xref: /linux/drivers/net/ipa/gsi.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 
25 /**
26  * DOC: The IPA Generic Software Interface
27  *
28  * The generic software interface (GSI) is an integral component of the IPA,
29  * providing a well-defined communication layer between the AP subsystem
30  * and the IPA core.  The modem uses the GSI layer as well.
31  *
32  *	--------	     ---------
33  *	|      |	     |	     |
34  *	|  AP  +<---.	.----+ Modem |
35  *	|      +--. |	| .->+	     |
36  *	|      |  | |	| |  |	     |
37  *	--------  | |	| |  ---------
38  *		  v |	v |
39  *		--+-+---+-+--
40  *		|    GSI    |
41  *		|-----------|
42  *		|	    |
43  *		|    IPA    |
44  *		|	    |
45  *		-------------
46  *
47  * In the above diagram, the AP and Modem represent "execution environments"
48  * (EEs), which are independent operating environments that use the IPA for
49  * data transfer.
50  *
51  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52  * of data to or from the IPA.  A channel is implemented as a ring buffer,
53  * with a DRAM-resident array of "transfer elements" (TREs) available to
54  * describe transfers to or from other EEs through the IPA.  A transfer
55  * element can also contain an immediate command, requesting the IPA perform
56  * actions other than data transfer.
57  *
58  * Each TRE refers to a block of data--also located DRAM.  After writing one
59  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
60  * doorbell register to inform the receiving side how many elements have
61  * been written.
62  *
63  * Each channel has a GSI "event ring" associated with it.  An event ring
64  * is implemented very much like a channel ring, but is always directed from
65  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
66  * events by adding an entry to the event ring associated with the channel.
67  * The GSI then writes its doorbell for the event ring, causing the target
68  * EE to be interrupted.  Each entry in an event ring contains a pointer
69  * to the channel TRE whose completion the event represents.
70  *
71  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
72  * the completion of the transfer operation generates an entry (and possibly
73  * an interrupt) in the channel's event ring.  Other flags allow transfer
74  * elements to be chained together, forming a single logical transaction.
75  * TRE flags are used to control whether and when interrupts are generated
76  * to signal completion of channel transfers.
77  *
78  * Elements in channel and event rings are completed (or consumed) strictly
79  * in order.  Completion of one entry implies the completion of all preceding
80  * entries.  A single completion interrupt can therefore communicate the
81  * completion of many transfers.
82  *
83  * Note that all GSI registers are little-endian, which is the assumed
84  * endianness of I/O space accesses.  The accessor functions perform byte
85  * swapping if needed (i.e., for a big endian CPU).
86  */
87 
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
90 
91 #define GSI_CMD_TIMEOUT			5	/* seconds */
92 
93 #define GSI_CHANNEL_STOP_RX_RETRIES	10
94 
95 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
96 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
97 
98 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
99 
100 /* An entry in an event ring */
101 struct gsi_event {
102 	__le64 xfer_ptr;
103 	__le16 len;
104 	u8 reserved1;
105 	u8 code;
106 	__le16 reserved2;
107 	u8 type;
108 	u8 chid;
109 };
110 
111 /* Hardware values from the error log register error code field */
112 enum gsi_err_code {
113 	GSI_INVALID_TRE_ERR			= 0x1,
114 	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
115 	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
116 	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
117 	GSI_EVT_RING_EMPTY_ERR			= 0x5,
118 	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
119 	GSI_HWO_1_ERR				= 0x8,
120 };
121 
122 /* Hardware values from the error log register error type field */
123 enum gsi_err_type {
124 	GSI_ERR_TYPE_GLOB	= 0x1,
125 	GSI_ERR_TYPE_CHAN	= 0x2,
126 	GSI_ERR_TYPE_EVT	= 0x3,
127 };
128 
129 /* Hardware values used when programming an event ring */
130 enum gsi_evt_chtype {
131 	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
132 	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
133 	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
134 	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
135 };
136 
137 /* Hardware values used when programming a channel */
138 enum gsi_channel_protocol {
139 	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
140 	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
141 	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
142 	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
143 };
144 
145 /* Hardware values representing an event ring immediate command opcode */
146 enum gsi_evt_cmd_opcode {
147 	GSI_EVT_ALLOCATE	= 0x0,
148 	GSI_EVT_RESET		= 0x9,
149 	GSI_EVT_DE_ALLOC	= 0xa,
150 };
151 
152 /* Hardware values representing a generic immediate command opcode */
153 enum gsi_generic_cmd_opcode {
154 	GSI_GENERIC_HALT_CHANNEL	= 0x1,
155 	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
156 };
157 
158 /* Hardware values representing a channel immediate command opcode */
159 enum gsi_ch_cmd_opcode {
160 	GSI_CH_ALLOCATE	= 0x0,
161 	GSI_CH_START	= 0x1,
162 	GSI_CH_STOP	= 0x2,
163 	GSI_CH_RESET	= 0x9,
164 	GSI_CH_DE_ALLOC	= 0xa,
165 };
166 
167 /** gsi_channel_scratch_gpi - GPI protocol scratch register
168  * @max_outstanding_tre:
169  *	Defines the maximum number of TREs allowed in a single transaction
170  *	on a channel (in bytes).  This determines the amount of prefetch
171  *	performed by the hardware.  We configure this to equal the size of
172  *	the TLV FIFO for the channel.
173  * @outstanding_threshold:
174  *	Defines the threshold (in bytes) determining when the sequencer
175  *	should update the channel doorbell.  We configure this to equal
176  *	the size of two TREs.
177  */
178 struct gsi_channel_scratch_gpi {
179 	u64 reserved1;
180 	u16 reserved2;
181 	u16 max_outstanding_tre;
182 	u16 reserved3;
183 	u16 outstanding_threshold;
184 };
185 
186 /** gsi_channel_scratch - channel scratch configuration area
187  *
188  * The exact interpretation of this register is protocol-specific.
189  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
190  */
191 union gsi_channel_scratch {
192 	struct gsi_channel_scratch_gpi gpi;
193 	struct {
194 		u32 word1;
195 		u32 word2;
196 		u32 word3;
197 		u32 word4;
198 	} data;
199 };
200 
201 /* Check things that can be validated at build time. */
202 static void gsi_validate_build(void)
203 {
204 	/* This is used as a divisor */
205 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
206 
207 	/* Code assumes the size of channel and event ring element are
208 	 * the same (and fixed).  Make sure the size of an event ring
209 	 * element is what's expected.
210 	 */
211 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
212 
213 	/* Hardware requires a 2^n ring size.  We ensure the number of
214 	 * elements in an event ring is a power of 2 elsewhere; this
215 	 * ensure the elements themselves meet the requirement.
216 	 */
217 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
218 
219 	/* The channel element size must fit in this field */
220 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
221 
222 	/* The event ring element size must fit in this field */
223 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
224 }
225 
226 /* Return the channel id associated with a given channel */
227 static u32 gsi_channel_id(struct gsi_channel *channel)
228 {
229 	return channel - &channel->gsi->channel[0];
230 }
231 
232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
233 {
234 	u32 val;
235 
236 	gsi->event_enable_bitmap |= BIT(evt_ring_id);
237 	val = gsi->event_enable_bitmap;
238 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
239 }
240 
241 static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask)
242 {
243 	iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
244 }
245 
246 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
247 {
248 	u32 val;
249 
250 	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
251 	val = gsi->event_enable_bitmap;
252 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
253 }
254 
255 /* Enable all GSI_interrupt types */
256 static void gsi_irq_enable(struct gsi *gsi)
257 {
258 	u32 val;
259 
260 	/* We don't use inter-EE channel or event interrupts */
261 	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
262 	val &= ~MSK_INTER_EE_CH_CTRL_FMASK;
263 	val &= ~MSK_INTER_EE_EV_CTRL_FMASK;
264 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
265 
266 	val = GENMASK(gsi->channel_count - 1, 0);
267 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
268 
269 	val = GENMASK(gsi->evt_ring_count - 1, 0);
270 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
271 
272 	/* Each IEOB interrupt is enabled (later) as needed by channels */
273 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
274 
275 	val = GSI_CNTXT_GLOB_IRQ_ALL;
276 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
277 
278 	/* Never enable GSI_BREAK_POINT */
279 	val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK;
280 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
281 }
282 
283 /* Disable all GSI_interrupt types */
284 static void gsi_irq_disable(struct gsi *gsi)
285 {
286 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
287 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
288 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
289 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
290 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
291 	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
292 }
293 
294 /* Return the virtual address associated with a ring index */
295 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
296 {
297 	/* Note: index *must* be used modulo the ring count here */
298 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
299 }
300 
301 /* Return the 32-bit DMA address associated with a ring index */
302 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
303 {
304 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
305 }
306 
307 /* Return the ring index of a 32-bit ring offset */
308 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
309 {
310 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
311 }
312 
313 /* Issue a GSI command by writing a value to a register, then wait for
314  * completion to be signaled.  Returns true if the command completes
315  * or false if it times out.
316  */
317 static bool
318 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
319 {
320 	reinit_completion(completion);
321 
322 	iowrite32(val, gsi->virt + reg);
323 
324 	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
325 }
326 
327 /* Return the hardware's notion of the current state of an event ring */
328 static enum gsi_evt_ring_state
329 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
330 {
331 	u32 val;
332 
333 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
334 
335 	return u32_get_bits(val, EV_CHSTATE_FMASK);
336 }
337 
338 /* Issue an event ring command and wait for it to complete */
339 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
340 			    enum gsi_evt_cmd_opcode opcode)
341 {
342 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
343 	struct completion *completion = &evt_ring->completion;
344 	u32 val;
345 
346 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
347 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
348 
349 	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
350 		return 0;	/* Success! */
351 
352 	dev_err(gsi->dev, "GSI command %u to event ring %u timed out "
353 		"(state is %u)\n", opcode, evt_ring_id, evt_ring->state);
354 
355 	return -ETIMEDOUT;
356 }
357 
358 /* Allocate an event ring in NOT_ALLOCATED state */
359 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
360 {
361 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
362 	int ret;
363 
364 	/* Get initial event ring state */
365 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
366 
367 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
368 		return -EINVAL;
369 
370 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
371 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
372 		dev_err(gsi->dev, "bad event ring state (%u) after alloc\n",
373 			evt_ring->state);
374 		ret = -EIO;
375 	}
376 
377 	return ret;
378 }
379 
380 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
381 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
382 {
383 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
384 	enum gsi_evt_ring_state state = evt_ring->state;
385 	int ret;
386 
387 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
388 	    state != GSI_EVT_RING_STATE_ERROR) {
389 		dev_err(gsi->dev, "bad event ring state (%u) before reset\n",
390 			evt_ring->state);
391 		return;
392 	}
393 
394 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
395 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
396 		dev_err(gsi->dev, "bad event ring state (%u) after reset\n",
397 			evt_ring->state);
398 }
399 
400 /* Issue a hardware de-allocation request for an allocated event ring */
401 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
402 {
403 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
404 	int ret;
405 
406 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
407 		dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n",
408 			evt_ring->state);
409 		return;
410 	}
411 
412 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
413 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
414 		dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n",
415 			evt_ring->state);
416 }
417 
418 /* Fetch the current state of a channel from hardware */
419 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
420 {
421 	u32 channel_id = gsi_channel_id(channel);
422 	void *virt = channel->gsi->virt;
423 	u32 val;
424 
425 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
426 
427 	return u32_get_bits(val, CHSTATE_FMASK);
428 }
429 
430 /* Issue a channel command and wait for it to complete */
431 static int
432 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
433 {
434 	struct completion *completion = &channel->completion;
435 	u32 channel_id = gsi_channel_id(channel);
436 	struct gsi *gsi = channel->gsi;
437 	u32 val;
438 
439 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
440 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
441 
442 	if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
443 		return 0;	/* Success! */
444 
445 	dev_err(gsi->dev,
446 		"GSI command %u to channel %u timed out (state is %u)\n",
447 		opcode, channel_id, gsi_channel_state(channel));
448 
449 	return -ETIMEDOUT;
450 }
451 
452 /* Allocate GSI channel in NOT_ALLOCATED state */
453 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
454 {
455 	struct gsi_channel *channel = &gsi->channel[channel_id];
456 	enum gsi_channel_state state;
457 	int ret;
458 
459 	/* Get initial channel state */
460 	state = gsi_channel_state(channel);
461 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
462 		return -EINVAL;
463 
464 	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
465 
466 	/* Channel state will normally have been updated */
467 	state = gsi_channel_state(channel);
468 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
469 		dev_err(gsi->dev, "bad channel state (%u) after alloc\n",
470 			state);
471 		ret = -EIO;
472 	}
473 
474 	return ret;
475 }
476 
477 /* Start an ALLOCATED channel */
478 static int gsi_channel_start_command(struct gsi_channel *channel)
479 {
480 	enum gsi_channel_state state;
481 	int ret;
482 
483 	state = gsi_channel_state(channel);
484 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
485 	    state != GSI_CHANNEL_STATE_STOPPED)
486 		return -EINVAL;
487 
488 	ret = gsi_channel_command(channel, GSI_CH_START);
489 
490 	/* Channel state will normally have been updated */
491 	state = gsi_channel_state(channel);
492 	if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
493 		dev_err(channel->gsi->dev,
494 			"bad channel state (%u) after start\n", state);
495 		ret = -EIO;
496 	}
497 
498 	return ret;
499 }
500 
501 /* Stop a GSI channel in STARTED state */
502 static int gsi_channel_stop_command(struct gsi_channel *channel)
503 {
504 	enum gsi_channel_state state;
505 	int ret;
506 
507 	state = gsi_channel_state(channel);
508 	if (state != GSI_CHANNEL_STATE_STARTED &&
509 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC)
510 		return -EINVAL;
511 
512 	ret = gsi_channel_command(channel, GSI_CH_STOP);
513 
514 	/* Channel state will normally have been updated */
515 	state = gsi_channel_state(channel);
516 	if (ret || state == GSI_CHANNEL_STATE_STOPPED)
517 		return ret;
518 
519 	/* We may have to try again if stop is in progress */
520 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
521 		return -EAGAIN;
522 
523 	dev_err(channel->gsi->dev,
524 		"bad channel state (%u) after stop\n", state);
525 
526 	return -EIO;
527 }
528 
529 /* Reset a GSI channel in ALLOCATED or ERROR state. */
530 static void gsi_channel_reset_command(struct gsi_channel *channel)
531 {
532 	enum gsi_channel_state state;
533 	int ret;
534 
535 	msleep(1);	/* A short delay is required before a RESET command */
536 
537 	state = gsi_channel_state(channel);
538 	if (state != GSI_CHANNEL_STATE_STOPPED &&
539 	    state != GSI_CHANNEL_STATE_ERROR) {
540 		dev_err(channel->gsi->dev,
541 			"bad channel state (%u) before reset\n", state);
542 		return;
543 	}
544 
545 	ret = gsi_channel_command(channel, GSI_CH_RESET);
546 
547 	/* Channel state will normally have been updated */
548 	state = gsi_channel_state(channel);
549 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
550 		dev_err(channel->gsi->dev,
551 			"bad channel state (%u) after reset\n", state);
552 }
553 
554 /* Deallocate an ALLOCATED GSI channel */
555 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
556 {
557 	struct gsi_channel *channel = &gsi->channel[channel_id];
558 	enum gsi_channel_state state;
559 	int ret;
560 
561 	state = gsi_channel_state(channel);
562 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
563 		dev_err(gsi->dev,
564 			"bad channel state (%u) before dealloc\n", state);
565 		return;
566 	}
567 
568 	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
569 
570 	/* Channel state will normally have been updated */
571 	state = gsi_channel_state(channel);
572 	if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
573 		dev_err(gsi->dev,
574 			"bad channel state (%u) after dealloc\n", state);
575 }
576 
577 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
578  * The index argument (modulo the ring count) is the first unfilled entry, so
579  * we supply one less than that with the doorbell.  Update the event ring
580  * index field with the value provided.
581  */
582 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
583 {
584 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
585 	u32 val;
586 
587 	ring->index = index;	/* Next unused entry */
588 
589 	/* Note: index *must* be used modulo the ring count here */
590 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
591 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
592 }
593 
594 /* Program an event ring for use */
595 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
596 {
597 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
598 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
599 	u32 val;
600 
601 	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
602 	val |= EV_INTYPE_FMASK;
603 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
604 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
605 
606 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
607 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
608 
609 	/* The context 2 and 3 registers store the low-order and
610 	 * high-order 32 bits of the address of the event ring,
611 	 * respectively.
612 	 */
613 	val = evt_ring->ring.addr & GENMASK(31, 0);
614 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
615 
616 	val = evt_ring->ring.addr >> 32;
617 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
618 
619 	/* Enable interrupt moderation by setting the moderation delay */
620 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
621 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
622 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
623 
624 	/* No MSI write data, and MSI address high and low address is 0 */
625 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
626 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
627 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
628 
629 	/* We don't need to get event read pointer updates */
630 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
631 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
632 
633 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
634 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
635 }
636 
637 /* Return the last (most recent) transaction completed on a channel. */
638 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
639 {
640 	struct gsi_trans_info *trans_info = &channel->trans_info;
641 	struct gsi_trans *trans;
642 
643 	spin_lock_bh(&trans_info->spinlock);
644 
645 	if (!list_empty(&trans_info->complete))
646 		trans = list_last_entry(&trans_info->complete,
647 					struct gsi_trans, links);
648 	else if (!list_empty(&trans_info->polled))
649 		trans = list_last_entry(&trans_info->polled,
650 					struct gsi_trans, links);
651 	else
652 		trans = NULL;
653 
654 	/* Caller will wait for this, so take a reference */
655 	if (trans)
656 		refcount_inc(&trans->refcount);
657 
658 	spin_unlock_bh(&trans_info->spinlock);
659 
660 	return trans;
661 }
662 
663 /* Wait for transaction activity on a channel to complete */
664 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
665 {
666 	struct gsi_trans *trans;
667 
668 	/* Get the last transaction, and wait for it to complete */
669 	trans = gsi_channel_trans_last(channel);
670 	if (trans) {
671 		wait_for_completion(&trans->completion);
672 		gsi_trans_free(trans);
673 	}
674 }
675 
676 /* Stop channel activity.  Transactions may not be allocated until thawed. */
677 static void gsi_channel_freeze(struct gsi_channel *channel)
678 {
679 	gsi_channel_trans_quiesce(channel);
680 
681 	napi_disable(&channel->napi);
682 
683 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
684 }
685 
686 /* Allow transactions to be used on the channel again. */
687 static void gsi_channel_thaw(struct gsi_channel *channel)
688 {
689 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
690 
691 	napi_enable(&channel->napi);
692 }
693 
694 /* Program a channel for use */
695 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
696 {
697 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
698 	u32 channel_id = gsi_channel_id(channel);
699 	union gsi_channel_scratch scr = { };
700 	struct gsi_channel_scratch_gpi *gpi;
701 	struct gsi *gsi = channel->gsi;
702 	u32 wrr_weight = 0;
703 	u32 val;
704 
705 	/* Arbitrarily pick TRE 0 as the first channel element to use */
706 	channel->tre_ring.index = 0;
707 
708 	/* We program all channels to use GPI protocol */
709 	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
710 	if (channel->toward_ipa)
711 		val |= CHTYPE_DIR_FMASK;
712 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
713 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
714 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
715 
716 	val = u32_encode_bits(size, R_LENGTH_FMASK);
717 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
718 
719 	/* The context 2 and 3 registers store the low-order and
720 	 * high-order 32 bits of the address of the channel ring,
721 	 * respectively.
722 	 */
723 	val = channel->tre_ring.addr & GENMASK(31, 0);
724 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
725 
726 	val = channel->tre_ring.addr >> 32;
727 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
728 
729 	/* Command channel gets low weighted round-robin priority */
730 	if (channel->command)
731 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
732 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
733 
734 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
735 
736 	/* Enable the doorbell engine if requested */
737 	if (doorbell)
738 		val |= USE_DB_ENG_FMASK;
739 
740 	if (!channel->use_prefetch)
741 		val |= USE_ESCAPE_BUF_ONLY_FMASK;
742 
743 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
744 
745 	/* Now update the scratch registers for GPI protocol */
746 	gpi = &scr.gpi;
747 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
748 					GSI_RING_ELEMENT_SIZE;
749 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
750 
751 	val = scr.data.word1;
752 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
753 
754 	val = scr.data.word2;
755 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
756 
757 	val = scr.data.word3;
758 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
759 
760 	/* We must preserve the upper 16 bits of the last scratch register.
761 	 * The next sequence assumes those bits remain unchanged between the
762 	 * read and the write.
763 	 */
764 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
765 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
766 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
767 
768 	/* All done! */
769 }
770 
771 static void gsi_channel_deprogram(struct gsi_channel *channel)
772 {
773 	/* Nothing to do */
774 }
775 
776 /* Start an allocated GSI channel */
777 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
778 {
779 	struct gsi_channel *channel = &gsi->channel[channel_id];
780 	u32 evt_ring_id = channel->evt_ring_id;
781 	int ret;
782 
783 	mutex_lock(&gsi->mutex);
784 
785 	ret = gsi_channel_start_command(channel);
786 
787 	mutex_unlock(&gsi->mutex);
788 
789 	/* Clear the channel's event ring interrupt in case it's pending */
790 	gsi_isr_ieob_clear(gsi, BIT(evt_ring_id));
791 
792 	gsi_channel_thaw(channel);
793 
794 	return ret;
795 }
796 
797 /* Stop a started channel */
798 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
799 {
800 	struct gsi_channel *channel = &gsi->channel[channel_id];
801 	enum gsi_channel_state state;
802 	u32 retries;
803 	int ret;
804 
805 	gsi_channel_freeze(channel);
806 
807 	/* Channel could have entered STOPPED state since last call if the
808 	 * STOP command timed out.  We won't stop a channel if stopping it
809 	 * was successful previously (so we still want the freeze above).
810 	 */
811 	state = gsi_channel_state(channel);
812 	if (state == GSI_CHANNEL_STATE_STOPPED)
813 		return 0;
814 
815 	/* RX channels might require a little time to enter STOPPED state */
816 	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
817 
818 	mutex_lock(&gsi->mutex);
819 
820 	do {
821 		ret = gsi_channel_stop_command(channel);
822 		if (ret != -EAGAIN)
823 			break;
824 		msleep(1);
825 	} while (retries--);
826 
827 	mutex_unlock(&gsi->mutex);
828 
829 	/* Thaw the channel if we need to retry (or on error) */
830 	if (ret)
831 		gsi_channel_thaw(channel);
832 
833 	return ret;
834 }
835 
836 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
837 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
838 {
839 	struct gsi_channel *channel = &gsi->channel[channel_id];
840 
841 	mutex_lock(&gsi->mutex);
842 
843 	gsi_channel_reset_command(channel);
844 	/* Due to a hardware quirk we may need to reset RX channels twice. */
845 	if (legacy && !channel->toward_ipa)
846 		gsi_channel_reset_command(channel);
847 
848 	gsi_channel_program(channel, legacy);
849 	gsi_channel_trans_cancel_pending(channel);
850 
851 	mutex_unlock(&gsi->mutex);
852 }
853 
854 /* Stop a STARTED channel for suspend (using stop if requested) */
855 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
856 {
857 	struct gsi_channel *channel = &gsi->channel[channel_id];
858 
859 	if (stop)
860 		return gsi_channel_stop(gsi, channel_id);
861 
862 	gsi_channel_freeze(channel);
863 
864 	return 0;
865 }
866 
867 /* Resume a suspended channel (starting will be requested if STOPPED) */
868 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
869 {
870 	struct gsi_channel *channel = &gsi->channel[channel_id];
871 
872 	if (start)
873 		return gsi_channel_start(gsi, channel_id);
874 
875 	gsi_channel_thaw(channel);
876 
877 	return 0;
878 }
879 
880 /**
881  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
882  * @channel:	Channel for which to report
883  *
884  * Report to the network stack the number of bytes and transactions that
885  * have been queued to hardware since last call.  This and the next function
886  * supply information used by the network stack for throttling.
887  *
888  * For each channel we track the number of transactions used and bytes of
889  * data those transactions represent.  We also track what those values are
890  * each time this function is called.  Subtracting the two tells us
891  * the number of bytes and transactions that have been added between
892  * successive calls.
893  *
894  * Calling this each time we ring the channel doorbell allows us to
895  * provide accurate information to the network stack about how much
896  * work we've given the hardware at any point in time.
897  */
898 void gsi_channel_tx_queued(struct gsi_channel *channel)
899 {
900 	u32 trans_count;
901 	u32 byte_count;
902 
903 	byte_count = channel->byte_count - channel->queued_byte_count;
904 	trans_count = channel->trans_count - channel->queued_trans_count;
905 	channel->queued_byte_count = channel->byte_count;
906 	channel->queued_trans_count = channel->trans_count;
907 
908 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
909 				  trans_count, byte_count);
910 }
911 
912 /**
913  * gsi_channel_tx_update() - Report completed TX transfers
914  * @channel:	Channel that has completed transmitting packets
915  * @trans:	Last transation known to be complete
916  *
917  * Compute the number of transactions and bytes that have been transferred
918  * over a TX channel since the given transaction was committed.  Report this
919  * information to the network stack.
920  *
921  * At the time a transaction is committed, we record its channel's
922  * committed transaction and byte counts *in the transaction*.
923  * Completions are signaled by the hardware with an interrupt, and
924  * we can determine the latest completed transaction at that time.
925  *
926  * The difference between the byte/transaction count recorded in
927  * the transaction and the count last time we recorded a completion
928  * tells us exactly how much data has been transferred between
929  * completions.
930  *
931  * Calling this each time we learn of a newly-completed transaction
932  * allows us to provide accurate information to the network stack
933  * about how much work has been completed by the hardware at a given
934  * point in time.
935  */
936 static void
937 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
938 {
939 	u64 byte_count = trans->byte_count + trans->len;
940 	u64 trans_count = trans->trans_count + 1;
941 
942 	byte_count -= channel->compl_byte_count;
943 	channel->compl_byte_count += byte_count;
944 	trans_count -= channel->compl_trans_count;
945 	channel->compl_trans_count += trans_count;
946 
947 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
948 				     trans_count, byte_count);
949 }
950 
951 /* Channel control interrupt handler */
952 static void gsi_isr_chan_ctrl(struct gsi *gsi)
953 {
954 	u32 channel_mask;
955 
956 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
957 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
958 
959 	while (channel_mask) {
960 		u32 channel_id = __ffs(channel_mask);
961 		struct gsi_channel *channel;
962 
963 		channel_mask ^= BIT(channel_id);
964 
965 		channel = &gsi->channel[channel_id];
966 
967 		complete(&channel->completion);
968 	}
969 }
970 
971 /* Event ring control interrupt handler */
972 static void gsi_isr_evt_ctrl(struct gsi *gsi)
973 {
974 	u32 event_mask;
975 
976 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
977 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
978 
979 	while (event_mask) {
980 		u32 evt_ring_id = __ffs(event_mask);
981 		struct gsi_evt_ring *evt_ring;
982 
983 		event_mask ^= BIT(evt_ring_id);
984 
985 		evt_ring = &gsi->evt_ring[evt_ring_id];
986 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
987 
988 		complete(&evt_ring->completion);
989 	}
990 }
991 
992 /* Global channel error interrupt handler */
993 static void
994 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
995 {
996 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
997 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
998 		complete(&gsi->channel[channel_id].completion);
999 		return;
1000 	}
1001 
1002 	/* Report, but otherwise ignore all other error codes */
1003 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1004 		channel_id, err_ee, code);
1005 }
1006 
1007 /* Global event error interrupt handler */
1008 static void
1009 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1010 {
1011 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
1012 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1013 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1014 
1015 		complete(&evt_ring->completion);
1016 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1017 			channel_id);
1018 		return;
1019 	}
1020 
1021 	/* Report, but otherwise ignore all other error codes */
1022 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1023 		evt_ring_id, err_ee, code);
1024 }
1025 
1026 /* Global error interrupt handler */
1027 static void gsi_isr_glob_err(struct gsi *gsi)
1028 {
1029 	enum gsi_err_type type;
1030 	enum gsi_err_code code;
1031 	u32 which;
1032 	u32 val;
1033 	u32 ee;
1034 
1035 	/* Get the logged error, then reinitialize the log */
1036 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1037 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1038 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1039 
1040 	ee = u32_get_bits(val, ERR_EE_FMASK);
1041 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1042 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1043 	code = u32_get_bits(val, ERR_CODE_FMASK);
1044 
1045 	if (type == GSI_ERR_TYPE_CHAN)
1046 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1047 	else if (type == GSI_ERR_TYPE_EVT)
1048 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1049 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1050 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1051 }
1052 
1053 /* Generic EE interrupt handler */
1054 static void gsi_isr_gp_int1(struct gsi *gsi)
1055 {
1056 	u32 result;
1057 	u32 val;
1058 
1059 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1060 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1061 	if (result != GENERIC_EE_SUCCESS_FVAL)
1062 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1063 
1064 	complete(&gsi->completion);
1065 }
1066 
1067 /* Inter-EE interrupt handler */
1068 static void gsi_isr_glob_ee(struct gsi *gsi)
1069 {
1070 	u32 val;
1071 
1072 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1073 
1074 	if (val & ERROR_INT_FMASK)
1075 		gsi_isr_glob_err(gsi);
1076 
1077 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1078 
1079 	val &= ~ERROR_INT_FMASK;
1080 
1081 	if (val & EN_GP_INT1_FMASK) {
1082 		val ^= EN_GP_INT1_FMASK;
1083 		gsi_isr_gp_int1(gsi);
1084 	}
1085 
1086 	if (val)
1087 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1088 }
1089 
1090 /* I/O completion interrupt event */
1091 static void gsi_isr_ieob(struct gsi *gsi)
1092 {
1093 	u32 event_mask;
1094 
1095 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1096 	gsi_isr_ieob_clear(gsi, event_mask);
1097 
1098 	while (event_mask) {
1099 		u32 evt_ring_id = __ffs(event_mask);
1100 
1101 		event_mask ^= BIT(evt_ring_id);
1102 
1103 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1104 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1105 	}
1106 }
1107 
1108 /* General event interrupts represent serious problems, so report them */
1109 static void gsi_isr_general(struct gsi *gsi)
1110 {
1111 	struct device *dev = gsi->dev;
1112 	u32 val;
1113 
1114 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1115 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1116 
1117 	if (val)
1118 		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1119 }
1120 
1121 /**
1122  * gsi_isr() - Top level GSI interrupt service routine
1123  * @irq:	Interrupt number (ignored)
1124  * @dev_id:	GSI pointer supplied to request_irq()
1125  *
1126  * This is the main handler function registered for the GSI IRQ. Each type
1127  * of interrupt has a separate handler function that is called from here.
1128  */
1129 static irqreturn_t gsi_isr(int irq, void *dev_id)
1130 {
1131 	struct gsi *gsi = dev_id;
1132 	u32 intr_mask;
1133 	u32 cnt = 0;
1134 
1135 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1136 		/* intr_mask contains bitmask of pending GSI interrupts */
1137 		do {
1138 			u32 gsi_intr = BIT(__ffs(intr_mask));
1139 
1140 			intr_mask ^= gsi_intr;
1141 
1142 			switch (gsi_intr) {
1143 			case CH_CTRL_FMASK:
1144 				gsi_isr_chan_ctrl(gsi);
1145 				break;
1146 			case EV_CTRL_FMASK:
1147 				gsi_isr_evt_ctrl(gsi);
1148 				break;
1149 			case GLOB_EE_FMASK:
1150 				gsi_isr_glob_ee(gsi);
1151 				break;
1152 			case IEOB_FMASK:
1153 				gsi_isr_ieob(gsi);
1154 				break;
1155 			case GENERAL_FMASK:
1156 				gsi_isr_general(gsi);
1157 				break;
1158 			default:
1159 				dev_err(gsi->dev,
1160 					"%s: unrecognized type 0x%08x\n",
1161 					__func__, gsi_intr);
1162 				break;
1163 			}
1164 		} while (intr_mask);
1165 
1166 		if (++cnt > GSI_ISR_MAX_ITER) {
1167 			dev_err(gsi->dev, "interrupt flood\n");
1168 			break;
1169 		}
1170 	}
1171 
1172 	return IRQ_HANDLED;
1173 }
1174 
1175 /* Return the transaction associated with a transfer completion event */
1176 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1177 					 struct gsi_event *event)
1178 {
1179 	u32 tre_offset;
1180 	u32 tre_index;
1181 
1182 	/* Event xfer_ptr records the TRE it's associated with */
1183 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1184 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1185 
1186 	return gsi_channel_trans_mapped(channel, tre_index);
1187 }
1188 
1189 /**
1190  * gsi_evt_ring_rx_update() - Record lengths of received data
1191  * @evt_ring:	Event ring associated with channel that received packets
1192  * @index:	Event index in ring reported by hardware
1193  *
1194  * Events for RX channels contain the actual number of bytes received into
1195  * the buffer.  Every event has a transaction associated with it, and here
1196  * we update transactions to record their actual received lengths.
1197  *
1198  * This function is called whenever we learn that the GSI hardware has filled
1199  * new events since the last time we checked.  The ring's index field tells
1200  * the first entry in need of processing.  The index provided is the
1201  * first *unfilled* event in the ring (following the last filled one).
1202  *
1203  * Events are sequential within the event ring, and transactions are
1204  * sequential within the transaction pool.
1205  *
1206  * Note that @index always refers to an element *within* the event ring.
1207  */
1208 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1209 {
1210 	struct gsi_channel *channel = evt_ring->channel;
1211 	struct gsi_ring *ring = &evt_ring->ring;
1212 	struct gsi_trans_info *trans_info;
1213 	struct gsi_event *event_done;
1214 	struct gsi_event *event;
1215 	struct gsi_trans *trans;
1216 	u32 byte_count = 0;
1217 	u32 old_index;
1218 	u32 event_avail;
1219 
1220 	trans_info = &channel->trans_info;
1221 
1222 	/* We'll start with the oldest un-processed event.  RX channels
1223 	 * replenish receive buffers in single-TRE transactions, so we
1224 	 * can just map that event to its transaction.  Transactions
1225 	 * associated with completion events are consecutive.
1226 	 */
1227 	old_index = ring->index;
1228 	event = gsi_ring_virt(ring, old_index);
1229 	trans = gsi_event_trans(channel, event);
1230 
1231 	/* Compute the number of events to process before we wrap,
1232 	 * and determine when we'll be done processing events.
1233 	 */
1234 	event_avail = ring->count - old_index % ring->count;
1235 	event_done = gsi_ring_virt(ring, index);
1236 	do {
1237 		trans->len = __le16_to_cpu(event->len);
1238 		byte_count += trans->len;
1239 
1240 		/* Move on to the next event and transaction */
1241 		if (--event_avail)
1242 			event++;
1243 		else
1244 			event = gsi_ring_virt(ring, 0);
1245 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1246 	} while (event != event_done);
1247 
1248 	/* We record RX bytes when they are received */
1249 	channel->byte_count += byte_count;
1250 	channel->trans_count++;
1251 }
1252 
1253 /* Initialize a ring, including allocating DMA memory for its entries */
1254 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1255 {
1256 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1257 	struct device *dev = gsi->dev;
1258 	dma_addr_t addr;
1259 
1260 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1261 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1262 	if (ring->virt && addr % size) {
1263 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1264 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1265 				size);
1266 		return -EINVAL;	/* Not a good error value, but distinct */
1267 	} else if (!ring->virt) {
1268 		return -ENOMEM;
1269 	}
1270 	ring->addr = addr;
1271 	ring->count = count;
1272 
1273 	return 0;
1274 }
1275 
1276 /* Free a previously-allocated ring */
1277 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1278 {
1279 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1280 
1281 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1282 }
1283 
1284 /* Allocate an available event ring id */
1285 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1286 {
1287 	u32 evt_ring_id;
1288 
1289 	if (gsi->event_bitmap == ~0U) {
1290 		dev_err(gsi->dev, "event rings exhausted\n");
1291 		return -ENOSPC;
1292 	}
1293 
1294 	evt_ring_id = ffz(gsi->event_bitmap);
1295 	gsi->event_bitmap |= BIT(evt_ring_id);
1296 
1297 	return (int)evt_ring_id;
1298 }
1299 
1300 /* Free a previously-allocated event ring id */
1301 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1302 {
1303 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1304 }
1305 
1306 /* Ring a channel doorbell, reporting the first un-filled entry */
1307 void gsi_channel_doorbell(struct gsi_channel *channel)
1308 {
1309 	struct gsi_ring *tre_ring = &channel->tre_ring;
1310 	u32 channel_id = gsi_channel_id(channel);
1311 	struct gsi *gsi = channel->gsi;
1312 	u32 val;
1313 
1314 	/* Note: index *must* be used modulo the ring count here */
1315 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1316 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1317 }
1318 
1319 /* Consult hardware, move any newly completed transactions to completed list */
1320 static void gsi_channel_update(struct gsi_channel *channel)
1321 {
1322 	u32 evt_ring_id = channel->evt_ring_id;
1323 	struct gsi *gsi = channel->gsi;
1324 	struct gsi_evt_ring *evt_ring;
1325 	struct gsi_trans *trans;
1326 	struct gsi_ring *ring;
1327 	u32 offset;
1328 	u32 index;
1329 
1330 	evt_ring = &gsi->evt_ring[evt_ring_id];
1331 	ring = &evt_ring->ring;
1332 
1333 	/* See if there's anything new to process; if not, we're done.  Note
1334 	 * that index always refers to an entry *within* the event ring.
1335 	 */
1336 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1337 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1338 	if (index == ring->index % ring->count)
1339 		return;
1340 
1341 	/* Get the transaction for the latest completed event.  Take a
1342 	 * reference to keep it from completing before we give the events
1343 	 * for this and previous transactions back to the hardware.
1344 	 */
1345 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1346 	refcount_inc(&trans->refcount);
1347 
1348 	/* For RX channels, update each completed transaction with the number
1349 	 * of bytes that were actually received.  For TX channels, report
1350 	 * the number of transactions and bytes this completion represents
1351 	 * up the network stack.
1352 	 */
1353 	if (channel->toward_ipa)
1354 		gsi_channel_tx_update(channel, trans);
1355 	else
1356 		gsi_evt_ring_rx_update(evt_ring, index);
1357 
1358 	gsi_trans_move_complete(trans);
1359 
1360 	/* Tell the hardware we've handled these events */
1361 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1362 
1363 	gsi_trans_free(trans);
1364 }
1365 
1366 /**
1367  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1368  * @channel:	Channel to be polled
1369  *
1370  * @Return:	 Transaction pointer, or null if none are available
1371  *
1372  * This function returns the first entry on a channel's completed transaction
1373  * list.  If that list is empty, the hardware is consulted to determine
1374  * whether any new transactions have completed.  If so, they're moved to the
1375  * completed list and the new first entry is returned.  If there are no more
1376  * completed transactions, a null pointer is returned.
1377  */
1378 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1379 {
1380 	struct gsi_trans *trans;
1381 
1382 	/* Get the first transaction from the completed list */
1383 	trans = gsi_channel_trans_complete(channel);
1384 	if (!trans) {
1385 		/* List is empty; see if there's more to do */
1386 		gsi_channel_update(channel);
1387 		trans = gsi_channel_trans_complete(channel);
1388 	}
1389 
1390 	if (trans)
1391 		gsi_trans_move_polled(trans);
1392 
1393 	return trans;
1394 }
1395 
1396 /**
1397  * gsi_channel_poll() - NAPI poll function for a channel
1398  * @napi:	NAPI structure for the channel
1399  * @budget:	Budget supplied by NAPI core
1400 
1401  * @Return:	 Number of items polled (<= budget)
1402  *
1403  * Single transactions completed by hardware are polled until either
1404  * the budget is exhausted, or there are no more.  Each transaction
1405  * polled is passed to gsi_trans_complete(), to perform remaining
1406  * completion processing and retire/free the transaction.
1407  */
1408 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1409 {
1410 	struct gsi_channel *channel;
1411 	int count = 0;
1412 
1413 	channel = container_of(napi, struct gsi_channel, napi);
1414 	while (count < budget) {
1415 		struct gsi_trans *trans;
1416 
1417 		trans = gsi_channel_poll_one(channel);
1418 		if (!trans)
1419 			break;
1420 		gsi_trans_complete(trans);
1421 	}
1422 
1423 	if (count < budget) {
1424 		napi_complete(&channel->napi);
1425 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1426 	}
1427 
1428 	return count;
1429 }
1430 
1431 /* The event bitmap represents which event ids are available for allocation.
1432  * Set bits are not available, clear bits can be used.  This function
1433  * initializes the map so all events supported by the hardware are available,
1434  * then precludes any reserved events from being allocated.
1435  */
1436 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1437 {
1438 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1439 
1440 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1441 
1442 	return event_bitmap;
1443 }
1444 
1445 /* Setup function for event rings */
1446 static void gsi_evt_ring_setup(struct gsi *gsi)
1447 {
1448 	/* Nothing to do */
1449 }
1450 
1451 /* Inverse of gsi_evt_ring_setup() */
1452 static void gsi_evt_ring_teardown(struct gsi *gsi)
1453 {
1454 	/* Nothing to do */
1455 }
1456 
1457 /* Setup function for a single channel */
1458 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1459 				 bool legacy)
1460 {
1461 	struct gsi_channel *channel = &gsi->channel[channel_id];
1462 	u32 evt_ring_id = channel->evt_ring_id;
1463 	int ret;
1464 
1465 	if (!channel->gsi)
1466 		return 0;	/* Ignore uninitialized channels */
1467 
1468 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1469 	if (ret)
1470 		return ret;
1471 
1472 	gsi_evt_ring_program(gsi, evt_ring_id);
1473 
1474 	ret = gsi_channel_alloc_command(gsi, channel_id);
1475 	if (ret)
1476 		goto err_evt_ring_de_alloc;
1477 
1478 	gsi_channel_program(channel, legacy);
1479 
1480 	if (channel->toward_ipa)
1481 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1482 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1483 	else
1484 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1485 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1486 
1487 	return 0;
1488 
1489 err_evt_ring_de_alloc:
1490 	/* We've done nothing with the event ring yet so don't reset */
1491 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1492 
1493 	return ret;
1494 }
1495 
1496 /* Inverse of gsi_channel_setup_one() */
1497 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1498 {
1499 	struct gsi_channel *channel = &gsi->channel[channel_id];
1500 	u32 evt_ring_id = channel->evt_ring_id;
1501 
1502 	if (!channel->gsi)
1503 		return;		/* Ignore uninitialized channels */
1504 
1505 	netif_napi_del(&channel->napi);
1506 
1507 	gsi_channel_deprogram(channel);
1508 	gsi_channel_de_alloc_command(gsi, channel_id);
1509 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1510 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1511 }
1512 
1513 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1514 			       enum gsi_generic_cmd_opcode opcode)
1515 {
1516 	struct completion *completion = &gsi->completion;
1517 	u32 val;
1518 
1519 	/* First zero the result code field */
1520 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1521 	val &= ~GENERIC_EE_RESULT_FMASK;
1522 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1523 
1524 	/* Now issue the command */
1525 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1526 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1527 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1528 
1529 	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1530 		return 0;	/* Success! */
1531 
1532 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1533 		opcode, channel_id);
1534 
1535 	return -ETIMEDOUT;
1536 }
1537 
1538 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1539 {
1540 	return gsi_generic_command(gsi, channel_id,
1541 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1542 }
1543 
1544 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1545 {
1546 	int ret;
1547 
1548 	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1549 	if (ret)
1550 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1551 			ret, channel_id);
1552 }
1553 
1554 /* Setup function for channels */
1555 static int gsi_channel_setup(struct gsi *gsi, bool legacy)
1556 {
1557 	u32 channel_id = 0;
1558 	u32 mask;
1559 	int ret;
1560 
1561 	gsi_evt_ring_setup(gsi);
1562 	gsi_irq_enable(gsi);
1563 
1564 	mutex_lock(&gsi->mutex);
1565 
1566 	do {
1567 		ret = gsi_channel_setup_one(gsi, channel_id, legacy);
1568 		if (ret)
1569 			goto err_unwind;
1570 	} while (++channel_id < gsi->channel_count);
1571 
1572 	/* Make sure no channels were defined that hardware does not support */
1573 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1574 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1575 
1576 		if (!channel->gsi)
1577 			continue;	/* Ignore uninitialized channels */
1578 
1579 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1580 			channel_id - 1);
1581 		channel_id = gsi->channel_count;
1582 		goto err_unwind;
1583 	}
1584 
1585 	/* Allocate modem channels if necessary */
1586 	mask = gsi->modem_channel_bitmap;
1587 	while (mask) {
1588 		u32 modem_channel_id = __ffs(mask);
1589 
1590 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1591 		if (ret)
1592 			goto err_unwind_modem;
1593 
1594 		/* Clear bit from mask only after success (for unwind) */
1595 		mask ^= BIT(modem_channel_id);
1596 	}
1597 
1598 	mutex_unlock(&gsi->mutex);
1599 
1600 	return 0;
1601 
1602 err_unwind_modem:
1603 	/* Compute which modem channels need to be deallocated */
1604 	mask ^= gsi->modem_channel_bitmap;
1605 	while (mask) {
1606 		u32 channel_id = __fls(mask);
1607 
1608 		mask ^= BIT(channel_id);
1609 
1610 		gsi_modem_channel_halt(gsi, channel_id);
1611 	}
1612 
1613 err_unwind:
1614 	while (channel_id--)
1615 		gsi_channel_teardown_one(gsi, channel_id);
1616 
1617 	mutex_unlock(&gsi->mutex);
1618 
1619 	gsi_irq_disable(gsi);
1620 	gsi_evt_ring_teardown(gsi);
1621 
1622 	return ret;
1623 }
1624 
1625 /* Inverse of gsi_channel_setup() */
1626 static void gsi_channel_teardown(struct gsi *gsi)
1627 {
1628 	u32 mask = gsi->modem_channel_bitmap;
1629 	u32 channel_id;
1630 
1631 	mutex_lock(&gsi->mutex);
1632 
1633 	while (mask) {
1634 		u32 channel_id = __fls(mask);
1635 
1636 		mask ^= BIT(channel_id);
1637 
1638 		gsi_modem_channel_halt(gsi, channel_id);
1639 	}
1640 
1641 	channel_id = gsi->channel_count - 1;
1642 	do
1643 		gsi_channel_teardown_one(gsi, channel_id);
1644 	while (channel_id--);
1645 
1646 	mutex_unlock(&gsi->mutex);
1647 
1648 	gsi_irq_disable(gsi);
1649 	gsi_evt_ring_teardown(gsi);
1650 }
1651 
1652 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1653 int gsi_setup(struct gsi *gsi, bool legacy)
1654 {
1655 	u32 val;
1656 
1657 	/* Here is where we first touch the GSI hardware */
1658 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1659 	if (!(val & ENABLED_FMASK)) {
1660 		dev_err(gsi->dev, "GSI has not been enabled\n");
1661 		return -EIO;
1662 	}
1663 
1664 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1665 
1666 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1667 	if (!gsi->channel_count) {
1668 		dev_err(gsi->dev, "GSI reports zero channels supported\n");
1669 		return -EINVAL;
1670 	}
1671 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1672 		dev_warn(gsi->dev,
1673 			"limiting to %u channels (hardware supports %u)\n",
1674 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1675 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1676 	}
1677 
1678 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1679 	if (!gsi->evt_ring_count) {
1680 		dev_err(gsi->dev, "GSI reports zero event rings supported\n");
1681 		return -EINVAL;
1682 	}
1683 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1684 		dev_warn(gsi->dev,
1685 			"limiting to %u event rings (hardware supports %u)\n",
1686 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1687 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1688 	}
1689 
1690 	/* Initialize the error log */
1691 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1692 
1693 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1694 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1695 
1696 	return gsi_channel_setup(gsi, legacy);
1697 }
1698 
1699 /* Inverse of gsi_setup() */
1700 void gsi_teardown(struct gsi *gsi)
1701 {
1702 	gsi_channel_teardown(gsi);
1703 }
1704 
1705 /* Initialize a channel's event ring */
1706 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1707 {
1708 	struct gsi *gsi = channel->gsi;
1709 	struct gsi_evt_ring *evt_ring;
1710 	int ret;
1711 
1712 	ret = gsi_evt_ring_id_alloc(gsi);
1713 	if (ret < 0)
1714 		return ret;
1715 	channel->evt_ring_id = ret;
1716 
1717 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1718 	evt_ring->channel = channel;
1719 
1720 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1721 	if (!ret)
1722 		return 0;	/* Success! */
1723 
1724 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1725 		ret, gsi_channel_id(channel));
1726 
1727 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1728 
1729 	return ret;
1730 }
1731 
1732 /* Inverse of gsi_channel_evt_ring_init() */
1733 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1734 {
1735 	u32 evt_ring_id = channel->evt_ring_id;
1736 	struct gsi *gsi = channel->gsi;
1737 	struct gsi_evt_ring *evt_ring;
1738 
1739 	evt_ring = &gsi->evt_ring[evt_ring_id];
1740 	gsi_ring_free(gsi, &evt_ring->ring);
1741 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1742 }
1743 
1744 /* Init function for event rings */
1745 static void gsi_evt_ring_init(struct gsi *gsi)
1746 {
1747 	u32 evt_ring_id = 0;
1748 
1749 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1750 	gsi->event_enable_bitmap = 0;
1751 	do
1752 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1753 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1754 }
1755 
1756 /* Inverse of gsi_evt_ring_init() */
1757 static void gsi_evt_ring_exit(struct gsi *gsi)
1758 {
1759 	/* Nothing to do */
1760 }
1761 
1762 static bool gsi_channel_data_valid(struct gsi *gsi,
1763 				   const struct ipa_gsi_endpoint_data *data)
1764 {
1765 #ifdef IPA_VALIDATION
1766 	u32 channel_id = data->channel_id;
1767 	struct device *dev = gsi->dev;
1768 
1769 	/* Make sure channel ids are in the range driver supports */
1770 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1771 		dev_err(dev, "bad channel id %u (must be less than %u)\n",
1772 			channel_id, GSI_CHANNEL_COUNT_MAX);
1773 		return false;
1774 	}
1775 
1776 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1777 		dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id);
1778 		return false;
1779 	}
1780 
1781 	if (!data->channel.tlv_count ||
1782 	    data->channel.tlv_count > GSI_TLV_MAX) {
1783 		dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n",
1784 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1785 		return false;
1786 	}
1787 
1788 	/* We have to allow at least one maximally-sized transaction to
1789 	 * be outstanding (which would use tlv_count TREs).  Given how
1790 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1791 	 * twice the TLV FIFO size to satisfy this requirement.
1792 	 */
1793 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1794 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1795 			channel_id, data->channel.tlv_count,
1796 			data->channel.tre_count);
1797 		return false;
1798 	}
1799 
1800 	if (!is_power_of_2(data->channel.tre_count)) {
1801 		dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n",
1802 			channel_id, data->channel.tre_count);
1803 		return false;
1804 	}
1805 
1806 	if (!is_power_of_2(data->channel.event_count)) {
1807 		dev_err(dev, "channel %u bad event_count %u (not power of 2)\n",
1808 			channel_id, data->channel.event_count);
1809 		return false;
1810 	}
1811 #endif /* IPA_VALIDATION */
1812 
1813 	return true;
1814 }
1815 
1816 /* Init function for a single channel */
1817 static int gsi_channel_init_one(struct gsi *gsi,
1818 				const struct ipa_gsi_endpoint_data *data,
1819 				bool command, bool prefetch)
1820 {
1821 	struct gsi_channel *channel;
1822 	u32 tre_count;
1823 	int ret;
1824 
1825 	if (!gsi_channel_data_valid(gsi, data))
1826 		return -EINVAL;
1827 
1828 	/* Worst case we need an event for every outstanding TRE */
1829 	if (data->channel.tre_count > data->channel.event_count) {
1830 		tre_count = data->channel.event_count;
1831 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1832 			 data->channel_id, tre_count);
1833 	} else {
1834 		tre_count = data->channel.tre_count;
1835 	}
1836 
1837 	channel = &gsi->channel[data->channel_id];
1838 	memset(channel, 0, sizeof(*channel));
1839 
1840 	channel->gsi = gsi;
1841 	channel->toward_ipa = data->toward_ipa;
1842 	channel->command = command;
1843 	channel->use_prefetch = command && prefetch;
1844 	channel->tlv_count = data->channel.tlv_count;
1845 	channel->tre_count = tre_count;
1846 	channel->event_count = data->channel.event_count;
1847 	init_completion(&channel->completion);
1848 
1849 	ret = gsi_channel_evt_ring_init(channel);
1850 	if (ret)
1851 		goto err_clear_gsi;
1852 
1853 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1854 	if (ret) {
1855 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1856 			ret, data->channel_id);
1857 		goto err_channel_evt_ring_exit;
1858 	}
1859 
1860 	ret = gsi_channel_trans_init(gsi, data->channel_id);
1861 	if (ret)
1862 		goto err_ring_free;
1863 
1864 	if (command) {
1865 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1866 
1867 		ret = ipa_cmd_pool_init(channel, tre_max);
1868 	}
1869 	if (!ret)
1870 		return 0;	/* Success! */
1871 
1872 	gsi_channel_trans_exit(channel);
1873 err_ring_free:
1874 	gsi_ring_free(gsi, &channel->tre_ring);
1875 err_channel_evt_ring_exit:
1876 	gsi_channel_evt_ring_exit(channel);
1877 err_clear_gsi:
1878 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
1879 
1880 	return ret;
1881 }
1882 
1883 /* Inverse of gsi_channel_init_one() */
1884 static void gsi_channel_exit_one(struct gsi_channel *channel)
1885 {
1886 	if (!channel->gsi)
1887 		return;		/* Ignore uninitialized channels */
1888 
1889 	if (channel->command)
1890 		ipa_cmd_pool_exit(channel);
1891 	gsi_channel_trans_exit(channel);
1892 	gsi_ring_free(channel->gsi, &channel->tre_ring);
1893 	gsi_channel_evt_ring_exit(channel);
1894 }
1895 
1896 /* Init function for channels */
1897 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1898 			    const struct ipa_gsi_endpoint_data *data,
1899 			    bool modem_alloc)
1900 {
1901 	int ret = 0;
1902 	u32 i;
1903 
1904 	gsi_evt_ring_init(gsi);
1905 
1906 	/* The endpoint data array is indexed by endpoint name */
1907 	for (i = 0; i < count; i++) {
1908 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1909 
1910 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1911 			continue;	/* Skip over empty slots */
1912 
1913 		/* Mark modem channels to be allocated (hardware workaround) */
1914 		if (data[i].ee_id == GSI_EE_MODEM) {
1915 			if (modem_alloc)
1916 				gsi->modem_channel_bitmap |=
1917 						BIT(data[i].channel_id);
1918 			continue;
1919 		}
1920 
1921 		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1922 		if (ret)
1923 			goto err_unwind;
1924 	}
1925 
1926 	return ret;
1927 
1928 err_unwind:
1929 	while (i--) {
1930 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1931 			continue;
1932 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1933 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1934 			continue;
1935 		}
1936 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1937 	}
1938 	gsi_evt_ring_exit(gsi);
1939 
1940 	return ret;
1941 }
1942 
1943 /* Inverse of gsi_channel_init() */
1944 static void gsi_channel_exit(struct gsi *gsi)
1945 {
1946 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1947 
1948 	do
1949 		gsi_channel_exit_one(&gsi->channel[channel_id]);
1950 	while (channel_id--);
1951 	gsi->modem_channel_bitmap = 0;
1952 
1953 	gsi_evt_ring_exit(gsi);
1954 }
1955 
1956 /* Init function for GSI.  GSI hardware does not need to be "ready" */
1957 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1958 	     u32 count, const struct ipa_gsi_endpoint_data *data,
1959 	     bool modem_alloc)
1960 {
1961 	struct resource *res;
1962 	resource_size_t size;
1963 	unsigned int irq;
1964 	int ret;
1965 
1966 	gsi_validate_build();
1967 
1968 	gsi->dev = &pdev->dev;
1969 
1970 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
1971 	 * network device structure, but the GSI layer does not have one,
1972 	 * so we must create a dummy network device for this purpose.
1973 	 */
1974 	init_dummy_netdev(&gsi->dummy_dev);
1975 
1976 	/* Get the GSI IRQ and request for it to wake the system */
1977 	ret = platform_get_irq_byname(pdev, "gsi");
1978 	if (ret <= 0) {
1979 		dev_err(gsi->dev,
1980 			"DT error %d getting \"gsi\" IRQ property\n", ret);
1981 		return ret ? : -EINVAL;
1982 	}
1983 	irq = ret;
1984 
1985 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1986 	if (ret) {
1987 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1988 		return ret;
1989 	}
1990 	gsi->irq = irq;
1991 
1992 	ret = enable_irq_wake(gsi->irq);
1993 	if (ret)
1994 		dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret);
1995 	gsi->irq_wake_enabled = !ret;
1996 
1997 	/* Get GSI memory range and map it */
1998 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1999 	if (!res) {
2000 		dev_err(gsi->dev,
2001 			"DT error getting \"gsi\" memory property\n");
2002 		ret = -ENODEV;
2003 		goto err_disable_irq_wake;
2004 	}
2005 
2006 	size = resource_size(res);
2007 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2008 		dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n");
2009 		ret = -EINVAL;
2010 		goto err_disable_irq_wake;
2011 	}
2012 
2013 	gsi->virt = ioremap(res->start, size);
2014 	if (!gsi->virt) {
2015 		dev_err(gsi->dev, "unable to remap \"gsi\" memory\n");
2016 		ret = -ENOMEM;
2017 		goto err_disable_irq_wake;
2018 	}
2019 
2020 	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
2021 	if (ret)
2022 		goto err_iounmap;
2023 
2024 	mutex_init(&gsi->mutex);
2025 	init_completion(&gsi->completion);
2026 
2027 	return 0;
2028 
2029 err_iounmap:
2030 	iounmap(gsi->virt);
2031 err_disable_irq_wake:
2032 	if (gsi->irq_wake_enabled)
2033 		(void)disable_irq_wake(gsi->irq);
2034 	free_irq(gsi->irq, gsi);
2035 
2036 	return ret;
2037 }
2038 
2039 /* Inverse of gsi_init() */
2040 void gsi_exit(struct gsi *gsi)
2041 {
2042 	mutex_destroy(&gsi->mutex);
2043 	gsi_channel_exit(gsi);
2044 	if (gsi->irq_wake_enabled)
2045 		(void)disable_irq_wake(gsi->irq);
2046 	free_irq(gsi->irq, gsi);
2047 	iounmap(gsi->virt);
2048 }
2049 
2050 /* The maximum number of outstanding TREs on a channel.  This limits
2051  * a channel's maximum number of transactions outstanding (worst case
2052  * is one TRE per transaction).
2053  *
2054  * The absolute limit is the number of TREs in the channel's TRE ring,
2055  * and in theory we should be able use all of them.  But in practice,
2056  * doing that led to the hardware reporting exhaustion of event ring
2057  * slots for writing completion information.  So the hardware limit
2058  * would be (tre_count - 1).
2059  *
2060  * We reduce it a bit further though.  Transaction resource pools are
2061  * sized to be a little larger than this maximum, to allow resource
2062  * allocations to always be contiguous.  The number of entries in a
2063  * TRE ring buffer is a power of 2, and the extra resources in a pool
2064  * tends to nearly double the memory allocated for it.  Reducing the
2065  * maximum number of outstanding TREs allows the number of entries in
2066  * a pool to avoid crossing that power-of-2 boundary, and this can
2067  * substantially reduce pool memory requirements.  The number we
2068  * reduce it by matches the number added in gsi_trans_pool_init().
2069  */
2070 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2071 {
2072 	struct gsi_channel *channel = &gsi->channel[channel_id];
2073 
2074 	/* Hardware limit is channel->tre_count - 1 */
2075 	return channel->tre_count - (channel->tlv_count - 1);
2076 }
2077 
2078 /* Returns the maximum number of TREs in a single transaction for a channel */
2079 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2080 {
2081 	struct gsi_channel *channel = &gsi->channel[channel_id];
2082 
2083 	return channel->tlv_count;
2084 }
2085