1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 #include "ipa_version.h" 25 26 /** 27 * DOC: The IPA Generic Software Interface 28 * 29 * The generic software interface (GSI) is an integral component of the IPA, 30 * providing a well-defined communication layer between the AP subsystem 31 * and the IPA core. The modem uses the GSI layer as well. 32 * 33 * -------- --------- 34 * | | | | 35 * | AP +<---. .----+ Modem | 36 * | +--. | | .->+ | 37 * | | | | | | | | 38 * -------- | | | | --------- 39 * v | v | 40 * --+-+---+-+-- 41 * | GSI | 42 * |-----------| 43 * | | 44 * | IPA | 45 * | | 46 * ------------- 47 * 48 * In the above diagram, the AP and Modem represent "execution environments" 49 * (EEs), which are independent operating environments that use the IPA for 50 * data transfer. 51 * 52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 53 * of data to or from the IPA. A channel is implemented as a ring buffer, 54 * with a DRAM-resident array of "transfer elements" (TREs) available to 55 * describe transfers to or from other EEs through the IPA. A transfer 56 * element can also contain an immediate command, requesting the IPA perform 57 * actions other than data transfer. 58 * 59 * Each TRE refers to a block of data--also located DRAM. After writing one 60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 61 * doorbell register to inform the receiving side how many elements have 62 * been written. 63 * 64 * Each channel has a GSI "event ring" associated with it. An event ring 65 * is implemented very much like a channel ring, but is always directed from 66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 67 * events by adding an entry to the event ring associated with the channel. 68 * The GSI then writes its doorbell for the event ring, causing the target 69 * EE to be interrupted. Each entry in an event ring contains a pointer 70 * to the channel TRE whose completion the event represents. 71 * 72 * Each TRE in a channel ring has a set of flags. One flag indicates whether 73 * the completion of the transfer operation generates an entry (and possibly 74 * an interrupt) in the channel's event ring. Other flags allow transfer 75 * elements to be chained together, forming a single logical transaction. 76 * TRE flags are used to control whether and when interrupts are generated 77 * to signal completion of channel transfers. 78 * 79 * Elements in channel and event rings are completed (or consumed) strictly 80 * in order. Completion of one entry implies the completion of all preceding 81 * entries. A single completion interrupt can therefore communicate the 82 * completion of many transfers. 83 * 84 * Note that all GSI registers are little-endian, which is the assumed 85 * endianness of I/O space accesses. The accessor functions perform byte 86 * swapping if needed (i.e., for a big endian CPU). 87 */ 88 89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 91 92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 93 94 #define GSI_CHANNEL_STOP_RETRIES 10 95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 96 97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 99 100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 101 102 /* An entry in an event ring */ 103 struct gsi_event { 104 __le64 xfer_ptr; 105 __le16 len; 106 u8 reserved1; 107 u8 code; 108 __le16 reserved2; 109 u8 type; 110 u8 chid; 111 }; 112 113 /** gsi_channel_scratch_gpi - GPI protocol scratch register 114 * @max_outstanding_tre: 115 * Defines the maximum number of TREs allowed in a single transaction 116 * on a channel (in bytes). This determines the amount of prefetch 117 * performed by the hardware. We configure this to equal the size of 118 * the TLV FIFO for the channel. 119 * @outstanding_threshold: 120 * Defines the threshold (in bytes) determining when the sequencer 121 * should update the channel doorbell. We configure this to equal 122 * the size of two TREs. 123 */ 124 struct gsi_channel_scratch_gpi { 125 u64 reserved1; 126 u16 reserved2; 127 u16 max_outstanding_tre; 128 u16 reserved3; 129 u16 outstanding_threshold; 130 }; 131 132 /** gsi_channel_scratch - channel scratch configuration area 133 * 134 * The exact interpretation of this register is protocol-specific. 135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 136 */ 137 union gsi_channel_scratch { 138 struct gsi_channel_scratch_gpi gpi; 139 struct { 140 u32 word1; 141 u32 word2; 142 u32 word3; 143 u32 word4; 144 } data; 145 }; 146 147 /* Check things that can be validated at build time. */ 148 static void gsi_validate_build(void) 149 { 150 /* This is used as a divisor */ 151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 152 153 /* Code assumes the size of channel and event ring element are 154 * the same (and fixed). Make sure the size of an event ring 155 * element is what's expected. 156 */ 157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 158 159 /* Hardware requires a 2^n ring size. We ensure the number of 160 * elements in an event ring is a power of 2 elsewhere; this 161 * ensure the elements themselves meet the requirement. 162 */ 163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 164 165 /* The channel element size must fit in this field */ 166 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 167 168 /* The event ring element size must fit in this field */ 169 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 170 } 171 172 /* Return the channel id associated with a given channel */ 173 static u32 gsi_channel_id(struct gsi_channel *channel) 174 { 175 return channel - &channel->gsi->channel[0]; 176 } 177 178 /* An initialized channel has a non-null GSI pointer */ 179 static bool gsi_channel_initialized(struct gsi_channel *channel) 180 { 181 return !!channel->gsi; 182 } 183 184 /* Update the GSI IRQ type register with the cached value */ 185 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 186 { 187 gsi->type_enabled_bitmap = val; 188 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 189 } 190 191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 192 { 193 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); 194 } 195 196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 197 { 198 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); 199 } 200 201 /* Turn off all GSI interrupts initially */ 202 static void gsi_irq_setup(struct gsi *gsi) 203 { 204 /* Disable all interrupt types */ 205 gsi_irq_type_update(gsi, 0); 206 207 /* Clear all type-specific interrupt masks */ 208 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 209 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 210 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 211 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 212 213 /* The inter-EE registers are in the non-adjusted address range */ 214 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_CH_IRQ_OFFSET); 215 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET); 216 217 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 218 } 219 220 /* Turn off all GSI interrupts when we're all done */ 221 static void gsi_irq_teardown(struct gsi *gsi) 222 { 223 /* Nothing to do */ 224 } 225 226 /* Event ring commands are performed one at a time. Their completion 227 * is signaled by the event ring control GSI interrupt type, which is 228 * only enabled when we issue an event ring command. Only the event 229 * ring being operated on has this interrupt enabled. 230 */ 231 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 232 { 233 u32 val = BIT(evt_ring_id); 234 235 /* There's a small chance that a previous command completed 236 * after the interrupt was disabled, so make sure we have no 237 * pending interrupts before we enable them. 238 */ 239 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 240 241 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 242 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 243 } 244 245 /* Disable event ring control interrupts */ 246 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 247 { 248 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 249 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 250 } 251 252 /* Channel commands are performed one at a time. Their completion is 253 * signaled by the channel control GSI interrupt type, which is only 254 * enabled when we issue a channel command. Only the channel being 255 * operated on has this interrupt enabled. 256 */ 257 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 258 { 259 u32 val = BIT(channel_id); 260 261 /* There's a small chance that a previous command completed 262 * after the interrupt was disabled, so make sure we have no 263 * pending interrupts before we enable them. 264 */ 265 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 266 267 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 268 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 269 } 270 271 /* Disable channel control interrupts */ 272 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 273 { 274 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 275 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 276 } 277 278 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 279 { 280 bool enable_ieob = !gsi->ieob_enabled_bitmap; 281 u32 val; 282 283 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 284 val = gsi->ieob_enabled_bitmap; 285 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 286 287 /* Enable the interrupt type if this is the first channel enabled */ 288 if (enable_ieob) 289 gsi_irq_type_enable(gsi, GSI_IEOB); 290 } 291 292 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 293 { 294 u32 val; 295 296 gsi->ieob_enabled_bitmap &= ~event_mask; 297 298 /* Disable the interrupt type if this was the last enabled channel */ 299 if (!gsi->ieob_enabled_bitmap) 300 gsi_irq_type_disable(gsi, GSI_IEOB); 301 302 val = gsi->ieob_enabled_bitmap; 303 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 304 } 305 306 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 307 { 308 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 309 } 310 311 /* Enable all GSI_interrupt types */ 312 static void gsi_irq_enable(struct gsi *gsi) 313 { 314 u32 val; 315 316 /* Global interrupts include hardware error reports. Enable 317 * that so we can at least report the error should it occur. 318 */ 319 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 320 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); 321 322 /* General GSI interrupts are reported to all EEs; if they occur 323 * they are unrecoverable (without reset). A breakpoint interrupt 324 * also exists, but we don't support that. We want to be notified 325 * of errors so we can report them, even if they can't be handled. 326 */ 327 val = BIT(BUS_ERROR); 328 val |= BIT(CMD_FIFO_OVRFLOW); 329 val |= BIT(MCS_STACK_OVRFLOW); 330 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 331 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); 332 } 333 334 /* Disable all GSI interrupt types */ 335 static void gsi_irq_disable(struct gsi *gsi) 336 { 337 gsi_irq_type_update(gsi, 0); 338 339 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 340 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 341 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 342 } 343 344 /* Return the virtual address associated with a ring index */ 345 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 346 { 347 /* Note: index *must* be used modulo the ring count here */ 348 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 349 } 350 351 /* Return the 32-bit DMA address associated with a ring index */ 352 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 353 { 354 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 355 } 356 357 /* Return the ring index of a 32-bit ring offset */ 358 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 359 { 360 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 361 } 362 363 /* Issue a GSI command by writing a value to a register, then wait for 364 * completion to be signaled. Returns true if the command completes 365 * or false if it times out. 366 */ 367 static bool 368 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 369 { 370 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 371 372 reinit_completion(completion); 373 374 iowrite32(val, gsi->virt + reg); 375 376 return !!wait_for_completion_timeout(completion, timeout); 377 } 378 379 /* Return the hardware's notion of the current state of an event ring */ 380 static enum gsi_evt_ring_state 381 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 382 { 383 u32 val; 384 385 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 386 387 return u32_get_bits(val, EV_CHSTATE_FMASK); 388 } 389 390 /* Issue an event ring command and wait for it to complete */ 391 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 392 enum gsi_evt_cmd_opcode opcode) 393 { 394 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 395 struct completion *completion = &evt_ring->completion; 396 struct device *dev = gsi->dev; 397 bool timeout; 398 u32 val; 399 400 /* Enable the completion interrupt for the command */ 401 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 402 403 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 404 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 405 406 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion); 407 408 gsi_irq_ev_ctrl_disable(gsi); 409 410 if (!timeout) 411 return; 412 413 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 414 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 415 } 416 417 /* Allocate an event ring in NOT_ALLOCATED state */ 418 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 419 { 420 enum gsi_evt_ring_state state; 421 422 /* Get initial event ring state */ 423 state = gsi_evt_ring_state(gsi, evt_ring_id); 424 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 425 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 426 evt_ring_id, state); 427 return -EINVAL; 428 } 429 430 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 431 432 /* If successful the event ring state will have changed */ 433 state = gsi_evt_ring_state(gsi, evt_ring_id); 434 if (state == GSI_EVT_RING_STATE_ALLOCATED) 435 return 0; 436 437 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 438 evt_ring_id, state); 439 440 return -EIO; 441 } 442 443 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 444 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 445 { 446 enum gsi_evt_ring_state state; 447 448 state = gsi_evt_ring_state(gsi, evt_ring_id); 449 if (state != GSI_EVT_RING_STATE_ALLOCATED && 450 state != GSI_EVT_RING_STATE_ERROR) { 451 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 452 evt_ring_id, state); 453 return; 454 } 455 456 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 457 458 /* If successful the event ring state will have changed */ 459 state = gsi_evt_ring_state(gsi, evt_ring_id); 460 if (state == GSI_EVT_RING_STATE_ALLOCATED) 461 return; 462 463 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 464 evt_ring_id, state); 465 } 466 467 /* Issue a hardware de-allocation request for an allocated event ring */ 468 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 469 { 470 enum gsi_evt_ring_state state; 471 472 state = gsi_evt_ring_state(gsi, evt_ring_id); 473 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 474 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 475 evt_ring_id, state); 476 return; 477 } 478 479 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 480 481 /* If successful the event ring state will have changed */ 482 state = gsi_evt_ring_state(gsi, evt_ring_id); 483 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 484 return; 485 486 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 487 evt_ring_id, state); 488 } 489 490 /* Fetch the current state of a channel from hardware */ 491 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 492 { 493 u32 channel_id = gsi_channel_id(channel); 494 void __iomem *virt = channel->gsi->virt; 495 u32 val; 496 497 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 498 499 return u32_get_bits(val, CHSTATE_FMASK); 500 } 501 502 /* Issue a channel command and wait for it to complete */ 503 static void 504 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 505 { 506 struct completion *completion = &channel->completion; 507 u32 channel_id = gsi_channel_id(channel); 508 struct gsi *gsi = channel->gsi; 509 struct device *dev = gsi->dev; 510 bool timeout; 511 u32 val; 512 513 /* Enable the completion interrupt for the command */ 514 gsi_irq_ch_ctrl_enable(gsi, channel_id); 515 516 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 517 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 518 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion); 519 520 gsi_irq_ch_ctrl_disable(gsi); 521 522 if (!timeout) 523 return; 524 525 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 526 opcode, channel_id, gsi_channel_state(channel)); 527 } 528 529 /* Allocate GSI channel in NOT_ALLOCATED state */ 530 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 531 { 532 struct gsi_channel *channel = &gsi->channel[channel_id]; 533 struct device *dev = gsi->dev; 534 enum gsi_channel_state state; 535 536 /* Get initial channel state */ 537 state = gsi_channel_state(channel); 538 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 539 dev_err(dev, "channel %u bad state %u before alloc\n", 540 channel_id, state); 541 return -EINVAL; 542 } 543 544 gsi_channel_command(channel, GSI_CH_ALLOCATE); 545 546 /* If successful the channel state will have changed */ 547 state = gsi_channel_state(channel); 548 if (state == GSI_CHANNEL_STATE_ALLOCATED) 549 return 0; 550 551 dev_err(dev, "channel %u bad state %u after alloc\n", 552 channel_id, state); 553 554 return -EIO; 555 } 556 557 /* Start an ALLOCATED channel */ 558 static int gsi_channel_start_command(struct gsi_channel *channel) 559 { 560 struct device *dev = channel->gsi->dev; 561 enum gsi_channel_state state; 562 563 state = gsi_channel_state(channel); 564 if (state != GSI_CHANNEL_STATE_ALLOCATED && 565 state != GSI_CHANNEL_STATE_STOPPED) { 566 dev_err(dev, "channel %u bad state %u before start\n", 567 gsi_channel_id(channel), state); 568 return -EINVAL; 569 } 570 571 gsi_channel_command(channel, GSI_CH_START); 572 573 /* If successful the channel state will have changed */ 574 state = gsi_channel_state(channel); 575 if (state == GSI_CHANNEL_STATE_STARTED) 576 return 0; 577 578 dev_err(dev, "channel %u bad state %u after start\n", 579 gsi_channel_id(channel), state); 580 581 return -EIO; 582 } 583 584 /* Stop a GSI channel in STARTED state */ 585 static int gsi_channel_stop_command(struct gsi_channel *channel) 586 { 587 struct device *dev = channel->gsi->dev; 588 enum gsi_channel_state state; 589 590 state = gsi_channel_state(channel); 591 592 /* Channel could have entered STOPPED state since last call 593 * if it timed out. If so, we're done. 594 */ 595 if (state == GSI_CHANNEL_STATE_STOPPED) 596 return 0; 597 598 if (state != GSI_CHANNEL_STATE_STARTED && 599 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 600 dev_err(dev, "channel %u bad state %u before stop\n", 601 gsi_channel_id(channel), state); 602 return -EINVAL; 603 } 604 605 gsi_channel_command(channel, GSI_CH_STOP); 606 607 /* If successful the channel state will have changed */ 608 state = gsi_channel_state(channel); 609 if (state == GSI_CHANNEL_STATE_STOPPED) 610 return 0; 611 612 /* We may have to try again if stop is in progress */ 613 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 614 return -EAGAIN; 615 616 dev_err(dev, "channel %u bad state %u after stop\n", 617 gsi_channel_id(channel), state); 618 619 return -EIO; 620 } 621 622 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 623 static void gsi_channel_reset_command(struct gsi_channel *channel) 624 { 625 struct device *dev = channel->gsi->dev; 626 enum gsi_channel_state state; 627 628 /* A short delay is required before a RESET command */ 629 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 630 631 state = gsi_channel_state(channel); 632 if (state != GSI_CHANNEL_STATE_STOPPED && 633 state != GSI_CHANNEL_STATE_ERROR) { 634 /* No need to reset a channel already in ALLOCATED state */ 635 if (state != GSI_CHANNEL_STATE_ALLOCATED) 636 dev_err(dev, "channel %u bad state %u before reset\n", 637 gsi_channel_id(channel), state); 638 return; 639 } 640 641 gsi_channel_command(channel, GSI_CH_RESET); 642 643 /* If successful the channel state will have changed */ 644 state = gsi_channel_state(channel); 645 if (state != GSI_CHANNEL_STATE_ALLOCATED) 646 dev_err(dev, "channel %u bad state %u after reset\n", 647 gsi_channel_id(channel), state); 648 } 649 650 /* Deallocate an ALLOCATED GSI channel */ 651 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 652 { 653 struct gsi_channel *channel = &gsi->channel[channel_id]; 654 struct device *dev = gsi->dev; 655 enum gsi_channel_state state; 656 657 state = gsi_channel_state(channel); 658 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 659 dev_err(dev, "channel %u bad state %u before dealloc\n", 660 channel_id, state); 661 return; 662 } 663 664 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 665 666 /* If successful the channel state will have changed */ 667 state = gsi_channel_state(channel); 668 669 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 670 dev_err(dev, "channel %u bad state %u after dealloc\n", 671 channel_id, state); 672 } 673 674 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 675 * The index argument (modulo the ring count) is the first unfilled entry, so 676 * we supply one less than that with the doorbell. Update the event ring 677 * index field with the value provided. 678 */ 679 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 680 { 681 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 682 u32 val; 683 684 ring->index = index; /* Next unused entry */ 685 686 /* Note: index *must* be used modulo the ring count here */ 687 val = gsi_ring_addr(ring, (index - 1) % ring->count); 688 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 689 } 690 691 /* Program an event ring for use */ 692 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 693 { 694 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 695 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 696 u32 val; 697 698 /* We program all event rings as GPI type/protocol */ 699 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); 700 val |= EV_INTYPE_FMASK; 701 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 702 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 703 704 val = u32_encode_bits(size, EV_R_LENGTH_FMASK); 705 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 706 707 /* The context 2 and 3 registers store the low-order and 708 * high-order 32 bits of the address of the event ring, 709 * respectively. 710 */ 711 val = lower_32_bits(evt_ring->ring.addr); 712 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 713 val = upper_32_bits(evt_ring->ring.addr); 714 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 715 716 /* Enable interrupt moderation by setting the moderation delay */ 717 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 718 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 719 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 720 721 /* No MSI write data, and MSI address high and low address is 0 */ 722 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 723 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 724 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 725 726 /* We don't need to get event read pointer updates */ 727 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 728 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 729 730 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 731 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 732 } 733 734 /* Find the transaction whose completion indicates a channel is quiesced */ 735 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 736 { 737 struct gsi_trans_info *trans_info = &channel->trans_info; 738 const struct list_head *list; 739 struct gsi_trans *trans; 740 741 spin_lock_bh(&trans_info->spinlock); 742 743 /* There is a small chance a TX transaction got allocated just 744 * before we disabled transmits, so check for that. 745 */ 746 if (channel->toward_ipa) { 747 list = &trans_info->alloc; 748 if (!list_empty(list)) 749 goto done; 750 list = &trans_info->pending; 751 if (!list_empty(list)) 752 goto done; 753 } 754 755 /* Otherwise (TX or RX) we want to wait for anything that 756 * has completed, or has been polled but not released yet. 757 */ 758 list = &trans_info->complete; 759 if (!list_empty(list)) 760 goto done; 761 list = &trans_info->polled; 762 if (list_empty(list)) 763 list = NULL; 764 done: 765 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL; 766 767 /* Caller will wait for this, so take a reference */ 768 if (trans) 769 refcount_inc(&trans->refcount); 770 771 spin_unlock_bh(&trans_info->spinlock); 772 773 return trans; 774 } 775 776 /* Wait for transaction activity on a channel to complete */ 777 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 778 { 779 struct gsi_trans *trans; 780 781 /* Get the last transaction, and wait for it to complete */ 782 trans = gsi_channel_trans_last(channel); 783 if (trans) { 784 wait_for_completion(&trans->completion); 785 gsi_trans_free(trans); 786 } 787 } 788 789 /* Program a channel for use */ 790 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 791 { 792 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 793 u32 channel_id = gsi_channel_id(channel); 794 union gsi_channel_scratch scr = { }; 795 struct gsi_channel_scratch_gpi *gpi; 796 struct gsi *gsi = channel->gsi; 797 u32 wrr_weight = 0; 798 u32 val; 799 800 /* Arbitrarily pick TRE 0 as the first channel element to use */ 801 channel->tre_ring.index = 0; 802 803 /* We program all channels as GPI type/protocol */ 804 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK); 805 if (channel->toward_ipa) 806 val |= CHTYPE_DIR_FMASK; 807 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 808 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 809 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 810 811 val = u32_encode_bits(size, R_LENGTH_FMASK); 812 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 813 814 /* The context 2 and 3 registers store the low-order and 815 * high-order 32 bits of the address of the channel ring, 816 * respectively. 817 */ 818 val = lower_32_bits(channel->tre_ring.addr); 819 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 820 val = upper_32_bits(channel->tre_ring.addr); 821 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 822 823 /* Command channel gets low weighted round-robin priority */ 824 if (channel->command) 825 wrr_weight = field_max(WRR_WEIGHT_FMASK); 826 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 827 828 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 829 830 /* We enable the doorbell engine for IPA v3.5.1 */ 831 if (gsi->version == IPA_VERSION_3_5_1 && doorbell) 832 val |= USE_DB_ENG_FMASK; 833 834 /* v4.0 introduces an escape buffer for prefetch. We use it 835 * on all but the AP command channel. 836 */ 837 if (gsi->version != IPA_VERSION_3_5_1 && !channel->command) { 838 /* If not otherwise set, prefetch buffers are used */ 839 if (gsi->version < IPA_VERSION_4_5) 840 val |= USE_ESCAPE_BUF_ONLY_FMASK; 841 else 842 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, 843 PREFETCH_MODE_FMASK); 844 } 845 846 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 847 848 /* Now update the scratch registers for GPI protocol */ 849 gpi = &scr.gpi; 850 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 851 GSI_RING_ELEMENT_SIZE; 852 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 853 854 val = scr.data.word1; 855 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 856 857 val = scr.data.word2; 858 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 859 860 val = scr.data.word3; 861 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 862 863 /* We must preserve the upper 16 bits of the last scratch register. 864 * The next sequence assumes those bits remain unchanged between the 865 * read and the write. 866 */ 867 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 868 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 869 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 870 871 /* All done! */ 872 } 873 874 static void gsi_channel_deprogram(struct gsi_channel *channel) 875 { 876 /* Nothing to do */ 877 } 878 879 static int __gsi_channel_start(struct gsi_channel *channel, bool start) 880 { 881 struct gsi *gsi = channel->gsi; 882 int ret; 883 884 if (!start) 885 return 0; 886 887 mutex_lock(&gsi->mutex); 888 889 ret = gsi_channel_start_command(channel); 890 891 mutex_unlock(&gsi->mutex); 892 893 return ret; 894 } 895 896 /* Start an allocated GSI channel */ 897 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 898 { 899 struct gsi_channel *channel = &gsi->channel[channel_id]; 900 int ret; 901 902 /* Enable NAPI and the completion interrupt */ 903 napi_enable(&channel->napi); 904 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 905 906 ret = __gsi_channel_start(channel, true); 907 if (ret) { 908 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 909 napi_disable(&channel->napi); 910 } 911 912 return ret; 913 } 914 915 static int gsi_channel_stop_retry(struct gsi_channel *channel) 916 { 917 u32 retries = GSI_CHANNEL_STOP_RETRIES; 918 int ret; 919 920 do { 921 ret = gsi_channel_stop_command(channel); 922 if (ret != -EAGAIN) 923 break; 924 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 925 } while (retries--); 926 927 return ret; 928 } 929 930 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop) 931 { 932 struct gsi *gsi = channel->gsi; 933 int ret; 934 935 /* Wait for any underway transactions to complete before stopping. */ 936 gsi_channel_trans_quiesce(channel); 937 938 if (!stop) 939 return 0; 940 941 mutex_lock(&gsi->mutex); 942 943 ret = gsi_channel_stop_retry(channel); 944 945 mutex_unlock(&gsi->mutex); 946 947 return ret; 948 } 949 950 /* Stop a started channel */ 951 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 952 { 953 struct gsi_channel *channel = &gsi->channel[channel_id]; 954 int ret; 955 956 ret = __gsi_channel_stop(channel, true); 957 if (ret) 958 return ret; 959 960 /* Disable the completion interrupt and NAPI if successful */ 961 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 962 napi_disable(&channel->napi); 963 964 return 0; 965 } 966 967 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 968 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 969 { 970 struct gsi_channel *channel = &gsi->channel[channel_id]; 971 972 mutex_lock(&gsi->mutex); 973 974 gsi_channel_reset_command(channel); 975 /* Due to a hardware quirk we may need to reset RX channels twice. */ 976 if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa) 977 gsi_channel_reset_command(channel); 978 979 gsi_channel_program(channel, doorbell); 980 gsi_channel_trans_cancel_pending(channel); 981 982 mutex_unlock(&gsi->mutex); 983 } 984 985 /* Stop a STARTED channel for suspend (using stop if requested) */ 986 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 987 { 988 struct gsi_channel *channel = &gsi->channel[channel_id]; 989 int ret; 990 991 ret = __gsi_channel_stop(channel, stop); 992 if (ret) 993 return ret; 994 995 /* Ensure NAPI polling has finished. */ 996 napi_synchronize(&channel->napi); 997 998 return 0; 999 } 1000 1001 /* Resume a suspended channel (starting will be requested if STOPPED) */ 1002 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 1003 { 1004 struct gsi_channel *channel = &gsi->channel[channel_id]; 1005 1006 return __gsi_channel_start(channel, start); 1007 } 1008 1009 /** 1010 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 1011 * @channel: Channel for which to report 1012 * 1013 * Report to the network stack the number of bytes and transactions that 1014 * have been queued to hardware since last call. This and the next function 1015 * supply information used by the network stack for throttling. 1016 * 1017 * For each channel we track the number of transactions used and bytes of 1018 * data those transactions represent. We also track what those values are 1019 * each time this function is called. Subtracting the two tells us 1020 * the number of bytes and transactions that have been added between 1021 * successive calls. 1022 * 1023 * Calling this each time we ring the channel doorbell allows us to 1024 * provide accurate information to the network stack about how much 1025 * work we've given the hardware at any point in time. 1026 */ 1027 void gsi_channel_tx_queued(struct gsi_channel *channel) 1028 { 1029 u32 trans_count; 1030 u32 byte_count; 1031 1032 byte_count = channel->byte_count - channel->queued_byte_count; 1033 trans_count = channel->trans_count - channel->queued_trans_count; 1034 channel->queued_byte_count = channel->byte_count; 1035 channel->queued_trans_count = channel->trans_count; 1036 1037 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 1038 trans_count, byte_count); 1039 } 1040 1041 /** 1042 * gsi_channel_tx_update() - Report completed TX transfers 1043 * @channel: Channel that has completed transmitting packets 1044 * @trans: Last transation known to be complete 1045 * 1046 * Compute the number of transactions and bytes that have been transferred 1047 * over a TX channel since the given transaction was committed. Report this 1048 * information to the network stack. 1049 * 1050 * At the time a transaction is committed, we record its channel's 1051 * committed transaction and byte counts *in the transaction*. 1052 * Completions are signaled by the hardware with an interrupt, and 1053 * we can determine the latest completed transaction at that time. 1054 * 1055 * The difference between the byte/transaction count recorded in 1056 * the transaction and the count last time we recorded a completion 1057 * tells us exactly how much data has been transferred between 1058 * completions. 1059 * 1060 * Calling this each time we learn of a newly-completed transaction 1061 * allows us to provide accurate information to the network stack 1062 * about how much work has been completed by the hardware at a given 1063 * point in time. 1064 */ 1065 static void 1066 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 1067 { 1068 u64 byte_count = trans->byte_count + trans->len; 1069 u64 trans_count = trans->trans_count + 1; 1070 1071 byte_count -= channel->compl_byte_count; 1072 channel->compl_byte_count += byte_count; 1073 trans_count -= channel->compl_trans_count; 1074 channel->compl_trans_count += trans_count; 1075 1076 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 1077 trans_count, byte_count); 1078 } 1079 1080 /* Channel control interrupt handler */ 1081 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1082 { 1083 u32 channel_mask; 1084 1085 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 1086 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 1087 1088 while (channel_mask) { 1089 u32 channel_id = __ffs(channel_mask); 1090 struct gsi_channel *channel; 1091 1092 channel_mask ^= BIT(channel_id); 1093 1094 channel = &gsi->channel[channel_id]; 1095 1096 complete(&channel->completion); 1097 } 1098 } 1099 1100 /* Event ring control interrupt handler */ 1101 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1102 { 1103 u32 event_mask; 1104 1105 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 1106 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 1107 1108 while (event_mask) { 1109 u32 evt_ring_id = __ffs(event_mask); 1110 struct gsi_evt_ring *evt_ring; 1111 1112 event_mask ^= BIT(evt_ring_id); 1113 1114 evt_ring = &gsi->evt_ring[evt_ring_id]; 1115 1116 complete(&evt_ring->completion); 1117 } 1118 } 1119 1120 /* Global channel error interrupt handler */ 1121 static void 1122 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1123 { 1124 if (code == GSI_OUT_OF_RESOURCES) { 1125 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1126 complete(&gsi->channel[channel_id].completion); 1127 return; 1128 } 1129 1130 /* Report, but otherwise ignore all other error codes */ 1131 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1132 channel_id, err_ee, code); 1133 } 1134 1135 /* Global event error interrupt handler */ 1136 static void 1137 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1138 { 1139 if (code == GSI_OUT_OF_RESOURCES) { 1140 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1141 u32 channel_id = gsi_channel_id(evt_ring->channel); 1142 1143 complete(&evt_ring->completion); 1144 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1145 channel_id); 1146 return; 1147 } 1148 1149 /* Report, but otherwise ignore all other error codes */ 1150 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1151 evt_ring_id, err_ee, code); 1152 } 1153 1154 /* Global error interrupt handler */ 1155 static void gsi_isr_glob_err(struct gsi *gsi) 1156 { 1157 enum gsi_err_type type; 1158 enum gsi_err_code code; 1159 u32 which; 1160 u32 val; 1161 u32 ee; 1162 1163 /* Get the logged error, then reinitialize the log */ 1164 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1165 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1166 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1167 1168 ee = u32_get_bits(val, ERR_EE_FMASK); 1169 type = u32_get_bits(val, ERR_TYPE_FMASK); 1170 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1171 code = u32_get_bits(val, ERR_CODE_FMASK); 1172 1173 if (type == GSI_ERR_TYPE_CHAN) 1174 gsi_isr_glob_chan_err(gsi, ee, which, code); 1175 else if (type == GSI_ERR_TYPE_EVT) 1176 gsi_isr_glob_evt_err(gsi, ee, which, code); 1177 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1178 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1179 } 1180 1181 /* Generic EE interrupt handler */ 1182 static void gsi_isr_gp_int1(struct gsi *gsi) 1183 { 1184 u32 result; 1185 u32 val; 1186 1187 /* This interrupt is used to handle completions of the two GENERIC 1188 * GSI commands. We use these to allocate and halt channels on 1189 * the modem's behalf due to a hardware quirk on IPA v4.2. Once 1190 * allocated, the modem "owns" these channels, and as a result we 1191 * have no way of knowing the channel's state at any given time. 1192 * 1193 * It is recommended that we halt the modem channels we allocated 1194 * when shutting down, but it's possible the channel isn't running 1195 * at the time we issue the HALT command. We'll get an error in 1196 * that case, but it's harmless (the channel is already halted). 1197 * 1198 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error 1199 * if we receive it. 1200 */ 1201 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1202 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1203 1204 switch (result) { 1205 case GENERIC_EE_SUCCESS: 1206 case GENERIC_EE_CHANNEL_NOT_RUNNING: 1207 gsi->result = 0; 1208 break; 1209 1210 case GENERIC_EE_RETRY: 1211 gsi->result = -EAGAIN; 1212 break; 1213 1214 default: 1215 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1216 gsi->result = -EIO; 1217 break; 1218 } 1219 1220 complete(&gsi->completion); 1221 } 1222 1223 /* Inter-EE interrupt handler */ 1224 static void gsi_isr_glob_ee(struct gsi *gsi) 1225 { 1226 u32 val; 1227 1228 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1229 1230 if (val & BIT(ERROR_INT)) 1231 gsi_isr_glob_err(gsi); 1232 1233 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1234 1235 val &= ~BIT(ERROR_INT); 1236 1237 if (val & BIT(GP_INT1)) { 1238 val ^= BIT(GP_INT1); 1239 gsi_isr_gp_int1(gsi); 1240 } 1241 1242 if (val) 1243 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1244 } 1245 1246 /* I/O completion interrupt event */ 1247 static void gsi_isr_ieob(struct gsi *gsi) 1248 { 1249 u32 event_mask; 1250 1251 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1252 gsi_irq_ieob_disable(gsi, event_mask); 1253 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1254 1255 while (event_mask) { 1256 u32 evt_ring_id = __ffs(event_mask); 1257 1258 event_mask ^= BIT(evt_ring_id); 1259 1260 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1261 } 1262 } 1263 1264 /* General event interrupts represent serious problems, so report them */ 1265 static void gsi_isr_general(struct gsi *gsi) 1266 { 1267 struct device *dev = gsi->dev; 1268 u32 val; 1269 1270 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1271 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1272 1273 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1274 } 1275 1276 /** 1277 * gsi_isr() - Top level GSI interrupt service routine 1278 * @irq: Interrupt number (ignored) 1279 * @dev_id: GSI pointer supplied to request_irq() 1280 * 1281 * This is the main handler function registered for the GSI IRQ. Each type 1282 * of interrupt has a separate handler function that is called from here. 1283 */ 1284 static irqreturn_t gsi_isr(int irq, void *dev_id) 1285 { 1286 struct gsi *gsi = dev_id; 1287 u32 intr_mask; 1288 u32 cnt = 0; 1289 1290 /* enum gsi_irq_type_id defines GSI interrupt types */ 1291 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1292 /* intr_mask contains bitmask of pending GSI interrupts */ 1293 do { 1294 u32 gsi_intr = BIT(__ffs(intr_mask)); 1295 1296 intr_mask ^= gsi_intr; 1297 1298 switch (gsi_intr) { 1299 case BIT(GSI_CH_CTRL): 1300 gsi_isr_chan_ctrl(gsi); 1301 break; 1302 case BIT(GSI_EV_CTRL): 1303 gsi_isr_evt_ctrl(gsi); 1304 break; 1305 case BIT(GSI_GLOB_EE): 1306 gsi_isr_glob_ee(gsi); 1307 break; 1308 case BIT(GSI_IEOB): 1309 gsi_isr_ieob(gsi); 1310 break; 1311 case BIT(GSI_GENERAL): 1312 gsi_isr_general(gsi); 1313 break; 1314 default: 1315 dev_err(gsi->dev, 1316 "unrecognized interrupt type 0x%08x\n", 1317 gsi_intr); 1318 break; 1319 } 1320 } while (intr_mask); 1321 1322 if (++cnt > GSI_ISR_MAX_ITER) { 1323 dev_err(gsi->dev, "interrupt flood\n"); 1324 break; 1325 } 1326 } 1327 1328 return IRQ_HANDLED; 1329 } 1330 1331 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1332 { 1333 struct device *dev = &pdev->dev; 1334 unsigned int irq; 1335 int ret; 1336 1337 ret = platform_get_irq_byname(pdev, "gsi"); 1338 if (ret <= 0) 1339 return ret ? : -EINVAL; 1340 1341 irq = ret; 1342 1343 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1344 if (ret) { 1345 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret); 1346 return ret; 1347 } 1348 gsi->irq = irq; 1349 1350 return 0; 1351 } 1352 1353 static void gsi_irq_exit(struct gsi *gsi) 1354 { 1355 free_irq(gsi->irq, gsi); 1356 } 1357 1358 /* Return the transaction associated with a transfer completion event */ 1359 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1360 struct gsi_event *event) 1361 { 1362 u32 tre_offset; 1363 u32 tre_index; 1364 1365 /* Event xfer_ptr records the TRE it's associated with */ 1366 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1367 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1368 1369 return gsi_channel_trans_mapped(channel, tre_index); 1370 } 1371 1372 /** 1373 * gsi_evt_ring_rx_update() - Record lengths of received data 1374 * @evt_ring: Event ring associated with channel that received packets 1375 * @index: Event index in ring reported by hardware 1376 * 1377 * Events for RX channels contain the actual number of bytes received into 1378 * the buffer. Every event has a transaction associated with it, and here 1379 * we update transactions to record their actual received lengths. 1380 * 1381 * This function is called whenever we learn that the GSI hardware has filled 1382 * new events since the last time we checked. The ring's index field tells 1383 * the first entry in need of processing. The index provided is the 1384 * first *unfilled* event in the ring (following the last filled one). 1385 * 1386 * Events are sequential within the event ring, and transactions are 1387 * sequential within the transaction pool. 1388 * 1389 * Note that @index always refers to an element *within* the event ring. 1390 */ 1391 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1392 { 1393 struct gsi_channel *channel = evt_ring->channel; 1394 struct gsi_ring *ring = &evt_ring->ring; 1395 struct gsi_trans_info *trans_info; 1396 struct gsi_event *event_done; 1397 struct gsi_event *event; 1398 struct gsi_trans *trans; 1399 u32 byte_count = 0; 1400 u32 old_index; 1401 u32 event_avail; 1402 1403 trans_info = &channel->trans_info; 1404 1405 /* We'll start with the oldest un-processed event. RX channels 1406 * replenish receive buffers in single-TRE transactions, so we 1407 * can just map that event to its transaction. Transactions 1408 * associated with completion events are consecutive. 1409 */ 1410 old_index = ring->index; 1411 event = gsi_ring_virt(ring, old_index); 1412 trans = gsi_event_trans(channel, event); 1413 1414 /* Compute the number of events to process before we wrap, 1415 * and determine when we'll be done processing events. 1416 */ 1417 event_avail = ring->count - old_index % ring->count; 1418 event_done = gsi_ring_virt(ring, index); 1419 do { 1420 trans->len = __le16_to_cpu(event->len); 1421 byte_count += trans->len; 1422 1423 /* Move on to the next event and transaction */ 1424 if (--event_avail) 1425 event++; 1426 else 1427 event = gsi_ring_virt(ring, 0); 1428 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1429 } while (event != event_done); 1430 1431 /* We record RX bytes when they are received */ 1432 channel->byte_count += byte_count; 1433 channel->trans_count++; 1434 } 1435 1436 /* Initialize a ring, including allocating DMA memory for its entries */ 1437 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1438 { 1439 size_t size = count * GSI_RING_ELEMENT_SIZE; 1440 struct device *dev = gsi->dev; 1441 dma_addr_t addr; 1442 1443 /* Hardware requires a 2^n ring size, with alignment equal to size */ 1444 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1445 if (ring->virt && addr % size) { 1446 dma_free_coherent(dev, size, ring->virt, addr); 1447 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", 1448 size); 1449 return -EINVAL; /* Not a good error value, but distinct */ 1450 } else if (!ring->virt) { 1451 return -ENOMEM; 1452 } 1453 ring->addr = addr; 1454 ring->count = count; 1455 1456 return 0; 1457 } 1458 1459 /* Free a previously-allocated ring */ 1460 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1461 { 1462 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1463 1464 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1465 } 1466 1467 /* Allocate an available event ring id */ 1468 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1469 { 1470 u32 evt_ring_id; 1471 1472 if (gsi->event_bitmap == ~0U) { 1473 dev_err(gsi->dev, "event rings exhausted\n"); 1474 return -ENOSPC; 1475 } 1476 1477 evt_ring_id = ffz(gsi->event_bitmap); 1478 gsi->event_bitmap |= BIT(evt_ring_id); 1479 1480 return (int)evt_ring_id; 1481 } 1482 1483 /* Free a previously-allocated event ring id */ 1484 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1485 { 1486 gsi->event_bitmap &= ~BIT(evt_ring_id); 1487 } 1488 1489 /* Ring a channel doorbell, reporting the first un-filled entry */ 1490 void gsi_channel_doorbell(struct gsi_channel *channel) 1491 { 1492 struct gsi_ring *tre_ring = &channel->tre_ring; 1493 u32 channel_id = gsi_channel_id(channel); 1494 struct gsi *gsi = channel->gsi; 1495 u32 val; 1496 1497 /* Note: index *must* be used modulo the ring count here */ 1498 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1499 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1500 } 1501 1502 /* Consult hardware, move any newly completed transactions to completed list */ 1503 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) 1504 { 1505 u32 evt_ring_id = channel->evt_ring_id; 1506 struct gsi *gsi = channel->gsi; 1507 struct gsi_evt_ring *evt_ring; 1508 struct gsi_trans *trans; 1509 struct gsi_ring *ring; 1510 u32 offset; 1511 u32 index; 1512 1513 evt_ring = &gsi->evt_ring[evt_ring_id]; 1514 ring = &evt_ring->ring; 1515 1516 /* See if there's anything new to process; if not, we're done. Note 1517 * that index always refers to an entry *within* the event ring. 1518 */ 1519 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1520 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1521 if (index == ring->index % ring->count) 1522 return NULL; 1523 1524 /* Get the transaction for the latest completed event. Take a 1525 * reference to keep it from completing before we give the events 1526 * for this and previous transactions back to the hardware. 1527 */ 1528 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1529 refcount_inc(&trans->refcount); 1530 1531 /* For RX channels, update each completed transaction with the number 1532 * of bytes that were actually received. For TX channels, report 1533 * the number of transactions and bytes this completion represents 1534 * up the network stack. 1535 */ 1536 if (channel->toward_ipa) 1537 gsi_channel_tx_update(channel, trans); 1538 else 1539 gsi_evt_ring_rx_update(evt_ring, index); 1540 1541 gsi_trans_move_complete(trans); 1542 1543 /* Tell the hardware we've handled these events */ 1544 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1545 1546 gsi_trans_free(trans); 1547 1548 return gsi_channel_trans_complete(channel); 1549 } 1550 1551 /** 1552 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1553 * @channel: Channel to be polled 1554 * 1555 * Return: Transaction pointer, or null if none are available 1556 * 1557 * This function returns the first entry on a channel's completed transaction 1558 * list. If that list is empty, the hardware is consulted to determine 1559 * whether any new transactions have completed. If so, they're moved to the 1560 * completed list and the new first entry is returned. If there are no more 1561 * completed transactions, a null pointer is returned. 1562 */ 1563 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1564 { 1565 struct gsi_trans *trans; 1566 1567 /* Get the first transaction from the completed list */ 1568 trans = gsi_channel_trans_complete(channel); 1569 if (!trans) /* List is empty; see if there's more to do */ 1570 trans = gsi_channel_update(channel); 1571 1572 if (trans) 1573 gsi_trans_move_polled(trans); 1574 1575 return trans; 1576 } 1577 1578 /** 1579 * gsi_channel_poll() - NAPI poll function for a channel 1580 * @napi: NAPI structure for the channel 1581 * @budget: Budget supplied by NAPI core 1582 * 1583 * Return: Number of items polled (<= budget) 1584 * 1585 * Single transactions completed by hardware are polled until either 1586 * the budget is exhausted, or there are no more. Each transaction 1587 * polled is passed to gsi_trans_complete(), to perform remaining 1588 * completion processing and retire/free the transaction. 1589 */ 1590 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1591 { 1592 struct gsi_channel *channel; 1593 int count; 1594 1595 channel = container_of(napi, struct gsi_channel, napi); 1596 for (count = 0; count < budget; count++) { 1597 struct gsi_trans *trans; 1598 1599 trans = gsi_channel_poll_one(channel); 1600 if (!trans) 1601 break; 1602 gsi_trans_complete(trans); 1603 } 1604 1605 if (count < budget && napi_complete(napi)) 1606 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1607 1608 return count; 1609 } 1610 1611 /* The event bitmap represents which event ids are available for allocation. 1612 * Set bits are not available, clear bits can be used. This function 1613 * initializes the map so all events supported by the hardware are available, 1614 * then precludes any reserved events from being allocated. 1615 */ 1616 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1617 { 1618 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1619 1620 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1621 1622 return event_bitmap; 1623 } 1624 1625 /* Setup function for event rings */ 1626 static void gsi_evt_ring_setup(struct gsi *gsi) 1627 { 1628 /* Nothing to do */ 1629 } 1630 1631 /* Inverse of gsi_evt_ring_setup() */ 1632 static void gsi_evt_ring_teardown(struct gsi *gsi) 1633 { 1634 /* Nothing to do */ 1635 } 1636 1637 /* Setup function for a single channel */ 1638 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1639 { 1640 struct gsi_channel *channel = &gsi->channel[channel_id]; 1641 u32 evt_ring_id = channel->evt_ring_id; 1642 int ret; 1643 1644 if (!gsi_channel_initialized(channel)) 1645 return 0; 1646 1647 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1648 if (ret) 1649 return ret; 1650 1651 gsi_evt_ring_program(gsi, evt_ring_id); 1652 1653 ret = gsi_channel_alloc_command(gsi, channel_id); 1654 if (ret) 1655 goto err_evt_ring_de_alloc; 1656 1657 gsi_channel_program(channel, true); 1658 1659 if (channel->toward_ipa) 1660 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1661 gsi_channel_poll, NAPI_POLL_WEIGHT); 1662 else 1663 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1664 gsi_channel_poll, NAPI_POLL_WEIGHT); 1665 1666 return 0; 1667 1668 err_evt_ring_de_alloc: 1669 /* We've done nothing with the event ring yet so don't reset */ 1670 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1671 1672 return ret; 1673 } 1674 1675 /* Inverse of gsi_channel_setup_one() */ 1676 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1677 { 1678 struct gsi_channel *channel = &gsi->channel[channel_id]; 1679 u32 evt_ring_id = channel->evt_ring_id; 1680 1681 if (!gsi_channel_initialized(channel)) 1682 return; 1683 1684 netif_napi_del(&channel->napi); 1685 1686 gsi_channel_deprogram(channel); 1687 gsi_channel_de_alloc_command(gsi, channel_id); 1688 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1689 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1690 } 1691 1692 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1693 enum gsi_generic_cmd_opcode opcode) 1694 { 1695 struct completion *completion = &gsi->completion; 1696 bool timeout; 1697 u32 val; 1698 1699 /* The error global interrupt type is always enabled (until we 1700 * teardown), so we won't change that. A generic EE command 1701 * completes with a GSI global interrupt of type GP_INT1. We 1702 * only perform one generic command at a time (to allocate or 1703 * halt a modem channel) and only from this function. So we 1704 * enable the GP_INT1 IRQ type here while we're expecting it. 1705 */ 1706 val = BIT(ERROR_INT) | BIT(GP_INT1); 1707 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1708 1709 /* First zero the result code field */ 1710 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1711 val &= ~GENERIC_EE_RESULT_FMASK; 1712 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1713 1714 /* Now issue the command */ 1715 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1716 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1717 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1718 1719 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion); 1720 1721 /* Disable the GP_INT1 IRQ type again */ 1722 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1723 1724 if (!timeout) 1725 return gsi->result; 1726 1727 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1728 opcode, channel_id); 1729 1730 return -ETIMEDOUT; 1731 } 1732 1733 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1734 { 1735 return gsi_generic_command(gsi, channel_id, 1736 GSI_GENERIC_ALLOCATE_CHANNEL); 1737 } 1738 1739 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1740 { 1741 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1742 int ret; 1743 1744 do 1745 ret = gsi_generic_command(gsi, channel_id, 1746 GSI_GENERIC_HALT_CHANNEL); 1747 while (ret == -EAGAIN && retries--); 1748 1749 if (ret) 1750 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1751 ret, channel_id); 1752 } 1753 1754 /* Setup function for channels */ 1755 static int gsi_channel_setup(struct gsi *gsi) 1756 { 1757 u32 channel_id = 0; 1758 u32 mask; 1759 int ret; 1760 1761 gsi_evt_ring_setup(gsi); 1762 gsi_irq_enable(gsi); 1763 1764 mutex_lock(&gsi->mutex); 1765 1766 do { 1767 ret = gsi_channel_setup_one(gsi, channel_id); 1768 if (ret) 1769 goto err_unwind; 1770 } while (++channel_id < gsi->channel_count); 1771 1772 /* Make sure no channels were defined that hardware does not support */ 1773 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1774 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1775 1776 if (!gsi_channel_initialized(channel)) 1777 continue; 1778 1779 ret = -EINVAL; 1780 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1781 channel_id - 1); 1782 channel_id = gsi->channel_count; 1783 goto err_unwind; 1784 } 1785 1786 /* Allocate modem channels if necessary */ 1787 mask = gsi->modem_channel_bitmap; 1788 while (mask) { 1789 u32 modem_channel_id = __ffs(mask); 1790 1791 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1792 if (ret) 1793 goto err_unwind_modem; 1794 1795 /* Clear bit from mask only after success (for unwind) */ 1796 mask ^= BIT(modem_channel_id); 1797 } 1798 1799 mutex_unlock(&gsi->mutex); 1800 1801 return 0; 1802 1803 err_unwind_modem: 1804 /* Compute which modem channels need to be deallocated */ 1805 mask ^= gsi->modem_channel_bitmap; 1806 while (mask) { 1807 channel_id = __fls(mask); 1808 1809 mask ^= BIT(channel_id); 1810 1811 gsi_modem_channel_halt(gsi, channel_id); 1812 } 1813 1814 err_unwind: 1815 while (channel_id--) 1816 gsi_channel_teardown_one(gsi, channel_id); 1817 1818 mutex_unlock(&gsi->mutex); 1819 1820 gsi_irq_disable(gsi); 1821 gsi_evt_ring_teardown(gsi); 1822 1823 return ret; 1824 } 1825 1826 /* Inverse of gsi_channel_setup() */ 1827 static void gsi_channel_teardown(struct gsi *gsi) 1828 { 1829 u32 mask = gsi->modem_channel_bitmap; 1830 u32 channel_id; 1831 1832 mutex_lock(&gsi->mutex); 1833 1834 while (mask) { 1835 channel_id = __fls(mask); 1836 1837 mask ^= BIT(channel_id); 1838 1839 gsi_modem_channel_halt(gsi, channel_id); 1840 } 1841 1842 channel_id = gsi->channel_count - 1; 1843 do 1844 gsi_channel_teardown_one(gsi, channel_id); 1845 while (channel_id--); 1846 1847 mutex_unlock(&gsi->mutex); 1848 1849 gsi_irq_disable(gsi); 1850 gsi_evt_ring_teardown(gsi); 1851 } 1852 1853 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1854 int gsi_setup(struct gsi *gsi) 1855 { 1856 struct device *dev = gsi->dev; 1857 u32 val; 1858 int ret; 1859 1860 /* Here is where we first touch the GSI hardware */ 1861 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1862 if (!(val & ENABLED_FMASK)) { 1863 dev_err(dev, "GSI has not been enabled\n"); 1864 return -EIO; 1865 } 1866 1867 gsi_irq_setup(gsi); 1868 1869 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1870 1871 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1872 if (!gsi->channel_count) { 1873 dev_err(dev, "GSI reports zero channels supported\n"); 1874 return -EINVAL; 1875 } 1876 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1877 dev_warn(dev, 1878 "limiting to %u channels; hardware supports %u\n", 1879 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1880 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1881 } 1882 1883 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1884 if (!gsi->evt_ring_count) { 1885 dev_err(dev, "GSI reports zero event rings supported\n"); 1886 return -EINVAL; 1887 } 1888 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1889 dev_warn(dev, 1890 "limiting to %u event rings; hardware supports %u\n", 1891 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1892 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1893 } 1894 1895 /* Initialize the error log */ 1896 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1897 1898 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1899 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1900 1901 ret = gsi_channel_setup(gsi); 1902 if (ret) 1903 gsi_irq_teardown(gsi); 1904 1905 return ret; 1906 } 1907 1908 /* Inverse of gsi_setup() */ 1909 void gsi_teardown(struct gsi *gsi) 1910 { 1911 gsi_channel_teardown(gsi); 1912 gsi_irq_teardown(gsi); 1913 } 1914 1915 /* Initialize a channel's event ring */ 1916 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1917 { 1918 struct gsi *gsi = channel->gsi; 1919 struct gsi_evt_ring *evt_ring; 1920 int ret; 1921 1922 ret = gsi_evt_ring_id_alloc(gsi); 1923 if (ret < 0) 1924 return ret; 1925 channel->evt_ring_id = ret; 1926 1927 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1928 evt_ring->channel = channel; 1929 1930 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1931 if (!ret) 1932 return 0; /* Success! */ 1933 1934 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1935 ret, gsi_channel_id(channel)); 1936 1937 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1938 1939 return ret; 1940 } 1941 1942 /* Inverse of gsi_channel_evt_ring_init() */ 1943 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1944 { 1945 u32 evt_ring_id = channel->evt_ring_id; 1946 struct gsi *gsi = channel->gsi; 1947 struct gsi_evt_ring *evt_ring; 1948 1949 evt_ring = &gsi->evt_ring[evt_ring_id]; 1950 gsi_ring_free(gsi, &evt_ring->ring); 1951 gsi_evt_ring_id_free(gsi, evt_ring_id); 1952 } 1953 1954 /* Init function for event rings */ 1955 static void gsi_evt_ring_init(struct gsi *gsi) 1956 { 1957 u32 evt_ring_id = 0; 1958 1959 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1960 gsi->ieob_enabled_bitmap = 0; 1961 do 1962 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1963 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1964 } 1965 1966 /* Inverse of gsi_evt_ring_init() */ 1967 static void gsi_evt_ring_exit(struct gsi *gsi) 1968 { 1969 /* Nothing to do */ 1970 } 1971 1972 static bool gsi_channel_data_valid(struct gsi *gsi, 1973 const struct ipa_gsi_endpoint_data *data) 1974 { 1975 #ifdef IPA_VALIDATION 1976 u32 channel_id = data->channel_id; 1977 struct device *dev = gsi->dev; 1978 1979 /* Make sure channel ids are in the range driver supports */ 1980 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1981 dev_err(dev, "bad channel id %u; must be less than %u\n", 1982 channel_id, GSI_CHANNEL_COUNT_MAX); 1983 return false; 1984 } 1985 1986 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1987 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 1988 return false; 1989 } 1990 1991 if (!data->channel.tlv_count || 1992 data->channel.tlv_count > GSI_TLV_MAX) { 1993 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 1994 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1995 return false; 1996 } 1997 1998 /* We have to allow at least one maximally-sized transaction to 1999 * be outstanding (which would use tlv_count TREs). Given how 2000 * gsi_channel_tre_max() is computed, tre_count has to be almost 2001 * twice the TLV FIFO size to satisfy this requirement. 2002 */ 2003 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 2004 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2005 channel_id, data->channel.tlv_count, 2006 data->channel.tre_count); 2007 return false; 2008 } 2009 2010 if (!is_power_of_2(data->channel.tre_count)) { 2011 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2012 channel_id, data->channel.tre_count); 2013 return false; 2014 } 2015 2016 if (!is_power_of_2(data->channel.event_count)) { 2017 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2018 channel_id, data->channel.event_count); 2019 return false; 2020 } 2021 #endif /* IPA_VALIDATION */ 2022 2023 return true; 2024 } 2025 2026 /* Init function for a single channel */ 2027 static int gsi_channel_init_one(struct gsi *gsi, 2028 const struct ipa_gsi_endpoint_data *data, 2029 bool command) 2030 { 2031 struct gsi_channel *channel; 2032 u32 tre_count; 2033 int ret; 2034 2035 if (!gsi_channel_data_valid(gsi, data)) 2036 return -EINVAL; 2037 2038 /* Worst case we need an event for every outstanding TRE */ 2039 if (data->channel.tre_count > data->channel.event_count) { 2040 tre_count = data->channel.event_count; 2041 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2042 data->channel_id, tre_count); 2043 } else { 2044 tre_count = data->channel.tre_count; 2045 } 2046 2047 channel = &gsi->channel[data->channel_id]; 2048 memset(channel, 0, sizeof(*channel)); 2049 2050 channel->gsi = gsi; 2051 channel->toward_ipa = data->toward_ipa; 2052 channel->command = command; 2053 channel->tlv_count = data->channel.tlv_count; 2054 channel->tre_count = tre_count; 2055 channel->event_count = data->channel.event_count; 2056 init_completion(&channel->completion); 2057 2058 ret = gsi_channel_evt_ring_init(channel); 2059 if (ret) 2060 goto err_clear_gsi; 2061 2062 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2063 if (ret) { 2064 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2065 ret, data->channel_id); 2066 goto err_channel_evt_ring_exit; 2067 } 2068 2069 ret = gsi_channel_trans_init(gsi, data->channel_id); 2070 if (ret) 2071 goto err_ring_free; 2072 2073 if (command) { 2074 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2075 2076 ret = ipa_cmd_pool_init(channel, tre_max); 2077 } 2078 if (!ret) 2079 return 0; /* Success! */ 2080 2081 gsi_channel_trans_exit(channel); 2082 err_ring_free: 2083 gsi_ring_free(gsi, &channel->tre_ring); 2084 err_channel_evt_ring_exit: 2085 gsi_channel_evt_ring_exit(channel); 2086 err_clear_gsi: 2087 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2088 2089 return ret; 2090 } 2091 2092 /* Inverse of gsi_channel_init_one() */ 2093 static void gsi_channel_exit_one(struct gsi_channel *channel) 2094 { 2095 if (!gsi_channel_initialized(channel)) 2096 return; 2097 2098 if (channel->command) 2099 ipa_cmd_pool_exit(channel); 2100 gsi_channel_trans_exit(channel); 2101 gsi_ring_free(channel->gsi, &channel->tre_ring); 2102 gsi_channel_evt_ring_exit(channel); 2103 } 2104 2105 /* Init function for channels */ 2106 static int gsi_channel_init(struct gsi *gsi, u32 count, 2107 const struct ipa_gsi_endpoint_data *data) 2108 { 2109 bool modem_alloc; 2110 int ret = 0; 2111 u32 i; 2112 2113 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2114 modem_alloc = gsi->version == IPA_VERSION_4_2; 2115 2116 gsi_evt_ring_init(gsi); 2117 2118 /* The endpoint data array is indexed by endpoint name */ 2119 for (i = 0; i < count; i++) { 2120 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2121 2122 if (ipa_gsi_endpoint_data_empty(&data[i])) 2123 continue; /* Skip over empty slots */ 2124 2125 /* Mark modem channels to be allocated (hardware workaround) */ 2126 if (data[i].ee_id == GSI_EE_MODEM) { 2127 if (modem_alloc) 2128 gsi->modem_channel_bitmap |= 2129 BIT(data[i].channel_id); 2130 continue; 2131 } 2132 2133 ret = gsi_channel_init_one(gsi, &data[i], command); 2134 if (ret) 2135 goto err_unwind; 2136 } 2137 2138 return ret; 2139 2140 err_unwind: 2141 while (i--) { 2142 if (ipa_gsi_endpoint_data_empty(&data[i])) 2143 continue; 2144 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2145 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2146 continue; 2147 } 2148 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2149 } 2150 gsi_evt_ring_exit(gsi); 2151 2152 return ret; 2153 } 2154 2155 /* Inverse of gsi_channel_init() */ 2156 static void gsi_channel_exit(struct gsi *gsi) 2157 { 2158 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2159 2160 do 2161 gsi_channel_exit_one(&gsi->channel[channel_id]); 2162 while (channel_id--); 2163 gsi->modem_channel_bitmap = 0; 2164 2165 gsi_evt_ring_exit(gsi); 2166 } 2167 2168 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2169 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2170 enum ipa_version version, u32 count, 2171 const struct ipa_gsi_endpoint_data *data) 2172 { 2173 struct device *dev = &pdev->dev; 2174 struct resource *res; 2175 resource_size_t size; 2176 u32 adjust; 2177 int ret; 2178 2179 gsi_validate_build(); 2180 2181 gsi->dev = dev; 2182 gsi->version = version; 2183 2184 /* GSI uses NAPI on all channels. Create a dummy network device 2185 * for the channel NAPI contexts to be associated with. 2186 */ 2187 init_dummy_netdev(&gsi->dummy_dev); 2188 2189 /* Get GSI memory range and map it */ 2190 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 2191 if (!res) { 2192 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 2193 return -ENODEV; 2194 } 2195 2196 size = resource_size(res); 2197 if (res->start > U32_MAX || size > U32_MAX - res->start) { 2198 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2199 return -EINVAL; 2200 } 2201 2202 /* Make sure we can make our pointer adjustment if necessary */ 2203 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 2204 if (res->start < adjust) { 2205 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", 2206 adjust); 2207 return -EINVAL; 2208 } 2209 2210 gsi->virt_raw = ioremap(res->start, size); 2211 if (!gsi->virt_raw) { 2212 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2213 return -ENOMEM; 2214 } 2215 /* Most registers are accessed using an adjusted register range */ 2216 gsi->virt = gsi->virt_raw - adjust; 2217 2218 init_completion(&gsi->completion); 2219 2220 ret = gsi_irq_init(gsi, pdev); 2221 if (ret) 2222 goto err_iounmap; 2223 2224 ret = gsi_channel_init(gsi, count, data); 2225 if (ret) 2226 goto err_irq_exit; 2227 2228 mutex_init(&gsi->mutex); 2229 2230 return 0; 2231 2232 err_irq_exit: 2233 gsi_irq_exit(gsi); 2234 err_iounmap: 2235 iounmap(gsi->virt_raw); 2236 2237 return ret; 2238 } 2239 2240 /* Inverse of gsi_init() */ 2241 void gsi_exit(struct gsi *gsi) 2242 { 2243 mutex_destroy(&gsi->mutex); 2244 gsi_channel_exit(gsi); 2245 gsi_irq_exit(gsi); 2246 iounmap(gsi->virt_raw); 2247 } 2248 2249 /* The maximum number of outstanding TREs on a channel. This limits 2250 * a channel's maximum number of transactions outstanding (worst case 2251 * is one TRE per transaction). 2252 * 2253 * The absolute limit is the number of TREs in the channel's TRE ring, 2254 * and in theory we should be able use all of them. But in practice, 2255 * doing that led to the hardware reporting exhaustion of event ring 2256 * slots for writing completion information. So the hardware limit 2257 * would be (tre_count - 1). 2258 * 2259 * We reduce it a bit further though. Transaction resource pools are 2260 * sized to be a little larger than this maximum, to allow resource 2261 * allocations to always be contiguous. The number of entries in a 2262 * TRE ring buffer is a power of 2, and the extra resources in a pool 2263 * tends to nearly double the memory allocated for it. Reducing the 2264 * maximum number of outstanding TREs allows the number of entries in 2265 * a pool to avoid crossing that power-of-2 boundary, and this can 2266 * substantially reduce pool memory requirements. The number we 2267 * reduce it by matches the number added in gsi_trans_pool_init(). 2268 */ 2269 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2270 { 2271 struct gsi_channel *channel = &gsi->channel[channel_id]; 2272 2273 /* Hardware limit is channel->tre_count - 1 */ 2274 return channel->tre_count - (channel->tlv_count - 1); 2275 } 2276 2277 /* Returns the maximum number of TREs in a single transaction for a channel */ 2278 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2279 { 2280 struct gsi_channel *channel = &gsi->channel[channel_id]; 2281 2282 return channel->tlv_count; 2283 } 2284