xref: /linux/drivers/net/ipa/gsi.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2024 Linaro Ltd.
5  */
6 
7 #include <linux/bits.h>
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/interrupt.h>
11 #include <linux/mutex.h>
12 #include <linux/netdevice.h>
13 #include <linux/platform_device.h>
14 #include <linux/types.h>
15 
16 #include "gsi.h"
17 #include "gsi_private.h"
18 #include "gsi_reg.h"
19 #include "gsi_trans.h"
20 #include "ipa_data.h"
21 #include "ipa_gsi.h"
22 #include "ipa_version.h"
23 #include "reg.h"
24 
25 /**
26  * DOC: The IPA Generic Software Interface
27  *
28  * The generic software interface (GSI) is an integral component of the IPA,
29  * providing a well-defined communication layer between the AP subsystem
30  * and the IPA core.  The modem uses the GSI layer as well.
31  *
32  *	--------	     ---------
33  *	|      |	     |	     |
34  *	|  AP  +<---.	.----+ Modem |
35  *	|      +--. |	| .->+	     |
36  *	|      |  | |	| |  |	     |
37  *	--------  | |	| |  ---------
38  *		  v |	v |
39  *		--+-+---+-+--
40  *		|    GSI    |
41  *		|-----------|
42  *		|	    |
43  *		|    IPA    |
44  *		|	    |
45  *		-------------
46  *
47  * In the above diagram, the AP and Modem represent "execution environments"
48  * (EEs), which are independent operating environments that use the IPA for
49  * data transfer.
50  *
51  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52  * of data to or from the IPA.  A channel is implemented as a ring buffer,
53  * with a DRAM-resident array of "transfer elements" (TREs) available to
54  * describe transfers to or from other EEs through the IPA.  A transfer
55  * element can also contain an immediate command, requesting the IPA perform
56  * actions other than data transfer.
57  *
58  * Each TRE refers to a block of data--also located in DRAM.  After writing
59  * one or more TREs to a channel, the writer (either the IPA or an EE) writes
60  * a doorbell register to inform the receiving side how many elements have
61  * been written.
62  *
63  * Each channel has a GSI "event ring" associated with it.  An event ring
64  * is implemented very much like a channel ring, but is always directed from
65  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
66  * events by adding an entry to the event ring associated with the channel.
67  * The GSI then writes its doorbell for the event ring, causing the target
68  * EE to be interrupted.  Each entry in an event ring contains a pointer
69  * to the channel TRE whose completion the event represents.
70  *
71  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
72  * the completion of the transfer operation generates an entry (and possibly
73  * an interrupt) in the channel's event ring.  Other flags allow transfer
74  * elements to be chained together, forming a single logical transaction.
75  * TRE flags are used to control whether and when interrupts are generated
76  * to signal completion of channel transfers.
77  *
78  * Elements in channel and event rings are completed (or consumed) strictly
79  * in order.  Completion of one entry implies the completion of all preceding
80  * entries.  A single completion interrupt can therefore communicate the
81  * completion of many transfers.
82  *
83  * Note that all GSI registers are little-endian, which is the assumed
84  * endianness of I/O space accesses.  The accessor functions perform byte
85  * swapping if needed (i.e., for a big endian CPU).
86  */
87 
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
90 
91 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
92 
93 #define GSI_CHANNEL_STOP_RETRIES	10
94 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
95 #define GSI_CHANNEL_MODEM_FLOW_RETRIES	5	/* disable flow control only */
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 }
165 
166 /* Return the channel id associated with a given channel */
167 static u32 gsi_channel_id(struct gsi_channel *channel)
168 {
169 	return channel - &channel->gsi->channel[0];
170 }
171 
172 /* An initialized channel has a non-null GSI pointer */
173 static bool gsi_channel_initialized(struct gsi_channel *channel)
174 {
175 	return !!channel->gsi;
176 }
177 
178 /* Encode the channel protocol for the CH_C_CNTXT_0 register */
179 static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
180 				    const struct reg *reg,
181 				    enum gsi_channel_type type)
182 {
183 	u32 val;
184 
185 	val = reg_encode(reg, CHTYPE_PROTOCOL, type);
186 	if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0)
187 		return val;
188 
189 	type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
190 
191 	return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
192 }
193 
194 /* Update the GSI IRQ type register with the cached value */
195 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
196 {
197 	const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
198 
199 	gsi->type_enabled_bitmap = val;
200 	iowrite32(val, gsi->virt + reg_offset(reg));
201 }
202 
203 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
204 {
205 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
206 }
207 
208 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
209 {
210 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
211 }
212 
213 /* Event ring commands are performed one at a time.  Their completion
214  * is signaled by the event ring control GSI interrupt type, which is
215  * only enabled when we issue an event ring command.  Only the event
216  * ring being operated on has this interrupt enabled.
217  */
218 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
219 {
220 	u32 val = BIT(evt_ring_id);
221 	const struct reg *reg;
222 
223 	/* There's a small chance that a previous command completed
224 	 * after the interrupt was disabled, so make sure we have no
225 	 * pending interrupts before we enable them.
226 	 */
227 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
228 	iowrite32(~0, gsi->virt + reg_offset(reg));
229 
230 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
231 	iowrite32(val, gsi->virt + reg_offset(reg));
232 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
233 }
234 
235 /* Disable event ring control interrupts */
236 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
237 {
238 	const struct reg *reg;
239 
240 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
241 
242 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
243 	iowrite32(0, gsi->virt + reg_offset(reg));
244 }
245 
246 /* Channel commands are performed one at a time.  Their completion is
247  * signaled by the channel control GSI interrupt type, which is only
248  * enabled when we issue a channel command.  Only the channel being
249  * operated on has this interrupt enabled.
250  */
251 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
252 {
253 	u32 val = BIT(channel_id);
254 	const struct reg *reg;
255 
256 	/* There's a small chance that a previous command completed
257 	 * after the interrupt was disabled, so make sure we have no
258 	 * pending interrupts before we enable them.
259 	 */
260 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
261 	iowrite32(~0, gsi->virt + reg_offset(reg));
262 
263 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
264 	iowrite32(val, gsi->virt + reg_offset(reg));
265 
266 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
267 }
268 
269 /* Disable channel control interrupts */
270 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
271 {
272 	const struct reg *reg;
273 
274 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
275 
276 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
277 	iowrite32(0, gsi->virt + reg_offset(reg));
278 }
279 
280 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
281 {
282 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
283 	const struct reg *reg;
284 	u32 val;
285 
286 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
287 
288 	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
289 	val = gsi->ieob_enabled_bitmap;
290 	iowrite32(val, gsi->virt + reg_offset(reg));
291 
292 	/* Enable the interrupt type if this is the first channel enabled */
293 	if (enable_ieob)
294 		gsi_irq_type_enable(gsi, GSI_IEOB);
295 }
296 
297 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
298 {
299 	const struct reg *reg;
300 	u32 val;
301 
302 	gsi->ieob_enabled_bitmap &= ~event_mask;
303 
304 	/* Disable the interrupt type if this was the last enabled channel */
305 	if (!gsi->ieob_enabled_bitmap)
306 		gsi_irq_type_disable(gsi, GSI_IEOB);
307 
308 	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
309 	val = gsi->ieob_enabled_bitmap;
310 	iowrite32(val, gsi->virt + reg_offset(reg));
311 }
312 
313 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
314 {
315 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
316 }
317 
318 /* Enable all GSI_interrupt types */
319 static void gsi_irq_enable(struct gsi *gsi)
320 {
321 	const struct reg *reg;
322 	u32 val;
323 
324 	/* Global interrupts include hardware error reports.  Enable
325 	 * that so we can at least report the error should it occur.
326 	 */
327 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
328 	iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
329 
330 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
331 
332 	/* General GSI interrupts are reported to all EEs; if they occur
333 	 * they are unrecoverable (without reset).  A breakpoint interrupt
334 	 * also exists, but we don't support that.  We want to be notified
335 	 * of errors so we can report them, even if they can't be handled.
336 	 */
337 	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
338 	val = BUS_ERROR;
339 	val |= CMD_FIFO_OVRFLOW;
340 	val |= MCS_STACK_OVRFLOW;
341 	iowrite32(val, gsi->virt + reg_offset(reg));
342 
343 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
344 }
345 
346 /* Disable all GSI interrupt types */
347 static void gsi_irq_disable(struct gsi *gsi)
348 {
349 	const struct reg *reg;
350 
351 	gsi_irq_type_update(gsi, 0);
352 
353 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
354 	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
355 	iowrite32(0, gsi->virt + reg_offset(reg));
356 
357 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
358 	iowrite32(0, gsi->virt + reg_offset(reg));
359 }
360 
361 /* Return the virtual address associated with a ring index */
362 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
363 {
364 	/* Note: index *must* be used modulo the ring count here */
365 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
366 }
367 
368 /* Return the 32-bit DMA address associated with a ring index */
369 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
370 {
371 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
372 }
373 
374 /* Return the ring index of a 32-bit ring offset */
375 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
376 {
377 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
378 }
379 
380 /* Issue a GSI command by writing a value to a register, then wait for
381  * completion to be signaled.  Returns true if the command completes
382  * or false if it times out.
383  */
384 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
385 {
386 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
387 	struct completion *completion = &gsi->completion;
388 
389 	reinit_completion(completion);
390 
391 	iowrite32(val, gsi->virt + reg);
392 
393 	return !!wait_for_completion_timeout(completion, timeout);
394 }
395 
396 /* Return the hardware's notion of the current state of an event ring */
397 static enum gsi_evt_ring_state
398 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
399 {
400 	const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
401 	u32 val;
402 
403 	val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
404 
405 	return reg_decode(reg, EV_CHSTATE, val);
406 }
407 
408 /* Issue an event ring command and wait for it to complete */
409 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
410 				 enum gsi_evt_cmd_opcode opcode)
411 {
412 	struct device *dev = gsi->dev;
413 	const struct reg *reg;
414 	bool timeout;
415 	u32 val;
416 
417 	/* Enable the completion interrupt for the command */
418 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
419 
420 	reg = gsi_reg(gsi, EV_CH_CMD);
421 	val = reg_encode(reg, EV_CHID, evt_ring_id);
422 	val |= reg_encode(reg, EV_OPCODE, opcode);
423 
424 	timeout = !gsi_command(gsi, reg_offset(reg), val);
425 
426 	gsi_irq_ev_ctrl_disable(gsi);
427 
428 	if (!timeout)
429 		return;
430 
431 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
432 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
433 }
434 
435 /* Allocate an event ring in NOT_ALLOCATED state */
436 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
437 {
438 	enum gsi_evt_ring_state state;
439 
440 	/* Get initial event ring state */
441 	state = gsi_evt_ring_state(gsi, evt_ring_id);
442 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
443 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
444 			evt_ring_id, state);
445 		return -EINVAL;
446 	}
447 
448 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
449 
450 	/* If successful the event ring state will have changed */
451 	state = gsi_evt_ring_state(gsi, evt_ring_id);
452 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
453 		return 0;
454 
455 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
456 		evt_ring_id, state);
457 
458 	return -EIO;
459 }
460 
461 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
462 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
463 {
464 	enum gsi_evt_ring_state state;
465 
466 	state = gsi_evt_ring_state(gsi, evt_ring_id);
467 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
468 	    state != GSI_EVT_RING_STATE_ERROR) {
469 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
470 			evt_ring_id, state);
471 		return;
472 	}
473 
474 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
475 
476 	/* If successful the event ring state will have changed */
477 	state = gsi_evt_ring_state(gsi, evt_ring_id);
478 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
479 		return;
480 
481 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
482 		evt_ring_id, state);
483 }
484 
485 /* Issue a hardware de-allocation request for an allocated event ring */
486 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
487 {
488 	enum gsi_evt_ring_state state;
489 
490 	state = gsi_evt_ring_state(gsi, evt_ring_id);
491 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
492 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
493 			evt_ring_id, state);
494 		return;
495 	}
496 
497 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
498 
499 	/* If successful the event ring state will have changed */
500 	state = gsi_evt_ring_state(gsi, evt_ring_id);
501 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
502 		return;
503 
504 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
505 		evt_ring_id, state);
506 }
507 
508 /* Fetch the current state of a channel from hardware */
509 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
510 {
511 	const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
512 	u32 channel_id = gsi_channel_id(channel);
513 	struct gsi *gsi = channel->gsi;
514 	void __iomem *virt = gsi->virt;
515 	u32 val;
516 
517 	reg = gsi_reg(gsi, CH_C_CNTXT_0);
518 	val = ioread32(virt + reg_n_offset(reg, channel_id));
519 
520 	return reg_decode(reg, CHSTATE, val);
521 }
522 
523 /* Issue a channel command and wait for it to complete */
524 static void
525 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
526 {
527 	u32 channel_id = gsi_channel_id(channel);
528 	struct gsi *gsi = channel->gsi;
529 	struct device *dev = gsi->dev;
530 	const struct reg *reg;
531 	bool timeout;
532 	u32 val;
533 
534 	/* Enable the completion interrupt for the command */
535 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
536 
537 	reg = gsi_reg(gsi, CH_CMD);
538 	val = reg_encode(reg, CH_CHID, channel_id);
539 	val |= reg_encode(reg, CH_OPCODE, opcode);
540 
541 	timeout = !gsi_command(gsi, reg_offset(reg), val);
542 
543 	gsi_irq_ch_ctrl_disable(gsi);
544 
545 	if (!timeout)
546 		return;
547 
548 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
549 		opcode, channel_id, gsi_channel_state(channel));
550 }
551 
552 /* Allocate GSI channel in NOT_ALLOCATED state */
553 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
554 {
555 	struct gsi_channel *channel = &gsi->channel[channel_id];
556 	struct device *dev = gsi->dev;
557 	enum gsi_channel_state state;
558 
559 	/* Get initial channel state */
560 	state = gsi_channel_state(channel);
561 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
562 		dev_err(dev, "channel %u bad state %u before alloc\n",
563 			channel_id, state);
564 		return -EINVAL;
565 	}
566 
567 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
568 
569 	/* If successful the channel state will have changed */
570 	state = gsi_channel_state(channel);
571 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
572 		return 0;
573 
574 	dev_err(dev, "channel %u bad state %u after alloc\n",
575 		channel_id, state);
576 
577 	return -EIO;
578 }
579 
580 /* Start an ALLOCATED channel */
581 static int gsi_channel_start_command(struct gsi_channel *channel)
582 {
583 	struct device *dev = channel->gsi->dev;
584 	enum gsi_channel_state state;
585 
586 	state = gsi_channel_state(channel);
587 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
588 	    state != GSI_CHANNEL_STATE_STOPPED) {
589 		dev_err(dev, "channel %u bad state %u before start\n",
590 			gsi_channel_id(channel), state);
591 		return -EINVAL;
592 	}
593 
594 	gsi_channel_command(channel, GSI_CH_START);
595 
596 	/* If successful the channel state will have changed */
597 	state = gsi_channel_state(channel);
598 	if (state == GSI_CHANNEL_STATE_STARTED)
599 		return 0;
600 
601 	dev_err(dev, "channel %u bad state %u after start\n",
602 		gsi_channel_id(channel), state);
603 
604 	return -EIO;
605 }
606 
607 /* Stop a GSI channel in STARTED state */
608 static int gsi_channel_stop_command(struct gsi_channel *channel)
609 {
610 	struct device *dev = channel->gsi->dev;
611 	enum gsi_channel_state state;
612 
613 	state = gsi_channel_state(channel);
614 
615 	/* Channel could have entered STOPPED state since last call
616 	 * if it timed out.  If so, we're done.
617 	 */
618 	if (state == GSI_CHANNEL_STATE_STOPPED)
619 		return 0;
620 
621 	if (state != GSI_CHANNEL_STATE_STARTED &&
622 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
623 		dev_err(dev, "channel %u bad state %u before stop\n",
624 			gsi_channel_id(channel), state);
625 		return -EINVAL;
626 	}
627 
628 	gsi_channel_command(channel, GSI_CH_STOP);
629 
630 	/* If successful the channel state will have changed */
631 	state = gsi_channel_state(channel);
632 	if (state == GSI_CHANNEL_STATE_STOPPED)
633 		return 0;
634 
635 	/* We may have to try again if stop is in progress */
636 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
637 		return -EAGAIN;
638 
639 	dev_err(dev, "channel %u bad state %u after stop\n",
640 		gsi_channel_id(channel), state);
641 
642 	return -EIO;
643 }
644 
645 /* Reset a GSI channel in ALLOCATED or ERROR state. */
646 static void gsi_channel_reset_command(struct gsi_channel *channel)
647 {
648 	struct device *dev = channel->gsi->dev;
649 	enum gsi_channel_state state;
650 
651 	/* A short delay is required before a RESET command */
652 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
653 
654 	state = gsi_channel_state(channel);
655 	if (state != GSI_CHANNEL_STATE_STOPPED &&
656 	    state != GSI_CHANNEL_STATE_ERROR) {
657 		/* No need to reset a channel already in ALLOCATED state */
658 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
659 			dev_err(dev, "channel %u bad state %u before reset\n",
660 				gsi_channel_id(channel), state);
661 		return;
662 	}
663 
664 	gsi_channel_command(channel, GSI_CH_RESET);
665 
666 	/* If successful the channel state will have changed */
667 	state = gsi_channel_state(channel);
668 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
669 		dev_err(dev, "channel %u bad state %u after reset\n",
670 			gsi_channel_id(channel), state);
671 }
672 
673 /* Deallocate an ALLOCATED GSI channel */
674 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
675 {
676 	struct gsi_channel *channel = &gsi->channel[channel_id];
677 	struct device *dev = gsi->dev;
678 	enum gsi_channel_state state;
679 
680 	state = gsi_channel_state(channel);
681 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
682 		dev_err(dev, "channel %u bad state %u before dealloc\n",
683 			channel_id, state);
684 		return;
685 	}
686 
687 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
688 
689 	/* If successful the channel state will have changed */
690 	state = gsi_channel_state(channel);
691 
692 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
693 		dev_err(dev, "channel %u bad state %u after dealloc\n",
694 			channel_id, state);
695 }
696 
697 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
698  * The index argument (modulo the ring count) is the first unfilled entry, so
699  * we supply one less than that with the doorbell.  Update the event ring
700  * index field with the value provided.
701  */
702 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
703 {
704 	const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
705 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
706 	u32 val;
707 
708 	ring->index = index;	/* Next unused entry */
709 
710 	/* Note: index *must* be used modulo the ring count here */
711 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
712 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
713 }
714 
715 /* Program an event ring for use */
716 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
717 {
718 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
719 	struct gsi_ring *ring = &evt_ring->ring;
720 	const struct reg *reg;
721 	u32 val;
722 
723 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
724 	/* We program all event rings as GPI type/protocol */
725 	val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
726 	/* EV_EE field is 0 (GSI_EE_AP) */
727 	val |= reg_bit(reg, EV_INTYPE);
728 	val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
729 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
730 
731 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
732 	val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
733 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
734 
735 	/* The context 2 and 3 registers store the low-order and
736 	 * high-order 32 bits of the address of the event ring,
737 	 * respectively.
738 	 */
739 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
740 	val = lower_32_bits(ring->addr);
741 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
742 
743 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
744 	val = upper_32_bits(ring->addr);
745 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
746 
747 	/* Enable interrupt moderation by setting the moderation delay */
748 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
749 	val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
750 	val |= reg_encode(reg, EV_MODC, 1);	/* comes from channel */
751 	/* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
752 	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
753 
754 	/* No MSI write data, and MSI high and low address is 0 */
755 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
756 	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
757 
758 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
759 	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
760 
761 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
762 	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
763 
764 	/* We don't need to get event read pointer updates */
765 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
766 	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
767 
768 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
769 	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
770 
771 	/* Finally, tell the hardware our "last processed" event (arbitrary) */
772 	gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
773 }
774 
775 /* Find the transaction whose completion indicates a channel is quiesced */
776 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
777 {
778 	struct gsi_trans_info *trans_info = &channel->trans_info;
779 	u32 pending_id = trans_info->pending_id;
780 	struct gsi_trans *trans;
781 	u16 trans_id;
782 
783 	if (channel->toward_ipa && pending_id != trans_info->free_id) {
784 		/* There is a small chance a TX transaction got allocated
785 		 * just before we disabled transmits, so check for that.
786 		 * The last allocated, committed, or pending transaction
787 		 * precedes the first free transaction.
788 		 */
789 		trans_id = trans_info->free_id - 1;
790 	} else if (trans_info->polled_id != pending_id) {
791 		/* Otherwise (TX or RX) we want to wait for anything that
792 		 * has completed, or has been polled but not released yet.
793 		 *
794 		 * The last completed or polled transaction precedes the
795 		 * first pending transaction.
796 		 */
797 		trans_id = pending_id - 1;
798 	} else {
799 		return NULL;
800 	}
801 
802 	/* Caller will wait for this, so take a reference */
803 	trans = &trans_info->trans[trans_id % channel->tre_count];
804 	refcount_inc(&trans->refcount);
805 
806 	return trans;
807 }
808 
809 /* Wait for transaction activity on a channel to complete */
810 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
811 {
812 	struct gsi_trans *trans;
813 
814 	/* Get the last transaction, and wait for it to complete */
815 	trans = gsi_channel_trans_last(channel);
816 	if (trans) {
817 		wait_for_completion(&trans->completion);
818 		gsi_trans_free(trans);
819 	}
820 }
821 
822 /* Program a channel for use; there is no gsi_channel_deprogram() */
823 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
824 {
825 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
826 	u32 channel_id = gsi_channel_id(channel);
827 	union gsi_channel_scratch scr = { };
828 	struct gsi_channel_scratch_gpi *gpi;
829 	struct gsi *gsi = channel->gsi;
830 	const struct reg *reg;
831 	u32 wrr_weight = 0;
832 	u32 offset;
833 	u32 val;
834 
835 	reg = gsi_reg(gsi, CH_C_CNTXT_0);
836 
837 	/* We program all channels as GPI type/protocol */
838 	val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
839 	if (channel->toward_ipa)
840 		val |= reg_bit(reg, CHTYPE_DIR);
841 	if (gsi->version < IPA_VERSION_5_0)
842 		val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
843 	val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
844 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
845 
846 	reg = gsi_reg(gsi, CH_C_CNTXT_1);
847 	val = reg_encode(reg, CH_R_LENGTH, size);
848 	if (gsi->version >= IPA_VERSION_5_0)
849 		val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id);
850 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
851 
852 	/* The context 2 and 3 registers store the low-order and
853 	 * high-order 32 bits of the address of the channel ring,
854 	 * respectively.
855 	 */
856 	reg = gsi_reg(gsi, CH_C_CNTXT_2);
857 	val = lower_32_bits(channel->tre_ring.addr);
858 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
859 
860 	reg = gsi_reg(gsi, CH_C_CNTXT_3);
861 	val = upper_32_bits(channel->tre_ring.addr);
862 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
863 
864 	reg = gsi_reg(gsi, CH_C_QOS);
865 
866 	/* Command channel gets low weighted round-robin priority */
867 	if (channel->command)
868 		wrr_weight = reg_field_max(reg, WRR_WEIGHT);
869 	val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
870 
871 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
872 
873 	/* No need to use the doorbell engine starting at IPA v4.0 */
874 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
875 		val |= reg_bit(reg, USE_DB_ENG);
876 
877 	/* v4.0 introduces an escape buffer for prefetch.  We use it
878 	 * on all but the AP command channel.
879 	 */
880 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
881 		/* If not otherwise set, prefetch buffers are used */
882 		if (gsi->version < IPA_VERSION_4_5)
883 			val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
884 		else
885 			val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
886 	}
887 	/* All channels set DB_IN_BYTES */
888 	if (gsi->version >= IPA_VERSION_4_9)
889 		val |= reg_bit(reg, DB_IN_BYTES);
890 
891 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
892 
893 	/* Now update the scratch registers for GPI protocol */
894 	gpi = &scr.gpi;
895 	gpi->max_outstanding_tre = channel->trans_tre_max *
896 					GSI_RING_ELEMENT_SIZE;
897 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
898 
899 	reg = gsi_reg(gsi, CH_C_SCRATCH_0);
900 	val = scr.data.word1;
901 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
902 
903 	reg = gsi_reg(gsi, CH_C_SCRATCH_1);
904 	val = scr.data.word2;
905 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
906 
907 	reg = gsi_reg(gsi, CH_C_SCRATCH_2);
908 	val = scr.data.word3;
909 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
910 
911 	/* We must preserve the upper 16 bits of the last scratch register.
912 	 * The next sequence assumes those bits remain unchanged between the
913 	 * read and the write.
914 	 */
915 	reg = gsi_reg(gsi, CH_C_SCRATCH_3);
916 	offset = reg_n_offset(reg, channel_id);
917 	val = ioread32(gsi->virt + offset);
918 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
919 	iowrite32(val, gsi->virt + offset);
920 
921 	/* All done! */
922 }
923 
924 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
925 {
926 	struct gsi *gsi = channel->gsi;
927 	int ret;
928 
929 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
930 	if (resume && gsi->version < IPA_VERSION_4_0)
931 		return 0;
932 
933 	mutex_lock(&gsi->mutex);
934 
935 	ret = gsi_channel_start_command(channel);
936 
937 	mutex_unlock(&gsi->mutex);
938 
939 	return ret;
940 }
941 
942 /* Start an allocated GSI channel */
943 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
944 {
945 	struct gsi_channel *channel = &gsi->channel[channel_id];
946 	int ret;
947 
948 	/* Enable NAPI and the completion interrupt */
949 	napi_enable(&channel->napi);
950 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
951 
952 	ret = __gsi_channel_start(channel, false);
953 	if (ret) {
954 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
955 		napi_disable(&channel->napi);
956 	}
957 
958 	return ret;
959 }
960 
961 static int gsi_channel_stop_retry(struct gsi_channel *channel)
962 {
963 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
964 	int ret;
965 
966 	do {
967 		ret = gsi_channel_stop_command(channel);
968 		if (ret != -EAGAIN)
969 			break;
970 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
971 	} while (retries--);
972 
973 	return ret;
974 }
975 
976 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
977 {
978 	struct gsi *gsi = channel->gsi;
979 	int ret;
980 
981 	/* Wait for any underway transactions to complete before stopping. */
982 	gsi_channel_trans_quiesce(channel);
983 
984 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
985 	if (suspend && gsi->version < IPA_VERSION_4_0)
986 		return 0;
987 
988 	mutex_lock(&gsi->mutex);
989 
990 	ret = gsi_channel_stop_retry(channel);
991 
992 	mutex_unlock(&gsi->mutex);
993 
994 	return ret;
995 }
996 
997 /* Stop a started channel */
998 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
999 {
1000 	struct gsi_channel *channel = &gsi->channel[channel_id];
1001 	int ret;
1002 
1003 	ret = __gsi_channel_stop(channel, false);
1004 	if (ret)
1005 		return ret;
1006 
1007 	/* Disable the completion interrupt and NAPI if successful */
1008 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
1009 	napi_disable(&channel->napi);
1010 
1011 	return 0;
1012 }
1013 
1014 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
1015 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
1016 {
1017 	struct gsi_channel *channel = &gsi->channel[channel_id];
1018 
1019 	mutex_lock(&gsi->mutex);
1020 
1021 	gsi_channel_reset_command(channel);
1022 	/* Due to a hardware quirk we may need to reset RX channels twice. */
1023 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
1024 		gsi_channel_reset_command(channel);
1025 
1026 	/* Hardware assumes this is 0 following reset */
1027 	channel->tre_ring.index = 0;
1028 	gsi_channel_program(channel, doorbell);
1029 	gsi_channel_trans_cancel_pending(channel);
1030 
1031 	mutex_unlock(&gsi->mutex);
1032 }
1033 
1034 /* Stop a started channel for suspend */
1035 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
1036 {
1037 	struct gsi_channel *channel = &gsi->channel[channel_id];
1038 	int ret;
1039 
1040 	ret = __gsi_channel_stop(channel, true);
1041 	if (ret)
1042 		return ret;
1043 
1044 	/* Ensure NAPI polling has finished. */
1045 	napi_synchronize(&channel->napi);
1046 
1047 	return 0;
1048 }
1049 
1050 /* Resume a suspended channel (starting if stopped) */
1051 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
1052 {
1053 	struct gsi_channel *channel = &gsi->channel[channel_id];
1054 
1055 	return __gsi_channel_start(channel, true);
1056 }
1057 
1058 /* Prevent all GSI interrupts while suspended */
1059 void gsi_suspend(struct gsi *gsi)
1060 {
1061 	disable_irq(gsi->irq);
1062 }
1063 
1064 /* Allow all GSI interrupts again when resuming */
1065 void gsi_resume(struct gsi *gsi)
1066 {
1067 	enable_irq(gsi->irq);
1068 }
1069 
1070 void gsi_trans_tx_committed(struct gsi_trans *trans)
1071 {
1072 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
1073 
1074 	channel->trans_count++;
1075 	channel->byte_count += trans->len;
1076 
1077 	trans->trans_count = channel->trans_count;
1078 	trans->byte_count = channel->byte_count;
1079 }
1080 
1081 void gsi_trans_tx_queued(struct gsi_trans *trans)
1082 {
1083 	u32 channel_id = trans->channel_id;
1084 	struct gsi *gsi = trans->gsi;
1085 	struct gsi_channel *channel;
1086 	u32 trans_count;
1087 	u32 byte_count;
1088 
1089 	channel = &gsi->channel[channel_id];
1090 
1091 	byte_count = channel->byte_count - channel->queued_byte_count;
1092 	trans_count = channel->trans_count - channel->queued_trans_count;
1093 	channel->queued_byte_count = channel->byte_count;
1094 	channel->queued_trans_count = channel->trans_count;
1095 
1096 	ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1097 }
1098 
1099 /**
1100  * gsi_trans_tx_completed() - Report completed TX transactions
1101  * @trans:	TX channel transaction that has completed
1102  *
1103  * Report that a transaction on a TX channel has completed.  At the time a
1104  * transaction is committed, we record *in the transaction* its channel's
1105  * committed transaction and byte counts.  Transactions are completed in
1106  * order, and the difference between the channel's byte/transaction count
1107  * when the transaction was committed and when it completes tells us
1108  * exactly how much data has been transferred while the transaction was
1109  * pending.
1110  *
1111  * We report this information to the network stack, which uses it to manage
1112  * the rate at which data is sent to hardware.
1113  */
1114 static void gsi_trans_tx_completed(struct gsi_trans *trans)
1115 {
1116 	u32 channel_id = trans->channel_id;
1117 	struct gsi *gsi = trans->gsi;
1118 	struct gsi_channel *channel;
1119 	u32 trans_count;
1120 	u32 byte_count;
1121 
1122 	channel = &gsi->channel[channel_id];
1123 	trans_count = trans->trans_count - channel->compl_trans_count;
1124 	byte_count = trans->byte_count - channel->compl_byte_count;
1125 
1126 	channel->compl_trans_count += trans_count;
1127 	channel->compl_byte_count += byte_count;
1128 
1129 	ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1130 }
1131 
1132 /* Channel control interrupt handler */
1133 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1134 {
1135 	const struct reg *reg;
1136 	u32 channel_mask;
1137 
1138 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
1139 	channel_mask = ioread32(gsi->virt + reg_offset(reg));
1140 
1141 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
1142 	iowrite32(channel_mask, gsi->virt + reg_offset(reg));
1143 
1144 	while (channel_mask) {
1145 		u32 channel_id = __ffs(channel_mask);
1146 
1147 		channel_mask ^= BIT(channel_id);
1148 
1149 		complete(&gsi->completion);
1150 	}
1151 }
1152 
1153 /* Event ring control interrupt handler */
1154 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1155 {
1156 	const struct reg *reg;
1157 	u32 event_mask;
1158 
1159 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
1160 	event_mask = ioread32(gsi->virt + reg_offset(reg));
1161 
1162 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
1163 	iowrite32(event_mask, gsi->virt + reg_offset(reg));
1164 
1165 	while (event_mask) {
1166 		u32 evt_ring_id = __ffs(event_mask);
1167 
1168 		event_mask ^= BIT(evt_ring_id);
1169 
1170 		complete(&gsi->completion);
1171 	}
1172 }
1173 
1174 /* Global channel error interrupt handler */
1175 static void
1176 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1177 {
1178 	if (code == GSI_OUT_OF_RESOURCES) {
1179 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1180 		complete(&gsi->completion);
1181 		return;
1182 	}
1183 
1184 	/* Report, but otherwise ignore all other error codes */
1185 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1186 		channel_id, err_ee, code);
1187 }
1188 
1189 /* Global event error interrupt handler */
1190 static void
1191 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1192 {
1193 	if (code == GSI_OUT_OF_RESOURCES) {
1194 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1195 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1196 
1197 		complete(&gsi->completion);
1198 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1199 			channel_id);
1200 		return;
1201 	}
1202 
1203 	/* Report, but otherwise ignore all other error codes */
1204 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1205 		evt_ring_id, err_ee, code);
1206 }
1207 
1208 /* Global error interrupt handler */
1209 static void gsi_isr_glob_err(struct gsi *gsi)
1210 {
1211 	const struct reg *log_reg;
1212 	const struct reg *clr_reg;
1213 	enum gsi_err_type type;
1214 	enum gsi_err_code code;
1215 	u32 offset;
1216 	u32 which;
1217 	u32 val;
1218 	u32 ee;
1219 
1220 	/* Get the logged error, then reinitialize the log */
1221 	log_reg = gsi_reg(gsi, ERROR_LOG);
1222 	offset = reg_offset(log_reg);
1223 	val = ioread32(gsi->virt + offset);
1224 	iowrite32(0, gsi->virt + offset);
1225 
1226 	clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
1227 	iowrite32(~0, gsi->virt + reg_offset(clr_reg));
1228 
1229 	/* Parse the error value */
1230 	ee = reg_decode(log_reg, ERR_EE, val);
1231 	type = reg_decode(log_reg, ERR_TYPE, val);
1232 	which = reg_decode(log_reg, ERR_VIRT_IDX, val);
1233 	code = reg_decode(log_reg, ERR_CODE, val);
1234 
1235 	if (type == GSI_ERR_TYPE_CHAN)
1236 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1237 	else if (type == GSI_ERR_TYPE_EVT)
1238 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1239 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1240 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1241 }
1242 
1243 /* Generic EE interrupt handler */
1244 static void gsi_isr_gp_int1(struct gsi *gsi)
1245 {
1246 	const struct reg *reg;
1247 	u32 result;
1248 	u32 val;
1249 
1250 	/* This interrupt is used to handle completions of GENERIC GSI
1251 	 * commands.  We use these to allocate and halt channels on the
1252 	 * modem's behalf due to a hardware quirk on IPA v4.2.  The modem
1253 	 * "owns" channels even when the AP allocates them, and have no
1254 	 * way of knowing whether a modem channel's state has been changed.
1255 	 *
1256 	 * We also use GENERIC commands to enable/disable channel flow
1257 	 * control for IPA v4.2+.
1258 	 *
1259 	 * It is recommended that we halt the modem channels we allocated
1260 	 * when shutting down, but it's possible the channel isn't running
1261 	 * at the time we issue the HALT command.  We'll get an error in
1262 	 * that case, but it's harmless (the channel is already halted).
1263 	 * Similarly, we could get an error back when updating flow control
1264 	 * on a channel because it's not in the proper state.
1265 	 *
1266 	 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1267 	 * error if we receive it.
1268 	 */
1269 	reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1270 	val = ioread32(gsi->virt + reg_offset(reg));
1271 	result = reg_decode(reg, GENERIC_EE_RESULT, val);
1272 
1273 	switch (result) {
1274 	case GENERIC_EE_SUCCESS:
1275 	case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1276 		gsi->result = 0;
1277 		break;
1278 
1279 	case GENERIC_EE_RETRY:
1280 		gsi->result = -EAGAIN;
1281 		break;
1282 
1283 	default:
1284 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1285 		gsi->result = -EIO;
1286 		break;
1287 	}
1288 
1289 	complete(&gsi->completion);
1290 }
1291 
1292 /* Inter-EE interrupt handler */
1293 static void gsi_isr_glob_ee(struct gsi *gsi)
1294 {
1295 	const struct reg *reg;
1296 	u32 val;
1297 
1298 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
1299 	val = ioread32(gsi->virt + reg_offset(reg));
1300 
1301 	if (val & ERROR_INT)
1302 		gsi_isr_glob_err(gsi);
1303 
1304 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
1305 	iowrite32(val, gsi->virt + reg_offset(reg));
1306 
1307 	val &= ~ERROR_INT;
1308 
1309 	if (val & GP_INT1) {
1310 		val ^= GP_INT1;
1311 		gsi_isr_gp_int1(gsi);
1312 	}
1313 
1314 	if (val)
1315 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1316 }
1317 
1318 /* I/O completion interrupt event */
1319 static void gsi_isr_ieob(struct gsi *gsi)
1320 {
1321 	const struct reg *reg;
1322 	u32 event_mask;
1323 
1324 	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
1325 	event_mask = ioread32(gsi->virt + reg_offset(reg));
1326 
1327 	gsi_irq_ieob_disable(gsi, event_mask);
1328 
1329 	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
1330 	iowrite32(event_mask, gsi->virt + reg_offset(reg));
1331 
1332 	while (event_mask) {
1333 		u32 evt_ring_id = __ffs(event_mask);
1334 
1335 		event_mask ^= BIT(evt_ring_id);
1336 
1337 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1338 	}
1339 }
1340 
1341 /* General event interrupts represent serious problems, so report them */
1342 static void gsi_isr_general(struct gsi *gsi)
1343 {
1344 	struct device *dev = gsi->dev;
1345 	const struct reg *reg;
1346 	u32 val;
1347 
1348 	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
1349 	val = ioread32(gsi->virt + reg_offset(reg));
1350 
1351 	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
1352 	iowrite32(val, gsi->virt + reg_offset(reg));
1353 
1354 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1355 }
1356 
1357 /**
1358  * gsi_isr() - Top level GSI interrupt service routine
1359  * @irq:	Interrupt number (ignored)
1360  * @dev_id:	GSI pointer supplied to request_irq()
1361  *
1362  * This is the main handler function registered for the GSI IRQ. Each type
1363  * of interrupt has a separate handler function that is called from here.
1364  */
1365 static irqreturn_t gsi_isr(int irq, void *dev_id)
1366 {
1367 	struct gsi *gsi = dev_id;
1368 	const struct reg *reg;
1369 	u32 intr_mask;
1370 	u32 cnt = 0;
1371 	u32 offset;
1372 
1373 	reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
1374 	offset = reg_offset(reg);
1375 
1376 	/* enum gsi_irq_type_id defines GSI interrupt types */
1377 	while ((intr_mask = ioread32(gsi->virt + offset))) {
1378 		/* intr_mask contains bitmask of pending GSI interrupts */
1379 		do {
1380 			u32 gsi_intr = BIT(__ffs(intr_mask));
1381 
1382 			intr_mask ^= gsi_intr;
1383 
1384 			/* Note: the IRQ condition for each type is cleared
1385 			 * when the type-specific register is updated.
1386 			 */
1387 			switch (gsi_intr) {
1388 			case GSI_CH_CTRL:
1389 				gsi_isr_chan_ctrl(gsi);
1390 				break;
1391 			case GSI_EV_CTRL:
1392 				gsi_isr_evt_ctrl(gsi);
1393 				break;
1394 			case GSI_GLOB_EE:
1395 				gsi_isr_glob_ee(gsi);
1396 				break;
1397 			case GSI_IEOB:
1398 				gsi_isr_ieob(gsi);
1399 				break;
1400 			case GSI_GENERAL:
1401 				gsi_isr_general(gsi);
1402 				break;
1403 			default:
1404 				dev_err(gsi->dev,
1405 					"unrecognized interrupt type 0x%08x\n",
1406 					gsi_intr);
1407 				break;
1408 			}
1409 		} while (intr_mask);
1410 
1411 		if (++cnt > GSI_ISR_MAX_ITER) {
1412 			dev_err(gsi->dev, "interrupt flood\n");
1413 			break;
1414 		}
1415 	}
1416 
1417 	return IRQ_HANDLED;
1418 }
1419 
1420 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1421 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1422 {
1423 	int ret;
1424 
1425 	ret = platform_get_irq_byname(pdev, "gsi");
1426 	if (ret <= 0)
1427 		return ret ? : -EINVAL;
1428 
1429 	gsi->irq = ret;
1430 
1431 	return 0;
1432 }
1433 
1434 /* Return the transaction associated with a transfer completion event */
1435 static struct gsi_trans *
1436 gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1437 {
1438 	u32 channel_id = event->chid;
1439 	struct gsi_channel *channel;
1440 	struct gsi_trans *trans;
1441 	u32 tre_offset;
1442 	u32 tre_index;
1443 
1444 	channel = &gsi->channel[channel_id];
1445 	if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1446 		return NULL;
1447 
1448 	/* Event xfer_ptr records the TRE it's associated with */
1449 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1450 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1451 
1452 	trans = gsi_channel_trans_mapped(channel, tre_index);
1453 
1454 	if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1455 		return NULL;
1456 
1457 	return trans;
1458 }
1459 
1460 /**
1461  * gsi_evt_ring_update() - Update transaction state from hardware
1462  * @gsi:		GSI pointer
1463  * @evt_ring_id:	Event ring ID
1464  * @index:		Event index in ring reported by hardware
1465  *
1466  * Events for RX channels contain the actual number of bytes received into
1467  * the buffer.  Every event has a transaction associated with it, and here
1468  * we update transactions to record their actual received lengths.
1469  *
1470  * When an event for a TX channel arrives we use information in the
1471  * transaction to report the number of requests and bytes that have
1472  * been transferred.
1473  *
1474  * This function is called whenever we learn that the GSI hardware has filled
1475  * new events since the last time we checked.  The ring's index field tells
1476  * the first entry in need of processing.  The index provided is the
1477  * first *unfilled* event in the ring (following the last filled one).
1478  *
1479  * Events are sequential within the event ring, and transactions are
1480  * sequential within the transaction array.
1481  *
1482  * Note that @index always refers to an element *within* the event ring.
1483  */
1484 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1485 {
1486 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1487 	struct gsi_ring *ring = &evt_ring->ring;
1488 	struct gsi_event *event_done;
1489 	struct gsi_event *event;
1490 	u32 event_avail;
1491 	u32 old_index;
1492 
1493 	/* Starting with the oldest un-processed event, determine which
1494 	 * transaction (and which channel) is associated with the event.
1495 	 * For RX channels, update each completed transaction with the
1496 	 * number of bytes that were actually received.  For TX channels
1497 	 * associated with a network device, report to the network stack
1498 	 * the number of transfers and bytes this completion represents.
1499 	 */
1500 	old_index = ring->index;
1501 	event = gsi_ring_virt(ring, old_index);
1502 
1503 	/* Compute the number of events to process before we wrap,
1504 	 * and determine when we'll be done processing events.
1505 	 */
1506 	event_avail = ring->count - old_index % ring->count;
1507 	event_done = gsi_ring_virt(ring, index);
1508 	do {
1509 		struct gsi_trans *trans;
1510 
1511 		trans = gsi_event_trans(gsi, event);
1512 		if (!trans)
1513 			return;
1514 
1515 		if (trans->direction == DMA_FROM_DEVICE)
1516 			trans->len = __le16_to_cpu(event->len);
1517 		else
1518 			gsi_trans_tx_completed(trans);
1519 
1520 		gsi_trans_move_complete(trans);
1521 
1522 		/* Move on to the next event and transaction */
1523 		if (--event_avail)
1524 			event++;
1525 		else
1526 			event = gsi_ring_virt(ring, 0);
1527 	} while (event != event_done);
1528 
1529 	/* Tell the hardware we've handled these events */
1530 	gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1531 }
1532 
1533 /* Initialize a ring, including allocating DMA memory for its entries */
1534 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1535 {
1536 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1537 	struct device *dev = gsi->dev;
1538 	dma_addr_t addr;
1539 
1540 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1541 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1542 	 * be a power-of-2 number of pages, which satisfies the requirement.
1543 	 */
1544 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1545 	if (!ring->virt)
1546 		return -ENOMEM;
1547 
1548 	ring->addr = addr;
1549 	ring->count = count;
1550 	ring->index = 0;
1551 
1552 	return 0;
1553 }
1554 
1555 /* Free a previously-allocated ring */
1556 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1557 {
1558 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1559 
1560 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1561 }
1562 
1563 /* Allocate an available event ring id */
1564 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1565 {
1566 	u32 evt_ring_id;
1567 
1568 	if (gsi->event_bitmap == ~0U) {
1569 		dev_err(gsi->dev, "event rings exhausted\n");
1570 		return -ENOSPC;
1571 	}
1572 
1573 	evt_ring_id = ffz(gsi->event_bitmap);
1574 	gsi->event_bitmap |= BIT(evt_ring_id);
1575 
1576 	return (int)evt_ring_id;
1577 }
1578 
1579 /* Free a previously-allocated event ring id */
1580 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1581 {
1582 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1583 }
1584 
1585 /* Ring a channel doorbell, reporting the first un-filled entry */
1586 void gsi_channel_doorbell(struct gsi_channel *channel)
1587 {
1588 	struct gsi_ring *tre_ring = &channel->tre_ring;
1589 	u32 channel_id = gsi_channel_id(channel);
1590 	struct gsi *gsi = channel->gsi;
1591 	const struct reg *reg;
1592 	u32 val;
1593 
1594 	reg = gsi_reg(gsi, CH_C_DOORBELL_0);
1595 	/* Note: index *must* be used modulo the ring count here */
1596 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1597 	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
1598 }
1599 
1600 /* Consult hardware, move newly completed transactions to completed state */
1601 void gsi_channel_update(struct gsi_channel *channel)
1602 {
1603 	u32 evt_ring_id = channel->evt_ring_id;
1604 	struct gsi *gsi = channel->gsi;
1605 	struct gsi_evt_ring *evt_ring;
1606 	struct gsi_trans *trans;
1607 	struct gsi_ring *ring;
1608 	const struct reg *reg;
1609 	u32 offset;
1610 	u32 index;
1611 
1612 	evt_ring = &gsi->evt_ring[evt_ring_id];
1613 	ring = &evt_ring->ring;
1614 
1615 	/* See if there's anything new to process; if not, we're done.  Note
1616 	 * that index always refers to an entry *within* the event ring.
1617 	 */
1618 	reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
1619 	offset = reg_n_offset(reg, evt_ring_id);
1620 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1621 	if (index == ring->index % ring->count)
1622 		return;
1623 
1624 	/* Get the transaction for the latest completed event. */
1625 	trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1626 	if (!trans)
1627 		return;
1628 
1629 	/* For RX channels, update each completed transaction with the number
1630 	 * of bytes that were actually received.  For TX channels, report
1631 	 * the number of transactions and bytes this completion represents
1632 	 * up the network stack.
1633 	 */
1634 	gsi_evt_ring_update(gsi, evt_ring_id, index);
1635 }
1636 
1637 /**
1638  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1639  * @channel:	Channel to be polled
1640  *
1641  * Return:	Transaction pointer, or null if none are available
1642  *
1643  * This function returns the first of a channel's completed transactions.
1644  * If no transactions are in completed state, the hardware is consulted to
1645  * determine whether any new transactions have completed.  If so, they're
1646  * moved to completed state and the first such transaction is returned.
1647  * If there are no more completed transactions, a null pointer is returned.
1648  */
1649 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1650 {
1651 	struct gsi_trans *trans;
1652 
1653 	/* Get the first completed transaction */
1654 	trans = gsi_channel_trans_complete(channel);
1655 	if (trans)
1656 		gsi_trans_move_polled(trans);
1657 
1658 	return trans;
1659 }
1660 
1661 /**
1662  * gsi_channel_poll() - NAPI poll function for a channel
1663  * @napi:	NAPI structure for the channel
1664  * @budget:	Budget supplied by NAPI core
1665  *
1666  * Return:	Number of items polled (<= budget)
1667  *
1668  * Single transactions completed by hardware are polled until either
1669  * the budget is exhausted, or there are no more.  Each transaction
1670  * polled is passed to gsi_trans_complete(), to perform remaining
1671  * completion processing and retire/free the transaction.
1672  */
1673 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1674 {
1675 	struct gsi_channel *channel;
1676 	int count;
1677 
1678 	channel = container_of(napi, struct gsi_channel, napi);
1679 	for (count = 0; count < budget; count++) {
1680 		struct gsi_trans *trans;
1681 
1682 		trans = gsi_channel_poll_one(channel);
1683 		if (!trans)
1684 			break;
1685 		gsi_trans_complete(trans);
1686 	}
1687 
1688 	if (count < budget && napi_complete(napi))
1689 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1690 
1691 	return count;
1692 }
1693 
1694 /* The event bitmap represents which event ids are available for allocation.
1695  * Set bits are not available, clear bits can be used.  This function
1696  * initializes the map so all events supported by the hardware are available,
1697  * then precludes any reserved events from being allocated.
1698  */
1699 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1700 {
1701 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1702 
1703 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1704 
1705 	return event_bitmap;
1706 }
1707 
1708 /* Setup function for a single channel */
1709 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1710 {
1711 	struct gsi_channel *channel = &gsi->channel[channel_id];
1712 	u32 evt_ring_id = channel->evt_ring_id;
1713 	int ret;
1714 
1715 	if (!gsi_channel_initialized(channel))
1716 		return 0;
1717 
1718 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1719 	if (ret)
1720 		return ret;
1721 
1722 	gsi_evt_ring_program(gsi, evt_ring_id);
1723 
1724 	ret = gsi_channel_alloc_command(gsi, channel_id);
1725 	if (ret)
1726 		goto err_evt_ring_de_alloc;
1727 
1728 	gsi_channel_program(channel, true);
1729 
1730 	if (channel->toward_ipa)
1731 		netif_napi_add_tx(gsi->dummy_dev, &channel->napi,
1732 				  gsi_channel_poll);
1733 	else
1734 		netif_napi_add(gsi->dummy_dev, &channel->napi,
1735 			       gsi_channel_poll);
1736 
1737 	return 0;
1738 
1739 err_evt_ring_de_alloc:
1740 	/* We've done nothing with the event ring yet so don't reset */
1741 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1742 
1743 	return ret;
1744 }
1745 
1746 /* Inverse of gsi_channel_setup_one() */
1747 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1748 {
1749 	struct gsi_channel *channel = &gsi->channel[channel_id];
1750 	u32 evt_ring_id = channel->evt_ring_id;
1751 
1752 	if (!gsi_channel_initialized(channel))
1753 		return;
1754 
1755 	netif_napi_del(&channel->napi);
1756 
1757 	gsi_channel_de_alloc_command(gsi, channel_id);
1758 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1759 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1760 }
1761 
1762 /* We use generic commands only to operate on modem channels.  We don't have
1763  * the ability to determine channel state for a modem channel, so we simply
1764  * issue the command and wait for it to complete.
1765  */
1766 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1767 			       enum gsi_generic_cmd_opcode opcode,
1768 			       u8 params)
1769 {
1770 	const struct reg *reg;
1771 	bool timeout;
1772 	u32 offset;
1773 	u32 val;
1774 
1775 	/* The error global interrupt type is always enabled (until we tear
1776 	 * down), so we will keep it enabled.
1777 	 *
1778 	 * A generic EE command completes with a GSI global interrupt of
1779 	 * type GP_INT1.  We only perform one generic command at a time
1780 	 * (to allocate, halt, or enable/disable flow control on a modem
1781 	 * channel), and only from this function.  So we enable the GP_INT1
1782 	 * IRQ type here, and disable it again after the command completes.
1783 	 */
1784 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1785 	val = ERROR_INT | GP_INT1;
1786 	iowrite32(val, gsi->virt + reg_offset(reg));
1787 
1788 	/* First zero the result code field */
1789 	reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1790 	offset = reg_offset(reg);
1791 	val = ioread32(gsi->virt + offset);
1792 
1793 	val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
1794 	iowrite32(val, gsi->virt + offset);
1795 
1796 	/* Now issue the command */
1797 	reg = gsi_reg(gsi, GENERIC_CMD);
1798 	val = reg_encode(reg, GENERIC_OPCODE, opcode);
1799 	val |= reg_encode(reg, GENERIC_CHID, channel_id);
1800 	val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
1801 	if (gsi->version >= IPA_VERSION_4_11)
1802 		val |= reg_encode(reg, GENERIC_PARAMS, params);
1803 
1804 	timeout = !gsi_command(gsi, reg_offset(reg), val);
1805 
1806 	/* Disable the GP_INT1 IRQ type again */
1807 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1808 	iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
1809 
1810 	if (!timeout)
1811 		return gsi->result;
1812 
1813 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1814 		opcode, channel_id);
1815 
1816 	return -ETIMEDOUT;
1817 }
1818 
1819 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1820 {
1821 	return gsi_generic_command(gsi, channel_id,
1822 				   GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1823 }
1824 
1825 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1826 {
1827 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1828 	int ret;
1829 
1830 	do
1831 		ret = gsi_generic_command(gsi, channel_id,
1832 					  GSI_GENERIC_HALT_CHANNEL, 0);
1833 	while (ret == -EAGAIN && retries--);
1834 
1835 	if (ret)
1836 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1837 			ret, channel_id);
1838 }
1839 
1840 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1841 void
1842 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1843 {
1844 	u32 retries = 0;
1845 	u32 command;
1846 	int ret;
1847 
1848 	command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1849 			 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1850 	/* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1851 	 * is underway.  In this case we need to retry the command.
1852 	 */
1853 	if (!enable && gsi->version >= IPA_VERSION_4_11)
1854 		retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1855 
1856 	do
1857 		ret = gsi_generic_command(gsi, channel_id, command, 0);
1858 	while (ret == -EAGAIN && retries--);
1859 
1860 	if (ret)
1861 		dev_err(gsi->dev,
1862 			"error %d %sabling mode channel %u flow control\n",
1863 			ret, enable ? "en" : "dis", channel_id);
1864 }
1865 
1866 /* Setup function for channels */
1867 static int gsi_channel_setup(struct gsi *gsi)
1868 {
1869 	u32 channel_id = 0;
1870 	u32 mask;
1871 	int ret;
1872 
1873 	gsi_irq_enable(gsi);
1874 
1875 	mutex_lock(&gsi->mutex);
1876 
1877 	do {
1878 		ret = gsi_channel_setup_one(gsi, channel_id);
1879 		if (ret)
1880 			goto err_unwind;
1881 	} while (++channel_id < gsi->channel_count);
1882 
1883 	/* Make sure no channels were defined that hardware does not support */
1884 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1885 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1886 
1887 		if (!gsi_channel_initialized(channel))
1888 			continue;
1889 
1890 		ret = -EINVAL;
1891 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1892 			channel_id - 1);
1893 		channel_id = gsi->channel_count;
1894 		goto err_unwind;
1895 	}
1896 
1897 	/* Allocate modem channels if necessary */
1898 	mask = gsi->modem_channel_bitmap;
1899 	while (mask) {
1900 		u32 modem_channel_id = __ffs(mask);
1901 
1902 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1903 		if (ret)
1904 			goto err_unwind_modem;
1905 
1906 		/* Clear bit from mask only after success (for unwind) */
1907 		mask ^= BIT(modem_channel_id);
1908 	}
1909 
1910 	mutex_unlock(&gsi->mutex);
1911 
1912 	return 0;
1913 
1914 err_unwind_modem:
1915 	/* Compute which modem channels need to be deallocated */
1916 	mask ^= gsi->modem_channel_bitmap;
1917 	while (mask) {
1918 		channel_id = __fls(mask);
1919 
1920 		mask ^= BIT(channel_id);
1921 
1922 		gsi_modem_channel_halt(gsi, channel_id);
1923 	}
1924 
1925 err_unwind:
1926 	while (channel_id--)
1927 		gsi_channel_teardown_one(gsi, channel_id);
1928 
1929 	mutex_unlock(&gsi->mutex);
1930 
1931 	gsi_irq_disable(gsi);
1932 
1933 	return ret;
1934 }
1935 
1936 /* Inverse of gsi_channel_setup() */
1937 static void gsi_channel_teardown(struct gsi *gsi)
1938 {
1939 	u32 mask = gsi->modem_channel_bitmap;
1940 	u32 channel_id;
1941 
1942 	mutex_lock(&gsi->mutex);
1943 
1944 	while (mask) {
1945 		channel_id = __fls(mask);
1946 
1947 		mask ^= BIT(channel_id);
1948 
1949 		gsi_modem_channel_halt(gsi, channel_id);
1950 	}
1951 
1952 	channel_id = gsi->channel_count - 1;
1953 	do
1954 		gsi_channel_teardown_one(gsi, channel_id);
1955 	while (channel_id--);
1956 
1957 	mutex_unlock(&gsi->mutex);
1958 
1959 	gsi_irq_disable(gsi);
1960 }
1961 
1962 /* Turn off all GSI interrupts initially */
1963 static int gsi_irq_setup(struct gsi *gsi)
1964 {
1965 	const struct reg *reg;
1966 	int ret;
1967 
1968 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1969 	reg = gsi_reg(gsi, CNTXT_INTSET);
1970 	iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
1971 
1972 	/* Disable all interrupt types */
1973 	gsi_irq_type_update(gsi, 0);
1974 
1975 	/* Clear all type-specific interrupt masks */
1976 	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
1977 	iowrite32(0, gsi->virt + reg_offset(reg));
1978 
1979 	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
1980 	iowrite32(0, gsi->virt + reg_offset(reg));
1981 
1982 	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1983 	iowrite32(0, gsi->virt + reg_offset(reg));
1984 
1985 	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
1986 	iowrite32(0, gsi->virt + reg_offset(reg));
1987 
1988 	/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1989 	if (gsi->version > IPA_VERSION_3_1) {
1990 		reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
1991 		iowrite32(0, gsi->virt + reg_offset(reg));
1992 
1993 		reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
1994 		iowrite32(0, gsi->virt + reg_offset(reg));
1995 	}
1996 
1997 	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
1998 	iowrite32(0, gsi->virt + reg_offset(reg));
1999 
2000 	ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
2001 	if (ret)
2002 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
2003 
2004 	return ret;
2005 }
2006 
2007 static void gsi_irq_teardown(struct gsi *gsi)
2008 {
2009 	free_irq(gsi->irq, gsi);
2010 }
2011 
2012 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
2013 static int gsi_ring_setup(struct gsi *gsi)
2014 {
2015 	struct device *dev = gsi->dev;
2016 	const struct reg *reg;
2017 	u32 count;
2018 	u32 val;
2019 
2020 	if (gsi->version < IPA_VERSION_3_5_1) {
2021 		/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
2022 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
2023 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
2024 
2025 		return 0;
2026 	}
2027 
2028 	reg = gsi_reg(gsi, HW_PARAM_2);
2029 	val = ioread32(gsi->virt + reg_offset(reg));
2030 
2031 	count = reg_decode(reg, NUM_CH_PER_EE, val);
2032 	if (!count) {
2033 		dev_err(dev, "GSI reports zero channels supported\n");
2034 		return -EINVAL;
2035 	}
2036 	if (count > GSI_CHANNEL_COUNT_MAX) {
2037 		dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
2038 			 GSI_CHANNEL_COUNT_MAX, count);
2039 		count = GSI_CHANNEL_COUNT_MAX;
2040 	}
2041 	gsi->channel_count = count;
2042 
2043 	if (gsi->version < IPA_VERSION_5_0) {
2044 		count = reg_decode(reg, NUM_EV_PER_EE, val);
2045 	} else {
2046 		reg = gsi_reg(gsi, HW_PARAM_4);
2047 		count = reg_decode(reg, EV_PER_EE, val);
2048 	}
2049 	if (!count) {
2050 		dev_err(dev, "GSI reports zero event rings supported\n");
2051 		return -EINVAL;
2052 	}
2053 	if (count > GSI_EVT_RING_COUNT_MAX) {
2054 		dev_warn(dev,
2055 			 "limiting to %u event rings; hardware supports %u\n",
2056 			 GSI_EVT_RING_COUNT_MAX, count);
2057 		count = GSI_EVT_RING_COUNT_MAX;
2058 	}
2059 	gsi->evt_ring_count = count;
2060 
2061 	return 0;
2062 }
2063 
2064 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
2065 int gsi_setup(struct gsi *gsi)
2066 {
2067 	const struct reg *reg;
2068 	u32 val;
2069 	int ret;
2070 
2071 	/* Here is where we first touch the GSI hardware */
2072 	reg = gsi_reg(gsi, GSI_STATUS);
2073 	val = ioread32(gsi->virt + reg_offset(reg));
2074 	if (!(val & reg_bit(reg, ENABLED))) {
2075 		dev_err(gsi->dev, "GSI has not been enabled\n");
2076 		return -EIO;
2077 	}
2078 
2079 	ret = gsi_irq_setup(gsi);
2080 	if (ret)
2081 		return ret;
2082 
2083 	ret = gsi_ring_setup(gsi);	/* No matching teardown required */
2084 	if (ret)
2085 		goto err_irq_teardown;
2086 
2087 	/* Initialize the error log */
2088 	reg = gsi_reg(gsi, ERROR_LOG);
2089 	iowrite32(0, gsi->virt + reg_offset(reg));
2090 
2091 	ret = gsi_channel_setup(gsi);
2092 	if (ret)
2093 		goto err_irq_teardown;
2094 
2095 	return 0;
2096 
2097 err_irq_teardown:
2098 	gsi_irq_teardown(gsi);
2099 
2100 	return ret;
2101 }
2102 
2103 /* Inverse of gsi_setup() */
2104 void gsi_teardown(struct gsi *gsi)
2105 {
2106 	gsi_channel_teardown(gsi);
2107 	gsi_irq_teardown(gsi);
2108 }
2109 
2110 /* Initialize a channel's event ring */
2111 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
2112 {
2113 	struct gsi *gsi = channel->gsi;
2114 	struct gsi_evt_ring *evt_ring;
2115 	int ret;
2116 
2117 	ret = gsi_evt_ring_id_alloc(gsi);
2118 	if (ret < 0)
2119 		return ret;
2120 	channel->evt_ring_id = ret;
2121 
2122 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
2123 	evt_ring->channel = channel;
2124 
2125 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
2126 	if (!ret)
2127 		return 0;	/* Success! */
2128 
2129 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
2130 		ret, gsi_channel_id(channel));
2131 
2132 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
2133 
2134 	return ret;
2135 }
2136 
2137 /* Inverse of gsi_channel_evt_ring_init() */
2138 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
2139 {
2140 	u32 evt_ring_id = channel->evt_ring_id;
2141 	struct gsi *gsi = channel->gsi;
2142 	struct gsi_evt_ring *evt_ring;
2143 
2144 	evt_ring = &gsi->evt_ring[evt_ring_id];
2145 	gsi_ring_free(gsi, &evt_ring->ring);
2146 	gsi_evt_ring_id_free(gsi, evt_ring_id);
2147 }
2148 
2149 static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
2150 				   const struct ipa_gsi_endpoint_data *data)
2151 {
2152 	const struct gsi_channel_data *channel_data;
2153 	u32 channel_id = data->channel_id;
2154 	struct device *dev = gsi->dev;
2155 
2156 	/* Make sure channel ids are in the range driver supports */
2157 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2158 		dev_err(dev, "bad channel id %u; must be less than %u\n",
2159 			channel_id, GSI_CHANNEL_COUNT_MAX);
2160 		return false;
2161 	}
2162 
2163 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2164 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2165 		return false;
2166 	}
2167 
2168 	if (command && !data->toward_ipa) {
2169 		dev_err(dev, "command channel %u is not TX\n", channel_id);
2170 		return false;
2171 	}
2172 
2173 	channel_data = &data->channel;
2174 
2175 	if (!channel_data->tlv_count ||
2176 	    channel_data->tlv_count > GSI_TLV_MAX) {
2177 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2178 			channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2179 		return false;
2180 	}
2181 
2182 	if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2183 		dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2184 			channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2185 			channel_data->tlv_count);
2186 		return false;
2187 	}
2188 
2189 	/* We have to allow at least one maximally-sized transaction to
2190 	 * be outstanding (which would use tlv_count TREs).  Given how
2191 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
2192 	 * twice the TLV FIFO size to satisfy this requirement.
2193 	 */
2194 	if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2195 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2196 			channel_id, channel_data->tlv_count,
2197 			channel_data->tre_count);
2198 		return false;
2199 	}
2200 
2201 	if (!is_power_of_2(channel_data->tre_count)) {
2202 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2203 			channel_id, channel_data->tre_count);
2204 		return false;
2205 	}
2206 
2207 	if (!is_power_of_2(channel_data->event_count)) {
2208 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2209 			channel_id, channel_data->event_count);
2210 		return false;
2211 	}
2212 
2213 	return true;
2214 }
2215 
2216 /* Init function for a single channel */
2217 static int gsi_channel_init_one(struct gsi *gsi,
2218 				const struct ipa_gsi_endpoint_data *data,
2219 				bool command)
2220 {
2221 	struct gsi_channel *channel;
2222 	u32 tre_count;
2223 	int ret;
2224 
2225 	if (!gsi_channel_data_valid(gsi, command, data))
2226 		return -EINVAL;
2227 
2228 	/* Worst case we need an event for every outstanding TRE */
2229 	if (data->channel.tre_count > data->channel.event_count) {
2230 		tre_count = data->channel.event_count;
2231 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2232 			 data->channel_id, tre_count);
2233 	} else {
2234 		tre_count = data->channel.tre_count;
2235 	}
2236 
2237 	channel = &gsi->channel[data->channel_id];
2238 	memset(channel, 0, sizeof(*channel));
2239 
2240 	channel->gsi = gsi;
2241 	channel->toward_ipa = data->toward_ipa;
2242 	channel->command = command;
2243 	channel->trans_tre_max = data->channel.tlv_count;
2244 	channel->tre_count = tre_count;
2245 	channel->event_count = data->channel.event_count;
2246 
2247 	ret = gsi_channel_evt_ring_init(channel);
2248 	if (ret)
2249 		goto err_clear_gsi;
2250 
2251 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2252 	if (ret) {
2253 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2254 			ret, data->channel_id);
2255 		goto err_channel_evt_ring_exit;
2256 	}
2257 
2258 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2259 	if (ret)
2260 		goto err_ring_free;
2261 
2262 	if (command) {
2263 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2264 
2265 		ret = ipa_cmd_pool_init(channel, tre_max);
2266 	}
2267 	if (!ret)
2268 		return 0;	/* Success! */
2269 
2270 	gsi_channel_trans_exit(channel);
2271 err_ring_free:
2272 	gsi_ring_free(gsi, &channel->tre_ring);
2273 err_channel_evt_ring_exit:
2274 	gsi_channel_evt_ring_exit(channel);
2275 err_clear_gsi:
2276 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2277 
2278 	return ret;
2279 }
2280 
2281 /* Inverse of gsi_channel_init_one() */
2282 static void gsi_channel_exit_one(struct gsi_channel *channel)
2283 {
2284 	if (!gsi_channel_initialized(channel))
2285 		return;
2286 
2287 	if (channel->command)
2288 		ipa_cmd_pool_exit(channel);
2289 	gsi_channel_trans_exit(channel);
2290 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2291 	gsi_channel_evt_ring_exit(channel);
2292 }
2293 
2294 /* Init function for channels */
2295 static int gsi_channel_init(struct gsi *gsi, u32 count,
2296 			    const struct ipa_gsi_endpoint_data *data)
2297 {
2298 	bool modem_alloc;
2299 	int ret = 0;
2300 	u32 i;
2301 
2302 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2303 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2304 
2305 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2306 	gsi->ieob_enabled_bitmap = 0;
2307 
2308 	/* The endpoint data array is indexed by endpoint name */
2309 	for (i = 0; i < count; i++) {
2310 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2311 
2312 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2313 			continue;	/* Skip over empty slots */
2314 
2315 		/* Mark modem channels to be allocated (hardware workaround) */
2316 		if (data[i].ee_id == GSI_EE_MODEM) {
2317 			if (modem_alloc)
2318 				gsi->modem_channel_bitmap |=
2319 						BIT(data[i].channel_id);
2320 			continue;
2321 		}
2322 
2323 		ret = gsi_channel_init_one(gsi, &data[i], command);
2324 		if (ret)
2325 			goto err_unwind;
2326 	}
2327 
2328 	return ret;
2329 
2330 err_unwind:
2331 	while (i--) {
2332 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2333 			continue;
2334 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2335 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2336 			continue;
2337 		}
2338 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2339 	}
2340 
2341 	return ret;
2342 }
2343 
2344 /* Inverse of gsi_channel_init() */
2345 static void gsi_channel_exit(struct gsi *gsi)
2346 {
2347 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2348 
2349 	do
2350 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2351 	while (channel_id--);
2352 	gsi->modem_channel_bitmap = 0;
2353 }
2354 
2355 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2356 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2357 	     enum ipa_version version, u32 count,
2358 	     const struct ipa_gsi_endpoint_data *data)
2359 {
2360 	int ret;
2361 
2362 	gsi_validate_build();
2363 
2364 	gsi->dev = &pdev->dev;
2365 	gsi->version = version;
2366 
2367 	/* GSI uses NAPI on all channels.  Create a dummy network device
2368 	 * for the channel NAPI contexts to be associated with.
2369 	 */
2370 	gsi->dummy_dev = alloc_netdev_dummy(0);
2371 	if (!gsi->dummy_dev)
2372 		return -ENOMEM;
2373 	init_completion(&gsi->completion);
2374 
2375 	ret = gsi_reg_init(gsi, pdev);
2376 	if (ret)
2377 		goto err_reg_exit;
2378 
2379 	ret = gsi_irq_init(gsi, pdev);	/* No matching exit required */
2380 	if (ret)
2381 		goto err_reg_exit;
2382 
2383 	ret = gsi_channel_init(gsi, count, data);
2384 	if (ret)
2385 		goto err_reg_exit;
2386 
2387 	mutex_init(&gsi->mutex);
2388 
2389 	return 0;
2390 
2391 err_reg_exit:
2392 	free_netdev(gsi->dummy_dev);
2393 	gsi_reg_exit(gsi);
2394 
2395 	return ret;
2396 }
2397 
2398 /* Inverse of gsi_init() */
2399 void gsi_exit(struct gsi *gsi)
2400 {
2401 	mutex_destroy(&gsi->mutex);
2402 	gsi_channel_exit(gsi);
2403 	free_netdev(gsi->dummy_dev);
2404 	gsi_reg_exit(gsi);
2405 }
2406 
2407 /* The maximum number of outstanding TREs on a channel.  This limits
2408  * a channel's maximum number of transactions outstanding (worst case
2409  * is one TRE per transaction).
2410  *
2411  * The absolute limit is the number of TREs in the channel's TRE ring,
2412  * and in theory we should be able use all of them.  But in practice,
2413  * doing that led to the hardware reporting exhaustion of event ring
2414  * slots for writing completion information.  So the hardware limit
2415  * would be (tre_count - 1).
2416  *
2417  * We reduce it a bit further though.  Transaction resource pools are
2418  * sized to be a little larger than this maximum, to allow resource
2419  * allocations to always be contiguous.  The number of entries in a
2420  * TRE ring buffer is a power of 2, and the extra resources in a pool
2421  * tends to nearly double the memory allocated for it.  Reducing the
2422  * maximum number of outstanding TREs allows the number of entries in
2423  * a pool to avoid crossing that power-of-2 boundary, and this can
2424  * substantially reduce pool memory requirements.  The number we
2425  * reduce it by matches the number added in gsi_trans_pool_init().
2426  */
2427 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2428 {
2429 	struct gsi_channel *channel = &gsi->channel[channel_id];
2430 
2431 	/* Hardware limit is channel->tre_count - 1 */
2432 	return channel->tre_count - (channel->trans_tre_max - 1);
2433 }
2434