1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2022 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 #include "ipa_version.h" 25 26 /** 27 * DOC: The IPA Generic Software Interface 28 * 29 * The generic software interface (GSI) is an integral component of the IPA, 30 * providing a well-defined communication layer between the AP subsystem 31 * and the IPA core. The modem uses the GSI layer as well. 32 * 33 * -------- --------- 34 * | | | | 35 * | AP +<---. .----+ Modem | 36 * | +--. | | .->+ | 37 * | | | | | | | | 38 * -------- | | | | --------- 39 * v | v | 40 * --+-+---+-+-- 41 * | GSI | 42 * |-----------| 43 * | | 44 * | IPA | 45 * | | 46 * ------------- 47 * 48 * In the above diagram, the AP and Modem represent "execution environments" 49 * (EEs), which are independent operating environments that use the IPA for 50 * data transfer. 51 * 52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 53 * of data to or from the IPA. A channel is implemented as a ring buffer, 54 * with a DRAM-resident array of "transfer elements" (TREs) available to 55 * describe transfers to or from other EEs through the IPA. A transfer 56 * element can also contain an immediate command, requesting the IPA perform 57 * actions other than data transfer. 58 * 59 * Each TRE refers to a block of data--also located in DRAM. After writing 60 * one or more TREs to a channel, the writer (either the IPA or an EE) writes 61 * a doorbell register to inform the receiving side how many elements have 62 * been written. 63 * 64 * Each channel has a GSI "event ring" associated with it. An event ring 65 * is implemented very much like a channel ring, but is always directed from 66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 67 * events by adding an entry to the event ring associated with the channel. 68 * The GSI then writes its doorbell for the event ring, causing the target 69 * EE to be interrupted. Each entry in an event ring contains a pointer 70 * to the channel TRE whose completion the event represents. 71 * 72 * Each TRE in a channel ring has a set of flags. One flag indicates whether 73 * the completion of the transfer operation generates an entry (and possibly 74 * an interrupt) in the channel's event ring. Other flags allow transfer 75 * elements to be chained together, forming a single logical transaction. 76 * TRE flags are used to control whether and when interrupts are generated 77 * to signal completion of channel transfers. 78 * 79 * Elements in channel and event rings are completed (or consumed) strictly 80 * in order. Completion of one entry implies the completion of all preceding 81 * entries. A single completion interrupt can therefore communicate the 82 * completion of many transfers. 83 * 84 * Note that all GSI registers are little-endian, which is the assumed 85 * endianness of I/O space accesses. The accessor functions perform byte 86 * swapping if needed (i.e., for a big endian CPU). 87 */ 88 89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 91 92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 93 94 #define GSI_CHANNEL_STOP_RETRIES 10 95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 96 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ 97 98 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 99 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 100 101 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 102 103 /* An entry in an event ring */ 104 struct gsi_event { 105 __le64 xfer_ptr; 106 __le16 len; 107 u8 reserved1; 108 u8 code; 109 __le16 reserved2; 110 u8 type; 111 u8 chid; 112 }; 113 114 /** gsi_channel_scratch_gpi - GPI protocol scratch register 115 * @max_outstanding_tre: 116 * Defines the maximum number of TREs allowed in a single transaction 117 * on a channel (in bytes). This determines the amount of prefetch 118 * performed by the hardware. We configure this to equal the size of 119 * the TLV FIFO for the channel. 120 * @outstanding_threshold: 121 * Defines the threshold (in bytes) determining when the sequencer 122 * should update the channel doorbell. We configure this to equal 123 * the size of two TREs. 124 */ 125 struct gsi_channel_scratch_gpi { 126 u64 reserved1; 127 u16 reserved2; 128 u16 max_outstanding_tre; 129 u16 reserved3; 130 u16 outstanding_threshold; 131 }; 132 133 /** gsi_channel_scratch - channel scratch configuration area 134 * 135 * The exact interpretation of this register is protocol-specific. 136 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 137 */ 138 union gsi_channel_scratch { 139 struct gsi_channel_scratch_gpi gpi; 140 struct { 141 u32 word1; 142 u32 word2; 143 u32 word3; 144 u32 word4; 145 } data; 146 }; 147 148 /* Check things that can be validated at build time. */ 149 static void gsi_validate_build(void) 150 { 151 /* This is used as a divisor */ 152 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 153 154 /* Code assumes the size of channel and event ring element are 155 * the same (and fixed). Make sure the size of an event ring 156 * element is what's expected. 157 */ 158 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 159 160 /* Hardware requires a 2^n ring size. We ensure the number of 161 * elements in an event ring is a power of 2 elsewhere; this 162 * ensure the elements themselves meet the requirement. 163 */ 164 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 165 166 /* The channel element size must fit in this field */ 167 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 168 169 /* The event ring element size must fit in this field */ 170 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 171 } 172 173 /* Return the channel id associated with a given channel */ 174 static u32 gsi_channel_id(struct gsi_channel *channel) 175 { 176 return channel - &channel->gsi->channel[0]; 177 } 178 179 /* An initialized channel has a non-null GSI pointer */ 180 static bool gsi_channel_initialized(struct gsi_channel *channel) 181 { 182 return !!channel->gsi; 183 } 184 185 /* Update the GSI IRQ type register with the cached value */ 186 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 187 { 188 gsi->type_enabled_bitmap = val; 189 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 190 } 191 192 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 193 { 194 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); 195 } 196 197 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 198 { 199 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); 200 } 201 202 /* Event ring commands are performed one at a time. Their completion 203 * is signaled by the event ring control GSI interrupt type, which is 204 * only enabled when we issue an event ring command. Only the event 205 * ring being operated on has this interrupt enabled. 206 */ 207 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 208 { 209 u32 val = BIT(evt_ring_id); 210 211 /* There's a small chance that a previous command completed 212 * after the interrupt was disabled, so make sure we have no 213 * pending interrupts before we enable them. 214 */ 215 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 216 217 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 218 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 219 } 220 221 /* Disable event ring control interrupts */ 222 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 223 { 224 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 225 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 226 } 227 228 /* Channel commands are performed one at a time. Their completion is 229 * signaled by the channel control GSI interrupt type, which is only 230 * enabled when we issue a channel command. Only the channel being 231 * operated on has this interrupt enabled. 232 */ 233 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 234 { 235 u32 val = BIT(channel_id); 236 237 /* There's a small chance that a previous command completed 238 * after the interrupt was disabled, so make sure we have no 239 * pending interrupts before we enable them. 240 */ 241 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 242 243 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 244 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 245 } 246 247 /* Disable channel control interrupts */ 248 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 249 { 250 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 251 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 252 } 253 254 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 255 { 256 bool enable_ieob = !gsi->ieob_enabled_bitmap; 257 u32 val; 258 259 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 260 val = gsi->ieob_enabled_bitmap; 261 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 262 263 /* Enable the interrupt type if this is the first channel enabled */ 264 if (enable_ieob) 265 gsi_irq_type_enable(gsi, GSI_IEOB); 266 } 267 268 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 269 { 270 u32 val; 271 272 gsi->ieob_enabled_bitmap &= ~event_mask; 273 274 /* Disable the interrupt type if this was the last enabled channel */ 275 if (!gsi->ieob_enabled_bitmap) 276 gsi_irq_type_disable(gsi, GSI_IEOB); 277 278 val = gsi->ieob_enabled_bitmap; 279 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 280 } 281 282 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 283 { 284 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 285 } 286 287 /* Enable all GSI_interrupt types */ 288 static void gsi_irq_enable(struct gsi *gsi) 289 { 290 u32 val; 291 292 /* Global interrupts include hardware error reports. Enable 293 * that so we can at least report the error should it occur. 294 */ 295 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 296 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); 297 298 /* General GSI interrupts are reported to all EEs; if they occur 299 * they are unrecoverable (without reset). A breakpoint interrupt 300 * also exists, but we don't support that. We want to be notified 301 * of errors so we can report them, even if they can't be handled. 302 */ 303 val = BIT(BUS_ERROR); 304 val |= BIT(CMD_FIFO_OVRFLOW); 305 val |= BIT(MCS_STACK_OVRFLOW); 306 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 307 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); 308 } 309 310 /* Disable all GSI interrupt types */ 311 static void gsi_irq_disable(struct gsi *gsi) 312 { 313 gsi_irq_type_update(gsi, 0); 314 315 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 316 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 317 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 318 } 319 320 /* Return the virtual address associated with a ring index */ 321 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 322 { 323 /* Note: index *must* be used modulo the ring count here */ 324 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 325 } 326 327 /* Return the 32-bit DMA address associated with a ring index */ 328 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 329 { 330 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 331 } 332 333 /* Return the ring index of a 32-bit ring offset */ 334 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 335 { 336 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 337 } 338 339 /* Issue a GSI command by writing a value to a register, then wait for 340 * completion to be signaled. Returns true if the command completes 341 * or false if it times out. 342 */ 343 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) 344 { 345 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 346 struct completion *completion = &gsi->completion; 347 348 reinit_completion(completion); 349 350 iowrite32(val, gsi->virt + reg); 351 352 return !!wait_for_completion_timeout(completion, timeout); 353 } 354 355 /* Return the hardware's notion of the current state of an event ring */ 356 static enum gsi_evt_ring_state 357 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 358 { 359 u32 val; 360 361 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 362 363 return u32_get_bits(val, EV_CHSTATE_FMASK); 364 } 365 366 /* Issue an event ring command and wait for it to complete */ 367 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 368 enum gsi_evt_cmd_opcode opcode) 369 { 370 struct device *dev = gsi->dev; 371 bool timeout; 372 u32 val; 373 374 /* Enable the completion interrupt for the command */ 375 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 376 377 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 378 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 379 380 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val); 381 382 gsi_irq_ev_ctrl_disable(gsi); 383 384 if (!timeout) 385 return; 386 387 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 388 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 389 } 390 391 /* Allocate an event ring in NOT_ALLOCATED state */ 392 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 393 { 394 enum gsi_evt_ring_state state; 395 396 /* Get initial event ring state */ 397 state = gsi_evt_ring_state(gsi, evt_ring_id); 398 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 399 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 400 evt_ring_id, state); 401 return -EINVAL; 402 } 403 404 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 405 406 /* If successful the event ring state will have changed */ 407 state = gsi_evt_ring_state(gsi, evt_ring_id); 408 if (state == GSI_EVT_RING_STATE_ALLOCATED) 409 return 0; 410 411 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 412 evt_ring_id, state); 413 414 return -EIO; 415 } 416 417 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 418 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 419 { 420 enum gsi_evt_ring_state state; 421 422 state = gsi_evt_ring_state(gsi, evt_ring_id); 423 if (state != GSI_EVT_RING_STATE_ALLOCATED && 424 state != GSI_EVT_RING_STATE_ERROR) { 425 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 426 evt_ring_id, state); 427 return; 428 } 429 430 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 431 432 /* If successful the event ring state will have changed */ 433 state = gsi_evt_ring_state(gsi, evt_ring_id); 434 if (state == GSI_EVT_RING_STATE_ALLOCATED) 435 return; 436 437 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 438 evt_ring_id, state); 439 } 440 441 /* Issue a hardware de-allocation request for an allocated event ring */ 442 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 443 { 444 enum gsi_evt_ring_state state; 445 446 state = gsi_evt_ring_state(gsi, evt_ring_id); 447 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 448 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 449 evt_ring_id, state); 450 return; 451 } 452 453 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 454 455 /* If successful the event ring state will have changed */ 456 state = gsi_evt_ring_state(gsi, evt_ring_id); 457 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 458 return; 459 460 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 461 evt_ring_id, state); 462 } 463 464 /* Fetch the current state of a channel from hardware */ 465 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 466 { 467 u32 channel_id = gsi_channel_id(channel); 468 void __iomem *virt = channel->gsi->virt; 469 u32 val; 470 471 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 472 473 return u32_get_bits(val, CHSTATE_FMASK); 474 } 475 476 /* Issue a channel command and wait for it to complete */ 477 static void 478 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 479 { 480 u32 channel_id = gsi_channel_id(channel); 481 struct gsi *gsi = channel->gsi; 482 struct device *dev = gsi->dev; 483 bool timeout; 484 u32 val; 485 486 /* Enable the completion interrupt for the command */ 487 gsi_irq_ch_ctrl_enable(gsi, channel_id); 488 489 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 490 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 491 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val); 492 493 gsi_irq_ch_ctrl_disable(gsi); 494 495 if (!timeout) 496 return; 497 498 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 499 opcode, channel_id, gsi_channel_state(channel)); 500 } 501 502 /* Allocate GSI channel in NOT_ALLOCATED state */ 503 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 504 { 505 struct gsi_channel *channel = &gsi->channel[channel_id]; 506 struct device *dev = gsi->dev; 507 enum gsi_channel_state state; 508 509 /* Get initial channel state */ 510 state = gsi_channel_state(channel); 511 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 512 dev_err(dev, "channel %u bad state %u before alloc\n", 513 channel_id, state); 514 return -EINVAL; 515 } 516 517 gsi_channel_command(channel, GSI_CH_ALLOCATE); 518 519 /* If successful the channel state will have changed */ 520 state = gsi_channel_state(channel); 521 if (state == GSI_CHANNEL_STATE_ALLOCATED) 522 return 0; 523 524 dev_err(dev, "channel %u bad state %u after alloc\n", 525 channel_id, state); 526 527 return -EIO; 528 } 529 530 /* Start an ALLOCATED channel */ 531 static int gsi_channel_start_command(struct gsi_channel *channel) 532 { 533 struct device *dev = channel->gsi->dev; 534 enum gsi_channel_state state; 535 536 state = gsi_channel_state(channel); 537 if (state != GSI_CHANNEL_STATE_ALLOCATED && 538 state != GSI_CHANNEL_STATE_STOPPED) { 539 dev_err(dev, "channel %u bad state %u before start\n", 540 gsi_channel_id(channel), state); 541 return -EINVAL; 542 } 543 544 gsi_channel_command(channel, GSI_CH_START); 545 546 /* If successful the channel state will have changed */ 547 state = gsi_channel_state(channel); 548 if (state == GSI_CHANNEL_STATE_STARTED) 549 return 0; 550 551 dev_err(dev, "channel %u bad state %u after start\n", 552 gsi_channel_id(channel), state); 553 554 return -EIO; 555 } 556 557 /* Stop a GSI channel in STARTED state */ 558 static int gsi_channel_stop_command(struct gsi_channel *channel) 559 { 560 struct device *dev = channel->gsi->dev; 561 enum gsi_channel_state state; 562 563 state = gsi_channel_state(channel); 564 565 /* Channel could have entered STOPPED state since last call 566 * if it timed out. If so, we're done. 567 */ 568 if (state == GSI_CHANNEL_STATE_STOPPED) 569 return 0; 570 571 if (state != GSI_CHANNEL_STATE_STARTED && 572 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 573 dev_err(dev, "channel %u bad state %u before stop\n", 574 gsi_channel_id(channel), state); 575 return -EINVAL; 576 } 577 578 gsi_channel_command(channel, GSI_CH_STOP); 579 580 /* If successful the channel state will have changed */ 581 state = gsi_channel_state(channel); 582 if (state == GSI_CHANNEL_STATE_STOPPED) 583 return 0; 584 585 /* We may have to try again if stop is in progress */ 586 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 587 return -EAGAIN; 588 589 dev_err(dev, "channel %u bad state %u after stop\n", 590 gsi_channel_id(channel), state); 591 592 return -EIO; 593 } 594 595 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 596 static void gsi_channel_reset_command(struct gsi_channel *channel) 597 { 598 struct device *dev = channel->gsi->dev; 599 enum gsi_channel_state state; 600 601 /* A short delay is required before a RESET command */ 602 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 603 604 state = gsi_channel_state(channel); 605 if (state != GSI_CHANNEL_STATE_STOPPED && 606 state != GSI_CHANNEL_STATE_ERROR) { 607 /* No need to reset a channel already in ALLOCATED state */ 608 if (state != GSI_CHANNEL_STATE_ALLOCATED) 609 dev_err(dev, "channel %u bad state %u before reset\n", 610 gsi_channel_id(channel), state); 611 return; 612 } 613 614 gsi_channel_command(channel, GSI_CH_RESET); 615 616 /* If successful the channel state will have changed */ 617 state = gsi_channel_state(channel); 618 if (state != GSI_CHANNEL_STATE_ALLOCATED) 619 dev_err(dev, "channel %u bad state %u after reset\n", 620 gsi_channel_id(channel), state); 621 } 622 623 /* Deallocate an ALLOCATED GSI channel */ 624 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 625 { 626 struct gsi_channel *channel = &gsi->channel[channel_id]; 627 struct device *dev = gsi->dev; 628 enum gsi_channel_state state; 629 630 state = gsi_channel_state(channel); 631 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 632 dev_err(dev, "channel %u bad state %u before dealloc\n", 633 channel_id, state); 634 return; 635 } 636 637 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 638 639 /* If successful the channel state will have changed */ 640 state = gsi_channel_state(channel); 641 642 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 643 dev_err(dev, "channel %u bad state %u after dealloc\n", 644 channel_id, state); 645 } 646 647 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 648 * The index argument (modulo the ring count) is the first unfilled entry, so 649 * we supply one less than that with the doorbell. Update the event ring 650 * index field with the value provided. 651 */ 652 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 653 { 654 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 655 u32 val; 656 657 ring->index = index; /* Next unused entry */ 658 659 /* Note: index *must* be used modulo the ring count here */ 660 val = gsi_ring_addr(ring, (index - 1) % ring->count); 661 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 662 } 663 664 /* Program an event ring for use */ 665 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 666 { 667 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 668 struct gsi_ring *ring = &evt_ring->ring; 669 size_t size; 670 u32 val; 671 672 /* We program all event rings as GPI type/protocol */ 673 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); 674 val |= EV_INTYPE_FMASK; 675 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 676 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 677 678 size = ring->count * GSI_RING_ELEMENT_SIZE; 679 val = ev_r_length_encoded(gsi->version, size); 680 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 681 682 /* The context 2 and 3 registers store the low-order and 683 * high-order 32 bits of the address of the event ring, 684 * respectively. 685 */ 686 val = lower_32_bits(ring->addr); 687 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 688 val = upper_32_bits(ring->addr); 689 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 690 691 /* Enable interrupt moderation by setting the moderation delay */ 692 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 693 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 694 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 695 696 /* No MSI write data, and MSI address high and low address is 0 */ 697 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 698 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 699 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 700 701 /* We don't need to get event read pointer updates */ 702 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 703 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 704 705 /* Finally, tell the hardware our "last processed" event (arbitrary) */ 706 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); 707 } 708 709 /* Find the transaction whose completion indicates a channel is quiesced */ 710 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 711 { 712 struct gsi_trans_info *trans_info = &channel->trans_info; 713 u32 pending_id = trans_info->pending_id; 714 struct gsi_trans *trans; 715 u16 trans_id; 716 717 if (channel->toward_ipa && pending_id != trans_info->free_id) { 718 /* There is a small chance a TX transaction got allocated 719 * just before we disabled transmits, so check for that. 720 * The last allocated, committed, or pending transaction 721 * precedes the first free transaction. 722 */ 723 trans_id = trans_info->free_id - 1; 724 } else if (trans_info->polled_id != pending_id) { 725 /* Otherwise (TX or RX) we want to wait for anything that 726 * has completed, or has been polled but not released yet. 727 * 728 * The last completed or polled transaction precedes the 729 * first pending transaction. 730 */ 731 trans_id = pending_id - 1; 732 } else { 733 return NULL; 734 } 735 736 /* Caller will wait for this, so take a reference */ 737 trans = &trans_info->trans[trans_id % channel->tre_count]; 738 refcount_inc(&trans->refcount); 739 740 return trans; 741 } 742 743 /* Wait for transaction activity on a channel to complete */ 744 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 745 { 746 struct gsi_trans *trans; 747 748 /* Get the last transaction, and wait for it to complete */ 749 trans = gsi_channel_trans_last(channel); 750 if (trans) { 751 wait_for_completion(&trans->completion); 752 gsi_trans_free(trans); 753 } 754 } 755 756 /* Program a channel for use; there is no gsi_channel_deprogram() */ 757 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 758 { 759 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 760 u32 channel_id = gsi_channel_id(channel); 761 union gsi_channel_scratch scr = { }; 762 struct gsi_channel_scratch_gpi *gpi; 763 struct gsi *gsi = channel->gsi; 764 u32 wrr_weight = 0; 765 u32 val; 766 767 /* We program all channels as GPI type/protocol */ 768 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI); 769 if (channel->toward_ipa) 770 val |= CHTYPE_DIR_FMASK; 771 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 772 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 773 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 774 775 val = r_length_encoded(gsi->version, size); 776 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 777 778 /* The context 2 and 3 registers store the low-order and 779 * high-order 32 bits of the address of the channel ring, 780 * respectively. 781 */ 782 val = lower_32_bits(channel->tre_ring.addr); 783 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 784 val = upper_32_bits(channel->tre_ring.addr); 785 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 786 787 /* Command channel gets low weighted round-robin priority */ 788 if (channel->command) 789 wrr_weight = field_max(WRR_WEIGHT_FMASK); 790 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 791 792 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 793 794 /* No need to use the doorbell engine starting at IPA v4.0 */ 795 if (gsi->version < IPA_VERSION_4_0 && doorbell) 796 val |= USE_DB_ENG_FMASK; 797 798 /* v4.0 introduces an escape buffer for prefetch. We use it 799 * on all but the AP command channel. 800 */ 801 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { 802 /* If not otherwise set, prefetch buffers are used */ 803 if (gsi->version < IPA_VERSION_4_5) 804 val |= USE_ESCAPE_BUF_ONLY_FMASK; 805 else 806 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, 807 PREFETCH_MODE_FMASK); 808 } 809 /* All channels set DB_IN_BYTES */ 810 if (gsi->version >= IPA_VERSION_4_9) 811 val |= DB_IN_BYTES; 812 813 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 814 815 /* Now update the scratch registers for GPI protocol */ 816 gpi = &scr.gpi; 817 gpi->max_outstanding_tre = channel->trans_tre_max * 818 GSI_RING_ELEMENT_SIZE; 819 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 820 821 val = scr.data.word1; 822 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 823 824 val = scr.data.word2; 825 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 826 827 val = scr.data.word3; 828 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 829 830 /* We must preserve the upper 16 bits of the last scratch register. 831 * The next sequence assumes those bits remain unchanged between the 832 * read and the write. 833 */ 834 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 835 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 836 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 837 838 /* All done! */ 839 } 840 841 static int __gsi_channel_start(struct gsi_channel *channel, bool resume) 842 { 843 struct gsi *gsi = channel->gsi; 844 int ret; 845 846 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 847 if (resume && gsi->version < IPA_VERSION_4_0) 848 return 0; 849 850 mutex_lock(&gsi->mutex); 851 852 ret = gsi_channel_start_command(channel); 853 854 mutex_unlock(&gsi->mutex); 855 856 return ret; 857 } 858 859 /* Start an allocated GSI channel */ 860 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 861 { 862 struct gsi_channel *channel = &gsi->channel[channel_id]; 863 int ret; 864 865 /* Enable NAPI and the completion interrupt */ 866 napi_enable(&channel->napi); 867 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 868 869 ret = __gsi_channel_start(channel, false); 870 if (ret) { 871 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 872 napi_disable(&channel->napi); 873 } 874 875 return ret; 876 } 877 878 static int gsi_channel_stop_retry(struct gsi_channel *channel) 879 { 880 u32 retries = GSI_CHANNEL_STOP_RETRIES; 881 int ret; 882 883 do { 884 ret = gsi_channel_stop_command(channel); 885 if (ret != -EAGAIN) 886 break; 887 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 888 } while (retries--); 889 890 return ret; 891 } 892 893 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) 894 { 895 struct gsi *gsi = channel->gsi; 896 int ret; 897 898 /* Wait for any underway transactions to complete before stopping. */ 899 gsi_channel_trans_quiesce(channel); 900 901 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 902 if (suspend && gsi->version < IPA_VERSION_4_0) 903 return 0; 904 905 mutex_lock(&gsi->mutex); 906 907 ret = gsi_channel_stop_retry(channel); 908 909 mutex_unlock(&gsi->mutex); 910 911 return ret; 912 } 913 914 /* Stop a started channel */ 915 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 916 { 917 struct gsi_channel *channel = &gsi->channel[channel_id]; 918 int ret; 919 920 ret = __gsi_channel_stop(channel, false); 921 if (ret) 922 return ret; 923 924 /* Disable the completion interrupt and NAPI if successful */ 925 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 926 napi_disable(&channel->napi); 927 928 return 0; 929 } 930 931 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 932 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 933 { 934 struct gsi_channel *channel = &gsi->channel[channel_id]; 935 936 mutex_lock(&gsi->mutex); 937 938 gsi_channel_reset_command(channel); 939 /* Due to a hardware quirk we may need to reset RX channels twice. */ 940 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) 941 gsi_channel_reset_command(channel); 942 943 /* Hardware assumes this is 0 following reset */ 944 channel->tre_ring.index = 0; 945 gsi_channel_program(channel, doorbell); 946 gsi_channel_trans_cancel_pending(channel); 947 948 mutex_unlock(&gsi->mutex); 949 } 950 951 /* Stop a started channel for suspend */ 952 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) 953 { 954 struct gsi_channel *channel = &gsi->channel[channel_id]; 955 int ret; 956 957 ret = __gsi_channel_stop(channel, true); 958 if (ret) 959 return ret; 960 961 /* Ensure NAPI polling has finished. */ 962 napi_synchronize(&channel->napi); 963 964 return 0; 965 } 966 967 /* Resume a suspended channel (starting if stopped) */ 968 int gsi_channel_resume(struct gsi *gsi, u32 channel_id) 969 { 970 struct gsi_channel *channel = &gsi->channel[channel_id]; 971 972 return __gsi_channel_start(channel, true); 973 } 974 975 /* Prevent all GSI interrupts while suspended */ 976 void gsi_suspend(struct gsi *gsi) 977 { 978 disable_irq(gsi->irq); 979 } 980 981 /* Allow all GSI interrupts again when resuming */ 982 void gsi_resume(struct gsi *gsi) 983 { 984 enable_irq(gsi->irq); 985 } 986 987 void gsi_trans_tx_committed(struct gsi_trans *trans) 988 { 989 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 990 991 channel->trans_count++; 992 channel->byte_count += trans->len; 993 994 trans->trans_count = channel->trans_count; 995 trans->byte_count = channel->byte_count; 996 } 997 998 void gsi_trans_tx_queued(struct gsi_trans *trans) 999 { 1000 u32 channel_id = trans->channel_id; 1001 struct gsi *gsi = trans->gsi; 1002 struct gsi_channel *channel; 1003 u32 trans_count; 1004 u32 byte_count; 1005 1006 channel = &gsi->channel[channel_id]; 1007 1008 byte_count = channel->byte_count - channel->queued_byte_count; 1009 trans_count = channel->trans_count - channel->queued_trans_count; 1010 channel->queued_byte_count = channel->byte_count; 1011 channel->queued_trans_count = channel->trans_count; 1012 1013 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); 1014 } 1015 1016 /** 1017 * gsi_trans_tx_completed() - Report completed TX transactions 1018 * @trans: TX channel transaction that has completed 1019 * 1020 * Report that a transaction on a TX channel has completed. At the time a 1021 * transaction is committed, we record *in the transaction* its channel's 1022 * committed transaction and byte counts. Transactions are completed in 1023 * order, and the difference between the channel's byte/transaction count 1024 * when the transaction was committed and when it completes tells us 1025 * exactly how much data has been transferred while the transaction was 1026 * pending. 1027 * 1028 * We report this information to the network stack, which uses it to manage 1029 * the rate at which data is sent to hardware. 1030 */ 1031 static void gsi_trans_tx_completed(struct gsi_trans *trans) 1032 { 1033 u32 channel_id = trans->channel_id; 1034 struct gsi *gsi = trans->gsi; 1035 struct gsi_channel *channel; 1036 u32 trans_count; 1037 u32 byte_count; 1038 1039 channel = &gsi->channel[channel_id]; 1040 trans_count = trans->trans_count - channel->compl_trans_count; 1041 byte_count = trans->byte_count - channel->compl_byte_count; 1042 1043 channel->compl_trans_count += trans_count; 1044 channel->compl_byte_count += byte_count; 1045 1046 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); 1047 } 1048 1049 /* Channel control interrupt handler */ 1050 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1051 { 1052 u32 channel_mask; 1053 1054 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 1055 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 1056 1057 while (channel_mask) { 1058 u32 channel_id = __ffs(channel_mask); 1059 1060 channel_mask ^= BIT(channel_id); 1061 1062 complete(&gsi->completion); 1063 } 1064 } 1065 1066 /* Event ring control interrupt handler */ 1067 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1068 { 1069 u32 event_mask; 1070 1071 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 1072 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 1073 1074 while (event_mask) { 1075 u32 evt_ring_id = __ffs(event_mask); 1076 1077 event_mask ^= BIT(evt_ring_id); 1078 1079 complete(&gsi->completion); 1080 } 1081 } 1082 1083 /* Global channel error interrupt handler */ 1084 static void 1085 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1086 { 1087 if (code == GSI_OUT_OF_RESOURCES) { 1088 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1089 complete(&gsi->completion); 1090 return; 1091 } 1092 1093 /* Report, but otherwise ignore all other error codes */ 1094 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1095 channel_id, err_ee, code); 1096 } 1097 1098 /* Global event error interrupt handler */ 1099 static void 1100 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1101 { 1102 if (code == GSI_OUT_OF_RESOURCES) { 1103 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1104 u32 channel_id = gsi_channel_id(evt_ring->channel); 1105 1106 complete(&gsi->completion); 1107 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1108 channel_id); 1109 return; 1110 } 1111 1112 /* Report, but otherwise ignore all other error codes */ 1113 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1114 evt_ring_id, err_ee, code); 1115 } 1116 1117 /* Global error interrupt handler */ 1118 static void gsi_isr_glob_err(struct gsi *gsi) 1119 { 1120 enum gsi_err_type type; 1121 enum gsi_err_code code; 1122 u32 which; 1123 u32 val; 1124 u32 ee; 1125 1126 /* Get the logged error, then reinitialize the log */ 1127 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1128 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1129 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1130 1131 ee = u32_get_bits(val, ERR_EE_FMASK); 1132 type = u32_get_bits(val, ERR_TYPE_FMASK); 1133 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1134 code = u32_get_bits(val, ERR_CODE_FMASK); 1135 1136 if (type == GSI_ERR_TYPE_CHAN) 1137 gsi_isr_glob_chan_err(gsi, ee, which, code); 1138 else if (type == GSI_ERR_TYPE_EVT) 1139 gsi_isr_glob_evt_err(gsi, ee, which, code); 1140 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1141 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1142 } 1143 1144 /* Generic EE interrupt handler */ 1145 static void gsi_isr_gp_int1(struct gsi *gsi) 1146 { 1147 u32 result; 1148 u32 val; 1149 1150 /* This interrupt is used to handle completions of GENERIC GSI 1151 * commands. We use these to allocate and halt channels on the 1152 * modem's behalf due to a hardware quirk on IPA v4.2. The modem 1153 * "owns" channels even when the AP allocates them, and have no 1154 * way of knowing whether a modem channel's state has been changed. 1155 * 1156 * We also use GENERIC commands to enable/disable channel flow 1157 * control for IPA v4.2+. 1158 * 1159 * It is recommended that we halt the modem channels we allocated 1160 * when shutting down, but it's possible the channel isn't running 1161 * at the time we issue the HALT command. We'll get an error in 1162 * that case, but it's harmless (the channel is already halted). 1163 * Similarly, we could get an error back when updating flow control 1164 * on a channel because it's not in the proper state. 1165 * 1166 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE 1167 * error if we receive it. 1168 */ 1169 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1170 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1171 1172 switch (result) { 1173 case GENERIC_EE_SUCCESS: 1174 case GENERIC_EE_INCORRECT_CHANNEL_STATE: 1175 gsi->result = 0; 1176 break; 1177 1178 case GENERIC_EE_RETRY: 1179 gsi->result = -EAGAIN; 1180 break; 1181 1182 default: 1183 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1184 gsi->result = -EIO; 1185 break; 1186 } 1187 1188 complete(&gsi->completion); 1189 } 1190 1191 /* Inter-EE interrupt handler */ 1192 static void gsi_isr_glob_ee(struct gsi *gsi) 1193 { 1194 u32 val; 1195 1196 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1197 1198 if (val & BIT(ERROR_INT)) 1199 gsi_isr_glob_err(gsi); 1200 1201 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1202 1203 val &= ~BIT(ERROR_INT); 1204 1205 if (val & BIT(GP_INT1)) { 1206 val ^= BIT(GP_INT1); 1207 gsi_isr_gp_int1(gsi); 1208 } 1209 1210 if (val) 1211 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1212 } 1213 1214 /* I/O completion interrupt event */ 1215 static void gsi_isr_ieob(struct gsi *gsi) 1216 { 1217 u32 event_mask; 1218 1219 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1220 gsi_irq_ieob_disable(gsi, event_mask); 1221 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1222 1223 while (event_mask) { 1224 u32 evt_ring_id = __ffs(event_mask); 1225 1226 event_mask ^= BIT(evt_ring_id); 1227 1228 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1229 } 1230 } 1231 1232 /* General event interrupts represent serious problems, so report them */ 1233 static void gsi_isr_general(struct gsi *gsi) 1234 { 1235 struct device *dev = gsi->dev; 1236 u32 val; 1237 1238 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1239 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1240 1241 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1242 } 1243 1244 /** 1245 * gsi_isr() - Top level GSI interrupt service routine 1246 * @irq: Interrupt number (ignored) 1247 * @dev_id: GSI pointer supplied to request_irq() 1248 * 1249 * This is the main handler function registered for the GSI IRQ. Each type 1250 * of interrupt has a separate handler function that is called from here. 1251 */ 1252 static irqreturn_t gsi_isr(int irq, void *dev_id) 1253 { 1254 struct gsi *gsi = dev_id; 1255 u32 intr_mask; 1256 u32 cnt = 0; 1257 1258 /* enum gsi_irq_type_id defines GSI interrupt types */ 1259 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1260 /* intr_mask contains bitmask of pending GSI interrupts */ 1261 do { 1262 u32 gsi_intr = BIT(__ffs(intr_mask)); 1263 1264 intr_mask ^= gsi_intr; 1265 1266 switch (gsi_intr) { 1267 case BIT(GSI_CH_CTRL): 1268 gsi_isr_chan_ctrl(gsi); 1269 break; 1270 case BIT(GSI_EV_CTRL): 1271 gsi_isr_evt_ctrl(gsi); 1272 break; 1273 case BIT(GSI_GLOB_EE): 1274 gsi_isr_glob_ee(gsi); 1275 break; 1276 case BIT(GSI_IEOB): 1277 gsi_isr_ieob(gsi); 1278 break; 1279 case BIT(GSI_GENERAL): 1280 gsi_isr_general(gsi); 1281 break; 1282 default: 1283 dev_err(gsi->dev, 1284 "unrecognized interrupt type 0x%08x\n", 1285 gsi_intr); 1286 break; 1287 } 1288 } while (intr_mask); 1289 1290 if (++cnt > GSI_ISR_MAX_ITER) { 1291 dev_err(gsi->dev, "interrupt flood\n"); 1292 break; 1293 } 1294 } 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ 1300 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1301 { 1302 int ret; 1303 1304 ret = platform_get_irq_byname(pdev, "gsi"); 1305 if (ret <= 0) 1306 return ret ? : -EINVAL; 1307 1308 gsi->irq = ret; 1309 1310 return 0; 1311 } 1312 1313 /* Return the transaction associated with a transfer completion event */ 1314 static struct gsi_trans * 1315 gsi_event_trans(struct gsi *gsi, struct gsi_event *event) 1316 { 1317 u32 channel_id = event->chid; 1318 struct gsi_channel *channel; 1319 struct gsi_trans *trans; 1320 u32 tre_offset; 1321 u32 tre_index; 1322 1323 channel = &gsi->channel[channel_id]; 1324 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) 1325 return NULL; 1326 1327 /* Event xfer_ptr records the TRE it's associated with */ 1328 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1329 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1330 1331 trans = gsi_channel_trans_mapped(channel, tre_index); 1332 1333 if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) 1334 return NULL; 1335 1336 return trans; 1337 } 1338 1339 /** 1340 * gsi_evt_ring_update() - Update transaction state from hardware 1341 * @gsi: GSI pointer 1342 * @evt_ring_id: Event ring ID 1343 * @index: Event index in ring reported by hardware 1344 * 1345 * Events for RX channels contain the actual number of bytes received into 1346 * the buffer. Every event has a transaction associated with it, and here 1347 * we update transactions to record their actual received lengths. 1348 * 1349 * When an event for a TX channel arrives we use information in the 1350 * transaction to report the number of requests and bytes that have 1351 * been transferred. 1352 * 1353 * This function is called whenever we learn that the GSI hardware has filled 1354 * new events since the last time we checked. The ring's index field tells 1355 * the first entry in need of processing. The index provided is the 1356 * first *unfilled* event in the ring (following the last filled one). 1357 * 1358 * Events are sequential within the event ring, and transactions are 1359 * sequential within the transaction array. 1360 * 1361 * Note that @index always refers to an element *within* the event ring. 1362 */ 1363 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) 1364 { 1365 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1366 struct gsi_ring *ring = &evt_ring->ring; 1367 struct gsi_event *event_done; 1368 struct gsi_event *event; 1369 u32 event_avail; 1370 u32 old_index; 1371 1372 /* Starting with the oldest un-processed event, determine which 1373 * transaction (and which channel) is associated with the event. 1374 * For RX channels, update each completed transaction with the 1375 * number of bytes that were actually received. For TX channels 1376 * associated with a network device, report to the network stack 1377 * the number of transfers and bytes this completion represents. 1378 */ 1379 old_index = ring->index; 1380 event = gsi_ring_virt(ring, old_index); 1381 1382 /* Compute the number of events to process before we wrap, 1383 * and determine when we'll be done processing events. 1384 */ 1385 event_avail = ring->count - old_index % ring->count; 1386 event_done = gsi_ring_virt(ring, index); 1387 do { 1388 struct gsi_trans *trans; 1389 1390 trans = gsi_event_trans(gsi, event); 1391 if (!trans) 1392 return; 1393 1394 if (trans->direction == DMA_FROM_DEVICE) 1395 trans->len = __le16_to_cpu(event->len); 1396 else 1397 gsi_trans_tx_completed(trans); 1398 1399 gsi_trans_move_complete(trans); 1400 1401 /* Move on to the next event and transaction */ 1402 if (--event_avail) 1403 event++; 1404 else 1405 event = gsi_ring_virt(ring, 0); 1406 } while (event != event_done); 1407 1408 /* Tell the hardware we've handled these events */ 1409 gsi_evt_ring_doorbell(gsi, evt_ring_id, index); 1410 } 1411 1412 /* Initialize a ring, including allocating DMA memory for its entries */ 1413 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1414 { 1415 u32 size = count * GSI_RING_ELEMENT_SIZE; 1416 struct device *dev = gsi->dev; 1417 dma_addr_t addr; 1418 1419 /* Hardware requires a 2^n ring size, with alignment equal to size. 1420 * The DMA address returned by dma_alloc_coherent() is guaranteed to 1421 * be a power-of-2 number of pages, which satisfies the requirement. 1422 */ 1423 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1424 if (!ring->virt) 1425 return -ENOMEM; 1426 1427 ring->addr = addr; 1428 ring->count = count; 1429 ring->index = 0; 1430 1431 return 0; 1432 } 1433 1434 /* Free a previously-allocated ring */ 1435 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1436 { 1437 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1438 1439 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1440 } 1441 1442 /* Allocate an available event ring id */ 1443 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1444 { 1445 u32 evt_ring_id; 1446 1447 if (gsi->event_bitmap == ~0U) { 1448 dev_err(gsi->dev, "event rings exhausted\n"); 1449 return -ENOSPC; 1450 } 1451 1452 evt_ring_id = ffz(gsi->event_bitmap); 1453 gsi->event_bitmap |= BIT(evt_ring_id); 1454 1455 return (int)evt_ring_id; 1456 } 1457 1458 /* Free a previously-allocated event ring id */ 1459 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1460 { 1461 gsi->event_bitmap &= ~BIT(evt_ring_id); 1462 } 1463 1464 /* Ring a channel doorbell, reporting the first un-filled entry */ 1465 void gsi_channel_doorbell(struct gsi_channel *channel) 1466 { 1467 struct gsi_ring *tre_ring = &channel->tre_ring; 1468 u32 channel_id = gsi_channel_id(channel); 1469 struct gsi *gsi = channel->gsi; 1470 u32 val; 1471 1472 /* Note: index *must* be used modulo the ring count here */ 1473 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1474 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1475 } 1476 1477 /* Consult hardware, move newly completed transactions to completed state */ 1478 void gsi_channel_update(struct gsi_channel *channel) 1479 { 1480 u32 evt_ring_id = channel->evt_ring_id; 1481 struct gsi *gsi = channel->gsi; 1482 struct gsi_evt_ring *evt_ring; 1483 struct gsi_trans *trans; 1484 struct gsi_ring *ring; 1485 u32 offset; 1486 u32 index; 1487 1488 evt_ring = &gsi->evt_ring[evt_ring_id]; 1489 ring = &evt_ring->ring; 1490 1491 /* See if there's anything new to process; if not, we're done. Note 1492 * that index always refers to an entry *within* the event ring. 1493 */ 1494 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1495 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1496 if (index == ring->index % ring->count) 1497 return; 1498 1499 /* Get the transaction for the latest completed event. */ 1500 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); 1501 if (!trans) 1502 return; 1503 1504 /* For RX channels, update each completed transaction with the number 1505 * of bytes that were actually received. For TX channels, report 1506 * the number of transactions and bytes this completion represents 1507 * up the network stack. 1508 */ 1509 gsi_evt_ring_update(gsi, evt_ring_id, index); 1510 } 1511 1512 /** 1513 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1514 * @channel: Channel to be polled 1515 * 1516 * Return: Transaction pointer, or null if none are available 1517 * 1518 * This function returns the first of a channel's completed transactions. 1519 * If no transactions are in completed state, the hardware is consulted to 1520 * determine whether any new transactions have completed. If so, they're 1521 * moved to completed state and the first such transaction is returned. 1522 * If there are no more completed transactions, a null pointer is returned. 1523 */ 1524 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1525 { 1526 struct gsi_trans *trans; 1527 1528 /* Get the first completed transaction */ 1529 trans = gsi_channel_trans_complete(channel); 1530 if (trans) 1531 gsi_trans_move_polled(trans); 1532 1533 return trans; 1534 } 1535 1536 /** 1537 * gsi_channel_poll() - NAPI poll function for a channel 1538 * @napi: NAPI structure for the channel 1539 * @budget: Budget supplied by NAPI core 1540 * 1541 * Return: Number of items polled (<= budget) 1542 * 1543 * Single transactions completed by hardware are polled until either 1544 * the budget is exhausted, or there are no more. Each transaction 1545 * polled is passed to gsi_trans_complete(), to perform remaining 1546 * completion processing and retire/free the transaction. 1547 */ 1548 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1549 { 1550 struct gsi_channel *channel; 1551 int count; 1552 1553 channel = container_of(napi, struct gsi_channel, napi); 1554 for (count = 0; count < budget; count++) { 1555 struct gsi_trans *trans; 1556 1557 trans = gsi_channel_poll_one(channel); 1558 if (!trans) 1559 break; 1560 gsi_trans_complete(trans); 1561 } 1562 1563 if (count < budget && napi_complete(napi)) 1564 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1565 1566 return count; 1567 } 1568 1569 /* The event bitmap represents which event ids are available for allocation. 1570 * Set bits are not available, clear bits can be used. This function 1571 * initializes the map so all events supported by the hardware are available, 1572 * then precludes any reserved events from being allocated. 1573 */ 1574 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1575 { 1576 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1577 1578 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1579 1580 return event_bitmap; 1581 } 1582 1583 /* Setup function for a single channel */ 1584 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1585 { 1586 struct gsi_channel *channel = &gsi->channel[channel_id]; 1587 u32 evt_ring_id = channel->evt_ring_id; 1588 int ret; 1589 1590 if (!gsi_channel_initialized(channel)) 1591 return 0; 1592 1593 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1594 if (ret) 1595 return ret; 1596 1597 gsi_evt_ring_program(gsi, evt_ring_id); 1598 1599 ret = gsi_channel_alloc_command(gsi, channel_id); 1600 if (ret) 1601 goto err_evt_ring_de_alloc; 1602 1603 gsi_channel_program(channel, true); 1604 1605 if (channel->toward_ipa) 1606 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, 1607 gsi_channel_poll); 1608 else 1609 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1610 gsi_channel_poll); 1611 1612 return 0; 1613 1614 err_evt_ring_de_alloc: 1615 /* We've done nothing with the event ring yet so don't reset */ 1616 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1617 1618 return ret; 1619 } 1620 1621 /* Inverse of gsi_channel_setup_one() */ 1622 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1623 { 1624 struct gsi_channel *channel = &gsi->channel[channel_id]; 1625 u32 evt_ring_id = channel->evt_ring_id; 1626 1627 if (!gsi_channel_initialized(channel)) 1628 return; 1629 1630 netif_napi_del(&channel->napi); 1631 1632 gsi_channel_de_alloc_command(gsi, channel_id); 1633 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1634 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1635 } 1636 1637 /* We use generic commands only to operate on modem channels. We don't have 1638 * the ability to determine channel state for a modem channel, so we simply 1639 * issue the command and wait for it to complete. 1640 */ 1641 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1642 enum gsi_generic_cmd_opcode opcode, 1643 u8 params) 1644 { 1645 bool timeout; 1646 u32 val; 1647 1648 /* The error global interrupt type is always enabled (until we tear 1649 * down), so we will keep it enabled. 1650 * 1651 * A generic EE command completes with a GSI global interrupt of 1652 * type GP_INT1. We only perform one generic command at a time 1653 * (to allocate, halt, or enable/disable flow control on a modem 1654 * channel), and only from this function. So we enable the GP_INT1 1655 * IRQ type here, and disable it again after the command completes. 1656 */ 1657 val = BIT(ERROR_INT) | BIT(GP_INT1); 1658 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1659 1660 /* First zero the result code field */ 1661 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1662 val &= ~GENERIC_EE_RESULT_FMASK; 1663 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1664 1665 /* Now issue the command */ 1666 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1667 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1668 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1669 val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK); 1670 1671 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val); 1672 1673 /* Disable the GP_INT1 IRQ type again */ 1674 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1675 1676 if (!timeout) 1677 return gsi->result; 1678 1679 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1680 opcode, channel_id); 1681 1682 return -ETIMEDOUT; 1683 } 1684 1685 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1686 { 1687 return gsi_generic_command(gsi, channel_id, 1688 GSI_GENERIC_ALLOCATE_CHANNEL, 0); 1689 } 1690 1691 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1692 { 1693 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1694 int ret; 1695 1696 do 1697 ret = gsi_generic_command(gsi, channel_id, 1698 GSI_GENERIC_HALT_CHANNEL, 0); 1699 while (ret == -EAGAIN && retries--); 1700 1701 if (ret) 1702 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1703 ret, channel_id); 1704 } 1705 1706 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ 1707 void 1708 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) 1709 { 1710 u32 retries = 0; 1711 u32 command; 1712 int ret; 1713 1714 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL 1715 : GSI_GENERIC_DISABLE_FLOW_CONTROL; 1716 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable 1717 * is underway. In this case we need to retry the command. 1718 */ 1719 if (!enable && gsi->version >= IPA_VERSION_4_11) 1720 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; 1721 1722 do 1723 ret = gsi_generic_command(gsi, channel_id, command, 0); 1724 while (ret == -EAGAIN && retries--); 1725 1726 if (ret) 1727 dev_err(gsi->dev, 1728 "error %d %sabling mode channel %u flow control\n", 1729 ret, enable ? "en" : "dis", channel_id); 1730 } 1731 1732 /* Setup function for channels */ 1733 static int gsi_channel_setup(struct gsi *gsi) 1734 { 1735 u32 channel_id = 0; 1736 u32 mask; 1737 int ret; 1738 1739 gsi_irq_enable(gsi); 1740 1741 mutex_lock(&gsi->mutex); 1742 1743 do { 1744 ret = gsi_channel_setup_one(gsi, channel_id); 1745 if (ret) 1746 goto err_unwind; 1747 } while (++channel_id < gsi->channel_count); 1748 1749 /* Make sure no channels were defined that hardware does not support */ 1750 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1751 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1752 1753 if (!gsi_channel_initialized(channel)) 1754 continue; 1755 1756 ret = -EINVAL; 1757 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1758 channel_id - 1); 1759 channel_id = gsi->channel_count; 1760 goto err_unwind; 1761 } 1762 1763 /* Allocate modem channels if necessary */ 1764 mask = gsi->modem_channel_bitmap; 1765 while (mask) { 1766 u32 modem_channel_id = __ffs(mask); 1767 1768 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1769 if (ret) 1770 goto err_unwind_modem; 1771 1772 /* Clear bit from mask only after success (for unwind) */ 1773 mask ^= BIT(modem_channel_id); 1774 } 1775 1776 mutex_unlock(&gsi->mutex); 1777 1778 return 0; 1779 1780 err_unwind_modem: 1781 /* Compute which modem channels need to be deallocated */ 1782 mask ^= gsi->modem_channel_bitmap; 1783 while (mask) { 1784 channel_id = __fls(mask); 1785 1786 mask ^= BIT(channel_id); 1787 1788 gsi_modem_channel_halt(gsi, channel_id); 1789 } 1790 1791 err_unwind: 1792 while (channel_id--) 1793 gsi_channel_teardown_one(gsi, channel_id); 1794 1795 mutex_unlock(&gsi->mutex); 1796 1797 gsi_irq_disable(gsi); 1798 1799 return ret; 1800 } 1801 1802 /* Inverse of gsi_channel_setup() */ 1803 static void gsi_channel_teardown(struct gsi *gsi) 1804 { 1805 u32 mask = gsi->modem_channel_bitmap; 1806 u32 channel_id; 1807 1808 mutex_lock(&gsi->mutex); 1809 1810 while (mask) { 1811 channel_id = __fls(mask); 1812 1813 mask ^= BIT(channel_id); 1814 1815 gsi_modem_channel_halt(gsi, channel_id); 1816 } 1817 1818 channel_id = gsi->channel_count - 1; 1819 do 1820 gsi_channel_teardown_one(gsi, channel_id); 1821 while (channel_id--); 1822 1823 mutex_unlock(&gsi->mutex); 1824 1825 gsi_irq_disable(gsi); 1826 } 1827 1828 /* Turn off all GSI interrupts initially */ 1829 static int gsi_irq_setup(struct gsi *gsi) 1830 { 1831 int ret; 1832 1833 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1834 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1835 1836 /* Disable all interrupt types */ 1837 gsi_irq_type_update(gsi, 0); 1838 1839 /* Clear all type-specific interrupt masks */ 1840 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 1841 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 1842 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1843 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 1844 1845 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ 1846 if (gsi->version > IPA_VERSION_3_1) { 1847 u32 offset; 1848 1849 /* These registers are in the non-adjusted address range */ 1850 offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET; 1851 iowrite32(0, gsi->virt_raw + offset); 1852 offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET; 1853 iowrite32(0, gsi->virt_raw + offset); 1854 } 1855 1856 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 1857 1858 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); 1859 if (ret) 1860 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 1861 1862 return ret; 1863 } 1864 1865 static void gsi_irq_teardown(struct gsi *gsi) 1866 { 1867 free_irq(gsi->irq, gsi); 1868 } 1869 1870 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ 1871 static int gsi_ring_setup(struct gsi *gsi) 1872 { 1873 struct device *dev = gsi->dev; 1874 u32 count; 1875 u32 val; 1876 1877 if (gsi->version < IPA_VERSION_3_5_1) { 1878 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ 1879 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1880 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1881 1882 return 0; 1883 } 1884 1885 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1886 1887 count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1888 if (!count) { 1889 dev_err(dev, "GSI reports zero channels supported\n"); 1890 return -EINVAL; 1891 } 1892 if (count > GSI_CHANNEL_COUNT_MAX) { 1893 dev_warn(dev, "limiting to %u channels; hardware supports %u\n", 1894 GSI_CHANNEL_COUNT_MAX, count); 1895 count = GSI_CHANNEL_COUNT_MAX; 1896 } 1897 gsi->channel_count = count; 1898 1899 count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1900 if (!count) { 1901 dev_err(dev, "GSI reports zero event rings supported\n"); 1902 return -EINVAL; 1903 } 1904 if (count > GSI_EVT_RING_COUNT_MAX) { 1905 dev_warn(dev, 1906 "limiting to %u event rings; hardware supports %u\n", 1907 GSI_EVT_RING_COUNT_MAX, count); 1908 count = GSI_EVT_RING_COUNT_MAX; 1909 } 1910 gsi->evt_ring_count = count; 1911 1912 return 0; 1913 } 1914 1915 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1916 int gsi_setup(struct gsi *gsi) 1917 { 1918 u32 val; 1919 int ret; 1920 1921 /* Here is where we first touch the GSI hardware */ 1922 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1923 if (!(val & ENABLED_FMASK)) { 1924 dev_err(gsi->dev, "GSI has not been enabled\n"); 1925 return -EIO; 1926 } 1927 1928 ret = gsi_irq_setup(gsi); 1929 if (ret) 1930 return ret; 1931 1932 ret = gsi_ring_setup(gsi); /* No matching teardown required */ 1933 if (ret) 1934 goto err_irq_teardown; 1935 1936 /* Initialize the error log */ 1937 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1938 1939 ret = gsi_channel_setup(gsi); 1940 if (ret) 1941 goto err_irq_teardown; 1942 1943 return 0; 1944 1945 err_irq_teardown: 1946 gsi_irq_teardown(gsi); 1947 1948 return ret; 1949 } 1950 1951 /* Inverse of gsi_setup() */ 1952 void gsi_teardown(struct gsi *gsi) 1953 { 1954 gsi_channel_teardown(gsi); 1955 gsi_irq_teardown(gsi); 1956 } 1957 1958 /* Initialize a channel's event ring */ 1959 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1960 { 1961 struct gsi *gsi = channel->gsi; 1962 struct gsi_evt_ring *evt_ring; 1963 int ret; 1964 1965 ret = gsi_evt_ring_id_alloc(gsi); 1966 if (ret < 0) 1967 return ret; 1968 channel->evt_ring_id = ret; 1969 1970 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1971 evt_ring->channel = channel; 1972 1973 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1974 if (!ret) 1975 return 0; /* Success! */ 1976 1977 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1978 ret, gsi_channel_id(channel)); 1979 1980 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1981 1982 return ret; 1983 } 1984 1985 /* Inverse of gsi_channel_evt_ring_init() */ 1986 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1987 { 1988 u32 evt_ring_id = channel->evt_ring_id; 1989 struct gsi *gsi = channel->gsi; 1990 struct gsi_evt_ring *evt_ring; 1991 1992 evt_ring = &gsi->evt_ring[evt_ring_id]; 1993 gsi_ring_free(gsi, &evt_ring->ring); 1994 gsi_evt_ring_id_free(gsi, evt_ring_id); 1995 } 1996 1997 static bool gsi_channel_data_valid(struct gsi *gsi, bool command, 1998 const struct ipa_gsi_endpoint_data *data) 1999 { 2000 const struct gsi_channel_data *channel_data; 2001 u32 channel_id = data->channel_id; 2002 struct device *dev = gsi->dev; 2003 2004 /* Make sure channel ids are in the range driver supports */ 2005 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 2006 dev_err(dev, "bad channel id %u; must be less than %u\n", 2007 channel_id, GSI_CHANNEL_COUNT_MAX); 2008 return false; 2009 } 2010 2011 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 2012 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 2013 return false; 2014 } 2015 2016 if (command && !data->toward_ipa) { 2017 dev_err(dev, "command channel %u is not TX\n", channel_id); 2018 return false; 2019 } 2020 2021 channel_data = &data->channel; 2022 2023 if (!channel_data->tlv_count || 2024 channel_data->tlv_count > GSI_TLV_MAX) { 2025 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 2026 channel_id, channel_data->tlv_count, GSI_TLV_MAX); 2027 return false; 2028 } 2029 2030 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { 2031 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", 2032 channel_id, IPA_COMMAND_TRANS_TRE_MAX, 2033 channel_data->tlv_count); 2034 return false; 2035 } 2036 2037 /* We have to allow at least one maximally-sized transaction to 2038 * be outstanding (which would use tlv_count TREs). Given how 2039 * gsi_channel_tre_max() is computed, tre_count has to be almost 2040 * twice the TLV FIFO size to satisfy this requirement. 2041 */ 2042 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { 2043 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2044 channel_id, channel_data->tlv_count, 2045 channel_data->tre_count); 2046 return false; 2047 } 2048 2049 if (!is_power_of_2(channel_data->tre_count)) { 2050 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2051 channel_id, channel_data->tre_count); 2052 return false; 2053 } 2054 2055 if (!is_power_of_2(channel_data->event_count)) { 2056 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2057 channel_id, channel_data->event_count); 2058 return false; 2059 } 2060 2061 return true; 2062 } 2063 2064 /* Init function for a single channel */ 2065 static int gsi_channel_init_one(struct gsi *gsi, 2066 const struct ipa_gsi_endpoint_data *data, 2067 bool command) 2068 { 2069 struct gsi_channel *channel; 2070 u32 tre_count; 2071 int ret; 2072 2073 if (!gsi_channel_data_valid(gsi, command, data)) 2074 return -EINVAL; 2075 2076 /* Worst case we need an event for every outstanding TRE */ 2077 if (data->channel.tre_count > data->channel.event_count) { 2078 tre_count = data->channel.event_count; 2079 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2080 data->channel_id, tre_count); 2081 } else { 2082 tre_count = data->channel.tre_count; 2083 } 2084 2085 channel = &gsi->channel[data->channel_id]; 2086 memset(channel, 0, sizeof(*channel)); 2087 2088 channel->gsi = gsi; 2089 channel->toward_ipa = data->toward_ipa; 2090 channel->command = command; 2091 channel->trans_tre_max = data->channel.tlv_count; 2092 channel->tre_count = tre_count; 2093 channel->event_count = data->channel.event_count; 2094 2095 ret = gsi_channel_evt_ring_init(channel); 2096 if (ret) 2097 goto err_clear_gsi; 2098 2099 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2100 if (ret) { 2101 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2102 ret, data->channel_id); 2103 goto err_channel_evt_ring_exit; 2104 } 2105 2106 ret = gsi_channel_trans_init(gsi, data->channel_id); 2107 if (ret) 2108 goto err_ring_free; 2109 2110 if (command) { 2111 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2112 2113 ret = ipa_cmd_pool_init(channel, tre_max); 2114 } 2115 if (!ret) 2116 return 0; /* Success! */ 2117 2118 gsi_channel_trans_exit(channel); 2119 err_ring_free: 2120 gsi_ring_free(gsi, &channel->tre_ring); 2121 err_channel_evt_ring_exit: 2122 gsi_channel_evt_ring_exit(channel); 2123 err_clear_gsi: 2124 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2125 2126 return ret; 2127 } 2128 2129 /* Inverse of gsi_channel_init_one() */ 2130 static void gsi_channel_exit_one(struct gsi_channel *channel) 2131 { 2132 if (!gsi_channel_initialized(channel)) 2133 return; 2134 2135 if (channel->command) 2136 ipa_cmd_pool_exit(channel); 2137 gsi_channel_trans_exit(channel); 2138 gsi_ring_free(channel->gsi, &channel->tre_ring); 2139 gsi_channel_evt_ring_exit(channel); 2140 } 2141 2142 /* Init function for channels */ 2143 static int gsi_channel_init(struct gsi *gsi, u32 count, 2144 const struct ipa_gsi_endpoint_data *data) 2145 { 2146 bool modem_alloc; 2147 int ret = 0; 2148 u32 i; 2149 2150 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2151 modem_alloc = gsi->version == IPA_VERSION_4_2; 2152 2153 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 2154 gsi->ieob_enabled_bitmap = 0; 2155 2156 /* The endpoint data array is indexed by endpoint name */ 2157 for (i = 0; i < count; i++) { 2158 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2159 2160 if (ipa_gsi_endpoint_data_empty(&data[i])) 2161 continue; /* Skip over empty slots */ 2162 2163 /* Mark modem channels to be allocated (hardware workaround) */ 2164 if (data[i].ee_id == GSI_EE_MODEM) { 2165 if (modem_alloc) 2166 gsi->modem_channel_bitmap |= 2167 BIT(data[i].channel_id); 2168 continue; 2169 } 2170 2171 ret = gsi_channel_init_one(gsi, &data[i], command); 2172 if (ret) 2173 goto err_unwind; 2174 } 2175 2176 return ret; 2177 2178 err_unwind: 2179 while (i--) { 2180 if (ipa_gsi_endpoint_data_empty(&data[i])) 2181 continue; 2182 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2183 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2184 continue; 2185 } 2186 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2187 } 2188 2189 return ret; 2190 } 2191 2192 /* Inverse of gsi_channel_init() */ 2193 static void gsi_channel_exit(struct gsi *gsi) 2194 { 2195 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2196 2197 do 2198 gsi_channel_exit_one(&gsi->channel[channel_id]); 2199 while (channel_id--); 2200 gsi->modem_channel_bitmap = 0; 2201 } 2202 2203 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2204 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2205 enum ipa_version version, u32 count, 2206 const struct ipa_gsi_endpoint_data *data) 2207 { 2208 struct device *dev = &pdev->dev; 2209 struct resource *res; 2210 resource_size_t size; 2211 u32 adjust; 2212 int ret; 2213 2214 gsi_validate_build(); 2215 2216 gsi->dev = dev; 2217 gsi->version = version; 2218 2219 /* GSI uses NAPI on all channels. Create a dummy network device 2220 * for the channel NAPI contexts to be associated with. 2221 */ 2222 init_dummy_netdev(&gsi->dummy_dev); 2223 2224 /* Get GSI memory range and map it */ 2225 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 2226 if (!res) { 2227 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 2228 return -ENODEV; 2229 } 2230 2231 size = resource_size(res); 2232 if (res->start > U32_MAX || size > U32_MAX - res->start) { 2233 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2234 return -EINVAL; 2235 } 2236 2237 /* Make sure we can make our pointer adjustment if necessary */ 2238 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 2239 if (res->start < adjust) { 2240 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", 2241 adjust); 2242 return -EINVAL; 2243 } 2244 2245 gsi->virt_raw = ioremap(res->start, size); 2246 if (!gsi->virt_raw) { 2247 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2248 return -ENOMEM; 2249 } 2250 /* Most registers are accessed using an adjusted register range */ 2251 gsi->virt = gsi->virt_raw - adjust; 2252 2253 init_completion(&gsi->completion); 2254 2255 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ 2256 if (ret) 2257 goto err_iounmap; 2258 2259 ret = gsi_channel_init(gsi, count, data); 2260 if (ret) 2261 goto err_iounmap; 2262 2263 mutex_init(&gsi->mutex); 2264 2265 return 0; 2266 2267 err_iounmap: 2268 iounmap(gsi->virt_raw); 2269 2270 return ret; 2271 } 2272 2273 /* Inverse of gsi_init() */ 2274 void gsi_exit(struct gsi *gsi) 2275 { 2276 mutex_destroy(&gsi->mutex); 2277 gsi_channel_exit(gsi); 2278 iounmap(gsi->virt_raw); 2279 } 2280 2281 /* The maximum number of outstanding TREs on a channel. This limits 2282 * a channel's maximum number of transactions outstanding (worst case 2283 * is one TRE per transaction). 2284 * 2285 * The absolute limit is the number of TREs in the channel's TRE ring, 2286 * and in theory we should be able use all of them. But in practice, 2287 * doing that led to the hardware reporting exhaustion of event ring 2288 * slots for writing completion information. So the hardware limit 2289 * would be (tre_count - 1). 2290 * 2291 * We reduce it a bit further though. Transaction resource pools are 2292 * sized to be a little larger than this maximum, to allow resource 2293 * allocations to always be contiguous. The number of entries in a 2294 * TRE ring buffer is a power of 2, and the extra resources in a pool 2295 * tends to nearly double the memory allocated for it. Reducing the 2296 * maximum number of outstanding TREs allows the number of entries in 2297 * a pool to avoid crossing that power-of-2 boundary, and this can 2298 * substantially reduce pool memory requirements. The number we 2299 * reduce it by matches the number added in gsi_trans_pool_init(). 2300 */ 2301 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2302 { 2303 struct gsi_channel *channel = &gsi->channel[channel_id]; 2304 2305 /* Hardware limit is channel->tre_count - 1 */ 2306 return channel->tre_count - (channel->trans_tre_max - 1); 2307 } 2308