1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 25 /** 26 * DOC: The IPA Generic Software Interface 27 * 28 * The generic software interface (GSI) is an integral component of the IPA, 29 * providing a well-defined communication layer between the AP subsystem 30 * and the IPA core. The modem uses the GSI layer as well. 31 * 32 * -------- --------- 33 * | | | | 34 * | AP +<---. .----+ Modem | 35 * | +--. | | .->+ | 36 * | | | | | | | | 37 * -------- | | | | --------- 38 * v | v | 39 * --+-+---+-+-- 40 * | GSI | 41 * |-----------| 42 * | | 43 * | IPA | 44 * | | 45 * ------------- 46 * 47 * In the above diagram, the AP and Modem represent "execution environments" 48 * (EEs), which are independent operating environments that use the IPA for 49 * data transfer. 50 * 51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 52 * of data to or from the IPA. A channel is implemented as a ring buffer, 53 * with a DRAM-resident array of "transfer elements" (TREs) available to 54 * describe transfers to or from other EEs through the IPA. A transfer 55 * element can also contain an immediate command, requesting the IPA perform 56 * actions other than data transfer. 57 * 58 * Each TRE refers to a block of data--also located DRAM. After writing one 59 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 60 * doorbell register to inform the receiving side how many elements have 61 * been written. 62 * 63 * Each channel has a GSI "event ring" associated with it. An event ring 64 * is implemented very much like a channel ring, but is always directed from 65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 66 * events by adding an entry to the event ring associated with the channel. 67 * The GSI then writes its doorbell for the event ring, causing the target 68 * EE to be interrupted. Each entry in an event ring contains a pointer 69 * to the channel TRE whose completion the event represents. 70 * 71 * Each TRE in a channel ring has a set of flags. One flag indicates whether 72 * the completion of the transfer operation generates an entry (and possibly 73 * an interrupt) in the channel's event ring. Other flags allow transfer 74 * elements to be chained together, forming a single logical transaction. 75 * TRE flags are used to control whether and when interrupts are generated 76 * to signal completion of channel transfers. 77 * 78 * Elements in channel and event rings are completed (or consumed) strictly 79 * in order. Completion of one entry implies the completion of all preceding 80 * entries. A single completion interrupt can therefore communicate the 81 * completion of many transfers. 82 * 83 * Note that all GSI registers are little-endian, which is the assumed 84 * endianness of I/O space accesses. The accessor functions perform byte 85 * swapping if needed (i.e., for a big endian CPU). 86 */ 87 88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 89 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 90 91 #define GSI_CMD_TIMEOUT 5 /* seconds */ 92 93 #define GSI_CHANNEL_STOP_RX_RETRIES 10 94 95 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 96 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 97 98 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 99 100 /* An entry in an event ring */ 101 struct gsi_event { 102 __le64 xfer_ptr; 103 __le16 len; 104 u8 reserved1; 105 u8 code; 106 __le16 reserved2; 107 u8 type; 108 u8 chid; 109 }; 110 111 /* Hardware values from the error log register error code field */ 112 enum gsi_err_code { 113 GSI_INVALID_TRE_ERR = 0x1, 114 GSI_OUT_OF_BUFFERS_ERR = 0x2, 115 GSI_OUT_OF_RESOURCES_ERR = 0x3, 116 GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, 117 GSI_EVT_RING_EMPTY_ERR = 0x5, 118 GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, 119 GSI_HWO_1_ERR = 0x8, 120 }; 121 122 /* Hardware values from the error log register error type field */ 123 enum gsi_err_type { 124 GSI_ERR_TYPE_GLOB = 0x1, 125 GSI_ERR_TYPE_CHAN = 0x2, 126 GSI_ERR_TYPE_EVT = 0x3, 127 }; 128 129 /* Hardware values used when programming an event ring */ 130 enum gsi_evt_chtype { 131 GSI_EVT_CHTYPE_MHI_EV = 0x0, 132 GSI_EVT_CHTYPE_XHCI_EV = 0x1, 133 GSI_EVT_CHTYPE_GPI_EV = 0x2, 134 GSI_EVT_CHTYPE_XDCI_EV = 0x3, 135 }; 136 137 /* Hardware values used when programming a channel */ 138 enum gsi_channel_protocol { 139 GSI_CHANNEL_PROTOCOL_MHI = 0x0, 140 GSI_CHANNEL_PROTOCOL_XHCI = 0x1, 141 GSI_CHANNEL_PROTOCOL_GPI = 0x2, 142 GSI_CHANNEL_PROTOCOL_XDCI = 0x3, 143 }; 144 145 /* Hardware values representing an event ring immediate command opcode */ 146 enum gsi_evt_cmd_opcode { 147 GSI_EVT_ALLOCATE = 0x0, 148 GSI_EVT_RESET = 0x9, 149 GSI_EVT_DE_ALLOC = 0xa, 150 }; 151 152 /* Hardware values representing a generic immediate command opcode */ 153 enum gsi_generic_cmd_opcode { 154 GSI_GENERIC_HALT_CHANNEL = 0x1, 155 GSI_GENERIC_ALLOCATE_CHANNEL = 0x2, 156 }; 157 158 /* Hardware values representing a channel immediate command opcode */ 159 enum gsi_ch_cmd_opcode { 160 GSI_CH_ALLOCATE = 0x0, 161 GSI_CH_START = 0x1, 162 GSI_CH_STOP = 0x2, 163 GSI_CH_RESET = 0x9, 164 GSI_CH_DE_ALLOC = 0xa, 165 }; 166 167 /** gsi_channel_scratch_gpi - GPI protocol scratch register 168 * @max_outstanding_tre: 169 * Defines the maximum number of TREs allowed in a single transaction 170 * on a channel (in bytes). This determines the amount of prefetch 171 * performed by the hardware. We configure this to equal the size of 172 * the TLV FIFO for the channel. 173 * @outstanding_threshold: 174 * Defines the threshold (in bytes) determining when the sequencer 175 * should update the channel doorbell. We configure this to equal 176 * the size of two TREs. 177 */ 178 struct gsi_channel_scratch_gpi { 179 u64 reserved1; 180 u16 reserved2; 181 u16 max_outstanding_tre; 182 u16 reserved3; 183 u16 outstanding_threshold; 184 }; 185 186 /** gsi_channel_scratch - channel scratch configuration area 187 * 188 * The exact interpretation of this register is protocol-specific. 189 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 190 */ 191 union gsi_channel_scratch { 192 struct gsi_channel_scratch_gpi gpi; 193 struct { 194 u32 word1; 195 u32 word2; 196 u32 word3; 197 u32 word4; 198 } data; 199 }; 200 201 /* Check things that can be validated at build time. */ 202 static void gsi_validate_build(void) 203 { 204 /* This is used as a divisor */ 205 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 206 207 /* Code assumes the size of channel and event ring element are 208 * the same (and fixed). Make sure the size of an event ring 209 * element is what's expected. 210 */ 211 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 212 213 /* Hardware requires a 2^n ring size. We ensure the number of 214 * elements in an event ring is a power of 2 elsewhere; this 215 * ensure the elements themselves meet the requirement. 216 */ 217 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 218 219 /* The channel element size must fit in this field */ 220 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 221 222 /* The event ring element size must fit in this field */ 223 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 224 } 225 226 /* Return the channel id associated with a given channel */ 227 static u32 gsi_channel_id(struct gsi_channel *channel) 228 { 229 return channel - &channel->gsi->channel[0]; 230 } 231 232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) 233 { 234 u32 val; 235 236 gsi->event_enable_bitmap |= BIT(evt_ring_id); 237 val = gsi->event_enable_bitmap; 238 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 239 } 240 241 static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask) 242 { 243 iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 244 } 245 246 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) 247 { 248 u32 val; 249 250 gsi->event_enable_bitmap &= ~BIT(evt_ring_id); 251 val = gsi->event_enable_bitmap; 252 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 253 } 254 255 /* Enable all GSI_interrupt types */ 256 static void gsi_irq_enable(struct gsi *gsi) 257 { 258 u32 val; 259 260 /* We don't use inter-EE channel or event interrupts */ 261 val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; 262 val &= ~MSK_INTER_EE_CH_CTRL_FMASK; 263 val &= ~MSK_INTER_EE_EV_CTRL_FMASK; 264 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 265 266 val = GENMASK(gsi->channel_count - 1, 0); 267 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 268 269 val = GENMASK(gsi->evt_ring_count - 1, 0); 270 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 271 272 /* Each IEOB interrupt is enabled (later) as needed by channels */ 273 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 274 275 val = GSI_CNTXT_GLOB_IRQ_ALL; 276 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 277 278 /* Never enable GSI_BREAK_POINT */ 279 val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK; 280 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 281 } 282 283 /* Disable all GSI_interrupt types */ 284 static void gsi_irq_disable(struct gsi *gsi) 285 { 286 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 287 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 288 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 289 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 290 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 291 iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 292 } 293 294 /* Return the virtual address associated with a ring index */ 295 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 296 { 297 /* Note: index *must* be used modulo the ring count here */ 298 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 299 } 300 301 /* Return the 32-bit DMA address associated with a ring index */ 302 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 303 { 304 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; 305 } 306 307 /* Return the ring index of a 32-bit ring offset */ 308 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 309 { 310 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 311 } 312 313 /* Issue a GSI command by writing a value to a register, then wait for 314 * completion to be signaled. Returns true if the command completes 315 * or false if it times out. 316 */ 317 static bool 318 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 319 { 320 reinit_completion(completion); 321 322 iowrite32(val, gsi->virt + reg); 323 324 return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); 325 } 326 327 /* Return the hardware's notion of the current state of an event ring */ 328 static enum gsi_evt_ring_state 329 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 330 { 331 u32 val; 332 333 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 334 335 return u32_get_bits(val, EV_CHSTATE_FMASK); 336 } 337 338 /* Issue an event ring command and wait for it to complete */ 339 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 340 enum gsi_evt_cmd_opcode opcode) 341 { 342 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 343 struct completion *completion = &evt_ring->completion; 344 u32 val; 345 346 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 347 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 348 349 if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion)) 350 return 0; /* Success! */ 351 352 dev_err(gsi->dev, "GSI command %u to event ring %u timed out " 353 "(state is %u)\n", opcode, evt_ring_id, evt_ring->state); 354 355 return -ETIMEDOUT; 356 } 357 358 /* Allocate an event ring in NOT_ALLOCATED state */ 359 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 360 { 361 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 362 int ret; 363 364 /* Get initial event ring state */ 365 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 366 367 if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) 368 return -EINVAL; 369 370 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 371 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 372 dev_err(gsi->dev, "bad event ring state (%u) after alloc\n", 373 evt_ring->state); 374 ret = -EIO; 375 } 376 377 return ret; 378 } 379 380 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 381 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 382 { 383 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 384 enum gsi_evt_ring_state state = evt_ring->state; 385 int ret; 386 387 if (state != GSI_EVT_RING_STATE_ALLOCATED && 388 state != GSI_EVT_RING_STATE_ERROR) { 389 dev_err(gsi->dev, "bad event ring state (%u) before reset\n", 390 evt_ring->state); 391 return; 392 } 393 394 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 395 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) 396 dev_err(gsi->dev, "bad event ring state (%u) after reset\n", 397 evt_ring->state); 398 } 399 400 /* Issue a hardware de-allocation request for an allocated event ring */ 401 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 402 { 403 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 404 int ret; 405 406 if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 407 dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n", 408 evt_ring->state); 409 return; 410 } 411 412 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 413 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) 414 dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n", 415 evt_ring->state); 416 } 417 418 /* Return the hardware's notion of the current state of a channel */ 419 static enum gsi_channel_state 420 gsi_channel_state(struct gsi *gsi, u32 channel_id) 421 { 422 u32 val; 423 424 val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 425 426 return u32_get_bits(val, CHSTATE_FMASK); 427 } 428 429 /* Issue a channel command and wait for it to complete */ 430 static int 431 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 432 { 433 struct completion *completion = &channel->completion; 434 u32 channel_id = gsi_channel_id(channel); 435 u32 val; 436 437 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 438 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 439 440 if (gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, completion)) 441 return 0; /* Success! */ 442 443 dev_err(channel->gsi->dev, "GSI command %u to channel %u timed out " 444 "(state is %u)\n", opcode, channel_id, channel->state); 445 446 return -ETIMEDOUT; 447 } 448 449 /* Allocate GSI channel in NOT_ALLOCATED state */ 450 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 451 { 452 struct gsi_channel *channel = &gsi->channel[channel_id]; 453 int ret; 454 455 /* Get initial channel state */ 456 channel->state = gsi_channel_state(gsi, channel_id); 457 458 if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 459 return -EINVAL; 460 461 ret = gsi_channel_command(channel, GSI_CH_ALLOCATE); 462 if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) { 463 dev_err(gsi->dev, "bad channel state (%u) after alloc\n", 464 channel->state); 465 ret = -EIO; 466 } 467 468 return ret; 469 } 470 471 /* Start an ALLOCATED channel */ 472 static int gsi_channel_start_command(struct gsi_channel *channel) 473 { 474 enum gsi_channel_state state = channel->state; 475 int ret; 476 477 if (state != GSI_CHANNEL_STATE_ALLOCATED && 478 state != GSI_CHANNEL_STATE_STOPPED) 479 return -EINVAL; 480 481 ret = gsi_channel_command(channel, GSI_CH_START); 482 if (!ret && channel->state != GSI_CHANNEL_STATE_STARTED) { 483 dev_err(channel->gsi->dev, 484 "bad channel state (%u) after start\n", 485 channel->state); 486 ret = -EIO; 487 } 488 489 return ret; 490 } 491 492 /* Stop a GSI channel in STARTED state */ 493 static int gsi_channel_stop_command(struct gsi_channel *channel) 494 { 495 enum gsi_channel_state state = channel->state; 496 int ret; 497 498 if (state != GSI_CHANNEL_STATE_STARTED && 499 state != GSI_CHANNEL_STATE_STOP_IN_PROC) 500 return -EINVAL; 501 502 ret = gsi_channel_command(channel, GSI_CH_STOP); 503 if (ret || channel->state == GSI_CHANNEL_STATE_STOPPED) 504 return ret; 505 506 /* We may have to try again if stop is in progress */ 507 if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC) 508 return -EAGAIN; 509 510 dev_err(channel->gsi->dev, "bad channel state (%u) after stop\n", 511 channel->state); 512 513 return -EIO; 514 } 515 516 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 517 static void gsi_channel_reset_command(struct gsi_channel *channel) 518 { 519 int ret; 520 521 msleep(1); /* A short delay is required before a RESET command */ 522 523 if (channel->state != GSI_CHANNEL_STATE_STOPPED && 524 channel->state != GSI_CHANNEL_STATE_ERROR) { 525 dev_err(channel->gsi->dev, 526 "bad channel state (%u) before reset\n", 527 channel->state); 528 return; 529 } 530 531 ret = gsi_channel_command(channel, GSI_CH_RESET); 532 if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) 533 dev_err(channel->gsi->dev, 534 "bad channel state (%u) after reset\n", 535 channel->state); 536 } 537 538 /* Deallocate an ALLOCATED GSI channel */ 539 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 540 { 541 struct gsi_channel *channel = &gsi->channel[channel_id]; 542 int ret; 543 544 if (channel->state != GSI_CHANNEL_STATE_ALLOCATED) { 545 dev_err(gsi->dev, "bad channel state (%u) before dealloc\n", 546 channel->state); 547 return; 548 } 549 550 ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC); 551 if (!ret && channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 552 dev_err(gsi->dev, "bad channel state (%u) after dealloc\n", 553 channel->state); 554 } 555 556 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 557 * The index argument (modulo the ring count) is the first unfilled entry, so 558 * we supply one less than that with the doorbell. Update the event ring 559 * index field with the value provided. 560 */ 561 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 562 { 563 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 564 u32 val; 565 566 ring->index = index; /* Next unused entry */ 567 568 /* Note: index *must* be used modulo the ring count here */ 569 val = gsi_ring_addr(ring, (index - 1) % ring->count); 570 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 571 } 572 573 /* Program an event ring for use */ 574 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 575 { 576 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 577 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 578 u32 val; 579 580 val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); 581 val |= EV_INTYPE_FMASK; 582 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 583 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 584 585 val = u32_encode_bits(size, EV_R_LENGTH_FMASK); 586 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 587 588 /* The context 2 and 3 registers store the low-order and 589 * high-order 32 bits of the address of the event ring, 590 * respectively. 591 */ 592 val = evt_ring->ring.addr & GENMASK(31, 0); 593 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 594 595 val = evt_ring->ring.addr >> 32; 596 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 597 598 /* Enable interrupt moderation by setting the moderation delay */ 599 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 600 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 601 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 602 603 /* No MSI write data, and MSI address high and low address is 0 */ 604 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 605 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 606 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 607 608 /* We don't need to get event read pointer updates */ 609 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 610 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 611 612 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 613 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 614 } 615 616 /* Return the last (most recent) transaction completed on a channel. */ 617 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 618 { 619 struct gsi_trans_info *trans_info = &channel->trans_info; 620 struct gsi_trans *trans; 621 622 spin_lock_bh(&trans_info->spinlock); 623 624 if (!list_empty(&trans_info->complete)) 625 trans = list_last_entry(&trans_info->complete, 626 struct gsi_trans, links); 627 else if (!list_empty(&trans_info->polled)) 628 trans = list_last_entry(&trans_info->polled, 629 struct gsi_trans, links); 630 else 631 trans = NULL; 632 633 /* Caller will wait for this, so take a reference */ 634 if (trans) 635 refcount_inc(&trans->refcount); 636 637 spin_unlock_bh(&trans_info->spinlock); 638 639 return trans; 640 } 641 642 /* Wait for transaction activity on a channel to complete */ 643 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 644 { 645 struct gsi_trans *trans; 646 647 /* Get the last transaction, and wait for it to complete */ 648 trans = gsi_channel_trans_last(channel); 649 if (trans) { 650 wait_for_completion(&trans->completion); 651 gsi_trans_free(trans); 652 } 653 } 654 655 /* Stop channel activity. Transactions may not be allocated until thawed. */ 656 static void gsi_channel_freeze(struct gsi_channel *channel) 657 { 658 gsi_channel_trans_quiesce(channel); 659 660 napi_disable(&channel->napi); 661 662 gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); 663 } 664 665 /* Allow transactions to be used on the channel again. */ 666 static void gsi_channel_thaw(struct gsi_channel *channel) 667 { 668 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 669 670 napi_enable(&channel->napi); 671 } 672 673 /* Program a channel for use */ 674 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 675 { 676 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 677 u32 channel_id = gsi_channel_id(channel); 678 union gsi_channel_scratch scr = { }; 679 struct gsi_channel_scratch_gpi *gpi; 680 struct gsi *gsi = channel->gsi; 681 u32 wrr_weight = 0; 682 u32 val; 683 684 /* Arbitrarily pick TRE 0 as the first channel element to use */ 685 channel->tre_ring.index = 0; 686 687 /* We program all channels to use GPI protocol */ 688 val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); 689 if (channel->toward_ipa) 690 val |= CHTYPE_DIR_FMASK; 691 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 692 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 693 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 694 695 val = u32_encode_bits(size, R_LENGTH_FMASK); 696 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 697 698 /* The context 2 and 3 registers store the low-order and 699 * high-order 32 bits of the address of the channel ring, 700 * respectively. 701 */ 702 val = channel->tre_ring.addr & GENMASK(31, 0); 703 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 704 705 val = channel->tre_ring.addr >> 32; 706 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 707 708 /* Command channel gets low weighted round-robin priority */ 709 if (channel->command) 710 wrr_weight = field_max(WRR_WEIGHT_FMASK); 711 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 712 713 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 714 715 /* Enable the doorbell engine if requested */ 716 if (doorbell) 717 val |= USE_DB_ENG_FMASK; 718 719 if (!channel->use_prefetch) 720 val |= USE_ESCAPE_BUF_ONLY_FMASK; 721 722 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 723 724 /* Now update the scratch registers for GPI protocol */ 725 gpi = &scr.gpi; 726 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 727 GSI_RING_ELEMENT_SIZE; 728 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 729 730 val = scr.data.word1; 731 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 732 733 val = scr.data.word2; 734 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 735 736 val = scr.data.word3; 737 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 738 739 /* We must preserve the upper 16 bits of the last scratch register. 740 * The next sequence assumes those bits remain unchanged between the 741 * read and the write. 742 */ 743 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 744 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 745 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 746 747 /* All done! */ 748 } 749 750 static void gsi_channel_deprogram(struct gsi_channel *channel) 751 { 752 /* Nothing to do */ 753 } 754 755 /* Start an allocated GSI channel */ 756 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 757 { 758 struct gsi_channel *channel = &gsi->channel[channel_id]; 759 u32 evt_ring_id = channel->evt_ring_id; 760 int ret; 761 762 mutex_lock(&gsi->mutex); 763 764 ret = gsi_channel_start_command(channel); 765 766 mutex_unlock(&gsi->mutex); 767 768 /* Clear the channel's event ring interrupt in case it's pending */ 769 gsi_isr_ieob_clear(gsi, BIT(evt_ring_id)); 770 771 gsi_channel_thaw(channel); 772 773 return ret; 774 } 775 776 /* Stop a started channel */ 777 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 778 { 779 struct gsi_channel *channel = &gsi->channel[channel_id]; 780 u32 retries; 781 int ret; 782 783 gsi_channel_freeze(channel); 784 785 /* Channel could have entered STOPPED state since last call if the 786 * STOP command timed out. We won't stop a channel if stopping it 787 * was successful previously (so we still want the freeze above). 788 */ 789 if (channel->state == GSI_CHANNEL_STATE_STOPPED) 790 return 0; 791 792 /* RX channels might require a little time to enter STOPPED state */ 793 retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; 794 795 mutex_lock(&gsi->mutex); 796 797 do { 798 ret = gsi_channel_stop_command(channel); 799 if (ret != -EAGAIN) 800 break; 801 msleep(1); 802 } while (retries--); 803 804 mutex_unlock(&gsi->mutex); 805 806 /* Thaw the channel if we need to retry (or on error) */ 807 if (ret) 808 gsi_channel_thaw(channel); 809 810 return ret; 811 } 812 813 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */ 814 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable) 815 { 816 struct gsi_channel *channel = &gsi->channel[channel_id]; 817 818 mutex_lock(&gsi->mutex); 819 820 /* Due to a hardware quirk we need to reset RX channels twice. */ 821 gsi_channel_reset_command(channel); 822 if (!channel->toward_ipa) 823 gsi_channel_reset_command(channel); 824 825 gsi_channel_program(channel, db_enable); 826 gsi_channel_trans_cancel_pending(channel); 827 828 mutex_unlock(&gsi->mutex); 829 } 830 831 /* Stop a STARTED channel for suspend (using stop if requested) */ 832 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 833 { 834 struct gsi_channel *channel = &gsi->channel[channel_id]; 835 836 if (stop) 837 return gsi_channel_stop(gsi, channel_id); 838 839 gsi_channel_freeze(channel); 840 841 return 0; 842 } 843 844 /* Resume a suspended channel (starting will be requested if STOPPED) */ 845 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 846 { 847 struct gsi_channel *channel = &gsi->channel[channel_id]; 848 849 if (start) 850 return gsi_channel_start(gsi, channel_id); 851 852 gsi_channel_thaw(channel); 853 854 return 0; 855 } 856 857 /** 858 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 859 * @channel: Channel for which to report 860 * 861 * Report to the network stack the number of bytes and transactions that 862 * have been queued to hardware since last call. This and the next function 863 * supply information used by the network stack for throttling. 864 * 865 * For each channel we track the number of transactions used and bytes of 866 * data those transactions represent. We also track what those values are 867 * each time this function is called. Subtracting the two tells us 868 * the number of bytes and transactions that have been added between 869 * successive calls. 870 * 871 * Calling this each time we ring the channel doorbell allows us to 872 * provide accurate information to the network stack about how much 873 * work we've given the hardware at any point in time. 874 */ 875 void gsi_channel_tx_queued(struct gsi_channel *channel) 876 { 877 u32 trans_count; 878 u32 byte_count; 879 880 byte_count = channel->byte_count - channel->queued_byte_count; 881 trans_count = channel->trans_count - channel->queued_trans_count; 882 channel->queued_byte_count = channel->byte_count; 883 channel->queued_trans_count = channel->trans_count; 884 885 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 886 trans_count, byte_count); 887 } 888 889 /** 890 * gsi_channel_tx_update() - Report completed TX transfers 891 * @channel: Channel that has completed transmitting packets 892 * @trans: Last transation known to be complete 893 * 894 * Compute the number of transactions and bytes that have been transferred 895 * over a TX channel since the given transaction was committed. Report this 896 * information to the network stack. 897 * 898 * At the time a transaction is committed, we record its channel's 899 * committed transaction and byte counts *in the transaction*. 900 * Completions are signaled by the hardware with an interrupt, and 901 * we can determine the latest completed transaction at that time. 902 * 903 * The difference between the byte/transaction count recorded in 904 * the transaction and the count last time we recorded a completion 905 * tells us exactly how much data has been transferred between 906 * completions. 907 * 908 * Calling this each time we learn of a newly-completed transaction 909 * allows us to provide accurate information to the network stack 910 * about how much work has been completed by the hardware at a given 911 * point in time. 912 */ 913 static void 914 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 915 { 916 u64 byte_count = trans->byte_count + trans->len; 917 u64 trans_count = trans->trans_count + 1; 918 919 byte_count -= channel->compl_byte_count; 920 channel->compl_byte_count += byte_count; 921 trans_count -= channel->compl_trans_count; 922 channel->compl_trans_count += trans_count; 923 924 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 925 trans_count, byte_count); 926 } 927 928 /* Channel control interrupt handler */ 929 static void gsi_isr_chan_ctrl(struct gsi *gsi) 930 { 931 u32 channel_mask; 932 933 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 934 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 935 936 while (channel_mask) { 937 u32 channel_id = __ffs(channel_mask); 938 struct gsi_channel *channel; 939 940 channel_mask ^= BIT(channel_id); 941 942 channel = &gsi->channel[channel_id]; 943 channel->state = gsi_channel_state(gsi, channel_id); 944 945 complete(&channel->completion); 946 } 947 } 948 949 /* Event ring control interrupt handler */ 950 static void gsi_isr_evt_ctrl(struct gsi *gsi) 951 { 952 u32 event_mask; 953 954 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 955 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 956 957 while (event_mask) { 958 u32 evt_ring_id = __ffs(event_mask); 959 struct gsi_evt_ring *evt_ring; 960 961 event_mask ^= BIT(evt_ring_id); 962 963 evt_ring = &gsi->evt_ring[evt_ring_id]; 964 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 965 966 complete(&evt_ring->completion); 967 } 968 } 969 970 /* Global channel error interrupt handler */ 971 static void 972 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 973 { 974 if (code == GSI_OUT_OF_RESOURCES_ERR) { 975 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 976 complete(&gsi->channel[channel_id].completion); 977 return; 978 } 979 980 /* Report, but otherwise ignore all other error codes */ 981 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 982 channel_id, err_ee, code); 983 } 984 985 /* Global event error interrupt handler */ 986 static void 987 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 988 { 989 if (code == GSI_OUT_OF_RESOURCES_ERR) { 990 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 991 u32 channel_id = gsi_channel_id(evt_ring->channel); 992 993 complete(&evt_ring->completion); 994 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 995 channel_id); 996 return; 997 } 998 999 /* Report, but otherwise ignore all other error codes */ 1000 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1001 evt_ring_id, err_ee, code); 1002 } 1003 1004 /* Global error interrupt handler */ 1005 static void gsi_isr_glob_err(struct gsi *gsi) 1006 { 1007 enum gsi_err_type type; 1008 enum gsi_err_code code; 1009 u32 which; 1010 u32 val; 1011 u32 ee; 1012 1013 /* Get the logged error, then reinitialize the log */ 1014 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1015 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1016 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1017 1018 ee = u32_get_bits(val, ERR_EE_FMASK); 1019 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1020 type = u32_get_bits(val, ERR_TYPE_FMASK); 1021 code = u32_get_bits(val, ERR_CODE_FMASK); 1022 1023 if (type == GSI_ERR_TYPE_CHAN) 1024 gsi_isr_glob_chan_err(gsi, ee, which, code); 1025 else if (type == GSI_ERR_TYPE_EVT) 1026 gsi_isr_glob_evt_err(gsi, ee, which, code); 1027 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1028 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1029 } 1030 1031 /* Generic EE interrupt handler */ 1032 static void gsi_isr_gp_int1(struct gsi *gsi) 1033 { 1034 u32 result; 1035 u32 val; 1036 1037 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1038 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1039 if (result != GENERIC_EE_SUCCESS_FVAL) 1040 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1041 1042 complete(&gsi->completion); 1043 } 1044 1045 /* Inter-EE interrupt handler */ 1046 static void gsi_isr_glob_ee(struct gsi *gsi) 1047 { 1048 u32 val; 1049 1050 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1051 1052 if (val & ERROR_INT_FMASK) 1053 gsi_isr_glob_err(gsi); 1054 1055 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1056 1057 val &= ~ERROR_INT_FMASK; 1058 1059 if (val & EN_GP_INT1_FMASK) { 1060 val ^= EN_GP_INT1_FMASK; 1061 gsi_isr_gp_int1(gsi); 1062 } 1063 1064 if (val) 1065 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1066 } 1067 1068 /* I/O completion interrupt event */ 1069 static void gsi_isr_ieob(struct gsi *gsi) 1070 { 1071 u32 event_mask; 1072 1073 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1074 gsi_isr_ieob_clear(gsi, event_mask); 1075 1076 while (event_mask) { 1077 u32 evt_ring_id = __ffs(event_mask); 1078 1079 event_mask ^= BIT(evt_ring_id); 1080 1081 gsi_irq_ieob_disable(gsi, evt_ring_id); 1082 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1083 } 1084 } 1085 1086 /* General event interrupts represent serious problems, so report them */ 1087 static void gsi_isr_general(struct gsi *gsi) 1088 { 1089 struct device *dev = gsi->dev; 1090 u32 val; 1091 1092 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1093 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1094 1095 if (val) 1096 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1097 } 1098 1099 /** 1100 * gsi_isr() - Top level GSI interrupt service routine 1101 * @irq: Interrupt number (ignored) 1102 * @dev_id: GSI pointer supplied to request_irq() 1103 * 1104 * This is the main handler function registered for the GSI IRQ. Each type 1105 * of interrupt has a separate handler function that is called from here. 1106 */ 1107 static irqreturn_t gsi_isr(int irq, void *dev_id) 1108 { 1109 struct gsi *gsi = dev_id; 1110 u32 intr_mask; 1111 u32 cnt = 0; 1112 1113 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1114 /* intr_mask contains bitmask of pending GSI interrupts */ 1115 do { 1116 u32 gsi_intr = BIT(__ffs(intr_mask)); 1117 1118 intr_mask ^= gsi_intr; 1119 1120 switch (gsi_intr) { 1121 case CH_CTRL_FMASK: 1122 gsi_isr_chan_ctrl(gsi); 1123 break; 1124 case EV_CTRL_FMASK: 1125 gsi_isr_evt_ctrl(gsi); 1126 break; 1127 case GLOB_EE_FMASK: 1128 gsi_isr_glob_ee(gsi); 1129 break; 1130 case IEOB_FMASK: 1131 gsi_isr_ieob(gsi); 1132 break; 1133 case GENERAL_FMASK: 1134 gsi_isr_general(gsi); 1135 break; 1136 default: 1137 dev_err(gsi->dev, 1138 "%s: unrecognized type 0x%08x\n", 1139 __func__, gsi_intr); 1140 break; 1141 } 1142 } while (intr_mask); 1143 1144 if (++cnt > GSI_ISR_MAX_ITER) { 1145 dev_err(gsi->dev, "interrupt flood\n"); 1146 break; 1147 } 1148 } 1149 1150 return IRQ_HANDLED; 1151 } 1152 1153 /* Return the transaction associated with a transfer completion event */ 1154 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1155 struct gsi_event *event) 1156 { 1157 u32 tre_offset; 1158 u32 tre_index; 1159 1160 /* Event xfer_ptr records the TRE it's associated with */ 1161 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); 1162 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1163 1164 return gsi_channel_trans_mapped(channel, tre_index); 1165 } 1166 1167 /** 1168 * gsi_evt_ring_rx_update() - Record lengths of received data 1169 * @evt_ring: Event ring associated with channel that received packets 1170 * @index: Event index in ring reported by hardware 1171 * 1172 * Events for RX channels contain the actual number of bytes received into 1173 * the buffer. Every event has a transaction associated with it, and here 1174 * we update transactions to record their actual received lengths. 1175 * 1176 * This function is called whenever we learn that the GSI hardware has filled 1177 * new events since the last time we checked. The ring's index field tells 1178 * the first entry in need of processing. The index provided is the 1179 * first *unfilled* event in the ring (following the last filled one). 1180 * 1181 * Events are sequential within the event ring, and transactions are 1182 * sequential within the transaction pool. 1183 * 1184 * Note that @index always refers to an element *within* the event ring. 1185 */ 1186 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1187 { 1188 struct gsi_channel *channel = evt_ring->channel; 1189 struct gsi_ring *ring = &evt_ring->ring; 1190 struct gsi_trans_info *trans_info; 1191 struct gsi_event *event_done; 1192 struct gsi_event *event; 1193 struct gsi_trans *trans; 1194 u32 byte_count = 0; 1195 u32 old_index; 1196 u32 event_avail; 1197 1198 trans_info = &channel->trans_info; 1199 1200 /* We'll start with the oldest un-processed event. RX channels 1201 * replenish receive buffers in single-TRE transactions, so we 1202 * can just map that event to its transaction. Transactions 1203 * associated with completion events are consecutive. 1204 */ 1205 old_index = ring->index; 1206 event = gsi_ring_virt(ring, old_index); 1207 trans = gsi_event_trans(channel, event); 1208 1209 /* Compute the number of events to process before we wrap, 1210 * and determine when we'll be done processing events. 1211 */ 1212 event_avail = ring->count - old_index % ring->count; 1213 event_done = gsi_ring_virt(ring, index); 1214 do { 1215 trans->len = __le16_to_cpu(event->len); 1216 byte_count += trans->len; 1217 1218 /* Move on to the next event and transaction */ 1219 if (--event_avail) 1220 event++; 1221 else 1222 event = gsi_ring_virt(ring, 0); 1223 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1224 } while (event != event_done); 1225 1226 /* We record RX bytes when they are received */ 1227 channel->byte_count += byte_count; 1228 channel->trans_count++; 1229 } 1230 1231 /* Initialize a ring, including allocating DMA memory for its entries */ 1232 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1233 { 1234 size_t size = count * GSI_RING_ELEMENT_SIZE; 1235 struct device *dev = gsi->dev; 1236 dma_addr_t addr; 1237 1238 /* Hardware requires a 2^n ring size, with alignment equal to size */ 1239 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1240 if (ring->virt && addr % size) { 1241 dma_free_coherent(dev, size, ring->virt, ring->addr); 1242 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", 1243 size); 1244 return -EINVAL; /* Not a good error value, but distinct */ 1245 } else if (!ring->virt) { 1246 return -ENOMEM; 1247 } 1248 ring->addr = addr; 1249 ring->count = count; 1250 1251 return 0; 1252 } 1253 1254 /* Free a previously-allocated ring */ 1255 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1256 { 1257 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1258 1259 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1260 } 1261 1262 /* Allocate an available event ring id */ 1263 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1264 { 1265 u32 evt_ring_id; 1266 1267 if (gsi->event_bitmap == ~0U) { 1268 dev_err(gsi->dev, "event rings exhausted\n"); 1269 return -ENOSPC; 1270 } 1271 1272 evt_ring_id = ffz(gsi->event_bitmap); 1273 gsi->event_bitmap |= BIT(evt_ring_id); 1274 1275 return (int)evt_ring_id; 1276 } 1277 1278 /* Free a previously-allocated event ring id */ 1279 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1280 { 1281 gsi->event_bitmap &= ~BIT(evt_ring_id); 1282 } 1283 1284 /* Ring a channel doorbell, reporting the first un-filled entry */ 1285 void gsi_channel_doorbell(struct gsi_channel *channel) 1286 { 1287 struct gsi_ring *tre_ring = &channel->tre_ring; 1288 u32 channel_id = gsi_channel_id(channel); 1289 struct gsi *gsi = channel->gsi; 1290 u32 val; 1291 1292 /* Note: index *must* be used modulo the ring count here */ 1293 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1294 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1295 } 1296 1297 /* Consult hardware, move any newly completed transactions to completed list */ 1298 static void gsi_channel_update(struct gsi_channel *channel) 1299 { 1300 u32 evt_ring_id = channel->evt_ring_id; 1301 struct gsi *gsi = channel->gsi; 1302 struct gsi_evt_ring *evt_ring; 1303 struct gsi_trans *trans; 1304 struct gsi_ring *ring; 1305 u32 offset; 1306 u32 index; 1307 1308 evt_ring = &gsi->evt_ring[evt_ring_id]; 1309 ring = &evt_ring->ring; 1310 1311 /* See if there's anything new to process; if not, we're done. Note 1312 * that index always refers to an entry *within* the event ring. 1313 */ 1314 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1315 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1316 if (index == ring->index % ring->count) 1317 return; 1318 1319 /* Get the transaction for the latest completed event. Take a 1320 * reference to keep it from completing before we give the events 1321 * for this and previous transactions back to the hardware. 1322 */ 1323 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1324 refcount_inc(&trans->refcount); 1325 1326 /* For RX channels, update each completed transaction with the number 1327 * of bytes that were actually received. For TX channels, report 1328 * the number of transactions and bytes this completion represents 1329 * up the network stack. 1330 */ 1331 if (channel->toward_ipa) 1332 gsi_channel_tx_update(channel, trans); 1333 else 1334 gsi_evt_ring_rx_update(evt_ring, index); 1335 1336 gsi_trans_move_complete(trans); 1337 1338 /* Tell the hardware we've handled these events */ 1339 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1340 1341 gsi_trans_free(trans); 1342 } 1343 1344 /** 1345 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1346 * @channel: Channel to be polled 1347 * 1348 * @Return: Transaction pointer, or null if none are available 1349 * 1350 * This function returns the first entry on a channel's completed transaction 1351 * list. If that list is empty, the hardware is consulted to determine 1352 * whether any new transactions have completed. If so, they're moved to the 1353 * completed list and the new first entry is returned. If there are no more 1354 * completed transactions, a null pointer is returned. 1355 */ 1356 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1357 { 1358 struct gsi_trans *trans; 1359 1360 /* Get the first transaction from the completed list */ 1361 trans = gsi_channel_trans_complete(channel); 1362 if (!trans) { 1363 /* List is empty; see if there's more to do */ 1364 gsi_channel_update(channel); 1365 trans = gsi_channel_trans_complete(channel); 1366 } 1367 1368 if (trans) 1369 gsi_trans_move_polled(trans); 1370 1371 return trans; 1372 } 1373 1374 /** 1375 * gsi_channel_poll() - NAPI poll function for a channel 1376 * @napi: NAPI structure for the channel 1377 * @budget: Budget supplied by NAPI core 1378 1379 * @Return: Number of items polled (<= budget) 1380 * 1381 * Single transactions completed by hardware are polled until either 1382 * the budget is exhausted, or there are no more. Each transaction 1383 * polled is passed to gsi_trans_complete(), to perform remaining 1384 * completion processing and retire/free the transaction. 1385 */ 1386 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1387 { 1388 struct gsi_channel *channel; 1389 int count = 0; 1390 1391 channel = container_of(napi, struct gsi_channel, napi); 1392 while (count < budget) { 1393 struct gsi_trans *trans; 1394 1395 count++; 1396 trans = gsi_channel_poll_one(channel); 1397 if (!trans) 1398 break; 1399 gsi_trans_complete(trans); 1400 } 1401 1402 if (count < budget) { 1403 napi_complete(&channel->napi); 1404 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 1405 } 1406 1407 return count; 1408 } 1409 1410 /* The event bitmap represents which event ids are available for allocation. 1411 * Set bits are not available, clear bits can be used. This function 1412 * initializes the map so all events supported by the hardware are available, 1413 * then precludes any reserved events from being allocated. 1414 */ 1415 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1416 { 1417 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1418 1419 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1420 1421 return event_bitmap; 1422 } 1423 1424 /* Setup function for event rings */ 1425 static void gsi_evt_ring_setup(struct gsi *gsi) 1426 { 1427 /* Nothing to do */ 1428 } 1429 1430 /* Inverse of gsi_evt_ring_setup() */ 1431 static void gsi_evt_ring_teardown(struct gsi *gsi) 1432 { 1433 /* Nothing to do */ 1434 } 1435 1436 /* Setup function for a single channel */ 1437 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id, 1438 bool db_enable) 1439 { 1440 struct gsi_channel *channel = &gsi->channel[channel_id]; 1441 u32 evt_ring_id = channel->evt_ring_id; 1442 int ret; 1443 1444 if (!channel->gsi) 1445 return 0; /* Ignore uninitialized channels */ 1446 1447 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1448 if (ret) 1449 return ret; 1450 1451 gsi_evt_ring_program(gsi, evt_ring_id); 1452 1453 ret = gsi_channel_alloc_command(gsi, channel_id); 1454 if (ret) 1455 goto err_evt_ring_de_alloc; 1456 1457 gsi_channel_program(channel, db_enable); 1458 1459 if (channel->toward_ipa) 1460 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1461 gsi_channel_poll, NAPI_POLL_WEIGHT); 1462 else 1463 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1464 gsi_channel_poll, NAPI_POLL_WEIGHT); 1465 1466 return 0; 1467 1468 err_evt_ring_de_alloc: 1469 /* We've done nothing with the event ring yet so don't reset */ 1470 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1471 1472 return ret; 1473 } 1474 1475 /* Inverse of gsi_channel_setup_one() */ 1476 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1477 { 1478 struct gsi_channel *channel = &gsi->channel[channel_id]; 1479 u32 evt_ring_id = channel->evt_ring_id; 1480 1481 if (!channel->gsi) 1482 return; /* Ignore uninitialized channels */ 1483 1484 netif_napi_del(&channel->napi); 1485 1486 gsi_channel_deprogram(channel); 1487 gsi_channel_de_alloc_command(gsi, channel_id); 1488 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1489 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1490 } 1491 1492 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1493 enum gsi_generic_cmd_opcode opcode) 1494 { 1495 struct completion *completion = &gsi->completion; 1496 u32 val; 1497 1498 /* First zero the result code field */ 1499 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1500 val &= ~GENERIC_EE_RESULT_FMASK; 1501 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1502 1503 /* Now issue the command */ 1504 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1505 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1506 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1507 1508 if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion)) 1509 return 0; /* Success! */ 1510 1511 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1512 opcode, channel_id); 1513 1514 return -ETIMEDOUT; 1515 } 1516 1517 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1518 { 1519 return gsi_generic_command(gsi, channel_id, 1520 GSI_GENERIC_ALLOCATE_CHANNEL); 1521 } 1522 1523 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1524 { 1525 int ret; 1526 1527 ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL); 1528 if (ret) 1529 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1530 ret, channel_id); 1531 } 1532 1533 /* Setup function for channels */ 1534 static int gsi_channel_setup(struct gsi *gsi, bool db_enable) 1535 { 1536 u32 channel_id = 0; 1537 u32 mask; 1538 int ret; 1539 1540 gsi_evt_ring_setup(gsi); 1541 gsi_irq_enable(gsi); 1542 1543 mutex_lock(&gsi->mutex); 1544 1545 do { 1546 ret = gsi_channel_setup_one(gsi, channel_id, db_enable); 1547 if (ret) 1548 goto err_unwind; 1549 } while (++channel_id < gsi->channel_count); 1550 1551 /* Make sure no channels were defined that hardware does not support */ 1552 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1553 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1554 1555 if (!channel->gsi) 1556 continue; /* Ignore uninitialized channels */ 1557 1558 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1559 channel_id - 1); 1560 channel_id = gsi->channel_count; 1561 goto err_unwind; 1562 } 1563 1564 /* Allocate modem channels if necessary */ 1565 mask = gsi->modem_channel_bitmap; 1566 while (mask) { 1567 u32 modem_channel_id = __ffs(mask); 1568 1569 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1570 if (ret) 1571 goto err_unwind_modem; 1572 1573 /* Clear bit from mask only after success (for unwind) */ 1574 mask ^= BIT(modem_channel_id); 1575 } 1576 1577 mutex_unlock(&gsi->mutex); 1578 1579 return 0; 1580 1581 err_unwind_modem: 1582 /* Compute which modem channels need to be deallocated */ 1583 mask ^= gsi->modem_channel_bitmap; 1584 while (mask) { 1585 u32 channel_id = __fls(mask); 1586 1587 mask ^= BIT(channel_id); 1588 1589 gsi_modem_channel_halt(gsi, channel_id); 1590 } 1591 1592 err_unwind: 1593 while (channel_id--) 1594 gsi_channel_teardown_one(gsi, channel_id); 1595 1596 mutex_unlock(&gsi->mutex); 1597 1598 gsi_irq_disable(gsi); 1599 gsi_evt_ring_teardown(gsi); 1600 1601 return ret; 1602 } 1603 1604 /* Inverse of gsi_channel_setup() */ 1605 static void gsi_channel_teardown(struct gsi *gsi) 1606 { 1607 u32 mask = gsi->modem_channel_bitmap; 1608 u32 channel_id; 1609 1610 mutex_lock(&gsi->mutex); 1611 1612 while (mask) { 1613 u32 channel_id = __fls(mask); 1614 1615 mask ^= BIT(channel_id); 1616 1617 gsi_modem_channel_halt(gsi, channel_id); 1618 } 1619 1620 channel_id = gsi->channel_count - 1; 1621 do 1622 gsi_channel_teardown_one(gsi, channel_id); 1623 while (channel_id--); 1624 1625 mutex_unlock(&gsi->mutex); 1626 1627 gsi_irq_disable(gsi); 1628 gsi_evt_ring_teardown(gsi); 1629 } 1630 1631 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1632 int gsi_setup(struct gsi *gsi, bool db_enable) 1633 { 1634 u32 val; 1635 1636 /* Here is where we first touch the GSI hardware */ 1637 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1638 if (!(val & ENABLED_FMASK)) { 1639 dev_err(gsi->dev, "GSI has not been enabled\n"); 1640 return -EIO; 1641 } 1642 1643 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1644 1645 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1646 if (!gsi->channel_count) { 1647 dev_err(gsi->dev, "GSI reports zero channels supported\n"); 1648 return -EINVAL; 1649 } 1650 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1651 dev_warn(gsi->dev, 1652 "limiting to %u channels (hardware supports %u)\n", 1653 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1654 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1655 } 1656 1657 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1658 if (!gsi->evt_ring_count) { 1659 dev_err(gsi->dev, "GSI reports zero event rings supported\n"); 1660 return -EINVAL; 1661 } 1662 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1663 dev_warn(gsi->dev, 1664 "limiting to %u event rings (hardware supports %u)\n", 1665 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1666 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1667 } 1668 1669 /* Initialize the error log */ 1670 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1671 1672 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1673 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1674 1675 return gsi_channel_setup(gsi, db_enable); 1676 } 1677 1678 /* Inverse of gsi_setup() */ 1679 void gsi_teardown(struct gsi *gsi) 1680 { 1681 gsi_channel_teardown(gsi); 1682 } 1683 1684 /* Initialize a channel's event ring */ 1685 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1686 { 1687 struct gsi *gsi = channel->gsi; 1688 struct gsi_evt_ring *evt_ring; 1689 int ret; 1690 1691 ret = gsi_evt_ring_id_alloc(gsi); 1692 if (ret < 0) 1693 return ret; 1694 channel->evt_ring_id = ret; 1695 1696 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1697 evt_ring->channel = channel; 1698 1699 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1700 if (!ret) 1701 return 0; /* Success! */ 1702 1703 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1704 ret, gsi_channel_id(channel)); 1705 1706 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1707 1708 return ret; 1709 } 1710 1711 /* Inverse of gsi_channel_evt_ring_init() */ 1712 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1713 { 1714 u32 evt_ring_id = channel->evt_ring_id; 1715 struct gsi *gsi = channel->gsi; 1716 struct gsi_evt_ring *evt_ring; 1717 1718 evt_ring = &gsi->evt_ring[evt_ring_id]; 1719 gsi_ring_free(gsi, &evt_ring->ring); 1720 gsi_evt_ring_id_free(gsi, evt_ring_id); 1721 } 1722 1723 /* Init function for event rings */ 1724 static void gsi_evt_ring_init(struct gsi *gsi) 1725 { 1726 u32 evt_ring_id = 0; 1727 1728 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1729 gsi->event_enable_bitmap = 0; 1730 do 1731 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1732 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1733 } 1734 1735 /* Inverse of gsi_evt_ring_init() */ 1736 static void gsi_evt_ring_exit(struct gsi *gsi) 1737 { 1738 /* Nothing to do */ 1739 } 1740 1741 static bool gsi_channel_data_valid(struct gsi *gsi, 1742 const struct ipa_gsi_endpoint_data *data) 1743 { 1744 #ifdef IPA_VALIDATION 1745 u32 channel_id = data->channel_id; 1746 struct device *dev = gsi->dev; 1747 1748 /* Make sure channel ids are in the range driver supports */ 1749 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1750 dev_err(dev, "bad channel id %u (must be less than %u)\n", 1751 channel_id, GSI_CHANNEL_COUNT_MAX); 1752 return false; 1753 } 1754 1755 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1756 dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id); 1757 return false; 1758 } 1759 1760 if (!data->channel.tlv_count || 1761 data->channel.tlv_count > GSI_TLV_MAX) { 1762 dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n", 1763 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1764 return false; 1765 } 1766 1767 /* We have to allow at least one maximally-sized transaction to 1768 * be outstanding (which would use tlv_count TREs). Given how 1769 * gsi_channel_tre_max() is computed, tre_count has to be almost 1770 * twice the TLV FIFO size to satisfy this requirement. 1771 */ 1772 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 1773 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 1774 channel_id, data->channel.tlv_count, 1775 data->channel.tre_count); 1776 return false; 1777 } 1778 1779 if (!is_power_of_2(data->channel.tre_count)) { 1780 dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n", 1781 channel_id, data->channel.tre_count); 1782 return false; 1783 } 1784 1785 if (!is_power_of_2(data->channel.event_count)) { 1786 dev_err(dev, "channel %u bad event_count %u (not power of 2)\n", 1787 channel_id, data->channel.event_count); 1788 return false; 1789 } 1790 #endif /* IPA_VALIDATION */ 1791 1792 return true; 1793 } 1794 1795 /* Init function for a single channel */ 1796 static int gsi_channel_init_one(struct gsi *gsi, 1797 const struct ipa_gsi_endpoint_data *data, 1798 bool command, bool prefetch) 1799 { 1800 struct gsi_channel *channel; 1801 u32 tre_count; 1802 int ret; 1803 1804 if (!gsi_channel_data_valid(gsi, data)) 1805 return -EINVAL; 1806 1807 /* Worst case we need an event for every outstanding TRE */ 1808 if (data->channel.tre_count > data->channel.event_count) { 1809 tre_count = data->channel.event_count; 1810 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 1811 data->channel_id, tre_count); 1812 } else { 1813 tre_count = data->channel.tre_count; 1814 } 1815 1816 channel = &gsi->channel[data->channel_id]; 1817 memset(channel, 0, sizeof(*channel)); 1818 1819 channel->gsi = gsi; 1820 channel->toward_ipa = data->toward_ipa; 1821 channel->command = command; 1822 channel->use_prefetch = command && prefetch; 1823 channel->tlv_count = data->channel.tlv_count; 1824 channel->tre_count = tre_count; 1825 channel->event_count = data->channel.event_count; 1826 init_completion(&channel->completion); 1827 1828 ret = gsi_channel_evt_ring_init(channel); 1829 if (ret) 1830 goto err_clear_gsi; 1831 1832 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 1833 if (ret) { 1834 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 1835 ret, data->channel_id); 1836 goto err_channel_evt_ring_exit; 1837 } 1838 1839 ret = gsi_channel_trans_init(gsi, data->channel_id); 1840 if (ret) 1841 goto err_ring_free; 1842 1843 if (command) { 1844 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 1845 1846 ret = ipa_cmd_pool_init(channel, tre_max); 1847 } 1848 if (!ret) 1849 return 0; /* Success! */ 1850 1851 gsi_channel_trans_exit(channel); 1852 err_ring_free: 1853 gsi_ring_free(gsi, &channel->tre_ring); 1854 err_channel_evt_ring_exit: 1855 gsi_channel_evt_ring_exit(channel); 1856 err_clear_gsi: 1857 channel->gsi = NULL; /* Mark it not (fully) initialized */ 1858 1859 return ret; 1860 } 1861 1862 /* Inverse of gsi_channel_init_one() */ 1863 static void gsi_channel_exit_one(struct gsi_channel *channel) 1864 { 1865 if (!channel->gsi) 1866 return; /* Ignore uninitialized channels */ 1867 1868 if (channel->command) 1869 ipa_cmd_pool_exit(channel); 1870 gsi_channel_trans_exit(channel); 1871 gsi_ring_free(channel->gsi, &channel->tre_ring); 1872 gsi_channel_evt_ring_exit(channel); 1873 } 1874 1875 /* Init function for channels */ 1876 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count, 1877 const struct ipa_gsi_endpoint_data *data, 1878 bool modem_alloc) 1879 { 1880 int ret = 0; 1881 u32 i; 1882 1883 gsi_evt_ring_init(gsi); 1884 1885 /* The endpoint data array is indexed by endpoint name */ 1886 for (i = 0; i < count; i++) { 1887 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 1888 1889 if (ipa_gsi_endpoint_data_empty(&data[i])) 1890 continue; /* Skip over empty slots */ 1891 1892 /* Mark modem channels to be allocated (hardware workaround) */ 1893 if (data[i].ee_id == GSI_EE_MODEM) { 1894 if (modem_alloc) 1895 gsi->modem_channel_bitmap |= 1896 BIT(data[i].channel_id); 1897 continue; 1898 } 1899 1900 ret = gsi_channel_init_one(gsi, &data[i], command, prefetch); 1901 if (ret) 1902 goto err_unwind; 1903 } 1904 1905 return ret; 1906 1907 err_unwind: 1908 while (i--) { 1909 if (ipa_gsi_endpoint_data_empty(&data[i])) 1910 continue; 1911 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 1912 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 1913 continue; 1914 } 1915 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 1916 } 1917 gsi_evt_ring_exit(gsi); 1918 1919 return ret; 1920 } 1921 1922 /* Inverse of gsi_channel_init() */ 1923 static void gsi_channel_exit(struct gsi *gsi) 1924 { 1925 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 1926 1927 do 1928 gsi_channel_exit_one(&gsi->channel[channel_id]); 1929 while (channel_id--); 1930 gsi->modem_channel_bitmap = 0; 1931 1932 gsi_evt_ring_exit(gsi); 1933 } 1934 1935 /* Init function for GSI. GSI hardware does not need to be "ready" */ 1936 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, 1937 u32 count, const struct ipa_gsi_endpoint_data *data, 1938 bool modem_alloc) 1939 { 1940 struct resource *res; 1941 resource_size_t size; 1942 unsigned int irq; 1943 int ret; 1944 1945 gsi_validate_build(); 1946 1947 gsi->dev = &pdev->dev; 1948 1949 /* The GSI layer performs NAPI on all endpoints. NAPI requires a 1950 * network device structure, but the GSI layer does not have one, 1951 * so we must create a dummy network device for this purpose. 1952 */ 1953 init_dummy_netdev(&gsi->dummy_dev); 1954 1955 /* Get the GSI IRQ and request for it to wake the system */ 1956 ret = platform_get_irq_byname(pdev, "gsi"); 1957 if (ret <= 0) { 1958 dev_err(gsi->dev, 1959 "DT error %d getting \"gsi\" IRQ property\n", ret); 1960 return ret ? : -EINVAL; 1961 } 1962 irq = ret; 1963 1964 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1965 if (ret) { 1966 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 1967 return ret; 1968 } 1969 gsi->irq = irq; 1970 1971 ret = enable_irq_wake(gsi->irq); 1972 if (ret) 1973 dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret); 1974 gsi->irq_wake_enabled = !ret; 1975 1976 /* Get GSI memory range and map it */ 1977 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 1978 if (!res) { 1979 dev_err(gsi->dev, 1980 "DT error getting \"gsi\" memory property\n"); 1981 ret = -ENODEV; 1982 goto err_disable_irq_wake; 1983 } 1984 1985 size = resource_size(res); 1986 if (res->start > U32_MAX || size > U32_MAX - res->start) { 1987 dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n"); 1988 ret = -EINVAL; 1989 goto err_disable_irq_wake; 1990 } 1991 1992 gsi->virt = ioremap(res->start, size); 1993 if (!gsi->virt) { 1994 dev_err(gsi->dev, "unable to remap \"gsi\" memory\n"); 1995 ret = -ENOMEM; 1996 goto err_disable_irq_wake; 1997 } 1998 1999 ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc); 2000 if (ret) 2001 goto err_iounmap; 2002 2003 mutex_init(&gsi->mutex); 2004 init_completion(&gsi->completion); 2005 2006 return 0; 2007 2008 err_iounmap: 2009 iounmap(gsi->virt); 2010 err_disable_irq_wake: 2011 if (gsi->irq_wake_enabled) 2012 (void)disable_irq_wake(gsi->irq); 2013 free_irq(gsi->irq, gsi); 2014 2015 return ret; 2016 } 2017 2018 /* Inverse of gsi_init() */ 2019 void gsi_exit(struct gsi *gsi) 2020 { 2021 mutex_destroy(&gsi->mutex); 2022 gsi_channel_exit(gsi); 2023 if (gsi->irq_wake_enabled) 2024 (void)disable_irq_wake(gsi->irq); 2025 free_irq(gsi->irq, gsi); 2026 iounmap(gsi->virt); 2027 } 2028 2029 /* The maximum number of outstanding TREs on a channel. This limits 2030 * a channel's maximum number of transactions outstanding (worst case 2031 * is one TRE per transaction). 2032 * 2033 * The absolute limit is the number of TREs in the channel's TRE ring, 2034 * and in theory we should be able use all of them. But in practice, 2035 * doing that led to the hardware reporting exhaustion of event ring 2036 * slots for writing completion information. So the hardware limit 2037 * would be (tre_count - 1). 2038 * 2039 * We reduce it a bit further though. Transaction resource pools are 2040 * sized to be a little larger than this maximum, to allow resource 2041 * allocations to always be contiguous. The number of entries in a 2042 * TRE ring buffer is a power of 2, and the extra resources in a pool 2043 * tends to nearly double the memory allocated for it. Reducing the 2044 * maximum number of outstanding TREs allows the number of entries in 2045 * a pool to avoid crossing that power-of-2 boundary, and this can 2046 * substantially reduce pool memory requirements. The number we 2047 * reduce it by matches the number added in gsi_trans_pool_init(). 2048 */ 2049 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2050 { 2051 struct gsi_channel *channel = &gsi->channel[channel_id]; 2052 2053 /* Hardware limit is channel->tre_count - 1 */ 2054 return channel->tre_count - (channel->tlv_count - 1); 2055 } 2056 2057 /* Returns the maximum number of TREs in a single transaction for a channel */ 2058 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2059 { 2060 struct gsi_channel *channel = &gsi->channel[channel_id]; 2061 2062 return channel->tlv_count; 2063 } 2064