1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 #include "ipa_version.h" 25 26 /** 27 * DOC: The IPA Generic Software Interface 28 * 29 * The generic software interface (GSI) is an integral component of the IPA, 30 * providing a well-defined communication layer between the AP subsystem 31 * and the IPA core. The modem uses the GSI layer as well. 32 * 33 * -------- --------- 34 * | | | | 35 * | AP +<---. .----+ Modem | 36 * | +--. | | .->+ | 37 * | | | | | | | | 38 * -------- | | | | --------- 39 * v | v | 40 * --+-+---+-+-- 41 * | GSI | 42 * |-----------| 43 * | | 44 * | IPA | 45 * | | 46 * ------------- 47 * 48 * In the above diagram, the AP and Modem represent "execution environments" 49 * (EEs), which are independent operating environments that use the IPA for 50 * data transfer. 51 * 52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 53 * of data to or from the IPA. A channel is implemented as a ring buffer, 54 * with a DRAM-resident array of "transfer elements" (TREs) available to 55 * describe transfers to or from other EEs through the IPA. A transfer 56 * element can also contain an immediate command, requesting the IPA perform 57 * actions other than data transfer. 58 * 59 * Each TRE refers to a block of data--also located DRAM. After writing one 60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 61 * doorbell register to inform the receiving side how many elements have 62 * been written. 63 * 64 * Each channel has a GSI "event ring" associated with it. An event ring 65 * is implemented very much like a channel ring, but is always directed from 66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 67 * events by adding an entry to the event ring associated with the channel. 68 * The GSI then writes its doorbell for the event ring, causing the target 69 * EE to be interrupted. Each entry in an event ring contains a pointer 70 * to the channel TRE whose completion the event represents. 71 * 72 * Each TRE in a channel ring has a set of flags. One flag indicates whether 73 * the completion of the transfer operation generates an entry (and possibly 74 * an interrupt) in the channel's event ring. Other flags allow transfer 75 * elements to be chained together, forming a single logical transaction. 76 * TRE flags are used to control whether and when interrupts are generated 77 * to signal completion of channel transfers. 78 * 79 * Elements in channel and event rings are completed (or consumed) strictly 80 * in order. Completion of one entry implies the completion of all preceding 81 * entries. A single completion interrupt can therefore communicate the 82 * completion of many transfers. 83 * 84 * Note that all GSI registers are little-endian, which is the assumed 85 * endianness of I/O space accesses. The accessor functions perform byte 86 * swapping if needed (i.e., for a big endian CPU). 87 */ 88 89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 91 92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 93 94 #define GSI_CHANNEL_STOP_RETRIES 10 95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 96 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ 97 98 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 99 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 100 101 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 102 103 /* An entry in an event ring */ 104 struct gsi_event { 105 __le64 xfer_ptr; 106 __le16 len; 107 u8 reserved1; 108 u8 code; 109 __le16 reserved2; 110 u8 type; 111 u8 chid; 112 }; 113 114 /** gsi_channel_scratch_gpi - GPI protocol scratch register 115 * @max_outstanding_tre: 116 * Defines the maximum number of TREs allowed in a single transaction 117 * on a channel (in bytes). This determines the amount of prefetch 118 * performed by the hardware. We configure this to equal the size of 119 * the TLV FIFO for the channel. 120 * @outstanding_threshold: 121 * Defines the threshold (in bytes) determining when the sequencer 122 * should update the channel doorbell. We configure this to equal 123 * the size of two TREs. 124 */ 125 struct gsi_channel_scratch_gpi { 126 u64 reserved1; 127 u16 reserved2; 128 u16 max_outstanding_tre; 129 u16 reserved3; 130 u16 outstanding_threshold; 131 }; 132 133 /** gsi_channel_scratch - channel scratch configuration area 134 * 135 * The exact interpretation of this register is protocol-specific. 136 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 137 */ 138 union gsi_channel_scratch { 139 struct gsi_channel_scratch_gpi gpi; 140 struct { 141 u32 word1; 142 u32 word2; 143 u32 word3; 144 u32 word4; 145 } data; 146 }; 147 148 /* Check things that can be validated at build time. */ 149 static void gsi_validate_build(void) 150 { 151 /* This is used as a divisor */ 152 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 153 154 /* Code assumes the size of channel and event ring element are 155 * the same (and fixed). Make sure the size of an event ring 156 * element is what's expected. 157 */ 158 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 159 160 /* Hardware requires a 2^n ring size. We ensure the number of 161 * elements in an event ring is a power of 2 elsewhere; this 162 * ensure the elements themselves meet the requirement. 163 */ 164 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 165 166 /* The channel element size must fit in this field */ 167 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 168 169 /* The event ring element size must fit in this field */ 170 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 171 } 172 173 /* Return the channel id associated with a given channel */ 174 static u32 gsi_channel_id(struct gsi_channel *channel) 175 { 176 return channel - &channel->gsi->channel[0]; 177 } 178 179 /* An initialized channel has a non-null GSI pointer */ 180 static bool gsi_channel_initialized(struct gsi_channel *channel) 181 { 182 return !!channel->gsi; 183 } 184 185 /* Update the GSI IRQ type register with the cached value */ 186 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 187 { 188 gsi->type_enabled_bitmap = val; 189 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 190 } 191 192 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 193 { 194 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); 195 } 196 197 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 198 { 199 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); 200 } 201 202 /* Event ring commands are performed one at a time. Their completion 203 * is signaled by the event ring control GSI interrupt type, which is 204 * only enabled when we issue an event ring command. Only the event 205 * ring being operated on has this interrupt enabled. 206 */ 207 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 208 { 209 u32 val = BIT(evt_ring_id); 210 211 /* There's a small chance that a previous command completed 212 * after the interrupt was disabled, so make sure we have no 213 * pending interrupts before we enable them. 214 */ 215 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 216 217 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 218 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 219 } 220 221 /* Disable event ring control interrupts */ 222 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 223 { 224 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 225 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 226 } 227 228 /* Channel commands are performed one at a time. Their completion is 229 * signaled by the channel control GSI interrupt type, which is only 230 * enabled when we issue a channel command. Only the channel being 231 * operated on has this interrupt enabled. 232 */ 233 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 234 { 235 u32 val = BIT(channel_id); 236 237 /* There's a small chance that a previous command completed 238 * after the interrupt was disabled, so make sure we have no 239 * pending interrupts before we enable them. 240 */ 241 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 242 243 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 244 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 245 } 246 247 /* Disable channel control interrupts */ 248 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 249 { 250 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 251 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 252 } 253 254 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 255 { 256 bool enable_ieob = !gsi->ieob_enabled_bitmap; 257 u32 val; 258 259 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 260 val = gsi->ieob_enabled_bitmap; 261 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 262 263 /* Enable the interrupt type if this is the first channel enabled */ 264 if (enable_ieob) 265 gsi_irq_type_enable(gsi, GSI_IEOB); 266 } 267 268 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 269 { 270 u32 val; 271 272 gsi->ieob_enabled_bitmap &= ~event_mask; 273 274 /* Disable the interrupt type if this was the last enabled channel */ 275 if (!gsi->ieob_enabled_bitmap) 276 gsi_irq_type_disable(gsi, GSI_IEOB); 277 278 val = gsi->ieob_enabled_bitmap; 279 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 280 } 281 282 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 283 { 284 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 285 } 286 287 /* Enable all GSI_interrupt types */ 288 static void gsi_irq_enable(struct gsi *gsi) 289 { 290 u32 val; 291 292 /* Global interrupts include hardware error reports. Enable 293 * that so we can at least report the error should it occur. 294 */ 295 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 296 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); 297 298 /* General GSI interrupts are reported to all EEs; if they occur 299 * they are unrecoverable (without reset). A breakpoint interrupt 300 * also exists, but we don't support that. We want to be notified 301 * of errors so we can report them, even if they can't be handled. 302 */ 303 val = BIT(BUS_ERROR); 304 val |= BIT(CMD_FIFO_OVRFLOW); 305 val |= BIT(MCS_STACK_OVRFLOW); 306 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 307 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); 308 } 309 310 /* Disable all GSI interrupt types */ 311 static void gsi_irq_disable(struct gsi *gsi) 312 { 313 gsi_irq_type_update(gsi, 0); 314 315 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 316 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 317 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 318 } 319 320 /* Return the virtual address associated with a ring index */ 321 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 322 { 323 /* Note: index *must* be used modulo the ring count here */ 324 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 325 } 326 327 /* Return the 32-bit DMA address associated with a ring index */ 328 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 329 { 330 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 331 } 332 333 /* Return the ring index of a 32-bit ring offset */ 334 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 335 { 336 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 337 } 338 339 /* Issue a GSI command by writing a value to a register, then wait for 340 * completion to be signaled. Returns true if the command completes 341 * or false if it times out. 342 */ 343 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) 344 { 345 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 346 struct completion *completion = &gsi->completion; 347 348 reinit_completion(completion); 349 350 iowrite32(val, gsi->virt + reg); 351 352 return !!wait_for_completion_timeout(completion, timeout); 353 } 354 355 /* Return the hardware's notion of the current state of an event ring */ 356 static enum gsi_evt_ring_state 357 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 358 { 359 u32 val; 360 361 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 362 363 return u32_get_bits(val, EV_CHSTATE_FMASK); 364 } 365 366 /* Issue an event ring command and wait for it to complete */ 367 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 368 enum gsi_evt_cmd_opcode opcode) 369 { 370 struct device *dev = gsi->dev; 371 bool timeout; 372 u32 val; 373 374 /* Enable the completion interrupt for the command */ 375 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 376 377 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 378 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 379 380 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val); 381 382 gsi_irq_ev_ctrl_disable(gsi); 383 384 if (!timeout) 385 return; 386 387 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 388 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 389 } 390 391 /* Allocate an event ring in NOT_ALLOCATED state */ 392 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 393 { 394 enum gsi_evt_ring_state state; 395 396 /* Get initial event ring state */ 397 state = gsi_evt_ring_state(gsi, evt_ring_id); 398 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 399 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 400 evt_ring_id, state); 401 return -EINVAL; 402 } 403 404 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 405 406 /* If successful the event ring state will have changed */ 407 state = gsi_evt_ring_state(gsi, evt_ring_id); 408 if (state == GSI_EVT_RING_STATE_ALLOCATED) 409 return 0; 410 411 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 412 evt_ring_id, state); 413 414 return -EIO; 415 } 416 417 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 418 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 419 { 420 enum gsi_evt_ring_state state; 421 422 state = gsi_evt_ring_state(gsi, evt_ring_id); 423 if (state != GSI_EVT_RING_STATE_ALLOCATED && 424 state != GSI_EVT_RING_STATE_ERROR) { 425 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 426 evt_ring_id, state); 427 return; 428 } 429 430 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 431 432 /* If successful the event ring state will have changed */ 433 state = gsi_evt_ring_state(gsi, evt_ring_id); 434 if (state == GSI_EVT_RING_STATE_ALLOCATED) 435 return; 436 437 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 438 evt_ring_id, state); 439 } 440 441 /* Issue a hardware de-allocation request for an allocated event ring */ 442 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 443 { 444 enum gsi_evt_ring_state state; 445 446 state = gsi_evt_ring_state(gsi, evt_ring_id); 447 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 448 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 449 evt_ring_id, state); 450 return; 451 } 452 453 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 454 455 /* If successful the event ring state will have changed */ 456 state = gsi_evt_ring_state(gsi, evt_ring_id); 457 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 458 return; 459 460 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 461 evt_ring_id, state); 462 } 463 464 /* Fetch the current state of a channel from hardware */ 465 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 466 { 467 u32 channel_id = gsi_channel_id(channel); 468 void __iomem *virt = channel->gsi->virt; 469 u32 val; 470 471 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 472 473 return u32_get_bits(val, CHSTATE_FMASK); 474 } 475 476 /* Issue a channel command and wait for it to complete */ 477 static void 478 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 479 { 480 u32 channel_id = gsi_channel_id(channel); 481 struct gsi *gsi = channel->gsi; 482 struct device *dev = gsi->dev; 483 bool timeout; 484 u32 val; 485 486 /* Enable the completion interrupt for the command */ 487 gsi_irq_ch_ctrl_enable(gsi, channel_id); 488 489 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 490 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 491 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val); 492 493 gsi_irq_ch_ctrl_disable(gsi); 494 495 if (!timeout) 496 return; 497 498 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 499 opcode, channel_id, gsi_channel_state(channel)); 500 } 501 502 /* Allocate GSI channel in NOT_ALLOCATED state */ 503 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 504 { 505 struct gsi_channel *channel = &gsi->channel[channel_id]; 506 struct device *dev = gsi->dev; 507 enum gsi_channel_state state; 508 509 /* Get initial channel state */ 510 state = gsi_channel_state(channel); 511 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 512 dev_err(dev, "channel %u bad state %u before alloc\n", 513 channel_id, state); 514 return -EINVAL; 515 } 516 517 gsi_channel_command(channel, GSI_CH_ALLOCATE); 518 519 /* If successful the channel state will have changed */ 520 state = gsi_channel_state(channel); 521 if (state == GSI_CHANNEL_STATE_ALLOCATED) 522 return 0; 523 524 dev_err(dev, "channel %u bad state %u after alloc\n", 525 channel_id, state); 526 527 return -EIO; 528 } 529 530 /* Start an ALLOCATED channel */ 531 static int gsi_channel_start_command(struct gsi_channel *channel) 532 { 533 struct device *dev = channel->gsi->dev; 534 enum gsi_channel_state state; 535 536 state = gsi_channel_state(channel); 537 if (state != GSI_CHANNEL_STATE_ALLOCATED && 538 state != GSI_CHANNEL_STATE_STOPPED) { 539 dev_err(dev, "channel %u bad state %u before start\n", 540 gsi_channel_id(channel), state); 541 return -EINVAL; 542 } 543 544 gsi_channel_command(channel, GSI_CH_START); 545 546 /* If successful the channel state will have changed */ 547 state = gsi_channel_state(channel); 548 if (state == GSI_CHANNEL_STATE_STARTED) 549 return 0; 550 551 dev_err(dev, "channel %u bad state %u after start\n", 552 gsi_channel_id(channel), state); 553 554 return -EIO; 555 } 556 557 /* Stop a GSI channel in STARTED state */ 558 static int gsi_channel_stop_command(struct gsi_channel *channel) 559 { 560 struct device *dev = channel->gsi->dev; 561 enum gsi_channel_state state; 562 563 state = gsi_channel_state(channel); 564 565 /* Channel could have entered STOPPED state since last call 566 * if it timed out. If so, we're done. 567 */ 568 if (state == GSI_CHANNEL_STATE_STOPPED) 569 return 0; 570 571 if (state != GSI_CHANNEL_STATE_STARTED && 572 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 573 dev_err(dev, "channel %u bad state %u before stop\n", 574 gsi_channel_id(channel), state); 575 return -EINVAL; 576 } 577 578 gsi_channel_command(channel, GSI_CH_STOP); 579 580 /* If successful the channel state will have changed */ 581 state = gsi_channel_state(channel); 582 if (state == GSI_CHANNEL_STATE_STOPPED) 583 return 0; 584 585 /* We may have to try again if stop is in progress */ 586 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 587 return -EAGAIN; 588 589 dev_err(dev, "channel %u bad state %u after stop\n", 590 gsi_channel_id(channel), state); 591 592 return -EIO; 593 } 594 595 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 596 static void gsi_channel_reset_command(struct gsi_channel *channel) 597 { 598 struct device *dev = channel->gsi->dev; 599 enum gsi_channel_state state; 600 601 /* A short delay is required before a RESET command */ 602 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 603 604 state = gsi_channel_state(channel); 605 if (state != GSI_CHANNEL_STATE_STOPPED && 606 state != GSI_CHANNEL_STATE_ERROR) { 607 /* No need to reset a channel already in ALLOCATED state */ 608 if (state != GSI_CHANNEL_STATE_ALLOCATED) 609 dev_err(dev, "channel %u bad state %u before reset\n", 610 gsi_channel_id(channel), state); 611 return; 612 } 613 614 gsi_channel_command(channel, GSI_CH_RESET); 615 616 /* If successful the channel state will have changed */ 617 state = gsi_channel_state(channel); 618 if (state != GSI_CHANNEL_STATE_ALLOCATED) 619 dev_err(dev, "channel %u bad state %u after reset\n", 620 gsi_channel_id(channel), state); 621 } 622 623 /* Deallocate an ALLOCATED GSI channel */ 624 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 625 { 626 struct gsi_channel *channel = &gsi->channel[channel_id]; 627 struct device *dev = gsi->dev; 628 enum gsi_channel_state state; 629 630 state = gsi_channel_state(channel); 631 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 632 dev_err(dev, "channel %u bad state %u before dealloc\n", 633 channel_id, state); 634 return; 635 } 636 637 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 638 639 /* If successful the channel state will have changed */ 640 state = gsi_channel_state(channel); 641 642 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 643 dev_err(dev, "channel %u bad state %u after dealloc\n", 644 channel_id, state); 645 } 646 647 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 648 * The index argument (modulo the ring count) is the first unfilled entry, so 649 * we supply one less than that with the doorbell. Update the event ring 650 * index field with the value provided. 651 */ 652 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 653 { 654 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 655 u32 val; 656 657 ring->index = index; /* Next unused entry */ 658 659 /* Note: index *must* be used modulo the ring count here */ 660 val = gsi_ring_addr(ring, (index - 1) % ring->count); 661 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 662 } 663 664 /* Program an event ring for use */ 665 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 666 { 667 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 668 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 669 u32 val; 670 671 /* We program all event rings as GPI type/protocol */ 672 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); 673 val |= EV_INTYPE_FMASK; 674 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 675 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 676 677 val = ev_r_length_encoded(gsi->version, size); 678 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 679 680 /* The context 2 and 3 registers store the low-order and 681 * high-order 32 bits of the address of the event ring, 682 * respectively. 683 */ 684 val = lower_32_bits(evt_ring->ring.addr); 685 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 686 val = upper_32_bits(evt_ring->ring.addr); 687 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 688 689 /* Enable interrupt moderation by setting the moderation delay */ 690 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 691 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 692 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 693 694 /* No MSI write data, and MSI address high and low address is 0 */ 695 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 696 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 697 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 698 699 /* We don't need to get event read pointer updates */ 700 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 701 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 702 703 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 704 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 705 } 706 707 /* Find the transaction whose completion indicates a channel is quiesced */ 708 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 709 { 710 struct gsi_trans_info *trans_info = &channel->trans_info; 711 const struct list_head *list; 712 struct gsi_trans *trans; 713 714 spin_lock_bh(&trans_info->spinlock); 715 716 /* There is a small chance a TX transaction got allocated just 717 * before we disabled transmits, so check for that. 718 */ 719 if (channel->toward_ipa) { 720 list = &trans_info->alloc; 721 if (!list_empty(list)) 722 goto done; 723 list = &trans_info->pending; 724 if (!list_empty(list)) 725 goto done; 726 } 727 728 /* Otherwise (TX or RX) we want to wait for anything that 729 * has completed, or has been polled but not released yet. 730 */ 731 list = &trans_info->complete; 732 if (!list_empty(list)) 733 goto done; 734 list = &trans_info->polled; 735 if (list_empty(list)) 736 list = NULL; 737 done: 738 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL; 739 740 /* Caller will wait for this, so take a reference */ 741 if (trans) 742 refcount_inc(&trans->refcount); 743 744 spin_unlock_bh(&trans_info->spinlock); 745 746 return trans; 747 } 748 749 /* Wait for transaction activity on a channel to complete */ 750 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 751 { 752 struct gsi_trans *trans; 753 754 /* Get the last transaction, and wait for it to complete */ 755 trans = gsi_channel_trans_last(channel); 756 if (trans) { 757 wait_for_completion(&trans->completion); 758 gsi_trans_free(trans); 759 } 760 } 761 762 /* Program a channel for use; there is no gsi_channel_deprogram() */ 763 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 764 { 765 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 766 u32 channel_id = gsi_channel_id(channel); 767 union gsi_channel_scratch scr = { }; 768 struct gsi_channel_scratch_gpi *gpi; 769 struct gsi *gsi = channel->gsi; 770 u32 wrr_weight = 0; 771 u32 val; 772 773 /* Arbitrarily pick TRE 0 as the first channel element to use */ 774 channel->tre_ring.index = 0; 775 776 /* We program all channels as GPI type/protocol */ 777 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI); 778 if (channel->toward_ipa) 779 val |= CHTYPE_DIR_FMASK; 780 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 781 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 782 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 783 784 val = r_length_encoded(gsi->version, size); 785 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 786 787 /* The context 2 and 3 registers store the low-order and 788 * high-order 32 bits of the address of the channel ring, 789 * respectively. 790 */ 791 val = lower_32_bits(channel->tre_ring.addr); 792 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 793 val = upper_32_bits(channel->tre_ring.addr); 794 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 795 796 /* Command channel gets low weighted round-robin priority */ 797 if (channel->command) 798 wrr_weight = field_max(WRR_WEIGHT_FMASK); 799 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 800 801 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 802 803 /* No need to use the doorbell engine starting at IPA v4.0 */ 804 if (gsi->version < IPA_VERSION_4_0 && doorbell) 805 val |= USE_DB_ENG_FMASK; 806 807 /* v4.0 introduces an escape buffer for prefetch. We use it 808 * on all but the AP command channel. 809 */ 810 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { 811 /* If not otherwise set, prefetch buffers are used */ 812 if (gsi->version < IPA_VERSION_4_5) 813 val |= USE_ESCAPE_BUF_ONLY_FMASK; 814 else 815 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, 816 PREFETCH_MODE_FMASK); 817 } 818 /* All channels set DB_IN_BYTES */ 819 if (gsi->version >= IPA_VERSION_4_9) 820 val |= DB_IN_BYTES; 821 822 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 823 824 /* Now update the scratch registers for GPI protocol */ 825 gpi = &scr.gpi; 826 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 827 GSI_RING_ELEMENT_SIZE; 828 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 829 830 val = scr.data.word1; 831 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 832 833 val = scr.data.word2; 834 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 835 836 val = scr.data.word3; 837 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 838 839 /* We must preserve the upper 16 bits of the last scratch register. 840 * The next sequence assumes those bits remain unchanged between the 841 * read and the write. 842 */ 843 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 844 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 845 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 846 847 /* All done! */ 848 } 849 850 static int __gsi_channel_start(struct gsi_channel *channel, bool resume) 851 { 852 struct gsi *gsi = channel->gsi; 853 int ret; 854 855 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 856 if (resume && gsi->version < IPA_VERSION_4_0) 857 return 0; 858 859 mutex_lock(&gsi->mutex); 860 861 ret = gsi_channel_start_command(channel); 862 863 mutex_unlock(&gsi->mutex); 864 865 return ret; 866 } 867 868 /* Start an allocated GSI channel */ 869 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 870 { 871 struct gsi_channel *channel = &gsi->channel[channel_id]; 872 int ret; 873 874 /* Enable NAPI and the completion interrupt */ 875 napi_enable(&channel->napi); 876 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 877 878 ret = __gsi_channel_start(channel, false); 879 if (ret) { 880 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 881 napi_disable(&channel->napi); 882 } 883 884 return ret; 885 } 886 887 static int gsi_channel_stop_retry(struct gsi_channel *channel) 888 { 889 u32 retries = GSI_CHANNEL_STOP_RETRIES; 890 int ret; 891 892 do { 893 ret = gsi_channel_stop_command(channel); 894 if (ret != -EAGAIN) 895 break; 896 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 897 } while (retries--); 898 899 return ret; 900 } 901 902 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) 903 { 904 struct gsi *gsi = channel->gsi; 905 int ret; 906 907 /* Wait for any underway transactions to complete before stopping. */ 908 gsi_channel_trans_quiesce(channel); 909 910 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 911 if (suspend && gsi->version < IPA_VERSION_4_0) 912 return 0; 913 914 mutex_lock(&gsi->mutex); 915 916 ret = gsi_channel_stop_retry(channel); 917 918 mutex_unlock(&gsi->mutex); 919 920 return ret; 921 } 922 923 /* Stop a started channel */ 924 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 925 { 926 struct gsi_channel *channel = &gsi->channel[channel_id]; 927 int ret; 928 929 ret = __gsi_channel_stop(channel, false); 930 if (ret) 931 return ret; 932 933 /* Disable the completion interrupt and NAPI if successful */ 934 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 935 napi_disable(&channel->napi); 936 937 return 0; 938 } 939 940 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 941 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 942 { 943 struct gsi_channel *channel = &gsi->channel[channel_id]; 944 945 mutex_lock(&gsi->mutex); 946 947 gsi_channel_reset_command(channel); 948 /* Due to a hardware quirk we may need to reset RX channels twice. */ 949 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) 950 gsi_channel_reset_command(channel); 951 952 gsi_channel_program(channel, doorbell); 953 gsi_channel_trans_cancel_pending(channel); 954 955 mutex_unlock(&gsi->mutex); 956 } 957 958 /* Stop a started channel for suspend */ 959 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) 960 { 961 struct gsi_channel *channel = &gsi->channel[channel_id]; 962 int ret; 963 964 ret = __gsi_channel_stop(channel, true); 965 if (ret) 966 return ret; 967 968 /* Ensure NAPI polling has finished. */ 969 napi_synchronize(&channel->napi); 970 971 return 0; 972 } 973 974 /* Resume a suspended channel (starting if stopped) */ 975 int gsi_channel_resume(struct gsi *gsi, u32 channel_id) 976 { 977 struct gsi_channel *channel = &gsi->channel[channel_id]; 978 979 return __gsi_channel_start(channel, true); 980 } 981 982 /* Prevent all GSI interrupts while suspended */ 983 void gsi_suspend(struct gsi *gsi) 984 { 985 disable_irq(gsi->irq); 986 } 987 988 /* Allow all GSI interrupts again when resuming */ 989 void gsi_resume(struct gsi *gsi) 990 { 991 enable_irq(gsi->irq); 992 } 993 994 /** 995 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 996 * @channel: Channel for which to report 997 * 998 * Report to the network stack the number of bytes and transactions that 999 * have been queued to hardware since last call. This and the next function 1000 * supply information used by the network stack for throttling. 1001 * 1002 * For each channel we track the number of transactions used and bytes of 1003 * data those transactions represent. We also track what those values are 1004 * each time this function is called. Subtracting the two tells us 1005 * the number of bytes and transactions that have been added between 1006 * successive calls. 1007 * 1008 * Calling this each time we ring the channel doorbell allows us to 1009 * provide accurate information to the network stack about how much 1010 * work we've given the hardware at any point in time. 1011 */ 1012 void gsi_channel_tx_queued(struct gsi_channel *channel) 1013 { 1014 u32 trans_count; 1015 u32 byte_count; 1016 1017 byte_count = channel->byte_count - channel->queued_byte_count; 1018 trans_count = channel->trans_count - channel->queued_trans_count; 1019 channel->queued_byte_count = channel->byte_count; 1020 channel->queued_trans_count = channel->trans_count; 1021 1022 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 1023 trans_count, byte_count); 1024 } 1025 1026 /** 1027 * gsi_channel_tx_update() - Report completed TX transfers 1028 * @channel: Channel that has completed transmitting packets 1029 * @trans: Last transation known to be complete 1030 * 1031 * Compute the number of transactions and bytes that have been transferred 1032 * over a TX channel since the given transaction was committed. Report this 1033 * information to the network stack. 1034 * 1035 * At the time a transaction is committed, we record its channel's 1036 * committed transaction and byte counts *in the transaction*. 1037 * Completions are signaled by the hardware with an interrupt, and 1038 * we can determine the latest completed transaction at that time. 1039 * 1040 * The difference between the byte/transaction count recorded in 1041 * the transaction and the count last time we recorded a completion 1042 * tells us exactly how much data has been transferred between 1043 * completions. 1044 * 1045 * Calling this each time we learn of a newly-completed transaction 1046 * allows us to provide accurate information to the network stack 1047 * about how much work has been completed by the hardware at a given 1048 * point in time. 1049 */ 1050 static void 1051 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 1052 { 1053 u64 byte_count = trans->byte_count + trans->len; 1054 u64 trans_count = trans->trans_count + 1; 1055 1056 byte_count -= channel->compl_byte_count; 1057 channel->compl_byte_count += byte_count; 1058 trans_count -= channel->compl_trans_count; 1059 channel->compl_trans_count += trans_count; 1060 1061 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 1062 trans_count, byte_count); 1063 } 1064 1065 /* Channel control interrupt handler */ 1066 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1067 { 1068 u32 channel_mask; 1069 1070 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 1071 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 1072 1073 while (channel_mask) { 1074 u32 channel_id = __ffs(channel_mask); 1075 1076 channel_mask ^= BIT(channel_id); 1077 1078 complete(&gsi->completion); 1079 } 1080 } 1081 1082 /* Event ring control interrupt handler */ 1083 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1084 { 1085 u32 event_mask; 1086 1087 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 1088 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 1089 1090 while (event_mask) { 1091 u32 evt_ring_id = __ffs(event_mask); 1092 1093 event_mask ^= BIT(evt_ring_id); 1094 1095 complete(&gsi->completion); 1096 } 1097 } 1098 1099 /* Global channel error interrupt handler */ 1100 static void 1101 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1102 { 1103 if (code == GSI_OUT_OF_RESOURCES) { 1104 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1105 complete(&gsi->completion); 1106 return; 1107 } 1108 1109 /* Report, but otherwise ignore all other error codes */ 1110 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1111 channel_id, err_ee, code); 1112 } 1113 1114 /* Global event error interrupt handler */ 1115 static void 1116 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1117 { 1118 if (code == GSI_OUT_OF_RESOURCES) { 1119 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1120 u32 channel_id = gsi_channel_id(evt_ring->channel); 1121 1122 complete(&gsi->completion); 1123 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1124 channel_id); 1125 return; 1126 } 1127 1128 /* Report, but otherwise ignore all other error codes */ 1129 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1130 evt_ring_id, err_ee, code); 1131 } 1132 1133 /* Global error interrupt handler */ 1134 static void gsi_isr_glob_err(struct gsi *gsi) 1135 { 1136 enum gsi_err_type type; 1137 enum gsi_err_code code; 1138 u32 which; 1139 u32 val; 1140 u32 ee; 1141 1142 /* Get the logged error, then reinitialize the log */ 1143 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1144 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1145 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1146 1147 ee = u32_get_bits(val, ERR_EE_FMASK); 1148 type = u32_get_bits(val, ERR_TYPE_FMASK); 1149 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1150 code = u32_get_bits(val, ERR_CODE_FMASK); 1151 1152 if (type == GSI_ERR_TYPE_CHAN) 1153 gsi_isr_glob_chan_err(gsi, ee, which, code); 1154 else if (type == GSI_ERR_TYPE_EVT) 1155 gsi_isr_glob_evt_err(gsi, ee, which, code); 1156 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1157 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1158 } 1159 1160 /* Generic EE interrupt handler */ 1161 static void gsi_isr_gp_int1(struct gsi *gsi) 1162 { 1163 u32 result; 1164 u32 val; 1165 1166 /* This interrupt is used to handle completions of GENERIC GSI 1167 * commands. We use these to allocate and halt channels on the 1168 * modem's behalf due to a hardware quirk on IPA v4.2. The modem 1169 * "owns" channels even when the AP allocates them, and have no 1170 * way of knowing whether a modem channel's state has been changed. 1171 * 1172 * We also use GENERIC commands to enable/disable channel flow 1173 * control for IPA v4.2+. 1174 * 1175 * It is recommended that we halt the modem channels we allocated 1176 * when shutting down, but it's possible the channel isn't running 1177 * at the time we issue the HALT command. We'll get an error in 1178 * that case, but it's harmless (the channel is already halted). 1179 * Similarly, we could get an error back when updating flow control 1180 * on a channel because it's not in the proper state. 1181 * 1182 * In either case, we silently ignore a CHANNEL_NOT_RUNNING error 1183 * if we receive it. 1184 */ 1185 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1186 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1187 1188 switch (result) { 1189 case GENERIC_EE_SUCCESS: 1190 case GENERIC_EE_CHANNEL_NOT_RUNNING: 1191 gsi->result = 0; 1192 break; 1193 1194 case GENERIC_EE_RETRY: 1195 gsi->result = -EAGAIN; 1196 break; 1197 1198 default: 1199 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1200 gsi->result = -EIO; 1201 break; 1202 } 1203 1204 complete(&gsi->completion); 1205 } 1206 1207 /* Inter-EE interrupt handler */ 1208 static void gsi_isr_glob_ee(struct gsi *gsi) 1209 { 1210 u32 val; 1211 1212 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1213 1214 if (val & BIT(ERROR_INT)) 1215 gsi_isr_glob_err(gsi); 1216 1217 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1218 1219 val &= ~BIT(ERROR_INT); 1220 1221 if (val & BIT(GP_INT1)) { 1222 val ^= BIT(GP_INT1); 1223 gsi_isr_gp_int1(gsi); 1224 } 1225 1226 if (val) 1227 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1228 } 1229 1230 /* I/O completion interrupt event */ 1231 static void gsi_isr_ieob(struct gsi *gsi) 1232 { 1233 u32 event_mask; 1234 1235 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1236 gsi_irq_ieob_disable(gsi, event_mask); 1237 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1238 1239 while (event_mask) { 1240 u32 evt_ring_id = __ffs(event_mask); 1241 1242 event_mask ^= BIT(evt_ring_id); 1243 1244 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1245 } 1246 } 1247 1248 /* General event interrupts represent serious problems, so report them */ 1249 static void gsi_isr_general(struct gsi *gsi) 1250 { 1251 struct device *dev = gsi->dev; 1252 u32 val; 1253 1254 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1255 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1256 1257 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1258 } 1259 1260 /** 1261 * gsi_isr() - Top level GSI interrupt service routine 1262 * @irq: Interrupt number (ignored) 1263 * @dev_id: GSI pointer supplied to request_irq() 1264 * 1265 * This is the main handler function registered for the GSI IRQ. Each type 1266 * of interrupt has a separate handler function that is called from here. 1267 */ 1268 static irqreturn_t gsi_isr(int irq, void *dev_id) 1269 { 1270 struct gsi *gsi = dev_id; 1271 u32 intr_mask; 1272 u32 cnt = 0; 1273 1274 /* enum gsi_irq_type_id defines GSI interrupt types */ 1275 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1276 /* intr_mask contains bitmask of pending GSI interrupts */ 1277 do { 1278 u32 gsi_intr = BIT(__ffs(intr_mask)); 1279 1280 intr_mask ^= gsi_intr; 1281 1282 switch (gsi_intr) { 1283 case BIT(GSI_CH_CTRL): 1284 gsi_isr_chan_ctrl(gsi); 1285 break; 1286 case BIT(GSI_EV_CTRL): 1287 gsi_isr_evt_ctrl(gsi); 1288 break; 1289 case BIT(GSI_GLOB_EE): 1290 gsi_isr_glob_ee(gsi); 1291 break; 1292 case BIT(GSI_IEOB): 1293 gsi_isr_ieob(gsi); 1294 break; 1295 case BIT(GSI_GENERAL): 1296 gsi_isr_general(gsi); 1297 break; 1298 default: 1299 dev_err(gsi->dev, 1300 "unrecognized interrupt type 0x%08x\n", 1301 gsi_intr); 1302 break; 1303 } 1304 } while (intr_mask); 1305 1306 if (++cnt > GSI_ISR_MAX_ITER) { 1307 dev_err(gsi->dev, "interrupt flood\n"); 1308 break; 1309 } 1310 } 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ 1316 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1317 { 1318 int ret; 1319 1320 ret = platform_get_irq_byname(pdev, "gsi"); 1321 if (ret <= 0) 1322 return ret ? : -EINVAL; 1323 1324 gsi->irq = ret; 1325 1326 return 0; 1327 } 1328 1329 /* Return the transaction associated with a transfer completion event */ 1330 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1331 struct gsi_event *event) 1332 { 1333 u32 tre_offset; 1334 u32 tre_index; 1335 1336 /* Event xfer_ptr records the TRE it's associated with */ 1337 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1338 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1339 1340 return gsi_channel_trans_mapped(channel, tre_index); 1341 } 1342 1343 /** 1344 * gsi_evt_ring_rx_update() - Record lengths of received data 1345 * @evt_ring: Event ring associated with channel that received packets 1346 * @index: Event index in ring reported by hardware 1347 * 1348 * Events for RX channels contain the actual number of bytes received into 1349 * the buffer. Every event has a transaction associated with it, and here 1350 * we update transactions to record their actual received lengths. 1351 * 1352 * This function is called whenever we learn that the GSI hardware has filled 1353 * new events since the last time we checked. The ring's index field tells 1354 * the first entry in need of processing. The index provided is the 1355 * first *unfilled* event in the ring (following the last filled one). 1356 * 1357 * Events are sequential within the event ring, and transactions are 1358 * sequential within the transaction pool. 1359 * 1360 * Note that @index always refers to an element *within* the event ring. 1361 */ 1362 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1363 { 1364 struct gsi_channel *channel = evt_ring->channel; 1365 struct gsi_ring *ring = &evt_ring->ring; 1366 struct gsi_trans_info *trans_info; 1367 struct gsi_event *event_done; 1368 struct gsi_event *event; 1369 struct gsi_trans *trans; 1370 u32 trans_count = 0; 1371 u32 byte_count = 0; 1372 u32 event_avail; 1373 u32 old_index; 1374 1375 trans_info = &channel->trans_info; 1376 1377 /* We'll start with the oldest un-processed event. RX channels 1378 * replenish receive buffers in single-TRE transactions, so we 1379 * can just map that event to its transaction. Transactions 1380 * associated with completion events are consecutive. 1381 */ 1382 old_index = ring->index; 1383 event = gsi_ring_virt(ring, old_index); 1384 trans = gsi_event_trans(channel, event); 1385 1386 /* Compute the number of events to process before we wrap, 1387 * and determine when we'll be done processing events. 1388 */ 1389 event_avail = ring->count - old_index % ring->count; 1390 event_done = gsi_ring_virt(ring, index); 1391 do { 1392 trans->len = __le16_to_cpu(event->len); 1393 byte_count += trans->len; 1394 trans_count++; 1395 1396 /* Move on to the next event and transaction */ 1397 if (--event_avail) 1398 event++; 1399 else 1400 event = gsi_ring_virt(ring, 0); 1401 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1402 } while (event != event_done); 1403 1404 /* We record RX bytes when they are received */ 1405 channel->byte_count += byte_count; 1406 channel->trans_count += trans_count; 1407 } 1408 1409 /* Initialize a ring, including allocating DMA memory for its entries */ 1410 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1411 { 1412 u32 size = count * GSI_RING_ELEMENT_SIZE; 1413 struct device *dev = gsi->dev; 1414 dma_addr_t addr; 1415 1416 /* Hardware requires a 2^n ring size, with alignment equal to size. 1417 * The DMA address returned by dma_alloc_coherent() is guaranteed to 1418 * be a power-of-2 number of pages, which satisfies the requirement. 1419 */ 1420 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1421 if (!ring->virt) 1422 return -ENOMEM; 1423 1424 ring->addr = addr; 1425 ring->count = count; 1426 1427 return 0; 1428 } 1429 1430 /* Free a previously-allocated ring */ 1431 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1432 { 1433 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1434 1435 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1436 } 1437 1438 /* Allocate an available event ring id */ 1439 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1440 { 1441 u32 evt_ring_id; 1442 1443 if (gsi->event_bitmap == ~0U) { 1444 dev_err(gsi->dev, "event rings exhausted\n"); 1445 return -ENOSPC; 1446 } 1447 1448 evt_ring_id = ffz(gsi->event_bitmap); 1449 gsi->event_bitmap |= BIT(evt_ring_id); 1450 1451 return (int)evt_ring_id; 1452 } 1453 1454 /* Free a previously-allocated event ring id */ 1455 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1456 { 1457 gsi->event_bitmap &= ~BIT(evt_ring_id); 1458 } 1459 1460 /* Ring a channel doorbell, reporting the first un-filled entry */ 1461 void gsi_channel_doorbell(struct gsi_channel *channel) 1462 { 1463 struct gsi_ring *tre_ring = &channel->tre_ring; 1464 u32 channel_id = gsi_channel_id(channel); 1465 struct gsi *gsi = channel->gsi; 1466 u32 val; 1467 1468 /* Note: index *must* be used modulo the ring count here */ 1469 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1470 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1471 } 1472 1473 /* Consult hardware, move any newly completed transactions to completed list */ 1474 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) 1475 { 1476 u32 evt_ring_id = channel->evt_ring_id; 1477 struct gsi *gsi = channel->gsi; 1478 struct gsi_evt_ring *evt_ring; 1479 struct gsi_trans *trans; 1480 struct gsi_ring *ring; 1481 u32 offset; 1482 u32 index; 1483 1484 evt_ring = &gsi->evt_ring[evt_ring_id]; 1485 ring = &evt_ring->ring; 1486 1487 /* See if there's anything new to process; if not, we're done. Note 1488 * that index always refers to an entry *within* the event ring. 1489 */ 1490 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1491 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1492 if (index == ring->index % ring->count) 1493 return NULL; 1494 1495 /* Get the transaction for the latest completed event. Take a 1496 * reference to keep it from completing before we give the events 1497 * for this and previous transactions back to the hardware. 1498 */ 1499 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1500 refcount_inc(&trans->refcount); 1501 1502 /* For RX channels, update each completed transaction with the number 1503 * of bytes that were actually received. For TX channels, report 1504 * the number of transactions and bytes this completion represents 1505 * up the network stack. 1506 */ 1507 if (channel->toward_ipa) 1508 gsi_channel_tx_update(channel, trans); 1509 else 1510 gsi_evt_ring_rx_update(evt_ring, index); 1511 1512 gsi_trans_move_complete(trans); 1513 1514 /* Tell the hardware we've handled these events */ 1515 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1516 1517 gsi_trans_free(trans); 1518 1519 return gsi_channel_trans_complete(channel); 1520 } 1521 1522 /** 1523 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1524 * @channel: Channel to be polled 1525 * 1526 * Return: Transaction pointer, or null if none are available 1527 * 1528 * This function returns the first entry on a channel's completed transaction 1529 * list. If that list is empty, the hardware is consulted to determine 1530 * whether any new transactions have completed. If so, they're moved to the 1531 * completed list and the new first entry is returned. If there are no more 1532 * completed transactions, a null pointer is returned. 1533 */ 1534 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1535 { 1536 struct gsi_trans *trans; 1537 1538 /* Get the first transaction from the completed list */ 1539 trans = gsi_channel_trans_complete(channel); 1540 if (!trans) /* List is empty; see if there's more to do */ 1541 trans = gsi_channel_update(channel); 1542 1543 if (trans) 1544 gsi_trans_move_polled(trans); 1545 1546 return trans; 1547 } 1548 1549 /** 1550 * gsi_channel_poll() - NAPI poll function for a channel 1551 * @napi: NAPI structure for the channel 1552 * @budget: Budget supplied by NAPI core 1553 * 1554 * Return: Number of items polled (<= budget) 1555 * 1556 * Single transactions completed by hardware are polled until either 1557 * the budget is exhausted, or there are no more. Each transaction 1558 * polled is passed to gsi_trans_complete(), to perform remaining 1559 * completion processing and retire/free the transaction. 1560 */ 1561 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1562 { 1563 struct gsi_channel *channel; 1564 int count; 1565 1566 channel = container_of(napi, struct gsi_channel, napi); 1567 for (count = 0; count < budget; count++) { 1568 struct gsi_trans *trans; 1569 1570 trans = gsi_channel_poll_one(channel); 1571 if (!trans) 1572 break; 1573 gsi_trans_complete(trans); 1574 } 1575 1576 if (count < budget && napi_complete(napi)) 1577 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1578 1579 return count; 1580 } 1581 1582 /* The event bitmap represents which event ids are available for allocation. 1583 * Set bits are not available, clear bits can be used. This function 1584 * initializes the map so all events supported by the hardware are available, 1585 * then precludes any reserved events from being allocated. 1586 */ 1587 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1588 { 1589 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1590 1591 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1592 1593 return event_bitmap; 1594 } 1595 1596 /* Setup function for a single channel */ 1597 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1598 { 1599 struct gsi_channel *channel = &gsi->channel[channel_id]; 1600 u32 evt_ring_id = channel->evt_ring_id; 1601 int ret; 1602 1603 if (!gsi_channel_initialized(channel)) 1604 return 0; 1605 1606 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1607 if (ret) 1608 return ret; 1609 1610 gsi_evt_ring_program(gsi, evt_ring_id); 1611 1612 ret = gsi_channel_alloc_command(gsi, channel_id); 1613 if (ret) 1614 goto err_evt_ring_de_alloc; 1615 1616 gsi_channel_program(channel, true); 1617 1618 if (channel->toward_ipa) 1619 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, 1620 gsi_channel_poll); 1621 else 1622 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1623 gsi_channel_poll, NAPI_POLL_WEIGHT); 1624 1625 return 0; 1626 1627 err_evt_ring_de_alloc: 1628 /* We've done nothing with the event ring yet so don't reset */ 1629 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1630 1631 return ret; 1632 } 1633 1634 /* Inverse of gsi_channel_setup_one() */ 1635 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1636 { 1637 struct gsi_channel *channel = &gsi->channel[channel_id]; 1638 u32 evt_ring_id = channel->evt_ring_id; 1639 1640 if (!gsi_channel_initialized(channel)) 1641 return; 1642 1643 netif_napi_del(&channel->napi); 1644 1645 gsi_channel_de_alloc_command(gsi, channel_id); 1646 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1647 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1648 } 1649 1650 /* We use generic commands only to operate on modem channels. We don't have 1651 * the ability to determine channel state for a modem channel, so we simply 1652 * issue the command and wait for it to complete. 1653 */ 1654 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1655 enum gsi_generic_cmd_opcode opcode, 1656 u8 params) 1657 { 1658 bool timeout; 1659 u32 val; 1660 1661 /* The error global interrupt type is always enabled (until we tear 1662 * down), so we will keep it enabled. 1663 * 1664 * A generic EE command completes with a GSI global interrupt of 1665 * type GP_INT1. We only perform one generic command at a time 1666 * (to allocate, halt, or enable/disable flow control on a modem 1667 * channel), and only from this function. So we enable the GP_INT1 1668 * IRQ type here, and disable it again after the command completes. 1669 */ 1670 val = BIT(ERROR_INT) | BIT(GP_INT1); 1671 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1672 1673 /* First zero the result code field */ 1674 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1675 val &= ~GENERIC_EE_RESULT_FMASK; 1676 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1677 1678 /* Now issue the command */ 1679 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1680 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1681 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1682 val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK); 1683 1684 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val); 1685 1686 /* Disable the GP_INT1 IRQ type again */ 1687 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1688 1689 if (!timeout) 1690 return gsi->result; 1691 1692 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1693 opcode, channel_id); 1694 1695 return -ETIMEDOUT; 1696 } 1697 1698 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1699 { 1700 return gsi_generic_command(gsi, channel_id, 1701 GSI_GENERIC_ALLOCATE_CHANNEL, 0); 1702 } 1703 1704 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1705 { 1706 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1707 int ret; 1708 1709 do 1710 ret = gsi_generic_command(gsi, channel_id, 1711 GSI_GENERIC_HALT_CHANNEL, 0); 1712 while (ret == -EAGAIN && retries--); 1713 1714 if (ret) 1715 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1716 ret, channel_id); 1717 } 1718 1719 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ 1720 void 1721 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) 1722 { 1723 u32 retries = 0; 1724 u32 command; 1725 int ret; 1726 1727 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL 1728 : GSI_GENERIC_DISABLE_FLOW_CONTROL; 1729 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable 1730 * is underway. In this case we need to retry the command. 1731 */ 1732 if (!enable && gsi->version >= IPA_VERSION_4_11) 1733 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; 1734 1735 do 1736 ret = gsi_generic_command(gsi, channel_id, command, 0); 1737 while (ret == -EAGAIN && retries--); 1738 1739 if (ret) 1740 dev_err(gsi->dev, 1741 "error %d %sabling mode channel %u flow control\n", 1742 ret, enable ? "en" : "dis", channel_id); 1743 } 1744 1745 /* Setup function for channels */ 1746 static int gsi_channel_setup(struct gsi *gsi) 1747 { 1748 u32 channel_id = 0; 1749 u32 mask; 1750 int ret; 1751 1752 gsi_irq_enable(gsi); 1753 1754 mutex_lock(&gsi->mutex); 1755 1756 do { 1757 ret = gsi_channel_setup_one(gsi, channel_id); 1758 if (ret) 1759 goto err_unwind; 1760 } while (++channel_id < gsi->channel_count); 1761 1762 /* Make sure no channels were defined that hardware does not support */ 1763 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1764 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1765 1766 if (!gsi_channel_initialized(channel)) 1767 continue; 1768 1769 ret = -EINVAL; 1770 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1771 channel_id - 1); 1772 channel_id = gsi->channel_count; 1773 goto err_unwind; 1774 } 1775 1776 /* Allocate modem channels if necessary */ 1777 mask = gsi->modem_channel_bitmap; 1778 while (mask) { 1779 u32 modem_channel_id = __ffs(mask); 1780 1781 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1782 if (ret) 1783 goto err_unwind_modem; 1784 1785 /* Clear bit from mask only after success (for unwind) */ 1786 mask ^= BIT(modem_channel_id); 1787 } 1788 1789 mutex_unlock(&gsi->mutex); 1790 1791 return 0; 1792 1793 err_unwind_modem: 1794 /* Compute which modem channels need to be deallocated */ 1795 mask ^= gsi->modem_channel_bitmap; 1796 while (mask) { 1797 channel_id = __fls(mask); 1798 1799 mask ^= BIT(channel_id); 1800 1801 gsi_modem_channel_halt(gsi, channel_id); 1802 } 1803 1804 err_unwind: 1805 while (channel_id--) 1806 gsi_channel_teardown_one(gsi, channel_id); 1807 1808 mutex_unlock(&gsi->mutex); 1809 1810 gsi_irq_disable(gsi); 1811 1812 return ret; 1813 } 1814 1815 /* Inverse of gsi_channel_setup() */ 1816 static void gsi_channel_teardown(struct gsi *gsi) 1817 { 1818 u32 mask = gsi->modem_channel_bitmap; 1819 u32 channel_id; 1820 1821 mutex_lock(&gsi->mutex); 1822 1823 while (mask) { 1824 channel_id = __fls(mask); 1825 1826 mask ^= BIT(channel_id); 1827 1828 gsi_modem_channel_halt(gsi, channel_id); 1829 } 1830 1831 channel_id = gsi->channel_count - 1; 1832 do 1833 gsi_channel_teardown_one(gsi, channel_id); 1834 while (channel_id--); 1835 1836 mutex_unlock(&gsi->mutex); 1837 1838 gsi_irq_disable(gsi); 1839 } 1840 1841 /* Turn off all GSI interrupts initially */ 1842 static int gsi_irq_setup(struct gsi *gsi) 1843 { 1844 int ret; 1845 1846 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1847 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1848 1849 /* Disable all interrupt types */ 1850 gsi_irq_type_update(gsi, 0); 1851 1852 /* Clear all type-specific interrupt masks */ 1853 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 1854 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 1855 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1856 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 1857 1858 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ 1859 if (gsi->version > IPA_VERSION_3_1) { 1860 u32 offset; 1861 1862 /* These registers are in the non-adjusted address range */ 1863 offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET; 1864 iowrite32(0, gsi->virt_raw + offset); 1865 offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET; 1866 iowrite32(0, gsi->virt_raw + offset); 1867 } 1868 1869 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 1870 1871 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); 1872 if (ret) 1873 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 1874 1875 return ret; 1876 } 1877 1878 static void gsi_irq_teardown(struct gsi *gsi) 1879 { 1880 free_irq(gsi->irq, gsi); 1881 } 1882 1883 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ 1884 static int gsi_ring_setup(struct gsi *gsi) 1885 { 1886 struct device *dev = gsi->dev; 1887 u32 count; 1888 u32 val; 1889 1890 if (gsi->version < IPA_VERSION_3_5_1) { 1891 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ 1892 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1893 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1894 1895 return 0; 1896 } 1897 1898 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1899 1900 count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1901 if (!count) { 1902 dev_err(dev, "GSI reports zero channels supported\n"); 1903 return -EINVAL; 1904 } 1905 if (count > GSI_CHANNEL_COUNT_MAX) { 1906 dev_warn(dev, "limiting to %u channels; hardware supports %u\n", 1907 GSI_CHANNEL_COUNT_MAX, count); 1908 count = GSI_CHANNEL_COUNT_MAX; 1909 } 1910 gsi->channel_count = count; 1911 1912 count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1913 if (!count) { 1914 dev_err(dev, "GSI reports zero event rings supported\n"); 1915 return -EINVAL; 1916 } 1917 if (count > GSI_EVT_RING_COUNT_MAX) { 1918 dev_warn(dev, 1919 "limiting to %u event rings; hardware supports %u\n", 1920 GSI_EVT_RING_COUNT_MAX, count); 1921 count = GSI_EVT_RING_COUNT_MAX; 1922 } 1923 gsi->evt_ring_count = count; 1924 1925 return 0; 1926 } 1927 1928 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1929 int gsi_setup(struct gsi *gsi) 1930 { 1931 u32 val; 1932 int ret; 1933 1934 /* Here is where we first touch the GSI hardware */ 1935 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1936 if (!(val & ENABLED_FMASK)) { 1937 dev_err(gsi->dev, "GSI has not been enabled\n"); 1938 return -EIO; 1939 } 1940 1941 ret = gsi_irq_setup(gsi); 1942 if (ret) 1943 return ret; 1944 1945 ret = gsi_ring_setup(gsi); /* No matching teardown required */ 1946 if (ret) 1947 goto err_irq_teardown; 1948 1949 /* Initialize the error log */ 1950 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1951 1952 ret = gsi_channel_setup(gsi); 1953 if (ret) 1954 goto err_irq_teardown; 1955 1956 return 0; 1957 1958 err_irq_teardown: 1959 gsi_irq_teardown(gsi); 1960 1961 return ret; 1962 } 1963 1964 /* Inverse of gsi_setup() */ 1965 void gsi_teardown(struct gsi *gsi) 1966 { 1967 gsi_channel_teardown(gsi); 1968 gsi_irq_teardown(gsi); 1969 } 1970 1971 /* Initialize a channel's event ring */ 1972 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1973 { 1974 struct gsi *gsi = channel->gsi; 1975 struct gsi_evt_ring *evt_ring; 1976 int ret; 1977 1978 ret = gsi_evt_ring_id_alloc(gsi); 1979 if (ret < 0) 1980 return ret; 1981 channel->evt_ring_id = ret; 1982 1983 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1984 evt_ring->channel = channel; 1985 1986 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1987 if (!ret) 1988 return 0; /* Success! */ 1989 1990 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1991 ret, gsi_channel_id(channel)); 1992 1993 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1994 1995 return ret; 1996 } 1997 1998 /* Inverse of gsi_channel_evt_ring_init() */ 1999 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 2000 { 2001 u32 evt_ring_id = channel->evt_ring_id; 2002 struct gsi *gsi = channel->gsi; 2003 struct gsi_evt_ring *evt_ring; 2004 2005 evt_ring = &gsi->evt_ring[evt_ring_id]; 2006 gsi_ring_free(gsi, &evt_ring->ring); 2007 gsi_evt_ring_id_free(gsi, evt_ring_id); 2008 } 2009 2010 static bool gsi_channel_data_valid(struct gsi *gsi, 2011 const struct ipa_gsi_endpoint_data *data) 2012 { 2013 u32 channel_id = data->channel_id; 2014 struct device *dev = gsi->dev; 2015 2016 /* Make sure channel ids are in the range driver supports */ 2017 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 2018 dev_err(dev, "bad channel id %u; must be less than %u\n", 2019 channel_id, GSI_CHANNEL_COUNT_MAX); 2020 return false; 2021 } 2022 2023 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 2024 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 2025 return false; 2026 } 2027 2028 if (!data->channel.tlv_count || 2029 data->channel.tlv_count > GSI_TLV_MAX) { 2030 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 2031 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 2032 return false; 2033 } 2034 2035 /* We have to allow at least one maximally-sized transaction to 2036 * be outstanding (which would use tlv_count TREs). Given how 2037 * gsi_channel_tre_max() is computed, tre_count has to be almost 2038 * twice the TLV FIFO size to satisfy this requirement. 2039 */ 2040 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 2041 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2042 channel_id, data->channel.tlv_count, 2043 data->channel.tre_count); 2044 return false; 2045 } 2046 2047 if (!is_power_of_2(data->channel.tre_count)) { 2048 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2049 channel_id, data->channel.tre_count); 2050 return false; 2051 } 2052 2053 if (!is_power_of_2(data->channel.event_count)) { 2054 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2055 channel_id, data->channel.event_count); 2056 return false; 2057 } 2058 2059 return true; 2060 } 2061 2062 /* Init function for a single channel */ 2063 static int gsi_channel_init_one(struct gsi *gsi, 2064 const struct ipa_gsi_endpoint_data *data, 2065 bool command) 2066 { 2067 struct gsi_channel *channel; 2068 u32 tre_count; 2069 int ret; 2070 2071 if (!gsi_channel_data_valid(gsi, data)) 2072 return -EINVAL; 2073 2074 /* Worst case we need an event for every outstanding TRE */ 2075 if (data->channel.tre_count > data->channel.event_count) { 2076 tre_count = data->channel.event_count; 2077 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2078 data->channel_id, tre_count); 2079 } else { 2080 tre_count = data->channel.tre_count; 2081 } 2082 2083 channel = &gsi->channel[data->channel_id]; 2084 memset(channel, 0, sizeof(*channel)); 2085 2086 channel->gsi = gsi; 2087 channel->toward_ipa = data->toward_ipa; 2088 channel->command = command; 2089 channel->tlv_count = data->channel.tlv_count; 2090 channel->tre_count = tre_count; 2091 channel->event_count = data->channel.event_count; 2092 2093 ret = gsi_channel_evt_ring_init(channel); 2094 if (ret) 2095 goto err_clear_gsi; 2096 2097 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2098 if (ret) { 2099 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2100 ret, data->channel_id); 2101 goto err_channel_evt_ring_exit; 2102 } 2103 2104 ret = gsi_channel_trans_init(gsi, data->channel_id); 2105 if (ret) 2106 goto err_ring_free; 2107 2108 if (command) { 2109 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2110 2111 ret = ipa_cmd_pool_init(channel, tre_max); 2112 } 2113 if (!ret) 2114 return 0; /* Success! */ 2115 2116 gsi_channel_trans_exit(channel); 2117 err_ring_free: 2118 gsi_ring_free(gsi, &channel->tre_ring); 2119 err_channel_evt_ring_exit: 2120 gsi_channel_evt_ring_exit(channel); 2121 err_clear_gsi: 2122 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2123 2124 return ret; 2125 } 2126 2127 /* Inverse of gsi_channel_init_one() */ 2128 static void gsi_channel_exit_one(struct gsi_channel *channel) 2129 { 2130 if (!gsi_channel_initialized(channel)) 2131 return; 2132 2133 if (channel->command) 2134 ipa_cmd_pool_exit(channel); 2135 gsi_channel_trans_exit(channel); 2136 gsi_ring_free(channel->gsi, &channel->tre_ring); 2137 gsi_channel_evt_ring_exit(channel); 2138 } 2139 2140 /* Init function for channels */ 2141 static int gsi_channel_init(struct gsi *gsi, u32 count, 2142 const struct ipa_gsi_endpoint_data *data) 2143 { 2144 bool modem_alloc; 2145 int ret = 0; 2146 u32 i; 2147 2148 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2149 modem_alloc = gsi->version == IPA_VERSION_4_2; 2150 2151 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 2152 gsi->ieob_enabled_bitmap = 0; 2153 2154 /* The endpoint data array is indexed by endpoint name */ 2155 for (i = 0; i < count; i++) { 2156 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2157 2158 if (ipa_gsi_endpoint_data_empty(&data[i])) 2159 continue; /* Skip over empty slots */ 2160 2161 /* Mark modem channels to be allocated (hardware workaround) */ 2162 if (data[i].ee_id == GSI_EE_MODEM) { 2163 if (modem_alloc) 2164 gsi->modem_channel_bitmap |= 2165 BIT(data[i].channel_id); 2166 continue; 2167 } 2168 2169 ret = gsi_channel_init_one(gsi, &data[i], command); 2170 if (ret) 2171 goto err_unwind; 2172 } 2173 2174 return ret; 2175 2176 err_unwind: 2177 while (i--) { 2178 if (ipa_gsi_endpoint_data_empty(&data[i])) 2179 continue; 2180 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2181 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2182 continue; 2183 } 2184 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2185 } 2186 2187 return ret; 2188 } 2189 2190 /* Inverse of gsi_channel_init() */ 2191 static void gsi_channel_exit(struct gsi *gsi) 2192 { 2193 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2194 2195 do 2196 gsi_channel_exit_one(&gsi->channel[channel_id]); 2197 while (channel_id--); 2198 gsi->modem_channel_bitmap = 0; 2199 } 2200 2201 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2202 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2203 enum ipa_version version, u32 count, 2204 const struct ipa_gsi_endpoint_data *data) 2205 { 2206 struct device *dev = &pdev->dev; 2207 struct resource *res; 2208 resource_size_t size; 2209 u32 adjust; 2210 int ret; 2211 2212 gsi_validate_build(); 2213 2214 gsi->dev = dev; 2215 gsi->version = version; 2216 2217 /* GSI uses NAPI on all channels. Create a dummy network device 2218 * for the channel NAPI contexts to be associated with. 2219 */ 2220 init_dummy_netdev(&gsi->dummy_dev); 2221 2222 /* Get GSI memory range and map it */ 2223 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 2224 if (!res) { 2225 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 2226 return -ENODEV; 2227 } 2228 2229 size = resource_size(res); 2230 if (res->start > U32_MAX || size > U32_MAX - res->start) { 2231 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2232 return -EINVAL; 2233 } 2234 2235 /* Make sure we can make our pointer adjustment if necessary */ 2236 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 2237 if (res->start < adjust) { 2238 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", 2239 adjust); 2240 return -EINVAL; 2241 } 2242 2243 gsi->virt_raw = ioremap(res->start, size); 2244 if (!gsi->virt_raw) { 2245 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2246 return -ENOMEM; 2247 } 2248 /* Most registers are accessed using an adjusted register range */ 2249 gsi->virt = gsi->virt_raw - adjust; 2250 2251 init_completion(&gsi->completion); 2252 2253 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ 2254 if (ret) 2255 goto err_iounmap; 2256 2257 ret = gsi_channel_init(gsi, count, data); 2258 if (ret) 2259 goto err_iounmap; 2260 2261 mutex_init(&gsi->mutex); 2262 2263 return 0; 2264 2265 err_iounmap: 2266 iounmap(gsi->virt_raw); 2267 2268 return ret; 2269 } 2270 2271 /* Inverse of gsi_init() */ 2272 void gsi_exit(struct gsi *gsi) 2273 { 2274 mutex_destroy(&gsi->mutex); 2275 gsi_channel_exit(gsi); 2276 iounmap(gsi->virt_raw); 2277 } 2278 2279 /* The maximum number of outstanding TREs on a channel. This limits 2280 * a channel's maximum number of transactions outstanding (worst case 2281 * is one TRE per transaction). 2282 * 2283 * The absolute limit is the number of TREs in the channel's TRE ring, 2284 * and in theory we should be able use all of them. But in practice, 2285 * doing that led to the hardware reporting exhaustion of event ring 2286 * slots for writing completion information. So the hardware limit 2287 * would be (tre_count - 1). 2288 * 2289 * We reduce it a bit further though. Transaction resource pools are 2290 * sized to be a little larger than this maximum, to allow resource 2291 * allocations to always be contiguous. The number of entries in a 2292 * TRE ring buffer is a power of 2, and the extra resources in a pool 2293 * tends to nearly double the memory allocated for it. Reducing the 2294 * maximum number of outstanding TREs allows the number of entries in 2295 * a pool to avoid crossing that power-of-2 boundary, and this can 2296 * substantially reduce pool memory requirements. The number we 2297 * reduce it by matches the number added in gsi_trans_pool_init(). 2298 */ 2299 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2300 { 2301 struct gsi_channel *channel = &gsi->channel[channel_id]; 2302 2303 /* Hardware limit is channel->tre_count - 1 */ 2304 return channel->tre_count - (channel->tlv_count - 1); 2305 } 2306 2307 /* Returns the maximum number of TREs in a single transaction for a channel */ 2308 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2309 { 2310 struct gsi_channel *channel = &gsi->channel[channel_id]; 2311 2312 return channel->tlv_count; 2313 } 2314