the 32-bit DMA address associated with a ring index */ 302 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 303 { 304 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; 305 } 306 307 /* Return the ring index of a 32-bit ring offset */ 308 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 309 { 310 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 311 } 312 313 /* Issue a GSI command by writing a value to a register, then wait for 314 * completion to be signaled. Returns true if the command completes 315 * or false if it times out. 316 */ 317 static bool 318 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 319 { 320 reinit_completion(completion); 321 322 iowrite32(val, gsi->virt + reg); 323 324 return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); 325 } 326 327 /* Return the hardware's notion of the current state of an event ring */ 328 static enum gsi_evt_ring_state 329 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 330 { 331 u32 val; 332 333 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 334 335 return u32_get_bits(val, EV_CHSTATE_FMASK); 336 } 337 338 /* Issue an event ring command and wait for it to complete */ 339 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 340 enum gsi_evt_cmd_opcode opcode) 341 { 342 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 343 struct completion *completion = &evt_ring->completion; 344 u32 val; 345 346 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 347 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 348 349 if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion)) 350 return 0; /* Success! */ 351 352 dev_err(gsi->dev, "GSI command %u to event ring %u timed out " 353 "(state is %u)\n", opcode, evt_ring_id, evt_ring->state); 354 355 return -ETIMEDOUT; 356 } 357 358 /* Allocate an event ring in NOT_ALLOCATED state */ 359 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 360 { 361 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 362 int ret; 363 364 /* Get initial event ring state */ 365 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 366 367 if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) 368 return -EINVAL; 369 370 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 371 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 372 dev_err(gsi->dev, "bad event ring state (%u) after alloc\n", 373 evt_ring->state); 374 ret = -EIO; 375 } 376 377 return ret; 378 } 379 380 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 381 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 382 { 383 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 384 enum gsi_evt_ring_state state = evt_ring->state; 385 int ret; 386 387 if (state != GSI_EVT_RING_STATE_ALLOCATED && 388 state != GSI_EVT_RING_STATE_ERROR) { 389 dev_err(gsi->dev, "bad event ring state (%u) before reset\n", 390 evt_ring->state); 391 return; 392 } 393 394 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 395 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) 396 dev_err(gsi->dev, "bad event ring state (%u) after reset\n", 397 evt_ring->state); 398 } 399 400 /* Issue a hardware de-allocation request for an allocated event ring */ 401 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 402 { 403 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 404 int ret; 405 406 if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 407 dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n", 408 evt_ring->state); 409 return; 410 } 411 412 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 413 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) 414 dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n", 415 evt_ring->state); 416 } 417 418 /* Return the hardware's notion of the current state of a channel */ 419 static enum gsi_channel_state 420 gsi_channel_state(struct gsi *gsi, u32 channel_id) 421 { 422 u32 val; 423 424 val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 425 426 return u32_get_bits(val, CHSTATE_FMASK); 427 } 428 429 /* Issue a channel command and wait for it to complete */ 430 static int 431 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 432 { 433 struct completion *completion = &channel->completion; 434 u32 channel_id = gsi_channel_id(channel); 435 u32 val; 436 437 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 438 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 439 440 if (gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, completion)) 441 return 0; /* Success! */ 442 443 dev_err(channel->gsi->dev, "GSI command %u to channel %u timed out " 444 "(state is %u)\n", opcode, channel_id, channel->state); 445 446 return -ETIMEDOUT; 447 } 448 449 /* Allocate GSI channel in NOT_ALLOCATED state */ 450 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 451 { 452 struct gsi_channel *channel = &gsi->channel[channel_id]; 453 int ret; 454 455 /* Get initial channel state */ 456 channel->state = gsi_channel_state(gsi, channel_id); 457 458 if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 459 return -EINVAL; 460 461 ret = gsi_channel_command(channel, GSI_CH_ALLOCATE); 462 if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) { 463 dev_err(gsi->dev, "bad channel state (%u) after alloc\n", 464 channel->state); 465 ret = -EIO; 466 } 467 468 return ret; 469 } 470 471 /* Start an ALLOCATED channel */ 472 static int gsi_channel_start_command(struct gsi_channel *channel) 473 { 474 enum gsi_channel_state state = channel->state; 475 int ret; 476 477 if (state != GSI_CHANNEL_STATE_ALLOCATED && 478 state != GSI_CHANNEL_STATE_STOPPED) 479 return -EINVAL; 480 481 ret = gsi_channel_command(channel, GSI_CH_START); 482 if (!ret && channel->state != GSI_CHANNEL_STATE_STARTED) { 483 dev_err(channel->gsi->dev, 484 "bad channel state (%u) after start\n", 485 channel->state); 486 ret = -EIO; 487 } 488 489 return ret; 490 } 491 492 /* Stop a GSI channel in STARTED state */ 493 static int gsi_channel_stop_command(struct gsi_channel *channel) 494 { 495 enum gsi_channel_state state = channel->state; 496 int ret; 497 498 if (state != GSI_CHANNEL_STATE_STARTED && 499 state != GSI_CHANNEL_STATE_STOP_IN_PROC) 500 return -EINVAL; 501 502 ret = gsi_channel_command(channel, GSI_CH_STOP); 503 if (ret || channel->state == GSI_CHANNEL_STATE_STOPPED) 504 return ret; 505 506 /* We may have to try again if stop is in progress */ 507 if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC) 508 return -EAGAIN; 509 510 dev_err(channel->gsi->dev, "bad channel state (%u) after stop\n", 511 channel->state); 512 513 return -EIO; 514 } 515 516 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 517 static void gsi_channel_reset_command(struct gsi_channel *channel) 518 { 519 int ret; 520 521 msleep(1); /* A short delay is required before a RESET command */ 522 523 if (channel->state != GSI_CHANNEL_STATE_STOPPED && 524 channel->state != GSI_CHANNEL_STATE_ERROR) { 525 dev_err(channel->gsi->dev, 526 "bad channel state (%u) before reset\n", 527 channel->state); 528 return; 529 } 530 531 ret = gsi_channel_command(channel, GSI_CH_RESET); 532 if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) 533 dev_err(channel->gsi->dev, 534 "bad channel state (%u) after reset\n", 535 channel->state); 536 } 537 538 /* Deallocate an ALLOCATED GSI channel */ 539 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 540 { 541 struct gsi_channel *channel = &gsi->channel[channel_id]; 542 int ret; 543 544 if (channel->state != GSI_CHANNEL_STATE_ALLOCATED) { 545 dev_err(gsi->dev, "bad channel state (%u) before dealloc\n", 546 channel->state); 547 return; 548 } 549 550 ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC); 551 if (!ret && channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 552 dev_err(gsi->dev, "bad channel state (%u) after dealloc\n", 553 channel->state); 554 } 555 556 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 557 * The index argument (modulo the ring count) is the first unfilled entry, so 558 * we supply one less than that with the doorbell. Update the event ring 559 * index field with the value provided. 560 */ 561 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 562 { 563 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 564 u32 val; 565 566 ring->index = index; /* Next unused entry */ 567 568 /* Note: index *must* be used modulo the ring count here */ 569 val = gsi_ring_addr(ring, (index - 1) % ring->count); 570 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 571 } 572 573 /* Program an event ring for use */ 574 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 575 { 576 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 577 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 578 u32 val; 579 580 val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); 581 val |= EV_INTYPE_FMASK; 582 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 583 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 584 585 val = u32_encode_bits(size, EV_R_LENGTH_FMASK); 586 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 587 588 /* The context 2 and 3 registers store the low-order and 589 * high-order 32 bits of the address of the event ring, 590 * respectively. 591 */ 592 val = evt_ring->ring.addr & GENMASK(31, 0); 593 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 594 595 val = evt_ring->ring.addr >> 32; 596 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 597 598 /* Enable interrupt moderation by setting the moderation delay */ 599 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 600 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 601 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 602 603 /* No MSI write data, and MSI address high and low address is 0 */ 604 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 605 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 606 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 607 608 /* We don't need to get event read pointer updates */ 609 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 610 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 611 612 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 613 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 614 } 615 616 /* Return the last (most recent) transaction completed on a channel. */ 617 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 618 { 619 struct gsi_trans_info *trans_info = &channel->trans_info; 620 struct gsi_trans *trans; 621 622 spin_lock_bh(&trans_info->spinlock); 623 624 if (!list_empty(&trans_info->complete)) 625 trans = list_last_entry(&trans_info->complete, 626 struct gsi_trans, links); 627 else if (!list_empty(&trans_info->polled)) 628 trans = list_last_entry(&trans_info->polled, 629 struct gsi_trans, links); 630 else 631 trans = NULL; 632 633 /* Caller will wait for this, so take a reference */ 634 if (trans) 635 refcount_inc(&trans->refcount); 636 637 spin_unlock_bh(&trans_info->spinlock); 638 639 return trans; 640 } 641 642 /* Wait for transaction activity on a channel to complete */ 643 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 644 { 645 struct gsi_trans *trans; 646 647 /* Get the last transaction, and wait for it to complete */ 648 trans = gsi_channel_trans_last(channel); 649 if (trans) { 650 wait_for_completion(&trans->completion); 651 gsi_trans_free(trans); 652 } 653 } 654 655 /* Stop channel activity. Transactions may not be allocated until thawed. */ 656 static void gsi_channel_freeze(struct gsi_channel *channel) 657 { 658 gsi_channel_trans_quiesce(channel); 659 660 napi_disable(&channel->napi); 661 662 gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); 663 } 664 665 /* Allow transactions to be used on the channel again. */ 666 static void gsi_channel_thaw(struct gsi_channel *channel) 667 { 668 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 669 670 napi_enable(&channel->napi); 671 } 672 673 /* Program a channel for use */ 674 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 675 { 676 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 677 u32 channel_id = gsi_channel_id(channel); 678 union gsi_channel_scratch scr = { }; 679 struct gsi_channel_scratch_gpi *gpi; 680 struct gsi *gsi = channel->gsi; 681 u32 wrr_weight = 0; 682 u32 val; 683 684 /* Arbitrarily pick TRE 0 as the first channel element to use */ 685 channel->tre_ring.index = 0; 686 687 /* We program all channels to use GPI protocol */ 688 val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); 689 if (channel->toward_ipa) 690 val |= CHTYPE_DIR_FMASK; 691 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 692 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 693 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 694 695 val = u32_encode_bits(size, R_LENGTH_FMASK); 696 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 697 698 /* The context 2 and 3 registers store the low-order and 699 * high-order 32 bits of the address of the channel ring, 700 * respectively. 701 */ 702 val = channel->tre_ring.addr & GENMASK(31, 0); 703 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 704 705 val = channel->tre_ring.addr >> 32; 706 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 707 708 /* Command channel gets low weighted round-robin priority */ 709 if (channel->command) 710 wrr_weight = field_max(WRR_WEIGHT_FMASK); 711 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 712 713 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 714 715 /* Enable the doorbell engine if requested */ 716 if (doorbell) 717 val |= USE_DB_ENG_FMASK; 718 719 if (!channel->use_prefetch) 720 val |= USE_ESCAPE_BUF_ONLY_FMASK; 721 722 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 723 724 /* Now update the scratch registers for GPI protocol */ 725 gpi = &scr.gpi; 726 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 727 GSI_RING_ELEMENT_SIZE; 728 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 729 730 val = scr.data.word1; 731 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 732 733 val = scr.data.word2; 734 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 735 736 val = scr.data.word3; 737 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 738 739 /* We must preserve the upper 16 bits of the last scratch register. 740 * The next sequence assumes those bits remain unchanged between the 741 * read and the write. 742 */ 743 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 744 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 745 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 746 747 /* All done! */ 748 } 749 750 static void gsi_channel_deprogram(struct gsi_channel *channel) 751 { 752 /* Nothing to do */ 753 } 754 755 /* Start an allocated GSI channel */ 756 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 757 { 758 struct gsi_channel *channel = &gsi->channel[channel_id]; 759 u32 evt_ring_id = channel->evt_ring_id; 760 int ret; 761 762 mutex_lock(&gsi->mutex); 763 764 ret = gsi_channel_start_command(channel); 765 766 mutex_unlock(&gsi->mutex); 767 768 /* Clear the channel's event ring interrupt in case it's pending */ 769 gsi_isr_ieob_clear(gsi, BIT(evt_ring_id)); 770 771 gsi_channel_thaw(channel); 772 773 return ret; 774 } 775 776 /* Stop a started channel */ 777 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 778 { 779 struct gsi_channel *channel = &gsi->channel[channel_id]; 780 u32 retries; 781 int ret; 782 783 gsi_channel_freeze(channel); 784 785 /* Channel could have entered STOPPED state since last call if the 786 * STOP command timed out. We won't stop a channel if stopping it 787 * was successful previously (so we still want the freeze above). 788 */ 789 if (channel->state == GSI_CHANNEL_STATE_STOPPED) 790 return 0; 791 792 /* RX channels might require a little time to enter STOPPED state */ 793 retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; 794 795 mutex_lock(&gsi->mutex); 796 797 do { 798 ret = gsi_channel_stop_command(channel); 799 if (ret != -EAGAIN) 800 break; 801 msleep(1); 802 } while (retries--); 803 804 mutex_unlock(&gsi->mutex); 805 806 /* Thaw the channel if we need to retry (or on error) */ 807 if (ret) 808 gsi_channel_thaw(channel); 809 810 return ret; 811 } 812 813 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */ 814 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable) 815 { 816 struct gsi_channel *channel = &gsi->channel[channel_id]; 817 818 mutex_lock(&gsi->mutex); 819 820 /* Due to a hardware quirk we need to reset RX channels twice. */ 821 gsi_channel_reset_command(channel); 822 if (!channel->toward_ipa) 823 gsi_channel_reset_command(channel); 824 825 gsi_channel_program(channel, db_enable); 826 gsi_channel_trans_cancel_pending(channel); 827 828 mutex_unlock(&gsi->mutex); 829 } 830 831 /* Stop a STARTED channel for suspend (using stop if requested) */ 832 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 833 { 834 struct gsi_channel *channel = &gsi->channel[channel_id]; 835 836 if (stop) 837 return gsi_channel_stop(gsi, channel_id); 838 839 gsi_channel_freeze(channel); 840 841 return 0; 842 } 843 844 /* Resume a suspended channel (starting will be requested if STOPPED) */ 845 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 846 { 847 struct gsi_channel *channel = &gsi->channel[channel_id]; 848 849 if (start) 850 return gsi_channel_start(gsi, channel_id); 851 852 gsi_channel_thaw(channel); 853 854 return 0; 855 } 856 857 /** 858 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 859 * @channel: Channel for which to report 860 * 861 * Report to the network stack the number of bytes and transactions that 862 * have been queued to hardware since last call. This and the next function 863 * supply information used by the network stack for throttling. 864 * 865 * For each channel we track the number of transactions used and bytes of 866 * data those transactions represent. We also track what those values are 867 * each time this function is called. Subtracting the two tells us 868 * the number of bytes and transactions that have been added between 869 * successive calls. 870 * 871 * Calling this each time we ring the channel doorbell allows us to 872 * provide accurate information to the network stack about how much 873 * work we've given the hardware at any point in time. 874 */ 875 void gsi_channel_tx_queued(struct gsi_channel *channel) 876 { 877 u32 trans_count; 878 u32 byte_count; 879 880 byte_count = channel->byte_count - channel->queued_byte_count; 881 trans_count = channel->trans_count - channel->queued_trans_count; 882 channel->queued_byte_count = channel->byte_count; 883 channel->queued_trans_count = channel->trans_count; 884 885 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 886 trans_count, byte_count); 887 } 888 889 /** 890 * gsi_channel_tx_update() - Report completed TX transfers 891 * @channel: Channel that has completed transmitting packets 892 * @trans: Last transation known to be complete 893 * 894 * Compute the number of transactions and bytes that have been transferred 895 * over a TX channel since the given transaction was committed. Report this 896 * information to the network stack. 897 * 898 * At the time a transaction is committed, we record its channel's 899 * committed transaction and byte counts *in the transaction*. 900 * Completions are signaled by the hardware with an interrupt, and 901 * we can determine the latest completed transaction at that time. 902 * 903 * The difference between the byte/transaction count recorded in 904 * the transaction and the count last time we recorded a completion 905 * tells us exactly how much data has been transferred between 906 * completions. 907 * 908 * Calling this each time we learn of a newly-completed transaction 909 * allows us to provide accurate information to the network stack 910 * about how much work has been completed by the hardware at a given 911 * point in time. 912 */ 913 static void 914 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 915 { 916 u64 byte_count = trans->byte_count + trans->len; 917 u64 trans_count = trans->trans_count + 1; 918 919 byte_count -= channel->compl_byte_count; 920 channel->compl_byte_count += byte_count; 921 trans_count -= channel->compl_trans_count; 922 channel->compl_trans_count += trans_count; 923 924 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 925 trans_count, byte_count); 926 } 927 928 /* Channel control interrupt handler */ 929 static void gsi_isr_chan_ctrl(struct gsi *gsi) 930 { 931 u32 channel_mask; 932 933 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 934 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 935 936 while (channel_mask) { 937 u32 channel_id = __ffs(channel_mask); 938 struct gsi_channel *channel; 939 940 channel_mask ^= BIT(channel_id); 941 942 channel = &gsi->channel[channel_id]; 943 channel->state = gsi_channel_state(gsi, channel_id); 944 945 complete(&channel->completion); 946 } 947 } 948 949 /* Event ring control interrupt handler */ 950 static void gsi_isr_evt_ctrl(struct gsi *gsi) 951 { 952 u32 event_mask; 953 954 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 955 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 956 957 while (event_mask) { 958 u32 evt_ring_id = __ffs(event_mask); 959 struct gsi_evt_ring *evt_ring; 960 961 event_mask ^= BIT(evt_ring_id); 962 963 evt_ring = &gsi->evt_ring[evt_ring_id]; 964 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 965 966 complete(&evt_ring->completion); 967 } 968 } 969 970 /* Global channel error interrupt handler */ 971 static void 972 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 973 { 974 if (code == GSI_OUT_OF_RESOURCES_ERR) { 975 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 976 complete(&gsi->channel[channel_id].completion); 977 return; 978 } 979 980 /* Report, but otherwise ignore all other error codes */ 981 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 982 channel_id, err_ee, code); 983 } 984 985 /* Global event error interrupt handler */ 986 static void 987 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 988 { 989 if (code == GSI_OUT_OF_RESOURCES_ERR) { 990 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 991 u32 channel_id = gsi_channel_id(evt_ring->channel); 992 993 complete(&evt_ring->completion); 994 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 995 channel_id); 996 return; 997 } 998 999 /* Report, but otherwise ignore all other error codes */ 1000 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1001 evt_ring_id, err_ee, code); 1002 } 1003 1004 /* Global error interrupt handler */ 1005 static void gsi_isr_glob_err(struct gsi *gsi) 1006 { 1007 enum gsi_err_type type; 1008 enum gsi_err_code code; 1009 u32 which; 1010 u32 val; 1011 u32 ee; 1012 1013 /* Get the logged error, then reinitialize the log */ 1014 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1015 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1016 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1017 1018 ee = u32_get_bits(val, ERR_EE_FMASK); 1019 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1020 type = u32_get_bits(val, ERR_TYPE_FMASK); 1021 code = u32_get_bits(val, ERR_CODE_FMASK); 1022 1023 if (type == GSI_ERR_TYPE_CHAN) 1024 gsi_isr_glob_chan_err(gsi, ee, which, code); 1025 else if (type == GSI_ERR_TYPE_EVT) 1026 gsi_isr_glob_evt_err(gsi, ee, which, code); 1027 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1028 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1029 } 1030 1031 /* Generic EE interrupt handler */ 1032 static void gsi_isr_gp_int1(struct gsi *gsi) 1033 { 1034 u32 result; 1035 u32 val; 1036 1037 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1038 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1039 if (result != GENERIC_EE_SUCCESS_FVAL) 1040 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1041 1042 complete(&gsi->completion); 1043 } 1044 /* Inter-EE interrupt handler */ 1045 static void gsi_isr_glob_ee(struct gsi *gsi) 1046 { 1047 u32 val; 1048 1049 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1050 1051 if (val & ERROR_INT_FMASK) 1052 gsi_isr_glob_err(gsi); 1053 1054 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1055 1056 val &= ~ERROR_INT_FMASK; 1057 1058 if (val & EN_GP_INT1_FMASK) { 1059 val ^= EN_GP_INT1_FMASK; 1060 gsi_isr_gp_int1(gsi); 1061 } 1062 1063 if (val) 1064 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1065 } 1066 1067 /* I/O completion interrupt event */ 1068 static void gsi_isr_ieob(struct gsi *gsi) 1069 { 1070 u32 event_mask; 1071 1072 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1073 gsi_isr_ieob_clear(gsi, event_mask); 1074 1075 while (event_mask) { 1076 u32 evt_ring_id = __ffs(event_mask); 1077 1078 event_mask ^= BIT(evt_ring_id); 1079 1080 gsi_irq_ieob_disable(gsi, evt_ring_id); 1081 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1082 } 1083 } 1084 1085 /* General event interrupts represent serious problems, so report them */ 1086 static void gsi_isr_general(struct gsi *gsi) 1087 { 1088 struct device *dev = gsi->dev; 1089 u32 val; 1090 1091 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1092 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1093 1094 if (val) 1095 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1096 } 1097 1098 /** 1099 * gsi_isr() - Top level GSI interrupt service routine 1100 * @irq: Interrupt number (ignored) 1101 * @dev_id: GSI pointer supplied to request_irq() 1102 * 1103 * This is the main handler function registered for the GSI IRQ. Each type 1104 * of interrupt has a separate handler function that is called from here. 1105 */ 1106 static irqreturn_t gsi_isr(int irq, void *dev_id) 1107 { 1108 struct gsi *gsi = dev_id; 1109 u32 intr_mask; 1110 u32 cnt = 0; 1111 1112 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1113 /* intr_mask contains bitmask of pending GSI interrupts */ 1114 do { 1115 u32 gsi_intr = BIT(__ffs(intr_mask)); 1116 1117 intr_mask ^= gsi_intr; 1118 1119 switch (gsi_intr) { 1120 case CH_CTRL_FMASK: 1121 gsi_isr_chan_ctrl(gsi); 1122 break; 1123 case EV_CTRL_FMASK: 1124 gsi_isr_evt_ctrl(gsi); 1125 break; 1126 case GLOB_EE_FMASK: 1127 gsi_isr_glob_ee(gsi); 1128 break; 1129 case IEOB_FMASK: 1130 gsi_isr_ieob(gsi); 1131 break; 1132 case GENERAL_FMASK: 1133 gsi_isr_general(gsi); 1134 break; 1135 default: 1136 dev_err(gsi->dev, 1137 "%s: unrecognized type 0x%08x\n", 1138 __func__, gsi_intr); 1139 break; 1140 } 1141 } while (intr_mask); 1142 1143 if (++cnt > GSI_ISR_MAX_ITER) { 1144 dev_err(gsi->dev, "interrupt flood\n"); 1145 break; 1146 } 1147 } 1148 1149 return IRQ_HANDLED; 1150 } 1151 1152 /* Return the transaction associated with a transfer completion event */ 1153 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1154 struct gsi_event *event) 1155 { 1156 u32 tre_offset; 1157 u32 tre_index; 1158 1159 /* Event xfer_ptr records the TRE it's associated with */ 1160 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); 1161 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1162 1163 return gsi_channel_trans_mapped(channel, tre_index); 1164 } 1165 1166 /** 1167 * gsi_evt_ring_rx_update() - Record lengths of received data 1168 * @evt_ring: Event ring associated with channel that received packets 1169 * @index: Event index in ring reported by hardware 1170 * 1171 * Events for RX channels contain the actual number of bytes received into 1172 * the buffer. Every event has a transaction associated with it, and here 1173 * we update transactions to record their actual received lengths. 1174 * 1175 * This function is called whenever we learn that the GSI hardware has filled 1176 * new events since the last time we checked. The ring's index field tells 1177 * the first entry in need of processing. The index provided is the 1178 * first *unfilled* event in the ring (following the last filled one). 1179 * 1180 * Events are sequential within the event ring, and transactions are 1181 * sequential within the transaction pool. 1182 * 1183 * Note that @index always refers to an element *within* the event ring. 1184 */ 1185 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1186 { 1187 struct gsi_channel *channel = evt_ring->channel; 1188 struct gsi_ring *ring = &evt_ring->ring; 1189 struct gsi_trans_info *trans_info; 1190 struct gsi_event *event_done; 1191 struct gsi_event *event; 1192 struct gsi_trans *trans; 1193 u32 byte_count = 0; 1194 u32 old_index; 1195 u32 event_avail; 1196 1197 trans_info = &channel->trans_info; 1198 1199 /* We'll start with the oldest un-processed event. RX channels 1200 * replenish receive buffers in single-TRE transactions, so we 1201 * can just map that event to its transaction. Transactions 1202 * associated with completion events are consecutive. 1203 */ 1204 old_index = ring->index; 1205 event = gsi_ring_virt(ring, old_index); 1206 trans = gsi_event_trans(channel, event); 1207 1208 /* Compute the number of events to process before we wrap, 1209 * and determine when we'll be done processing events. 1210 */ 1211 event_avail = ring->count - old_index % ring->count; 1212 event_done = gsi_ring_virt(ring, index); 1213 do { 1214 trans->len = __le16_to_cpu(event->len); 1215 byte_count += trans->len; 1216 1217 /* Move on to the next event and transaction */ 1218 if (--event_avail) 1219 event++; 1220 else 1221 event = gsi_ring_virt(ring, 0); 1222 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1223 } while (event != event_done); 1224 1225 /* We record RX bytes when they are received */ 1226 channel->byte_count += byte_count; 1227 channel->trans_count++; 1228 } 1229 1230 /* Initialize a ring, including allocating DMA memory for its entries */ 1231 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1232 { 1233 size_t size = count * GSI_RING_ELEMENT_SIZE; 1234 struct device *dev = gsi->dev; 1235 dma_addr_t addr; 1236 1237 /* Hardware requires a 2^n ring size, with alignment equal to size */ 1238 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1239 if (ring->virt && addr % size) { 1240 dma_free_coherent(dev, size, ring->virt, ring->addr); 1241 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", 1242 size); 1243 return -EINVAL; /* Not a good error value, but distinct */ 1244 } else if (!ring->virt) { 1245 return -ENOMEM; 1246 } 1247 ring->addr = addr; 1248 ring->count = count; 1249 1250 return 0; 1251 } 1252 1253 /* Free a previously-allocated ring */ 1254 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1255 { 1256 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1257 1258 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1259 } 1260 1261 /* Allocate an available event ring id */ 1262 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1263 { 1264 u32 evt_ring_id; 1265 1266 if (gsi->event_bitmap == ~0U) { 1267 dev_err(gsi->dev, "event rings exhausted\n"); 1268 return -ENOSPC; 1269 } 1270 1271 evt_ring_id = ffz(gsi->event_bitmap); 1272 gsi->event_bitmap |= BIT(evt_ring_id); 1273 1274 return (int)evt_ring_id; 1275 } 1276 1277 /* Free a previously-allocated event ring id */ 1278 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1279 { 1280 gsi->event_bitmap &= ~BIT(evt_ring_id); 1281 } 1282 1283 /* Ring a channel doorbell, reporting the first un-filled entry */ 1284 void gsi_channel_doorbell(struct gsi_channel *channel) 1285 { 1286 struct gsi_ring *tre_ring = &channel->tre_ring; 1287 u32 channel_id = gsi_channel_id(channel); 1288 struct gsi *gsi = channel->gsi; 1289 u32 val; 1290 1291 /* Note: index *must* be used modulo the ring count here */ 1292 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1293 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1294 } 1295 1296 /* Consult hardware, move any newly completed transactions to completed list */ 1297 static void gsi_channel_update(struct gsi_channel *channel) 1298 { 1299 u32 evt_ring_id = channel->evt_ring_id; 1300 struct gsi *gsi = channel->gsi; 1301 struct gsi_evt_ring *evt_ring; 1302 struct gsi_trans *trans; 1303 struct gsi_ring *ring; 1304 u32 offset; 1305 u32 index; 1306 1307 evt_ring = &gsi->evt_ring[evt_ring_id]; 1308 ring = &evt_ring->ring; 1309 1310 /* See if there's anything new to process; if not, we're done. Note 1311 * that index always refers to an entry *within* the event ring. 1312 */ 1313 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1314 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1315 if (index == ring->index % ring->count) 1316 return; 1317 1318 /* Get the transaction for the latest completed event. Take a 1319 * reference to keep it from completing before we give the events 1320 * for this and previous transactions back to the hardware. 1321 */ 1322 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1323 refcount_inc(&trans->refcount); 1324 1325 /* For RX channels, update each completed transaction with the number 1326 * of bytes that were actually received. For TX channels, report 1327 * the number of transactions and bytes this completion represents 1328 * up the network stack. 1329 */ 1330 if (channel->toward_ipa) 1331 gsi_channel_tx_update(channel, trans); 1332 else 1333 gsi_evt_ring_rx_update(evt_ring, index); 1334 1335 gsi_trans_move_complete(trans); 1336 1337 /* Tell the hardware we've handled these events */ 1338 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1339 1340 gsi_trans_free(trans); 1341 } 1342 1343 /** 1344 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1345 * @channel: Channel to be polled 1346 * 1347 * @Return: Transaction pointer, or null if none are available 1348 * 1349 * This function returns the first entry on a channel's completed transaction 1350 * list. If that list is empty, the hardware is consulted to determine 1351 * whether any new transactions have completed. If so, they're moved to the 1352 * completed list and the new first entry is returned. If there are no more 1353 * completed transactions, a null pointer is returned. 1354 */ 1355 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1356 { 1357 struct gsi_trans *trans; 1358 1359 /* Get the first transaction from the completed list */ 1360 trans = gsi_channel_trans_complete(channel); 1361 if (!trans) { 1362 /* List is empty; see if there's more to do */ 1363 gsi_channel_update(channel); 1364 trans = gsi_channel_trans_complete(channel); 1365 } 1366 1367 if (trans) 1368 gsi_trans_move_polled(trans); 1369 1370 return trans; 1371 } 1372 1373 /** 1374 * gsi_channel_poll() - NAPI poll function for a channel 1375 * @napi: NAPI structure for the channel 1376 * @budget: Budget supplied by NAPI core 1377 1378 * @Return: Number of items polled (<= budget) 1379 * 1380 * Single transactions completed by hardware are polled until either 1381 * the budget is exhausted, or there are no more. Each transaction 1382 * polled is passed to gsi_trans_complete(), to perform remaining 1383 * completion processing and retire/free the transaction. 1384 */ 1385 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1386 { 1387 struct gsi_channel *channel; 1388 int count = 0; 1389 1390 channel = container_of(napi, struct gsi_channel, napi); 1391 while (count < budget) { 1392 struct gsi_trans *trans; 1393 1394 trans = gsi_channel_poll_one(channel); 1395 if (!trans) 1396 break; 1397 gsi_trans_complete(trans); 1398 } 1399 1400 if (count < budget) { 1401 napi_complete(&channel->napi); 1402 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 1403 } 1404 1405 return count; 1406 } 1407 1408 /* The event bitmap represents which event ids are available for allocation. 1409 * Set bits are not available, clear bits can be used. This function 1410 * initializes the map so all events supported by the hardware are available, 1411 * then precludes any reserved events from being allocated. 1412 */ 1413 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1414 { 1415 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1416 1417 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1418 1419 return event_bitmap; 1420 } 1421 1422 /* Setup function for event rings */ 1423 static void gsi_evt_ring_setup(struct gsi *gsi) 1424 { 1425 /* Nothing to do */ 1426 } 1427 1428 /* Inverse of gsi_evt_ring_setup() */ 1429 static void gsi_evt_ring_teardown(struct gsi *gsi) 1430 { 1431 /* Nothing to do */ 1432 } 1433 1434 /* Setup function for a single channel */ 1435 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id, 1436 bool db_enable) 1437 { 1438 struct gsi_channel *channel = &gsi->channel[channel_id]; 1439 u32 evt_ring_id = channel->evt_ring_id; 1440 int ret; 1441 1442 if (!channel->gsi) 1443 return 0; /* Ignore uninitialized channels */ 1444 1445 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1446 if (ret) 1447 return ret; 1448 1449 gsi_evt_ring_program(gsi, evt_ring_id); 1450 1451 ret = gsi_channel_alloc_command(gsi, channel_id); 1452 if (ret) 1453 goto err_evt_ring_de_alloc; 1454 1455 gsi_channel_program(channel, db_enable); 1456 1457 if (channel->toward_ipa) 1458 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1459 gsi_channel_poll, NAPI_POLL_WEIGHT); 1460 else 1461 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1462 gsi_channel_poll, NAPI_POLL_WEIGHT); 1463 1464 return 0; 1465 1466 err_evt_ring_de_alloc: 1467 /* We've done nothing with the event ring yet so don't reset */ 1468 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1469 1470 return ret; 1471 } 1472 1473 /* Inverse of gsi_channel_setup_one() */ 1474 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1475 { 1476 struct gsi_channel *channel = &gsi->channel[channel_id]; 1477 u32 evt_ring_id = channel->evt_ring_id; 1478 1479 if (!channel->gsi) 1480 return; /* Ignore uninitialized channels */ 1481 1482 netif_napi_del(&channel->napi); 1483 1484 gsi_channel_deprogram(channel); 1485 gsi_channel_de_alloc_command(gsi, channel_id); 1486 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1487 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1488 } 1489 1490 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1491 enum gsi_generic_cmd_opcode opcode) 1492 { 1493 struct completion *completion = &gsi->completion; 1494 u32 val; 1495 1496 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1497 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1498 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1499 1500 if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion)) 1501 return 0; /* Success! */ 1502 1503 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1504 opcode, channel_id); 1505 1506 return -ETIMEDOUT; 1507 } 1508 1509 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1510 { 1511 return gsi_generic_command(gsi, channel_id, 1512 GSI_GENERIC_ALLOCATE_CHANNEL); 1513 } 1514 1515 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1516 { 1517 int ret; 1518 1519 ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL); 1520 if (ret) 1521 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1522 ret, channel_id); 1523 } 1524 1525 /* Setup function for channels */ 1526 static int gsi_channel_setup(struct gsi *gsi, bool db_enable) 1527 { 1528 u32 channel_id = 0; 1529 u32 mask; 1530 int ret; 1531 1532 gsi_evt_ring_setup(gsi); 1533 gsi_irq_enable(gsi); 1534 1535 mutex_lock(&gsi->mutex); 1536 1537 do { 1538 ret = gsi_channel_setup_one(gsi, channel_id, db_enable); 1539 if (ret) 1540 goto err_unwind; 1541 } while (++channel_id < gsi->channel_count); 1542 1543 /* Make sure no channels were defined that hardware does not support */ 1544 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1545 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1546 1547 if (!channel->gsi) 1548 continue; /* Ignore uninitialized channels */ 1549 1550 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1551 channel_id - 1); 1552 channel_id = gsi->channel_count; 1553 goto err_unwind; 1554 } 1555 1556 /* Allocate modem channels if necessary */ 1557 mask = gsi->modem_channel_bitmap; 1558 while (mask) { 1559 u32 modem_channel_id = __ffs(mask); 1560 1561 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1562 if (ret) 1563 goto err_unwind_modem; 1564 1565 /* Clear bit from mask only after success (for unwind) */ 1566 mask ^= BIT(modem_channel_id); 1567 } 1568 1569 mutex_unlock(&gsi->mutex); 1570 1571 return 0; 1572 1573 err_unwind_modem: 1574 /* Compute which modem channels need to be deallocated */ 1575 mask ^= gsi->modem_channel_bitmap; 1576 while (mask) { 1577 u32 channel_id = __fls(mask); 1578 1579 mask ^= BIT(channel_id); 1580 1581 gsi_modem_channel_halt(gsi, channel_id); 1582 } 1583 1584 err_unwind: 1585 while (channel_id--) 1586 gsi_channel_teardown_one(gsi, channel_id); 1587 1588 mutex_unlock(&gsi->mutex); 1589 1590 gsi_irq_disable(gsi); 1591 gsi_evt_ring_teardown(gsi); 1592 1593 return ret; 1594 } 1595 1596 /* Inverse of gsi_channel_setup() */ 1597 static void gsi_channel_teardown(struct gsi *gsi) 1598 { 1599 u32 mask = gsi->modem_channel_bitmap; 1600 u32 channel_id; 1601 1602 mutex_lock(&gsi->mutex); 1603 1604 while (mask) { 1605 u32 channel_id = __fls(mask); 1606 1607 mask ^= BIT(channel_id); 1608 1609 gsi_modem_channel_halt(gsi, channel_id); 1610 } 1611 1612 channel_id = gsi->channel_count - 1; 1613 do 1614 gsi_channel_teardown_one(gsi, channel_id); 1615 while (channel_id--); 1616 1617 mutex_unlock(&gsi->mutex); 1618 1619 gsi_irq_disable(gsi); 1620 gsi_evt_ring_teardown(gsi); 1621 } 1622 1623 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1624 int gsi_setup(struct gsi *gsi, bool db_enable) 1625 { 1626 u32 val; 1627 1628 /* Here is where we first touch the GSI hardware */ 1629 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1630 if (!(val & ENABLED_FMASK)) { 1631 dev_err(gsi->dev, "GSI has not been enabled\n"); 1632 return -EIO; 1633 } 1634 1635 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1636 1637 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1638 if (!gsi->channel_count) { 1639 dev_err(gsi->dev, "GSI reports zero channels supported\n"); 1640 return -EINVAL; 1641 } 1642 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1643 dev_warn(gsi->dev, 1644 "limiting to %u channels (hardware supports %u)\n", 1645 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1646 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1647 } 1648 1649 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1650 if (!gsi->evt_ring_count) { 1651 dev_err(gsi->dev, "GSI reports zero event rings supported\n"); 1652 return -EINVAL; 1653 } 1654 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1655 dev_warn(gsi->dev, 1656 "limiting to %u event rings (hardware supports %u)\n", 1657 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1658 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1659 } 1660 1661 /* Initialize the error log */ 1662 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1663 1664 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1665 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1666 1667 return gsi_channel_setup(gsi, db_enable); 1668 } 1669 1670 /* Inverse of gsi_setup() */ 1671 void gsi_teardown(struct gsi *gsi) 1672 { 1673 gsi_channel_teardown(gsi); 1674 } 1675 1676 /* Initialize a channel's event ring */ 1677 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1678 { 1679 struct gsi *gsi = channel->gsi; 1680 struct gsi_evt_ring *evt_ring; 1681 int ret; 1682 1683 ret = gsi_evt_ring_id_alloc(gsi); 1684 if (ret < 0) 1685 return ret; 1686 channel->evt_ring_id = ret; 1687 1688 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1689 evt_ring->channel = channel; 1690 1691 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1692 if (!ret) 1693 return 0; /* Success! */ 1694 1695 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1696 ret, gsi_channel_id(channel)); 1697 1698 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1699 1700 return ret; 1701 } 1702 1703 /* Inverse of gsi_channel_evt_ring_init() */ 1704 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1705 { 1706 u32 evt_ring_id = channel->evt_ring_id; 1707 struct gsi *gsi = channel->gsi; 1708 struct gsi_evt_ring *evt_ring; 1709 1710 evt_ring = &gsi->evt_ring[evt_ring_id]; 1711 gsi_ring_free(gsi, &evt_ring->ring); 1712 gsi_evt_ring_id_free(gsi, evt_ring_id); 1713 } 1714 1715 /* Init function for event rings */ 1716 static void gsi_evt_ring_init(struct gsi *gsi) 1717 { 1718 u32 evt_ring_id = 0; 1719 1720 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1721 gsi->event_enable_bitmap = 0; 1722 do 1723 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1724 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1725 } 1726 1727 /* Inverse of gsi_evt_ring_init() */ 1728 static void gsi_evt_ring_exit(struct gsi *gsi) 1729 { 1730 /* Nothing to do */ 1731 } 1732 1733 static bool gsi_channel_data_valid(struct gsi *gsi, 1734 const struct ipa_gsi_endpoint_data *data) 1735 { 1736 #ifdef IPA_VALIDATION 1737 u32 channel_id = data->channel_id; 1738 struct device *dev = gsi->dev; 1739 1740 /* Make sure channel ids are in the range driver supports */ 1741 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1742 dev_err(dev, "bad channel id %u (must be less than %u)\n", 1743 channel_id, GSI_CHANNEL_COUNT_MAX); 1744 return false; 1745 } 1746 1747 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1748 dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id); 1749 return false; 1750 } 1751 1752 if (!data->channel.tlv_count || 1753 data->channel.tlv_count > GSI_TLV_MAX) { 1754 dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n", 1755 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1756 return false; 1757 } 1758 1759 /* We have to allow at least one maximally-sized transaction to 1760 * be outstanding (which would use tlv_count TREs). Given how 1761 * gsi_channel_tre_max() is computed, tre_count has to be almost 1762 * twice the TLV FIFO size to satisfy this requirement. 1763 */ 1764 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 1765 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 1766 channel_id, data->channel.tlv_count, 1767 data->channel.tre_count); 1768 return false; 1769 } 1770 1771 if (!is_power_of_2(data->channel.tre_count)) { 1772 dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n", 1773 channel_id, data->channel.tre_count); 1774 return false; 1775 } 1776 1777 if (!is_power_of_2(data->channel.event_count)) { 1778 dev_err(dev, "channel %u bad event_count %u (not power of 2)\n", 1779 channel_id, data->channel.event_count); 1780 return false; 1781 } 1782 #endif /* IPA_VALIDATION */ 1783 1784 return true; 1785 } 1786 1787 /* Init function for a single channel */ 1788 static int gsi_channel_init_one(struct gsi *gsi, 1789 const struct ipa_gsi_endpoint_data *data, 1790 bool command, bool prefetch) 1791 { 1792 struct gsi_channel *channel; 1793 u32 tre_count; 1794 int ret; 1795 1796 if (!gsi_channel_data_valid(gsi, data)) 1797 return -EINVAL; 1798 1799 /* Worst case we need an event for every outstanding TRE */ 1800 if (data->channel.tre_count > data->channel.event_count) { 1801 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 1802 data->channel_id, data->channel.tre_count); 1803 tre_count = data->channel.event_count; 1804 } else { 1805 tre_count = data->channel.tre_count; 1806 } 1807 1808 channel = &gsi->channel[data->channel_id]; 1809 memset(channel, 0, sizeof(*channel)); 1810 1811 channel->gsi = gsi; 1812 channel->toward_ipa = data->toward_ipa; 1813 channel->command = command; 1814 channel->use_prefetch = command && prefetch; 1815 channel->tlv_count = data->channel.tlv_count; 1816 channel->tre_count = tre_count; 1817 channel->event_count = data->channel.event_count; 1818 init_completion(&channel->completion); 1819 1820 ret = gsi_channel_evt_ring_init(channel); 1821 if (ret) 1822 goto err_clear_gsi; 1823 1824 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 1825 if (ret) { 1826 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 1827 ret, data->channel_id); 1828 goto err_channel_evt_ring_exit; 1829 } 1830 1831 ret = gsi_channel_trans_init(gsi, data->channel_id); 1832 if (ret) 1833 goto err_ring_free; 1834 1835 if (command) { 1836 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 1837 1838 ret = ipa_cmd_pool_init(channel, tre_max); 1839 } 1840 if (!ret) 1841 return 0; /* Success! */ 1842 1843 gsi_channel_trans_exit(channel); 1844 err_ring_free: 1845 gsi_ring_free(gsi, &channel->tre_ring); 1846 err_channel_evt_ring_exit: 1847 gsi_channel_evt_ring_exit(channel); 1848 err_clear_gsi: 1849 channel->gsi = NULL; /* Mark it not (fully) initialized */ 1850 1851 return ret; 1852 } 1853 1854 /* Inverse of gsi_channel_init_one() */ 1855 static void gsi_channel_exit_one(struct gsi_channel *channel) 1856 { 1857 if (!channel->gsi) 1858 return; /* Ignore uninitialized channels */ 1859 1860 if (channel->command) 1861 ipa_cmd_pool_exit(channel); 1862 gsi_channel_trans_exit(channel); 1863 gsi_ring_free(channel->gsi, &channel->tre_ring); 1864 gsi_channel_evt_ring_exit(channel); 1865 } 1866 1867 /* Init function for channels */ 1868 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count, 1869 const struct ipa_gsi_endpoint_data *data, 1870 bool modem_alloc) 1871 { 1872 int ret = 0; 1873 u32 i; 1874 1875 gsi_evt_ring_init(gsi); 1876 1877 /* The endpoint data array is indexed by endpoint name */ 1878 for (i = 0; i < count; i++) { 1879 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 1880 1881 if (ipa_gsi_endpoint_data_empty(&data[i])) 1882 continue; /* Skip over empty slots */ 1883 1884 /* Mark modem channels to be allocated (hardware workaround) */ 1885 if (data[i].ee_id == GSI_EE_MODEM) { 1886 if (modem_alloc) 1887 gsi->modem_channel_bitmap |= 1888 BIT(data[i].channel_id); 1889 continue; 1890 } 1891 1892 ret = gsi_channel_init_one(gsi, &data[i], command, prefetch); 1893 if (ret) 1894 goto err_unwind; 1895 } 1896 1897 return ret; 1898 1899 err_unwind: 1900 while (i--) { 1901 if (ipa_gsi_endpoint_data_empty(&data[i])) 1902 continue; 1903 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 1904 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 1905 continue; 1906 } 1907 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 1908 } 1909 gsi_evt_ring_exit(gsi); 1910 1911 return ret; 1912 } 1913 1914 /* Inverse of gsi_channel_init() */ 1915 static void gsi_channel_exit(struct gsi *gsi) 1916 { 1917 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 1918 1919 do 1920 gsi_channel_exit_one(&gsi->channel[channel_id]); 1921 while (channel_id--); 1922 gsi->modem_channel_bitmap = 0; 1923 1924 gsi_evt_ring_exit(gsi); 1925 } 1926 1927 /* Init function for GSI. GSI hardware does not need to be "ready" */ 1928 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, 1929 u32 count, const struct ipa_gsi_endpoint_data *data, 1930 bool modem_alloc) 1931 { 1932 struct resource *res; 1933 resource_size_t size; 1934 unsigned int irq; 1935 int ret; 1936 1937 gsi_validate_build(); 1938 1939 gsi->dev = &pdev->dev; 1940 1941 /* The GSI layer performs NAPI on all endpoints. NAPI requires a 1942 * network device structure, but the GSI layer does not have one, 1943 * so we must create a dummy network device for this purpose. 1944 */ 1945 init_dummy_netdev(&gsi->dummy_dev); 1946 1947 /* Get the GSI IRQ and request for it to wake the system */ 1948 ret = platform_get_irq_byname(pdev, "gsi"); 1949 if (ret <= 0) { 1950 dev_err(gsi->dev, 1951 "DT error %d getting \"gsi\" IRQ property\n", ret); 1952 return ret ? : -EINVAL; 1953 } 1954 irq = ret; 1955 1956 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1957 if (ret) { 1958 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 1959 return ret; 1960 } 1961 gsi->irq = irq; 1962 1963 ret = enable_irq_wake(gsi->irq); 1964 if (ret) 1965 dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret); 1966 gsi->irq_wake_enabled = !ret; 1967 1968 /* Get GSI memory range and map it */ 1969 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 1970 if (!res) { 1971 dev_err(gsi->dev, 1972 "DT error getting \"gsi\" memory property\n"); 1973 ret = -ENODEV; 1974 goto err_disable_irq_wake; 1975 } 1976 1977 size = resource_size(res); 1978 if (res->start > U32_MAX || size > U32_MAX - res->start) { 1979 dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n"); 1980 ret = -EINVAL; 1981 goto err_disable_irq_wake; 1982 } 1983 1984 gsi->virt = ioremap(res->start, size); 1985 if (!gsi->virt) { 1986 dev_err(gsi->dev, "unable to remap \"gsi\" memory\n"); 1987 ret = -ENOMEM; 1988 goto err_disable_irq_wake; 1989 } 1990 1991 ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc); 1992 if (ret) 1993 goto err_iounmap; 1994 1995 mutex_init(&gsi->mutex); 1996 init_completion(&gsi->completion); 1997 1998 return 0; 1999 2000 err_iounmap: 2001 iounmap(gsi->virt); 2002 err_disable_irq_wake: 2003 if (gsi->irq_wake_enabled) 2004 (void)disable_irq_wake(gsi->irq); 2005 free_irq(gsi->irq, gsi); 2006 2007 return ret; 2008 } 2009 2010 /* Inverse of gsi_init() */ 2011 void gsi_exit(struct gsi *gsi) 2012 { 2013 mutex_destroy(&gsi->mutex); 2014 gsi_channel_exit(gsi); 2015 if (gsi->irq_wake_enabled) 2016 (void)disable_irq_wake(gsi->irq); 2017 free_irq(gsi->irq, gsi); 2018 iounmap(gsi->virt); 2019 } 2020 2021 /* The maximum number of outstanding TREs on a channel. This limits 2022 * a channel's maximum number of transactions outstanding (worst case 2023 * is one TRE per transaction). 2024 * 2025 * The absolute limit is the number of TREs in the channel's TRE ring, 2026 * and in theory we should be able use all of them. But in practice, 2027 * doing that led to the hardware reporting exhaustion of event ring 2028 * slots for writing completion information. So the hardware limit 2029 * would be (tre_count - 1). 2030 * 2031 * We reduce it a bit further though. Transaction resource pools are 2032 * sized to be a little larger than this maximum, to allow resource 2033 * allocations to always be contiguous. The number of entries in a 2034 * TRE ring buffer is a power of 2, and the extra resources in a pool 2035 * tends to nearly double the memory allocated for it. Reducing the 2036 * maximum number of outstanding TREs allows the number of entries in 2037 * a pool to avoid crossing that power-of-2 boundary, and this can 2038 * substantially reduce pool memory requirements. The number we 2039 * reduce it by matches the number added in gsi_trans_pool_init(). 2040 */ 2041 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2042 { 2043 struct gsi_channel *channel = &gsi->channel[channel_id]; 2044 2045 /* Hardware limit is channel->tre_count - 1 */ 2046 return channel->tre_count - (channel->tlv_count - 1); 2047 } 2048 2049 /* Returns the maximum number of TREs in a single transaction for a channel */ 2050 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2051 { 2052 struct gsi_channel *channel = &gsi->channel[channel_id]; 2053 2054 return channel->tlv_count; 2055 } 2056