xref: /linux/drivers/net/ipa/gsi.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* An initialized channel has a non-null GSI pointer */
179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 	return !!channel->gsi;
182 }
183 
184 /* Update the GSI IRQ type register with the cached value */
185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 	gsi->type_enabled_bitmap = val;
188 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190 
191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195 
196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200 
201 /* Turn off all GSI interrupts initially; there is no gsi_irq_teardown() */
202 static void gsi_irq_setup(struct gsi *gsi)
203 {
204 	/* Disable all interrupt types */
205 	gsi_irq_type_update(gsi, 0);
206 
207 	/* Clear all type-specific interrupt masks */
208 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
209 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
210 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
211 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
212 
213 	/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
214 	if (gsi->version > IPA_VERSION_3_1) {
215 		u32 offset;
216 
217 		/* These registers are in the non-adjusted address range */
218 		offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET;
219 		iowrite32(0, gsi->virt_raw + offset);
220 		offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET;
221 		iowrite32(0, gsi->virt_raw + offset);
222 	}
223 
224 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
225 }
226 
227 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
228 static int gsi_ring_setup(struct gsi *gsi)
229 {
230 	struct device *dev = gsi->dev;
231 	u32 count;
232 	u32 val;
233 
234 	if (gsi->version < IPA_VERSION_3_5_1) {
235 		/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
236 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
237 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
238 
239 		return 0;
240 	}
241 
242 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
243 
244 	count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
245 	if (!count) {
246 		dev_err(dev, "GSI reports zero channels supported\n");
247 		return -EINVAL;
248 	}
249 	if (count > GSI_CHANNEL_COUNT_MAX) {
250 		dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
251 			 GSI_CHANNEL_COUNT_MAX, count);
252 		count = GSI_CHANNEL_COUNT_MAX;
253 	}
254 	gsi->channel_count = count;
255 
256 	count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
257 	if (!count) {
258 		dev_err(dev, "GSI reports zero event rings supported\n");
259 		return -EINVAL;
260 	}
261 	if (count > GSI_EVT_RING_COUNT_MAX) {
262 		dev_warn(dev,
263 			 "limiting to %u event rings; hardware supports %u\n",
264 			 GSI_EVT_RING_COUNT_MAX, count);
265 		count = GSI_EVT_RING_COUNT_MAX;
266 	}
267 	gsi->evt_ring_count = count;
268 
269 	return 0;
270 }
271 
272 /* Event ring commands are performed one at a time.  Their completion
273  * is signaled by the event ring control GSI interrupt type, which is
274  * only enabled when we issue an event ring command.  Only the event
275  * ring being operated on has this interrupt enabled.
276  */
277 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
278 {
279 	u32 val = BIT(evt_ring_id);
280 
281 	/* There's a small chance that a previous command completed
282 	 * after the interrupt was disabled, so make sure we have no
283 	 * pending interrupts before we enable them.
284 	 */
285 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
286 
287 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
288 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
289 }
290 
291 /* Disable event ring control interrupts */
292 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
293 {
294 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
295 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
296 }
297 
298 /* Channel commands are performed one at a time.  Their completion is
299  * signaled by the channel control GSI interrupt type, which is only
300  * enabled when we issue a channel command.  Only the channel being
301  * operated on has this interrupt enabled.
302  */
303 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
304 {
305 	u32 val = BIT(channel_id);
306 
307 	/* There's a small chance that a previous command completed
308 	 * after the interrupt was disabled, so make sure we have no
309 	 * pending interrupts before we enable them.
310 	 */
311 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
312 
313 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
314 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
315 }
316 
317 /* Disable channel control interrupts */
318 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
319 {
320 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
321 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
322 }
323 
324 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
325 {
326 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
327 	u32 val;
328 
329 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
330 	val = gsi->ieob_enabled_bitmap;
331 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
332 
333 	/* Enable the interrupt type if this is the first channel enabled */
334 	if (enable_ieob)
335 		gsi_irq_type_enable(gsi, GSI_IEOB);
336 }
337 
338 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
339 {
340 	u32 val;
341 
342 	gsi->ieob_enabled_bitmap &= ~event_mask;
343 
344 	/* Disable the interrupt type if this was the last enabled channel */
345 	if (!gsi->ieob_enabled_bitmap)
346 		gsi_irq_type_disable(gsi, GSI_IEOB);
347 
348 	val = gsi->ieob_enabled_bitmap;
349 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
350 }
351 
352 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
353 {
354 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
355 }
356 
357 /* Enable all GSI_interrupt types */
358 static void gsi_irq_enable(struct gsi *gsi)
359 {
360 	u32 val;
361 
362 	/* Global interrupts include hardware error reports.  Enable
363 	 * that so we can at least report the error should it occur.
364 	 */
365 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
366 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
367 
368 	/* General GSI interrupts are reported to all EEs; if they occur
369 	 * they are unrecoverable (without reset).  A breakpoint interrupt
370 	 * also exists, but we don't support that.  We want to be notified
371 	 * of errors so we can report them, even if they can't be handled.
372 	 */
373 	val = BIT(BUS_ERROR);
374 	val |= BIT(CMD_FIFO_OVRFLOW);
375 	val |= BIT(MCS_STACK_OVRFLOW);
376 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
377 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
378 }
379 
380 /* Disable all GSI interrupt types */
381 static void gsi_irq_disable(struct gsi *gsi)
382 {
383 	gsi_irq_type_update(gsi, 0);
384 
385 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
386 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
387 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
388 }
389 
390 /* Return the virtual address associated with a ring index */
391 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
392 {
393 	/* Note: index *must* be used modulo the ring count here */
394 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
395 }
396 
397 /* Return the 32-bit DMA address associated with a ring index */
398 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
399 {
400 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
401 }
402 
403 /* Return the ring index of a 32-bit ring offset */
404 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
405 {
406 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
407 }
408 
409 /* Issue a GSI command by writing a value to a register, then wait for
410  * completion to be signaled.  Returns true if the command completes
411  * or false if it times out.
412  */
413 static bool
414 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
415 {
416 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
417 
418 	reinit_completion(completion);
419 
420 	iowrite32(val, gsi->virt + reg);
421 
422 	return !!wait_for_completion_timeout(completion, timeout);
423 }
424 
425 /* Return the hardware's notion of the current state of an event ring */
426 static enum gsi_evt_ring_state
427 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
428 {
429 	u32 val;
430 
431 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
432 
433 	return u32_get_bits(val, EV_CHSTATE_FMASK);
434 }
435 
436 /* Issue an event ring command and wait for it to complete */
437 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
438 				 enum gsi_evt_cmd_opcode opcode)
439 {
440 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
441 	struct completion *completion = &evt_ring->completion;
442 	struct device *dev = gsi->dev;
443 	bool timeout;
444 	u32 val;
445 
446 	/* Enable the completion interrupt for the command */
447 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
448 
449 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
450 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
451 
452 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
453 
454 	gsi_irq_ev_ctrl_disable(gsi);
455 
456 	if (!timeout)
457 		return;
458 
459 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
460 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
461 }
462 
463 /* Allocate an event ring in NOT_ALLOCATED state */
464 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
465 {
466 	enum gsi_evt_ring_state state;
467 
468 	/* Get initial event ring state */
469 	state = gsi_evt_ring_state(gsi, evt_ring_id);
470 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
471 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
472 			evt_ring_id, state);
473 		return -EINVAL;
474 	}
475 
476 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
477 
478 	/* If successful the event ring state will have changed */
479 	state = gsi_evt_ring_state(gsi, evt_ring_id);
480 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
481 		return 0;
482 
483 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
484 		evt_ring_id, state);
485 
486 	return -EIO;
487 }
488 
489 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
490 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
491 {
492 	enum gsi_evt_ring_state state;
493 
494 	state = gsi_evt_ring_state(gsi, evt_ring_id);
495 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
496 	    state != GSI_EVT_RING_STATE_ERROR) {
497 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
498 			evt_ring_id, state);
499 		return;
500 	}
501 
502 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
503 
504 	/* If successful the event ring state will have changed */
505 	state = gsi_evt_ring_state(gsi, evt_ring_id);
506 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
507 		return;
508 
509 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
510 		evt_ring_id, state);
511 }
512 
513 /* Issue a hardware de-allocation request for an allocated event ring */
514 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
515 {
516 	enum gsi_evt_ring_state state;
517 
518 	state = gsi_evt_ring_state(gsi, evt_ring_id);
519 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
520 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
521 			evt_ring_id, state);
522 		return;
523 	}
524 
525 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
526 
527 	/* If successful the event ring state will have changed */
528 	state = gsi_evt_ring_state(gsi, evt_ring_id);
529 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
530 		return;
531 
532 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
533 		evt_ring_id, state);
534 }
535 
536 /* Fetch the current state of a channel from hardware */
537 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
538 {
539 	u32 channel_id = gsi_channel_id(channel);
540 	void __iomem *virt = channel->gsi->virt;
541 	u32 val;
542 
543 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
544 
545 	return u32_get_bits(val, CHSTATE_FMASK);
546 }
547 
548 /* Issue a channel command and wait for it to complete */
549 static void
550 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
551 {
552 	struct completion *completion = &channel->completion;
553 	u32 channel_id = gsi_channel_id(channel);
554 	struct gsi *gsi = channel->gsi;
555 	struct device *dev = gsi->dev;
556 	bool timeout;
557 	u32 val;
558 
559 	/* Enable the completion interrupt for the command */
560 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
561 
562 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
563 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
564 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
565 
566 	gsi_irq_ch_ctrl_disable(gsi);
567 
568 	if (!timeout)
569 		return;
570 
571 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
572 		opcode, channel_id, gsi_channel_state(channel));
573 }
574 
575 /* Allocate GSI channel in NOT_ALLOCATED state */
576 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
577 {
578 	struct gsi_channel *channel = &gsi->channel[channel_id];
579 	struct device *dev = gsi->dev;
580 	enum gsi_channel_state state;
581 
582 	/* Get initial channel state */
583 	state = gsi_channel_state(channel);
584 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
585 		dev_err(dev, "channel %u bad state %u before alloc\n",
586 			channel_id, state);
587 		return -EINVAL;
588 	}
589 
590 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
591 
592 	/* If successful the channel state will have changed */
593 	state = gsi_channel_state(channel);
594 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
595 		return 0;
596 
597 	dev_err(dev, "channel %u bad state %u after alloc\n",
598 		channel_id, state);
599 
600 	return -EIO;
601 }
602 
603 /* Start an ALLOCATED channel */
604 static int gsi_channel_start_command(struct gsi_channel *channel)
605 {
606 	struct device *dev = channel->gsi->dev;
607 	enum gsi_channel_state state;
608 
609 	state = gsi_channel_state(channel);
610 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
611 	    state != GSI_CHANNEL_STATE_STOPPED) {
612 		dev_err(dev, "channel %u bad state %u before start\n",
613 			gsi_channel_id(channel), state);
614 		return -EINVAL;
615 	}
616 
617 	gsi_channel_command(channel, GSI_CH_START);
618 
619 	/* If successful the channel state will have changed */
620 	state = gsi_channel_state(channel);
621 	if (state == GSI_CHANNEL_STATE_STARTED)
622 		return 0;
623 
624 	dev_err(dev, "channel %u bad state %u after start\n",
625 		gsi_channel_id(channel), state);
626 
627 	return -EIO;
628 }
629 
630 /* Stop a GSI channel in STARTED state */
631 static int gsi_channel_stop_command(struct gsi_channel *channel)
632 {
633 	struct device *dev = channel->gsi->dev;
634 	enum gsi_channel_state state;
635 
636 	state = gsi_channel_state(channel);
637 
638 	/* Channel could have entered STOPPED state since last call
639 	 * if it timed out.  If so, we're done.
640 	 */
641 	if (state == GSI_CHANNEL_STATE_STOPPED)
642 		return 0;
643 
644 	if (state != GSI_CHANNEL_STATE_STARTED &&
645 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
646 		dev_err(dev, "channel %u bad state %u before stop\n",
647 			gsi_channel_id(channel), state);
648 		return -EINVAL;
649 	}
650 
651 	gsi_channel_command(channel, GSI_CH_STOP);
652 
653 	/* If successful the channel state will have changed */
654 	state = gsi_channel_state(channel);
655 	if (state == GSI_CHANNEL_STATE_STOPPED)
656 		return 0;
657 
658 	/* We may have to try again if stop is in progress */
659 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
660 		return -EAGAIN;
661 
662 	dev_err(dev, "channel %u bad state %u after stop\n",
663 		gsi_channel_id(channel), state);
664 
665 	return -EIO;
666 }
667 
668 /* Reset a GSI channel in ALLOCATED or ERROR state. */
669 static void gsi_channel_reset_command(struct gsi_channel *channel)
670 {
671 	struct device *dev = channel->gsi->dev;
672 	enum gsi_channel_state state;
673 
674 	/* A short delay is required before a RESET command */
675 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
676 
677 	state = gsi_channel_state(channel);
678 	if (state != GSI_CHANNEL_STATE_STOPPED &&
679 	    state != GSI_CHANNEL_STATE_ERROR) {
680 		/* No need to reset a channel already in ALLOCATED state */
681 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
682 			dev_err(dev, "channel %u bad state %u before reset\n",
683 				gsi_channel_id(channel), state);
684 		return;
685 	}
686 
687 	gsi_channel_command(channel, GSI_CH_RESET);
688 
689 	/* If successful the channel state will have changed */
690 	state = gsi_channel_state(channel);
691 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
692 		dev_err(dev, "channel %u bad state %u after reset\n",
693 			gsi_channel_id(channel), state);
694 }
695 
696 /* Deallocate an ALLOCATED GSI channel */
697 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
698 {
699 	struct gsi_channel *channel = &gsi->channel[channel_id];
700 	struct device *dev = gsi->dev;
701 	enum gsi_channel_state state;
702 
703 	state = gsi_channel_state(channel);
704 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
705 		dev_err(dev, "channel %u bad state %u before dealloc\n",
706 			channel_id, state);
707 		return;
708 	}
709 
710 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
711 
712 	/* If successful the channel state will have changed */
713 	state = gsi_channel_state(channel);
714 
715 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
716 		dev_err(dev, "channel %u bad state %u after dealloc\n",
717 			channel_id, state);
718 }
719 
720 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
721  * The index argument (modulo the ring count) is the first unfilled entry, so
722  * we supply one less than that with the doorbell.  Update the event ring
723  * index field with the value provided.
724  */
725 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
726 {
727 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
728 	u32 val;
729 
730 	ring->index = index;	/* Next unused entry */
731 
732 	/* Note: index *must* be used modulo the ring count here */
733 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
734 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
735 }
736 
737 /* Program an event ring for use */
738 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
739 {
740 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
741 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
742 	u32 val;
743 
744 	/* We program all event rings as GPI type/protocol */
745 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
746 	val |= EV_INTYPE_FMASK;
747 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
748 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
749 
750 	val = ev_r_length_encoded(gsi->version, size);
751 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
752 
753 	/* The context 2 and 3 registers store the low-order and
754 	 * high-order 32 bits of the address of the event ring,
755 	 * respectively.
756 	 */
757 	val = lower_32_bits(evt_ring->ring.addr);
758 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
759 	val = upper_32_bits(evt_ring->ring.addr);
760 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
761 
762 	/* Enable interrupt moderation by setting the moderation delay */
763 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
764 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
765 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
766 
767 	/* No MSI write data, and MSI address high and low address is 0 */
768 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
769 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
770 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
771 
772 	/* We don't need to get event read pointer updates */
773 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
774 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
775 
776 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
777 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
778 }
779 
780 /* Find the transaction whose completion indicates a channel is quiesced */
781 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
782 {
783 	struct gsi_trans_info *trans_info = &channel->trans_info;
784 	const struct list_head *list;
785 	struct gsi_trans *trans;
786 
787 	spin_lock_bh(&trans_info->spinlock);
788 
789 	/* There is a small chance a TX transaction got allocated just
790 	 * before we disabled transmits, so check for that.
791 	 */
792 	if (channel->toward_ipa) {
793 		list = &trans_info->alloc;
794 		if (!list_empty(list))
795 			goto done;
796 		list = &trans_info->pending;
797 		if (!list_empty(list))
798 			goto done;
799 	}
800 
801 	/* Otherwise (TX or RX) we want to wait for anything that
802 	 * has completed, or has been polled but not released yet.
803 	 */
804 	list = &trans_info->complete;
805 	if (!list_empty(list))
806 		goto done;
807 	list = &trans_info->polled;
808 	if (list_empty(list))
809 		list = NULL;
810 done:
811 	trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
812 
813 	/* Caller will wait for this, so take a reference */
814 	if (trans)
815 		refcount_inc(&trans->refcount);
816 
817 	spin_unlock_bh(&trans_info->spinlock);
818 
819 	return trans;
820 }
821 
822 /* Wait for transaction activity on a channel to complete */
823 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
824 {
825 	struct gsi_trans *trans;
826 
827 	/* Get the last transaction, and wait for it to complete */
828 	trans = gsi_channel_trans_last(channel);
829 	if (trans) {
830 		wait_for_completion(&trans->completion);
831 		gsi_trans_free(trans);
832 	}
833 }
834 
835 /* Program a channel for use; there is no gsi_channel_deprogram() */
836 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
837 {
838 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
839 	u32 channel_id = gsi_channel_id(channel);
840 	union gsi_channel_scratch scr = { };
841 	struct gsi_channel_scratch_gpi *gpi;
842 	struct gsi *gsi = channel->gsi;
843 	u32 wrr_weight = 0;
844 	u32 val;
845 
846 	/* Arbitrarily pick TRE 0 as the first channel element to use */
847 	channel->tre_ring.index = 0;
848 
849 	/* We program all channels as GPI type/protocol */
850 	val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
851 	if (channel->toward_ipa)
852 		val |= CHTYPE_DIR_FMASK;
853 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
854 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
855 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
856 
857 	val = r_length_encoded(gsi->version, size);
858 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
859 
860 	/* The context 2 and 3 registers store the low-order and
861 	 * high-order 32 bits of the address of the channel ring,
862 	 * respectively.
863 	 */
864 	val = lower_32_bits(channel->tre_ring.addr);
865 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
866 	val = upper_32_bits(channel->tre_ring.addr);
867 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
868 
869 	/* Command channel gets low weighted round-robin priority */
870 	if (channel->command)
871 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
872 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
873 
874 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
875 
876 	/* No need to use the doorbell engine starting at IPA v4.0 */
877 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
878 		val |= USE_DB_ENG_FMASK;
879 
880 	/* v4.0 introduces an escape buffer for prefetch.  We use it
881 	 * on all but the AP command channel.
882 	 */
883 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
884 		/* If not otherwise set, prefetch buffers are used */
885 		if (gsi->version < IPA_VERSION_4_5)
886 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
887 		else
888 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
889 					       PREFETCH_MODE_FMASK);
890 	}
891 	/* All channels set DB_IN_BYTES */
892 	if (gsi->version >= IPA_VERSION_4_9)
893 		val |= DB_IN_BYTES;
894 
895 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
896 
897 	/* Now update the scratch registers for GPI protocol */
898 	gpi = &scr.gpi;
899 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
900 					GSI_RING_ELEMENT_SIZE;
901 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
902 
903 	val = scr.data.word1;
904 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
905 
906 	val = scr.data.word2;
907 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
908 
909 	val = scr.data.word3;
910 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
911 
912 	/* We must preserve the upper 16 bits of the last scratch register.
913 	 * The next sequence assumes those bits remain unchanged between the
914 	 * read and the write.
915 	 */
916 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
917 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
918 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
919 
920 	/* All done! */
921 }
922 
923 static int __gsi_channel_start(struct gsi_channel *channel, bool start)
924 {
925 	struct gsi *gsi = channel->gsi;
926 	int ret;
927 
928 	if (!start)
929 		return 0;
930 
931 	mutex_lock(&gsi->mutex);
932 
933 	ret = gsi_channel_start_command(channel);
934 
935 	mutex_unlock(&gsi->mutex);
936 
937 	return ret;
938 }
939 
940 /* Start an allocated GSI channel */
941 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
942 {
943 	struct gsi_channel *channel = &gsi->channel[channel_id];
944 	int ret;
945 
946 	/* Enable NAPI and the completion interrupt */
947 	napi_enable(&channel->napi);
948 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
949 
950 	ret = __gsi_channel_start(channel, true);
951 	if (ret) {
952 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
953 		napi_disable(&channel->napi);
954 	}
955 
956 	return ret;
957 }
958 
959 static int gsi_channel_stop_retry(struct gsi_channel *channel)
960 {
961 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
962 	int ret;
963 
964 	do {
965 		ret = gsi_channel_stop_command(channel);
966 		if (ret != -EAGAIN)
967 			break;
968 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
969 	} while (retries--);
970 
971 	return ret;
972 }
973 
974 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop)
975 {
976 	struct gsi *gsi = channel->gsi;
977 	int ret;
978 
979 	/* Wait for any underway transactions to complete before stopping. */
980 	gsi_channel_trans_quiesce(channel);
981 
982 	if (!stop)
983 		return 0;
984 
985 	mutex_lock(&gsi->mutex);
986 
987 	ret = gsi_channel_stop_retry(channel);
988 
989 	mutex_unlock(&gsi->mutex);
990 
991 	return ret;
992 }
993 
994 /* Stop a started channel */
995 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
996 {
997 	struct gsi_channel *channel = &gsi->channel[channel_id];
998 	int ret;
999 
1000 	ret = __gsi_channel_stop(channel, true);
1001 	if (ret)
1002 		return ret;
1003 
1004 	/* Disable the completion interrupt and NAPI if successful */
1005 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
1006 	napi_disable(&channel->napi);
1007 
1008 	return 0;
1009 }
1010 
1011 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
1012 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
1013 {
1014 	struct gsi_channel *channel = &gsi->channel[channel_id];
1015 
1016 	mutex_lock(&gsi->mutex);
1017 
1018 	gsi_channel_reset_command(channel);
1019 	/* Due to a hardware quirk we may need to reset RX channels twice. */
1020 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
1021 		gsi_channel_reset_command(channel);
1022 
1023 	gsi_channel_program(channel, doorbell);
1024 	gsi_channel_trans_cancel_pending(channel);
1025 
1026 	mutex_unlock(&gsi->mutex);
1027 }
1028 
1029 /* Stop a STARTED channel for suspend (using stop if requested) */
1030 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
1031 {
1032 	struct gsi_channel *channel = &gsi->channel[channel_id];
1033 	int ret;
1034 
1035 	ret = __gsi_channel_stop(channel, stop);
1036 	if (ret)
1037 		return ret;
1038 
1039 	/* Ensure NAPI polling has finished. */
1040 	napi_synchronize(&channel->napi);
1041 
1042 	return 0;
1043 }
1044 
1045 /* Resume a suspended channel (starting will be requested if STOPPED) */
1046 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
1047 {
1048 	struct gsi_channel *channel = &gsi->channel[channel_id];
1049 
1050 	return __gsi_channel_start(channel, start);
1051 }
1052 
1053 /**
1054  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
1055  * @channel:	Channel for which to report
1056  *
1057  * Report to the network stack the number of bytes and transactions that
1058  * have been queued to hardware since last call.  This and the next function
1059  * supply information used by the network stack for throttling.
1060  *
1061  * For each channel we track the number of transactions used and bytes of
1062  * data those transactions represent.  We also track what those values are
1063  * each time this function is called.  Subtracting the two tells us
1064  * the number of bytes and transactions that have been added between
1065  * successive calls.
1066  *
1067  * Calling this each time we ring the channel doorbell allows us to
1068  * provide accurate information to the network stack about how much
1069  * work we've given the hardware at any point in time.
1070  */
1071 void gsi_channel_tx_queued(struct gsi_channel *channel)
1072 {
1073 	u32 trans_count;
1074 	u32 byte_count;
1075 
1076 	byte_count = channel->byte_count - channel->queued_byte_count;
1077 	trans_count = channel->trans_count - channel->queued_trans_count;
1078 	channel->queued_byte_count = channel->byte_count;
1079 	channel->queued_trans_count = channel->trans_count;
1080 
1081 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1082 				  trans_count, byte_count);
1083 }
1084 
1085 /**
1086  * gsi_channel_tx_update() - Report completed TX transfers
1087  * @channel:	Channel that has completed transmitting packets
1088  * @trans:	Last transation known to be complete
1089  *
1090  * Compute the number of transactions and bytes that have been transferred
1091  * over a TX channel since the given transaction was committed.  Report this
1092  * information to the network stack.
1093  *
1094  * At the time a transaction is committed, we record its channel's
1095  * committed transaction and byte counts *in the transaction*.
1096  * Completions are signaled by the hardware with an interrupt, and
1097  * we can determine the latest completed transaction at that time.
1098  *
1099  * The difference between the byte/transaction count recorded in
1100  * the transaction and the count last time we recorded a completion
1101  * tells us exactly how much data has been transferred between
1102  * completions.
1103  *
1104  * Calling this each time we learn of a newly-completed transaction
1105  * allows us to provide accurate information to the network stack
1106  * about how much work has been completed by the hardware at a given
1107  * point in time.
1108  */
1109 static void
1110 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1111 {
1112 	u64 byte_count = trans->byte_count + trans->len;
1113 	u64 trans_count = trans->trans_count + 1;
1114 
1115 	byte_count -= channel->compl_byte_count;
1116 	channel->compl_byte_count += byte_count;
1117 	trans_count -= channel->compl_trans_count;
1118 	channel->compl_trans_count += trans_count;
1119 
1120 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1121 				     trans_count, byte_count);
1122 }
1123 
1124 /* Channel control interrupt handler */
1125 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1126 {
1127 	u32 channel_mask;
1128 
1129 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1130 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1131 
1132 	while (channel_mask) {
1133 		u32 channel_id = __ffs(channel_mask);
1134 		struct gsi_channel *channel;
1135 
1136 		channel_mask ^= BIT(channel_id);
1137 
1138 		channel = &gsi->channel[channel_id];
1139 
1140 		complete(&channel->completion);
1141 	}
1142 }
1143 
1144 /* Event ring control interrupt handler */
1145 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1146 {
1147 	u32 event_mask;
1148 
1149 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1150 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1151 
1152 	while (event_mask) {
1153 		u32 evt_ring_id = __ffs(event_mask);
1154 		struct gsi_evt_ring *evt_ring;
1155 
1156 		event_mask ^= BIT(evt_ring_id);
1157 
1158 		evt_ring = &gsi->evt_ring[evt_ring_id];
1159 
1160 		complete(&evt_ring->completion);
1161 	}
1162 }
1163 
1164 /* Global channel error interrupt handler */
1165 static void
1166 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1167 {
1168 	if (code == GSI_OUT_OF_RESOURCES) {
1169 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1170 		complete(&gsi->channel[channel_id].completion);
1171 		return;
1172 	}
1173 
1174 	/* Report, but otherwise ignore all other error codes */
1175 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1176 		channel_id, err_ee, code);
1177 }
1178 
1179 /* Global event error interrupt handler */
1180 static void
1181 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1182 {
1183 	if (code == GSI_OUT_OF_RESOURCES) {
1184 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1185 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1186 
1187 		complete(&evt_ring->completion);
1188 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1189 			channel_id);
1190 		return;
1191 	}
1192 
1193 	/* Report, but otherwise ignore all other error codes */
1194 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1195 		evt_ring_id, err_ee, code);
1196 }
1197 
1198 /* Global error interrupt handler */
1199 static void gsi_isr_glob_err(struct gsi *gsi)
1200 {
1201 	enum gsi_err_type type;
1202 	enum gsi_err_code code;
1203 	u32 which;
1204 	u32 val;
1205 	u32 ee;
1206 
1207 	/* Get the logged error, then reinitialize the log */
1208 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1209 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1210 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1211 
1212 	ee = u32_get_bits(val, ERR_EE_FMASK);
1213 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1214 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1215 	code = u32_get_bits(val, ERR_CODE_FMASK);
1216 
1217 	if (type == GSI_ERR_TYPE_CHAN)
1218 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1219 	else if (type == GSI_ERR_TYPE_EVT)
1220 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1221 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1222 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1223 }
1224 
1225 /* Generic EE interrupt handler */
1226 static void gsi_isr_gp_int1(struct gsi *gsi)
1227 {
1228 	u32 result;
1229 	u32 val;
1230 
1231 	/* This interrupt is used to handle completions of the two GENERIC
1232 	 * GSI commands.  We use these to allocate and halt channels on
1233 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1234 	 * allocated, the modem "owns" these channels, and as a result we
1235 	 * have no way of knowing the channel's state at any given time.
1236 	 *
1237 	 * It is recommended that we halt the modem channels we allocated
1238 	 * when shutting down, but it's possible the channel isn't running
1239 	 * at the time we issue the HALT command.  We'll get an error in
1240 	 * that case, but it's harmless (the channel is already halted).
1241 	 *
1242 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1243 	 * if we receive it.
1244 	 */
1245 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1246 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1247 
1248 	switch (result) {
1249 	case GENERIC_EE_SUCCESS:
1250 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1251 		gsi->result = 0;
1252 		break;
1253 
1254 	case GENERIC_EE_RETRY:
1255 		gsi->result = -EAGAIN;
1256 		break;
1257 
1258 	default:
1259 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1260 		gsi->result = -EIO;
1261 		break;
1262 	}
1263 
1264 	complete(&gsi->completion);
1265 }
1266 
1267 /* Inter-EE interrupt handler */
1268 static void gsi_isr_glob_ee(struct gsi *gsi)
1269 {
1270 	u32 val;
1271 
1272 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1273 
1274 	if (val & BIT(ERROR_INT))
1275 		gsi_isr_glob_err(gsi);
1276 
1277 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1278 
1279 	val &= ~BIT(ERROR_INT);
1280 
1281 	if (val & BIT(GP_INT1)) {
1282 		val ^= BIT(GP_INT1);
1283 		gsi_isr_gp_int1(gsi);
1284 	}
1285 
1286 	if (val)
1287 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1288 }
1289 
1290 /* I/O completion interrupt event */
1291 static void gsi_isr_ieob(struct gsi *gsi)
1292 {
1293 	u32 event_mask;
1294 
1295 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1296 	gsi_irq_ieob_disable(gsi, event_mask);
1297 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1298 
1299 	while (event_mask) {
1300 		u32 evt_ring_id = __ffs(event_mask);
1301 
1302 		event_mask ^= BIT(evt_ring_id);
1303 
1304 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1305 	}
1306 }
1307 
1308 /* General event interrupts represent serious problems, so report them */
1309 static void gsi_isr_general(struct gsi *gsi)
1310 {
1311 	struct device *dev = gsi->dev;
1312 	u32 val;
1313 
1314 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1315 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1316 
1317 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1318 }
1319 
1320 /**
1321  * gsi_isr() - Top level GSI interrupt service routine
1322  * @irq:	Interrupt number (ignored)
1323  * @dev_id:	GSI pointer supplied to request_irq()
1324  *
1325  * This is the main handler function registered for the GSI IRQ. Each type
1326  * of interrupt has a separate handler function that is called from here.
1327  */
1328 static irqreturn_t gsi_isr(int irq, void *dev_id)
1329 {
1330 	struct gsi *gsi = dev_id;
1331 	u32 intr_mask;
1332 	u32 cnt = 0;
1333 
1334 	/* enum gsi_irq_type_id defines GSI interrupt types */
1335 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1336 		/* intr_mask contains bitmask of pending GSI interrupts */
1337 		do {
1338 			u32 gsi_intr = BIT(__ffs(intr_mask));
1339 
1340 			intr_mask ^= gsi_intr;
1341 
1342 			switch (gsi_intr) {
1343 			case BIT(GSI_CH_CTRL):
1344 				gsi_isr_chan_ctrl(gsi);
1345 				break;
1346 			case BIT(GSI_EV_CTRL):
1347 				gsi_isr_evt_ctrl(gsi);
1348 				break;
1349 			case BIT(GSI_GLOB_EE):
1350 				gsi_isr_glob_ee(gsi);
1351 				break;
1352 			case BIT(GSI_IEOB):
1353 				gsi_isr_ieob(gsi);
1354 				break;
1355 			case BIT(GSI_GENERAL):
1356 				gsi_isr_general(gsi);
1357 				break;
1358 			default:
1359 				dev_err(gsi->dev,
1360 					"unrecognized interrupt type 0x%08x\n",
1361 					gsi_intr);
1362 				break;
1363 			}
1364 		} while (intr_mask);
1365 
1366 		if (++cnt > GSI_ISR_MAX_ITER) {
1367 			dev_err(gsi->dev, "interrupt flood\n");
1368 			break;
1369 		}
1370 	}
1371 
1372 	return IRQ_HANDLED;
1373 }
1374 
1375 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1376 {
1377 	struct device *dev = &pdev->dev;
1378 	unsigned int irq;
1379 	int ret;
1380 
1381 	ret = platform_get_irq_byname(pdev, "gsi");
1382 	if (ret <= 0)
1383 		return ret ? : -EINVAL;
1384 
1385 	irq = ret;
1386 
1387 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1388 	if (ret) {
1389 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1390 		return ret;
1391 	}
1392 	gsi->irq = irq;
1393 
1394 	return 0;
1395 }
1396 
1397 static void gsi_irq_exit(struct gsi *gsi)
1398 {
1399 	free_irq(gsi->irq, gsi);
1400 }
1401 
1402 /* Return the transaction associated with a transfer completion event */
1403 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1404 					 struct gsi_event *event)
1405 {
1406 	u32 tre_offset;
1407 	u32 tre_index;
1408 
1409 	/* Event xfer_ptr records the TRE it's associated with */
1410 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1411 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1412 
1413 	return gsi_channel_trans_mapped(channel, tre_index);
1414 }
1415 
1416 /**
1417  * gsi_evt_ring_rx_update() - Record lengths of received data
1418  * @evt_ring:	Event ring associated with channel that received packets
1419  * @index:	Event index in ring reported by hardware
1420  *
1421  * Events for RX channels contain the actual number of bytes received into
1422  * the buffer.  Every event has a transaction associated with it, and here
1423  * we update transactions to record their actual received lengths.
1424  *
1425  * This function is called whenever we learn that the GSI hardware has filled
1426  * new events since the last time we checked.  The ring's index field tells
1427  * the first entry in need of processing.  The index provided is the
1428  * first *unfilled* event in the ring (following the last filled one).
1429  *
1430  * Events are sequential within the event ring, and transactions are
1431  * sequential within the transaction pool.
1432  *
1433  * Note that @index always refers to an element *within* the event ring.
1434  */
1435 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1436 {
1437 	struct gsi_channel *channel = evt_ring->channel;
1438 	struct gsi_ring *ring = &evt_ring->ring;
1439 	struct gsi_trans_info *trans_info;
1440 	struct gsi_event *event_done;
1441 	struct gsi_event *event;
1442 	struct gsi_trans *trans;
1443 	u32 byte_count = 0;
1444 	u32 old_index;
1445 	u32 event_avail;
1446 
1447 	trans_info = &channel->trans_info;
1448 
1449 	/* We'll start with the oldest un-processed event.  RX channels
1450 	 * replenish receive buffers in single-TRE transactions, so we
1451 	 * can just map that event to its transaction.  Transactions
1452 	 * associated with completion events are consecutive.
1453 	 */
1454 	old_index = ring->index;
1455 	event = gsi_ring_virt(ring, old_index);
1456 	trans = gsi_event_trans(channel, event);
1457 
1458 	/* Compute the number of events to process before we wrap,
1459 	 * and determine when we'll be done processing events.
1460 	 */
1461 	event_avail = ring->count - old_index % ring->count;
1462 	event_done = gsi_ring_virt(ring, index);
1463 	do {
1464 		trans->len = __le16_to_cpu(event->len);
1465 		byte_count += trans->len;
1466 
1467 		/* Move on to the next event and transaction */
1468 		if (--event_avail)
1469 			event++;
1470 		else
1471 			event = gsi_ring_virt(ring, 0);
1472 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1473 	} while (event != event_done);
1474 
1475 	/* We record RX bytes when they are received */
1476 	channel->byte_count += byte_count;
1477 	channel->trans_count++;
1478 }
1479 
1480 /* Initialize a ring, including allocating DMA memory for its entries */
1481 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1482 {
1483 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1484 	struct device *dev = gsi->dev;
1485 	dma_addr_t addr;
1486 
1487 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1488 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1489 	 * be a power-of-2 number of pages, which satisfies the requirement.
1490 	 */
1491 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1492 	if (!ring->virt)
1493 		return -ENOMEM;
1494 
1495 	ring->addr = addr;
1496 	ring->count = count;
1497 
1498 	return 0;
1499 }
1500 
1501 /* Free a previously-allocated ring */
1502 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1503 {
1504 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1505 
1506 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1507 }
1508 
1509 /* Allocate an available event ring id */
1510 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1511 {
1512 	u32 evt_ring_id;
1513 
1514 	if (gsi->event_bitmap == ~0U) {
1515 		dev_err(gsi->dev, "event rings exhausted\n");
1516 		return -ENOSPC;
1517 	}
1518 
1519 	evt_ring_id = ffz(gsi->event_bitmap);
1520 	gsi->event_bitmap |= BIT(evt_ring_id);
1521 
1522 	return (int)evt_ring_id;
1523 }
1524 
1525 /* Free a previously-allocated event ring id */
1526 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1527 {
1528 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1529 }
1530 
1531 /* Ring a channel doorbell, reporting the first un-filled entry */
1532 void gsi_channel_doorbell(struct gsi_channel *channel)
1533 {
1534 	struct gsi_ring *tre_ring = &channel->tre_ring;
1535 	u32 channel_id = gsi_channel_id(channel);
1536 	struct gsi *gsi = channel->gsi;
1537 	u32 val;
1538 
1539 	/* Note: index *must* be used modulo the ring count here */
1540 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1541 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1542 }
1543 
1544 /* Consult hardware, move any newly completed transactions to completed list */
1545 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1546 {
1547 	u32 evt_ring_id = channel->evt_ring_id;
1548 	struct gsi *gsi = channel->gsi;
1549 	struct gsi_evt_ring *evt_ring;
1550 	struct gsi_trans *trans;
1551 	struct gsi_ring *ring;
1552 	u32 offset;
1553 	u32 index;
1554 
1555 	evt_ring = &gsi->evt_ring[evt_ring_id];
1556 	ring = &evt_ring->ring;
1557 
1558 	/* See if there's anything new to process; if not, we're done.  Note
1559 	 * that index always refers to an entry *within* the event ring.
1560 	 */
1561 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1562 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1563 	if (index == ring->index % ring->count)
1564 		return NULL;
1565 
1566 	/* Get the transaction for the latest completed event.  Take a
1567 	 * reference to keep it from completing before we give the events
1568 	 * for this and previous transactions back to the hardware.
1569 	 */
1570 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1571 	refcount_inc(&trans->refcount);
1572 
1573 	/* For RX channels, update each completed transaction with the number
1574 	 * of bytes that were actually received.  For TX channels, report
1575 	 * the number of transactions and bytes this completion represents
1576 	 * up the network stack.
1577 	 */
1578 	if (channel->toward_ipa)
1579 		gsi_channel_tx_update(channel, trans);
1580 	else
1581 		gsi_evt_ring_rx_update(evt_ring, index);
1582 
1583 	gsi_trans_move_complete(trans);
1584 
1585 	/* Tell the hardware we've handled these events */
1586 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1587 
1588 	gsi_trans_free(trans);
1589 
1590 	return gsi_channel_trans_complete(channel);
1591 }
1592 
1593 /**
1594  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1595  * @channel:	Channel to be polled
1596  *
1597  * Return:	Transaction pointer, or null if none are available
1598  *
1599  * This function returns the first entry on a channel's completed transaction
1600  * list.  If that list is empty, the hardware is consulted to determine
1601  * whether any new transactions have completed.  If so, they're moved to the
1602  * completed list and the new first entry is returned.  If there are no more
1603  * completed transactions, a null pointer is returned.
1604  */
1605 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1606 {
1607 	struct gsi_trans *trans;
1608 
1609 	/* Get the first transaction from the completed list */
1610 	trans = gsi_channel_trans_complete(channel);
1611 	if (!trans)	/* List is empty; see if there's more to do */
1612 		trans = gsi_channel_update(channel);
1613 
1614 	if (trans)
1615 		gsi_trans_move_polled(trans);
1616 
1617 	return trans;
1618 }
1619 
1620 /**
1621  * gsi_channel_poll() - NAPI poll function for a channel
1622  * @napi:	NAPI structure for the channel
1623  * @budget:	Budget supplied by NAPI core
1624  *
1625  * Return:	Number of items polled (<= budget)
1626  *
1627  * Single transactions completed by hardware are polled until either
1628  * the budget is exhausted, or there are no more.  Each transaction
1629  * polled is passed to gsi_trans_complete(), to perform remaining
1630  * completion processing and retire/free the transaction.
1631  */
1632 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1633 {
1634 	struct gsi_channel *channel;
1635 	int count;
1636 
1637 	channel = container_of(napi, struct gsi_channel, napi);
1638 	for (count = 0; count < budget; count++) {
1639 		struct gsi_trans *trans;
1640 
1641 		trans = gsi_channel_poll_one(channel);
1642 		if (!trans)
1643 			break;
1644 		gsi_trans_complete(trans);
1645 	}
1646 
1647 	if (count < budget && napi_complete(napi))
1648 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1649 
1650 	return count;
1651 }
1652 
1653 /* The event bitmap represents which event ids are available for allocation.
1654  * Set bits are not available, clear bits can be used.  This function
1655  * initializes the map so all events supported by the hardware are available,
1656  * then precludes any reserved events from being allocated.
1657  */
1658 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1659 {
1660 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1661 
1662 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1663 
1664 	return event_bitmap;
1665 }
1666 
1667 /* Setup function for a single channel */
1668 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1669 {
1670 	struct gsi_channel *channel = &gsi->channel[channel_id];
1671 	u32 evt_ring_id = channel->evt_ring_id;
1672 	int ret;
1673 
1674 	if (!gsi_channel_initialized(channel))
1675 		return 0;
1676 
1677 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1678 	if (ret)
1679 		return ret;
1680 
1681 	gsi_evt_ring_program(gsi, evt_ring_id);
1682 
1683 	ret = gsi_channel_alloc_command(gsi, channel_id);
1684 	if (ret)
1685 		goto err_evt_ring_de_alloc;
1686 
1687 	gsi_channel_program(channel, true);
1688 
1689 	if (channel->toward_ipa)
1690 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1691 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1692 	else
1693 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1694 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1695 
1696 	return 0;
1697 
1698 err_evt_ring_de_alloc:
1699 	/* We've done nothing with the event ring yet so don't reset */
1700 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1701 
1702 	return ret;
1703 }
1704 
1705 /* Inverse of gsi_channel_setup_one() */
1706 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1707 {
1708 	struct gsi_channel *channel = &gsi->channel[channel_id];
1709 	u32 evt_ring_id = channel->evt_ring_id;
1710 
1711 	if (!gsi_channel_initialized(channel))
1712 		return;
1713 
1714 	netif_napi_del(&channel->napi);
1715 
1716 	gsi_channel_de_alloc_command(gsi, channel_id);
1717 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1718 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1719 }
1720 
1721 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1722 			       enum gsi_generic_cmd_opcode opcode)
1723 {
1724 	struct completion *completion = &gsi->completion;
1725 	bool timeout;
1726 	u32 val;
1727 
1728 	/* The error global interrupt type is always enabled (until we
1729 	 * teardown), so we won't change that.  A generic EE command
1730 	 * completes with a GSI global interrupt of type GP_INT1.  We
1731 	 * only perform one generic command at a time (to allocate or
1732 	 * halt a modem channel) and only from this function.  So we
1733 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1734 	 */
1735 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1736 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1737 
1738 	/* First zero the result code field */
1739 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1740 	val &= ~GENERIC_EE_RESULT_FMASK;
1741 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1742 
1743 	/* Now issue the command */
1744 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1745 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1746 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1747 
1748 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1749 
1750 	/* Disable the GP_INT1 IRQ type again */
1751 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1752 
1753 	if (!timeout)
1754 		return gsi->result;
1755 
1756 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1757 		opcode, channel_id);
1758 
1759 	return -ETIMEDOUT;
1760 }
1761 
1762 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1763 {
1764 	return gsi_generic_command(gsi, channel_id,
1765 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1766 }
1767 
1768 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1769 {
1770 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1771 	int ret;
1772 
1773 	do
1774 		ret = gsi_generic_command(gsi, channel_id,
1775 					  GSI_GENERIC_HALT_CHANNEL);
1776 	while (ret == -EAGAIN && retries--);
1777 
1778 	if (ret)
1779 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1780 			ret, channel_id);
1781 }
1782 
1783 /* Setup function for channels */
1784 static int gsi_channel_setup(struct gsi *gsi)
1785 {
1786 	u32 channel_id = 0;
1787 	u32 mask;
1788 	int ret;
1789 
1790 	gsi_irq_enable(gsi);
1791 
1792 	mutex_lock(&gsi->mutex);
1793 
1794 	do {
1795 		ret = gsi_channel_setup_one(gsi, channel_id);
1796 		if (ret)
1797 			goto err_unwind;
1798 	} while (++channel_id < gsi->channel_count);
1799 
1800 	/* Make sure no channels were defined that hardware does not support */
1801 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1802 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1803 
1804 		if (!gsi_channel_initialized(channel))
1805 			continue;
1806 
1807 		ret = -EINVAL;
1808 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1809 			channel_id - 1);
1810 		channel_id = gsi->channel_count;
1811 		goto err_unwind;
1812 	}
1813 
1814 	/* Allocate modem channels if necessary */
1815 	mask = gsi->modem_channel_bitmap;
1816 	while (mask) {
1817 		u32 modem_channel_id = __ffs(mask);
1818 
1819 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1820 		if (ret)
1821 			goto err_unwind_modem;
1822 
1823 		/* Clear bit from mask only after success (for unwind) */
1824 		mask ^= BIT(modem_channel_id);
1825 	}
1826 
1827 	mutex_unlock(&gsi->mutex);
1828 
1829 	return 0;
1830 
1831 err_unwind_modem:
1832 	/* Compute which modem channels need to be deallocated */
1833 	mask ^= gsi->modem_channel_bitmap;
1834 	while (mask) {
1835 		channel_id = __fls(mask);
1836 
1837 		mask ^= BIT(channel_id);
1838 
1839 		gsi_modem_channel_halt(gsi, channel_id);
1840 	}
1841 
1842 err_unwind:
1843 	while (channel_id--)
1844 		gsi_channel_teardown_one(gsi, channel_id);
1845 
1846 	mutex_unlock(&gsi->mutex);
1847 
1848 	gsi_irq_disable(gsi);
1849 
1850 	return ret;
1851 }
1852 
1853 /* Inverse of gsi_channel_setup() */
1854 static void gsi_channel_teardown(struct gsi *gsi)
1855 {
1856 	u32 mask = gsi->modem_channel_bitmap;
1857 	u32 channel_id;
1858 
1859 	mutex_lock(&gsi->mutex);
1860 
1861 	while (mask) {
1862 		channel_id = __fls(mask);
1863 
1864 		mask ^= BIT(channel_id);
1865 
1866 		gsi_modem_channel_halt(gsi, channel_id);
1867 	}
1868 
1869 	channel_id = gsi->channel_count - 1;
1870 	do
1871 		gsi_channel_teardown_one(gsi, channel_id);
1872 	while (channel_id--);
1873 
1874 	mutex_unlock(&gsi->mutex);
1875 
1876 	gsi_irq_disable(gsi);
1877 }
1878 
1879 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1880 int gsi_setup(struct gsi *gsi)
1881 {
1882 	u32 val;
1883 	int ret;
1884 
1885 	/* Here is where we first touch the GSI hardware */
1886 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1887 	if (!(val & ENABLED_FMASK)) {
1888 		dev_err(gsi->dev, "GSI has not been enabled\n");
1889 		return -EIO;
1890 	}
1891 
1892 	gsi_irq_setup(gsi);		/* No matching teardown required */
1893 
1894 	ret = gsi_ring_setup(gsi);	/* No matching teardown required */
1895 	if (ret)
1896 		return ret;
1897 
1898 	/* Initialize the error log */
1899 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1900 
1901 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1902 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1903 
1904 	return gsi_channel_setup(gsi);
1905 }
1906 
1907 /* Inverse of gsi_setup() */
1908 void gsi_teardown(struct gsi *gsi)
1909 {
1910 	gsi_channel_teardown(gsi);
1911 }
1912 
1913 /* Initialize a channel's event ring */
1914 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1915 {
1916 	struct gsi *gsi = channel->gsi;
1917 	struct gsi_evt_ring *evt_ring;
1918 	int ret;
1919 
1920 	ret = gsi_evt_ring_id_alloc(gsi);
1921 	if (ret < 0)
1922 		return ret;
1923 	channel->evt_ring_id = ret;
1924 
1925 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1926 	evt_ring->channel = channel;
1927 
1928 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1929 	if (!ret)
1930 		return 0;	/* Success! */
1931 
1932 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1933 		ret, gsi_channel_id(channel));
1934 
1935 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1936 
1937 	return ret;
1938 }
1939 
1940 /* Inverse of gsi_channel_evt_ring_init() */
1941 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1942 {
1943 	u32 evt_ring_id = channel->evt_ring_id;
1944 	struct gsi *gsi = channel->gsi;
1945 	struct gsi_evt_ring *evt_ring;
1946 
1947 	evt_ring = &gsi->evt_ring[evt_ring_id];
1948 	gsi_ring_free(gsi, &evt_ring->ring);
1949 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1950 }
1951 
1952 /* Init function for event rings; there is no gsi_evt_ring_exit() */
1953 static void gsi_evt_ring_init(struct gsi *gsi)
1954 {
1955 	u32 evt_ring_id = 0;
1956 
1957 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1958 	gsi->ieob_enabled_bitmap = 0;
1959 	do
1960 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1961 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1962 }
1963 
1964 static bool gsi_channel_data_valid(struct gsi *gsi,
1965 				   const struct ipa_gsi_endpoint_data *data)
1966 {
1967 #ifdef IPA_VALIDATION
1968 	u32 channel_id = data->channel_id;
1969 	struct device *dev = gsi->dev;
1970 
1971 	/* Make sure channel ids are in the range driver supports */
1972 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1973 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1974 			channel_id, GSI_CHANNEL_COUNT_MAX);
1975 		return false;
1976 	}
1977 
1978 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1979 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1980 		return false;
1981 	}
1982 
1983 	if (!data->channel.tlv_count ||
1984 	    data->channel.tlv_count > GSI_TLV_MAX) {
1985 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1986 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1987 		return false;
1988 	}
1989 
1990 	/* We have to allow at least one maximally-sized transaction to
1991 	 * be outstanding (which would use tlv_count TREs).  Given how
1992 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1993 	 * twice the TLV FIFO size to satisfy this requirement.
1994 	 */
1995 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1996 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1997 			channel_id, data->channel.tlv_count,
1998 			data->channel.tre_count);
1999 		return false;
2000 	}
2001 
2002 	if (!is_power_of_2(data->channel.tre_count)) {
2003 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2004 			channel_id, data->channel.tre_count);
2005 		return false;
2006 	}
2007 
2008 	if (!is_power_of_2(data->channel.event_count)) {
2009 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2010 			channel_id, data->channel.event_count);
2011 		return false;
2012 	}
2013 #endif /* IPA_VALIDATION */
2014 
2015 	return true;
2016 }
2017 
2018 /* Init function for a single channel */
2019 static int gsi_channel_init_one(struct gsi *gsi,
2020 				const struct ipa_gsi_endpoint_data *data,
2021 				bool command)
2022 {
2023 	struct gsi_channel *channel;
2024 	u32 tre_count;
2025 	int ret;
2026 
2027 	if (!gsi_channel_data_valid(gsi, data))
2028 		return -EINVAL;
2029 
2030 	/* Worst case we need an event for every outstanding TRE */
2031 	if (data->channel.tre_count > data->channel.event_count) {
2032 		tre_count = data->channel.event_count;
2033 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2034 			 data->channel_id, tre_count);
2035 	} else {
2036 		tre_count = data->channel.tre_count;
2037 	}
2038 
2039 	channel = &gsi->channel[data->channel_id];
2040 	memset(channel, 0, sizeof(*channel));
2041 
2042 	channel->gsi = gsi;
2043 	channel->toward_ipa = data->toward_ipa;
2044 	channel->command = command;
2045 	channel->tlv_count = data->channel.tlv_count;
2046 	channel->tre_count = tre_count;
2047 	channel->event_count = data->channel.event_count;
2048 	init_completion(&channel->completion);
2049 
2050 	ret = gsi_channel_evt_ring_init(channel);
2051 	if (ret)
2052 		goto err_clear_gsi;
2053 
2054 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2055 	if (ret) {
2056 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2057 			ret, data->channel_id);
2058 		goto err_channel_evt_ring_exit;
2059 	}
2060 
2061 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2062 	if (ret)
2063 		goto err_ring_free;
2064 
2065 	if (command) {
2066 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2067 
2068 		ret = ipa_cmd_pool_init(channel, tre_max);
2069 	}
2070 	if (!ret)
2071 		return 0;	/* Success! */
2072 
2073 	gsi_channel_trans_exit(channel);
2074 err_ring_free:
2075 	gsi_ring_free(gsi, &channel->tre_ring);
2076 err_channel_evt_ring_exit:
2077 	gsi_channel_evt_ring_exit(channel);
2078 err_clear_gsi:
2079 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2080 
2081 	return ret;
2082 }
2083 
2084 /* Inverse of gsi_channel_init_one() */
2085 static void gsi_channel_exit_one(struct gsi_channel *channel)
2086 {
2087 	if (!gsi_channel_initialized(channel))
2088 		return;
2089 
2090 	if (channel->command)
2091 		ipa_cmd_pool_exit(channel);
2092 	gsi_channel_trans_exit(channel);
2093 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2094 	gsi_channel_evt_ring_exit(channel);
2095 }
2096 
2097 /* Init function for channels */
2098 static int gsi_channel_init(struct gsi *gsi, u32 count,
2099 			    const struct ipa_gsi_endpoint_data *data)
2100 {
2101 	bool modem_alloc;
2102 	int ret = 0;
2103 	u32 i;
2104 
2105 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2106 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2107 
2108 	gsi_evt_ring_init(gsi);			/* No matching exit required */
2109 
2110 	/* The endpoint data array is indexed by endpoint name */
2111 	for (i = 0; i < count; i++) {
2112 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2113 
2114 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2115 			continue;	/* Skip over empty slots */
2116 
2117 		/* Mark modem channels to be allocated (hardware workaround) */
2118 		if (data[i].ee_id == GSI_EE_MODEM) {
2119 			if (modem_alloc)
2120 				gsi->modem_channel_bitmap |=
2121 						BIT(data[i].channel_id);
2122 			continue;
2123 		}
2124 
2125 		ret = gsi_channel_init_one(gsi, &data[i], command);
2126 		if (ret)
2127 			goto err_unwind;
2128 	}
2129 
2130 	return ret;
2131 
2132 err_unwind:
2133 	while (i--) {
2134 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2135 			continue;
2136 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2137 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2138 			continue;
2139 		}
2140 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 /* Inverse of gsi_channel_init() */
2147 static void gsi_channel_exit(struct gsi *gsi)
2148 {
2149 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2150 
2151 	do
2152 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2153 	while (channel_id--);
2154 	gsi->modem_channel_bitmap = 0;
2155 }
2156 
2157 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2158 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2159 	     enum ipa_version version, u32 count,
2160 	     const struct ipa_gsi_endpoint_data *data)
2161 {
2162 	struct device *dev = &pdev->dev;
2163 	struct resource *res;
2164 	resource_size_t size;
2165 	u32 adjust;
2166 	int ret;
2167 
2168 	gsi_validate_build();
2169 
2170 	gsi->dev = dev;
2171 	gsi->version = version;
2172 
2173 	/* GSI uses NAPI on all channels.  Create a dummy network device
2174 	 * for the channel NAPI contexts to be associated with.
2175 	 */
2176 	init_dummy_netdev(&gsi->dummy_dev);
2177 
2178 	/* Get GSI memory range and map it */
2179 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2180 	if (!res) {
2181 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2182 		return -ENODEV;
2183 	}
2184 
2185 	size = resource_size(res);
2186 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2187 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2188 		return -EINVAL;
2189 	}
2190 
2191 	/* Make sure we can make our pointer adjustment if necessary */
2192 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2193 	if (res->start < adjust) {
2194 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2195 			adjust);
2196 		return -EINVAL;
2197 	}
2198 
2199 	gsi->virt_raw = ioremap(res->start, size);
2200 	if (!gsi->virt_raw) {
2201 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2202 		return -ENOMEM;
2203 	}
2204 	/* Most registers are accessed using an adjusted register range */
2205 	gsi->virt = gsi->virt_raw - adjust;
2206 
2207 	init_completion(&gsi->completion);
2208 
2209 	ret = gsi_irq_init(gsi, pdev);
2210 	if (ret)
2211 		goto err_iounmap;
2212 
2213 	ret = gsi_channel_init(gsi, count, data);
2214 	if (ret)
2215 		goto err_irq_exit;
2216 
2217 	mutex_init(&gsi->mutex);
2218 
2219 	return 0;
2220 
2221 err_irq_exit:
2222 	gsi_irq_exit(gsi);
2223 err_iounmap:
2224 	iounmap(gsi->virt_raw);
2225 
2226 	return ret;
2227 }
2228 
2229 /* Inverse of gsi_init() */
2230 void gsi_exit(struct gsi *gsi)
2231 {
2232 	mutex_destroy(&gsi->mutex);
2233 	gsi_channel_exit(gsi);
2234 	gsi_irq_exit(gsi);
2235 	iounmap(gsi->virt_raw);
2236 }
2237 
2238 /* The maximum number of outstanding TREs on a channel.  This limits
2239  * a channel's maximum number of transactions outstanding (worst case
2240  * is one TRE per transaction).
2241  *
2242  * The absolute limit is the number of TREs in the channel's TRE ring,
2243  * and in theory we should be able use all of them.  But in practice,
2244  * doing that led to the hardware reporting exhaustion of event ring
2245  * slots for writing completion information.  So the hardware limit
2246  * would be (tre_count - 1).
2247  *
2248  * We reduce it a bit further though.  Transaction resource pools are
2249  * sized to be a little larger than this maximum, to allow resource
2250  * allocations to always be contiguous.  The number of entries in a
2251  * TRE ring buffer is a power of 2, and the extra resources in a pool
2252  * tends to nearly double the memory allocated for it.  Reducing the
2253  * maximum number of outstanding TREs allows the number of entries in
2254  * a pool to avoid crossing that power-of-2 boundary, and this can
2255  * substantially reduce pool memory requirements.  The number we
2256  * reduce it by matches the number added in gsi_trans_pool_init().
2257  */
2258 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2259 {
2260 	struct gsi_channel *channel = &gsi->channel[channel_id];
2261 
2262 	/* Hardware limit is channel->tre_count - 1 */
2263 	return channel->tre_count - (channel->tlv_count - 1);
2264 }
2265 
2266 /* Returns the maximum number of TREs in a single transaction for a channel */
2267 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2268 {
2269 	struct gsi_channel *channel = &gsi->channel[channel_id];
2270 
2271 	return channel->tlv_count;
2272 }
2273