1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2023 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "reg.h" 20 #include "gsi_reg.h" 21 #include "gsi_private.h" 22 #include "gsi_trans.h" 23 #include "ipa_gsi.h" 24 #include "ipa_data.h" 25 #include "ipa_version.h" 26 27 /** 28 * DOC: The IPA Generic Software Interface 29 * 30 * The generic software interface (GSI) is an integral component of the IPA, 31 * providing a well-defined communication layer between the AP subsystem 32 * and the IPA core. The modem uses the GSI layer as well. 33 * 34 * -------- --------- 35 * | | | | 36 * | AP +<---. .----+ Modem | 37 * | +--. | | .->+ | 38 * | | | | | | | | 39 * -------- | | | | --------- 40 * v | v | 41 * --+-+---+-+-- 42 * | GSI | 43 * |-----------| 44 * | | 45 * | IPA | 46 * | | 47 * ------------- 48 * 49 * In the above diagram, the AP and Modem represent "execution environments" 50 * (EEs), which are independent operating environments that use the IPA for 51 * data transfer. 52 * 53 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 54 * of data to or from the IPA. A channel is implemented as a ring buffer, 55 * with a DRAM-resident array of "transfer elements" (TREs) available to 56 * describe transfers to or from other EEs through the IPA. A transfer 57 * element can also contain an immediate command, requesting the IPA perform 58 * actions other than data transfer. 59 * 60 * Each TRE refers to a block of data--also located in DRAM. After writing 61 * one or more TREs to a channel, the writer (either the IPA or an EE) writes 62 * a doorbell register to inform the receiving side how many elements have 63 * been written. 64 * 65 * Each channel has a GSI "event ring" associated with it. An event ring 66 * is implemented very much like a channel ring, but is always directed from 67 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 68 * events by adding an entry to the event ring associated with the channel. 69 * The GSI then writes its doorbell for the event ring, causing the target 70 * EE to be interrupted. Each entry in an event ring contains a pointer 71 * to the channel TRE whose completion the event represents. 72 * 73 * Each TRE in a channel ring has a set of flags. One flag indicates whether 74 * the completion of the transfer operation generates an entry (and possibly 75 * an interrupt) in the channel's event ring. Other flags allow transfer 76 * elements to be chained together, forming a single logical transaction. 77 * TRE flags are used to control whether and when interrupts are generated 78 * to signal completion of channel transfers. 79 * 80 * Elements in channel and event rings are completed (or consumed) strictly 81 * in order. Completion of one entry implies the completion of all preceding 82 * entries. A single completion interrupt can therefore communicate the 83 * completion of many transfers. 84 * 85 * Note that all GSI registers are little-endian, which is the assumed 86 * endianness of I/O space accesses. The accessor functions perform byte 87 * swapping if needed (i.e., for a big endian CPU). 88 */ 89 90 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 91 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 92 93 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 94 95 #define GSI_CHANNEL_STOP_RETRIES 10 96 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 97 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ 98 99 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 100 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 101 102 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 103 104 /* An entry in an event ring */ 105 struct gsi_event { 106 __le64 xfer_ptr; 107 __le16 len; 108 u8 reserved1; 109 u8 code; 110 __le16 reserved2; 111 u8 type; 112 u8 chid; 113 }; 114 115 /** gsi_channel_scratch_gpi - GPI protocol scratch register 116 * @max_outstanding_tre: 117 * Defines the maximum number of TREs allowed in a single transaction 118 * on a channel (in bytes). This determines the amount of prefetch 119 * performed by the hardware. We configure this to equal the size of 120 * the TLV FIFO for the channel. 121 * @outstanding_threshold: 122 * Defines the threshold (in bytes) determining when the sequencer 123 * should update the channel doorbell. We configure this to equal 124 * the size of two TREs. 125 */ 126 struct gsi_channel_scratch_gpi { 127 u64 reserved1; 128 u16 reserved2; 129 u16 max_outstanding_tre; 130 u16 reserved3; 131 u16 outstanding_threshold; 132 }; 133 134 /** gsi_channel_scratch - channel scratch configuration area 135 * 136 * The exact interpretation of this register is protocol-specific. 137 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 138 */ 139 union gsi_channel_scratch { 140 struct gsi_channel_scratch_gpi gpi; 141 struct { 142 u32 word1; 143 u32 word2; 144 u32 word3; 145 u32 word4; 146 } data; 147 }; 148 149 /* Check things that can be validated at build time. */ 150 static void gsi_validate_build(void) 151 { 152 /* This is used as a divisor */ 153 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 154 155 /* Code assumes the size of channel and event ring element are 156 * the same (and fixed). Make sure the size of an event ring 157 * element is what's expected. 158 */ 159 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 160 161 /* Hardware requires a 2^n ring size. We ensure the number of 162 * elements in an event ring is a power of 2 elsewhere; this 163 * ensure the elements themselves meet the requirement. 164 */ 165 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 166 } 167 168 /* Return the channel id associated with a given channel */ 169 static u32 gsi_channel_id(struct gsi_channel *channel) 170 { 171 return channel - &channel->gsi->channel[0]; 172 } 173 174 /* An initialized channel has a non-null GSI pointer */ 175 static bool gsi_channel_initialized(struct gsi_channel *channel) 176 { 177 return !!channel->gsi; 178 } 179 180 /* Encode the channel protocol for the CH_C_CNTXT_0 register */ 181 static u32 ch_c_cntxt_0_type_encode(enum ipa_version version, 182 const struct reg *reg, 183 enum gsi_channel_type type) 184 { 185 u32 val; 186 187 val = reg_encode(reg, CHTYPE_PROTOCOL, type); 188 if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0) 189 return val; 190 191 type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL)); 192 193 return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type); 194 } 195 196 /* Update the GSI IRQ type register with the cached value */ 197 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 198 { 199 const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK); 200 201 gsi->type_enabled_bitmap = val; 202 iowrite32(val, gsi->virt + reg_offset(reg)); 203 } 204 205 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 206 { 207 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id); 208 } 209 210 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 211 { 212 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id); 213 } 214 215 /* Event ring commands are performed one at a time. Their completion 216 * is signaled by the event ring control GSI interrupt type, which is 217 * only enabled when we issue an event ring command. Only the event 218 * ring being operated on has this interrupt enabled. 219 */ 220 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 221 { 222 u32 val = BIT(evt_ring_id); 223 const struct reg *reg; 224 225 /* There's a small chance that a previous command completed 226 * after the interrupt was disabled, so make sure we have no 227 * pending interrupts before we enable them. 228 */ 229 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); 230 iowrite32(~0, gsi->virt + reg_offset(reg)); 231 232 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 233 iowrite32(val, gsi->virt + reg_offset(reg)); 234 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 235 } 236 237 /* Disable event ring control interrupts */ 238 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 239 { 240 const struct reg *reg; 241 242 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 243 244 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 245 iowrite32(0, gsi->virt + reg_offset(reg)); 246 } 247 248 /* Channel commands are performed one at a time. Their completion is 249 * signaled by the channel control GSI interrupt type, which is only 250 * enabled when we issue a channel command. Only the channel being 251 * operated on has this interrupt enabled. 252 */ 253 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 254 { 255 u32 val = BIT(channel_id); 256 const struct reg *reg; 257 258 /* There's a small chance that a previous command completed 259 * after the interrupt was disabled, so make sure we have no 260 * pending interrupts before we enable them. 261 */ 262 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); 263 iowrite32(~0, gsi->virt + reg_offset(reg)); 264 265 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 266 iowrite32(val, gsi->virt + reg_offset(reg)); 267 268 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 269 } 270 271 /* Disable channel control interrupts */ 272 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 273 { 274 const struct reg *reg; 275 276 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 277 278 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 279 iowrite32(0, gsi->virt + reg_offset(reg)); 280 } 281 282 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 283 { 284 bool enable_ieob = !gsi->ieob_enabled_bitmap; 285 const struct reg *reg; 286 u32 val; 287 288 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 289 290 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 291 val = gsi->ieob_enabled_bitmap; 292 iowrite32(val, gsi->virt + reg_offset(reg)); 293 294 /* Enable the interrupt type if this is the first channel enabled */ 295 if (enable_ieob) 296 gsi_irq_type_enable(gsi, GSI_IEOB); 297 } 298 299 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 300 { 301 const struct reg *reg; 302 u32 val; 303 304 gsi->ieob_enabled_bitmap &= ~event_mask; 305 306 /* Disable the interrupt type if this was the last enabled channel */ 307 if (!gsi->ieob_enabled_bitmap) 308 gsi_irq_type_disable(gsi, GSI_IEOB); 309 310 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 311 val = gsi->ieob_enabled_bitmap; 312 iowrite32(val, gsi->virt + reg_offset(reg)); 313 } 314 315 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 316 { 317 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 318 } 319 320 /* Enable all GSI_interrupt types */ 321 static void gsi_irq_enable(struct gsi *gsi) 322 { 323 const struct reg *reg; 324 u32 val; 325 326 /* Global interrupts include hardware error reports. Enable 327 * that so we can at least report the error should it occur. 328 */ 329 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 330 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); 331 332 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE); 333 334 /* General GSI interrupts are reported to all EEs; if they occur 335 * they are unrecoverable (without reset). A breakpoint interrupt 336 * also exists, but we don't support that. We want to be notified 337 * of errors so we can report them, even if they can't be handled. 338 */ 339 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 340 val = BUS_ERROR; 341 val |= CMD_FIFO_OVRFLOW; 342 val |= MCS_STACK_OVRFLOW; 343 iowrite32(val, gsi->virt + reg_offset(reg)); 344 345 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL); 346 } 347 348 /* Disable all GSI interrupt types */ 349 static void gsi_irq_disable(struct gsi *gsi) 350 { 351 const struct reg *reg; 352 353 gsi_irq_type_update(gsi, 0); 354 355 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 356 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 357 iowrite32(0, gsi->virt + reg_offset(reg)); 358 359 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 360 iowrite32(0, gsi->virt + reg_offset(reg)); 361 } 362 363 /* Return the virtual address associated with a ring index */ 364 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 365 { 366 /* Note: index *must* be used modulo the ring count here */ 367 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 368 } 369 370 /* Return the 32-bit DMA address associated with a ring index */ 371 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 372 { 373 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 374 } 375 376 /* Return the ring index of a 32-bit ring offset */ 377 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 378 { 379 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 380 } 381 382 /* Issue a GSI command by writing a value to a register, then wait for 383 * completion to be signaled. Returns true if the command completes 384 * or false if it times out. 385 */ 386 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) 387 { 388 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 389 struct completion *completion = &gsi->completion; 390 391 reinit_completion(completion); 392 393 iowrite32(val, gsi->virt + reg); 394 395 return !!wait_for_completion_timeout(completion, timeout); 396 } 397 398 /* Return the hardware's notion of the current state of an event ring */ 399 static enum gsi_evt_ring_state 400 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 401 { 402 const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); 403 u32 val; 404 405 val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id)); 406 407 return reg_decode(reg, EV_CHSTATE, val); 408 } 409 410 /* Issue an event ring command and wait for it to complete */ 411 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 412 enum gsi_evt_cmd_opcode opcode) 413 { 414 struct device *dev = gsi->dev; 415 const struct reg *reg; 416 bool timeout; 417 u32 val; 418 419 /* Enable the completion interrupt for the command */ 420 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 421 422 reg = gsi_reg(gsi, EV_CH_CMD); 423 val = reg_encode(reg, EV_CHID, evt_ring_id); 424 val |= reg_encode(reg, EV_OPCODE, opcode); 425 426 timeout = !gsi_command(gsi, reg_offset(reg), val); 427 428 gsi_irq_ev_ctrl_disable(gsi); 429 430 if (!timeout) 431 return; 432 433 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 434 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 435 } 436 437 /* Allocate an event ring in NOT_ALLOCATED state */ 438 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 439 { 440 enum gsi_evt_ring_state state; 441 442 /* Get initial event ring state */ 443 state = gsi_evt_ring_state(gsi, evt_ring_id); 444 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 445 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 446 evt_ring_id, state); 447 return -EINVAL; 448 } 449 450 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 451 452 /* If successful the event ring state will have changed */ 453 state = gsi_evt_ring_state(gsi, evt_ring_id); 454 if (state == GSI_EVT_RING_STATE_ALLOCATED) 455 return 0; 456 457 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 458 evt_ring_id, state); 459 460 return -EIO; 461 } 462 463 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 464 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 465 { 466 enum gsi_evt_ring_state state; 467 468 state = gsi_evt_ring_state(gsi, evt_ring_id); 469 if (state != GSI_EVT_RING_STATE_ALLOCATED && 470 state != GSI_EVT_RING_STATE_ERROR) { 471 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 472 evt_ring_id, state); 473 return; 474 } 475 476 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 477 478 /* If successful the event ring state will have changed */ 479 state = gsi_evt_ring_state(gsi, evt_ring_id); 480 if (state == GSI_EVT_RING_STATE_ALLOCATED) 481 return; 482 483 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 484 evt_ring_id, state); 485 } 486 487 /* Issue a hardware de-allocation request for an allocated event ring */ 488 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 489 { 490 enum gsi_evt_ring_state state; 491 492 state = gsi_evt_ring_state(gsi, evt_ring_id); 493 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 494 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 495 evt_ring_id, state); 496 return; 497 } 498 499 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 500 501 /* If successful the event ring state will have changed */ 502 state = gsi_evt_ring_state(gsi, evt_ring_id); 503 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 504 return; 505 506 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 507 evt_ring_id, state); 508 } 509 510 /* Fetch the current state of a channel from hardware */ 511 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 512 { 513 const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0); 514 u32 channel_id = gsi_channel_id(channel); 515 struct gsi *gsi = channel->gsi; 516 void __iomem *virt = gsi->virt; 517 u32 val; 518 519 reg = gsi_reg(gsi, CH_C_CNTXT_0); 520 val = ioread32(virt + reg_n_offset(reg, channel_id)); 521 522 return reg_decode(reg, CHSTATE, val); 523 } 524 525 /* Issue a channel command and wait for it to complete */ 526 static void 527 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 528 { 529 u32 channel_id = gsi_channel_id(channel); 530 struct gsi *gsi = channel->gsi; 531 struct device *dev = gsi->dev; 532 const struct reg *reg; 533 bool timeout; 534 u32 val; 535 536 /* Enable the completion interrupt for the command */ 537 gsi_irq_ch_ctrl_enable(gsi, channel_id); 538 539 reg = gsi_reg(gsi, CH_CMD); 540 val = reg_encode(reg, CH_CHID, channel_id); 541 val |= reg_encode(reg, CH_OPCODE, opcode); 542 543 timeout = !gsi_command(gsi, reg_offset(reg), val); 544 545 gsi_irq_ch_ctrl_disable(gsi); 546 547 if (!timeout) 548 return; 549 550 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 551 opcode, channel_id, gsi_channel_state(channel)); 552 } 553 554 /* Allocate GSI channel in NOT_ALLOCATED state */ 555 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 556 { 557 struct gsi_channel *channel = &gsi->channel[channel_id]; 558 struct device *dev = gsi->dev; 559 enum gsi_channel_state state; 560 561 /* Get initial channel state */ 562 state = gsi_channel_state(channel); 563 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 564 dev_err(dev, "channel %u bad state %u before alloc\n", 565 channel_id, state); 566 return -EINVAL; 567 } 568 569 gsi_channel_command(channel, GSI_CH_ALLOCATE); 570 571 /* If successful the channel state will have changed */ 572 state = gsi_channel_state(channel); 573 if (state == GSI_CHANNEL_STATE_ALLOCATED) 574 return 0; 575 576 dev_err(dev, "channel %u bad state %u after alloc\n", 577 channel_id, state); 578 579 return -EIO; 580 } 581 582 /* Start an ALLOCATED channel */ 583 static int gsi_channel_start_command(struct gsi_channel *channel) 584 { 585 struct device *dev = channel->gsi->dev; 586 enum gsi_channel_state state; 587 588 state = gsi_channel_state(channel); 589 if (state != GSI_CHANNEL_STATE_ALLOCATED && 590 state != GSI_CHANNEL_STATE_STOPPED) { 591 dev_err(dev, "channel %u bad state %u before start\n", 592 gsi_channel_id(channel), state); 593 return -EINVAL; 594 } 595 596 gsi_channel_command(channel, GSI_CH_START); 597 598 /* If successful the channel state will have changed */ 599 state = gsi_channel_state(channel); 600 if (state == GSI_CHANNEL_STATE_STARTED) 601 return 0; 602 603 dev_err(dev, "channel %u bad state %u after start\n", 604 gsi_channel_id(channel), state); 605 606 return -EIO; 607 } 608 609 /* Stop a GSI channel in STARTED state */ 610 static int gsi_channel_stop_command(struct gsi_channel *channel) 611 { 612 struct device *dev = channel->gsi->dev; 613 enum gsi_channel_state state; 614 615 state = gsi_channel_state(channel); 616 617 /* Channel could have entered STOPPED state since last call 618 * if it timed out. If so, we're done. 619 */ 620 if (state == GSI_CHANNEL_STATE_STOPPED) 621 return 0; 622 623 if (state != GSI_CHANNEL_STATE_STARTED && 624 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 625 dev_err(dev, "channel %u bad state %u before stop\n", 626 gsi_channel_id(channel), state); 627 return -EINVAL; 628 } 629 630 gsi_channel_command(channel, GSI_CH_STOP); 631 632 /* If successful the channel state will have changed */ 633 state = gsi_channel_state(channel); 634 if (state == GSI_CHANNEL_STATE_STOPPED) 635 return 0; 636 637 /* We may have to try again if stop is in progress */ 638 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 639 return -EAGAIN; 640 641 dev_err(dev, "channel %u bad state %u after stop\n", 642 gsi_channel_id(channel), state); 643 644 return -EIO; 645 } 646 647 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 648 static void gsi_channel_reset_command(struct gsi_channel *channel) 649 { 650 struct device *dev = channel->gsi->dev; 651 enum gsi_channel_state state; 652 653 /* A short delay is required before a RESET command */ 654 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 655 656 state = gsi_channel_state(channel); 657 if (state != GSI_CHANNEL_STATE_STOPPED && 658 state != GSI_CHANNEL_STATE_ERROR) { 659 /* No need to reset a channel already in ALLOCATED state */ 660 if (state != GSI_CHANNEL_STATE_ALLOCATED) 661 dev_err(dev, "channel %u bad state %u before reset\n", 662 gsi_channel_id(channel), state); 663 return; 664 } 665 666 gsi_channel_command(channel, GSI_CH_RESET); 667 668 /* If successful the channel state will have changed */ 669 state = gsi_channel_state(channel); 670 if (state != GSI_CHANNEL_STATE_ALLOCATED) 671 dev_err(dev, "channel %u bad state %u after reset\n", 672 gsi_channel_id(channel), state); 673 } 674 675 /* Deallocate an ALLOCATED GSI channel */ 676 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 677 { 678 struct gsi_channel *channel = &gsi->channel[channel_id]; 679 struct device *dev = gsi->dev; 680 enum gsi_channel_state state; 681 682 state = gsi_channel_state(channel); 683 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 684 dev_err(dev, "channel %u bad state %u before dealloc\n", 685 channel_id, state); 686 return; 687 } 688 689 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 690 691 /* If successful the channel state will have changed */ 692 state = gsi_channel_state(channel); 693 694 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 695 dev_err(dev, "channel %u bad state %u after dealloc\n", 696 channel_id, state); 697 } 698 699 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 700 * The index argument (modulo the ring count) is the first unfilled entry, so 701 * we supply one less than that with the doorbell. Update the event ring 702 * index field with the value provided. 703 */ 704 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 705 { 706 const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0); 707 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 708 u32 val; 709 710 ring->index = index; /* Next unused entry */ 711 712 /* Note: index *must* be used modulo the ring count here */ 713 val = gsi_ring_addr(ring, (index - 1) % ring->count); 714 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 715 } 716 717 /* Program an event ring for use */ 718 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 719 { 720 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 721 struct gsi_ring *ring = &evt_ring->ring; 722 const struct reg *reg; 723 u32 val; 724 725 reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); 726 /* We program all event rings as GPI type/protocol */ 727 val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI); 728 /* EV_EE field is 0 (GSI_EE_AP) */ 729 val |= reg_bit(reg, EV_INTYPE); 730 val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); 731 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 732 733 reg = gsi_reg(gsi, EV_CH_E_CNTXT_1); 734 val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE); 735 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 736 737 /* The context 2 and 3 registers store the low-order and 738 * high-order 32 bits of the address of the event ring, 739 * respectively. 740 */ 741 reg = gsi_reg(gsi, EV_CH_E_CNTXT_2); 742 val = lower_32_bits(ring->addr); 743 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 744 745 reg = gsi_reg(gsi, EV_CH_E_CNTXT_3); 746 val = upper_32_bits(ring->addr); 747 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 748 749 /* Enable interrupt moderation by setting the moderation delay */ 750 reg = gsi_reg(gsi, EV_CH_E_CNTXT_8); 751 val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT); 752 val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */ 753 /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */ 754 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 755 756 /* No MSI write data, and MSI high and low address is 0 */ 757 reg = gsi_reg(gsi, EV_CH_E_CNTXT_9); 758 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 759 760 reg = gsi_reg(gsi, EV_CH_E_CNTXT_10); 761 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 762 763 reg = gsi_reg(gsi, EV_CH_E_CNTXT_11); 764 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 765 766 /* We don't need to get event read pointer updates */ 767 reg = gsi_reg(gsi, EV_CH_E_CNTXT_12); 768 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 769 770 reg = gsi_reg(gsi, EV_CH_E_CNTXT_13); 771 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 772 773 /* Finally, tell the hardware our "last processed" event (arbitrary) */ 774 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); 775 } 776 777 /* Find the transaction whose completion indicates a channel is quiesced */ 778 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 779 { 780 struct gsi_trans_info *trans_info = &channel->trans_info; 781 u32 pending_id = trans_info->pending_id; 782 struct gsi_trans *trans; 783 u16 trans_id; 784 785 if (channel->toward_ipa && pending_id != trans_info->free_id) { 786 /* There is a small chance a TX transaction got allocated 787 * just before we disabled transmits, so check for that. 788 * The last allocated, committed, or pending transaction 789 * precedes the first free transaction. 790 */ 791 trans_id = trans_info->free_id - 1; 792 } else if (trans_info->polled_id != pending_id) { 793 /* Otherwise (TX or RX) we want to wait for anything that 794 * has completed, or has been polled but not released yet. 795 * 796 * The last completed or polled transaction precedes the 797 * first pending transaction. 798 */ 799 trans_id = pending_id - 1; 800 } else { 801 return NULL; 802 } 803 804 /* Caller will wait for this, so take a reference */ 805 trans = &trans_info->trans[trans_id % channel->tre_count]; 806 refcount_inc(&trans->refcount); 807 808 return trans; 809 } 810 811 /* Wait for transaction activity on a channel to complete */ 812 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 813 { 814 struct gsi_trans *trans; 815 816 /* Get the last transaction, and wait for it to complete */ 817 trans = gsi_channel_trans_last(channel); 818 if (trans) { 819 wait_for_completion(&trans->completion); 820 gsi_trans_free(trans); 821 } 822 } 823 824 /* Program a channel for use; there is no gsi_channel_deprogram() */ 825 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 826 { 827 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 828 u32 channel_id = gsi_channel_id(channel); 829 union gsi_channel_scratch scr = { }; 830 struct gsi_channel_scratch_gpi *gpi; 831 struct gsi *gsi = channel->gsi; 832 const struct reg *reg; 833 u32 wrr_weight = 0; 834 u32 offset; 835 u32 val; 836 837 reg = gsi_reg(gsi, CH_C_CNTXT_0); 838 839 /* We program all channels as GPI type/protocol */ 840 val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI); 841 if (channel->toward_ipa) 842 val |= reg_bit(reg, CHTYPE_DIR); 843 if (gsi->version < IPA_VERSION_5_0) 844 val |= reg_encode(reg, ERINDEX, channel->evt_ring_id); 845 val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); 846 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 847 848 reg = gsi_reg(gsi, CH_C_CNTXT_1); 849 val = reg_encode(reg, CH_R_LENGTH, size); 850 if (gsi->version >= IPA_VERSION_5_0) 851 val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id); 852 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 853 854 /* The context 2 and 3 registers store the low-order and 855 * high-order 32 bits of the address of the channel ring, 856 * respectively. 857 */ 858 reg = gsi_reg(gsi, CH_C_CNTXT_2); 859 val = lower_32_bits(channel->tre_ring.addr); 860 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 861 862 reg = gsi_reg(gsi, CH_C_CNTXT_3); 863 val = upper_32_bits(channel->tre_ring.addr); 864 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 865 866 reg = gsi_reg(gsi, CH_C_QOS); 867 868 /* Command channel gets low weighted round-robin priority */ 869 if (channel->command) 870 wrr_weight = reg_field_max(reg, WRR_WEIGHT); 871 val = reg_encode(reg, WRR_WEIGHT, wrr_weight); 872 873 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 874 875 /* No need to use the doorbell engine starting at IPA v4.0 */ 876 if (gsi->version < IPA_VERSION_4_0 && doorbell) 877 val |= reg_bit(reg, USE_DB_ENG); 878 879 /* v4.0 introduces an escape buffer for prefetch. We use it 880 * on all but the AP command channel. 881 */ 882 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { 883 /* If not otherwise set, prefetch buffers are used */ 884 if (gsi->version < IPA_VERSION_4_5) 885 val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY); 886 else 887 val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY); 888 } 889 /* All channels set DB_IN_BYTES */ 890 if (gsi->version >= IPA_VERSION_4_9) 891 val |= reg_bit(reg, DB_IN_BYTES); 892 893 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 894 895 /* Now update the scratch registers for GPI protocol */ 896 gpi = &scr.gpi; 897 gpi->max_outstanding_tre = channel->trans_tre_max * 898 GSI_RING_ELEMENT_SIZE; 899 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 900 901 reg = gsi_reg(gsi, CH_C_SCRATCH_0); 902 val = scr.data.word1; 903 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 904 905 reg = gsi_reg(gsi, CH_C_SCRATCH_1); 906 val = scr.data.word2; 907 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 908 909 reg = gsi_reg(gsi, CH_C_SCRATCH_2); 910 val = scr.data.word3; 911 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 912 913 /* We must preserve the upper 16 bits of the last scratch register. 914 * The next sequence assumes those bits remain unchanged between the 915 * read and the write. 916 */ 917 reg = gsi_reg(gsi, CH_C_SCRATCH_3); 918 offset = reg_n_offset(reg, channel_id); 919 val = ioread32(gsi->virt + offset); 920 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 921 iowrite32(val, gsi->virt + offset); 922 923 /* All done! */ 924 } 925 926 static int __gsi_channel_start(struct gsi_channel *channel, bool resume) 927 { 928 struct gsi *gsi = channel->gsi; 929 int ret; 930 931 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 932 if (resume && gsi->version < IPA_VERSION_4_0) 933 return 0; 934 935 mutex_lock(&gsi->mutex); 936 937 ret = gsi_channel_start_command(channel); 938 939 mutex_unlock(&gsi->mutex); 940 941 return ret; 942 } 943 944 /* Start an allocated GSI channel */ 945 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 946 { 947 struct gsi_channel *channel = &gsi->channel[channel_id]; 948 int ret; 949 950 /* Enable NAPI and the completion interrupt */ 951 napi_enable(&channel->napi); 952 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 953 954 ret = __gsi_channel_start(channel, false); 955 if (ret) { 956 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 957 napi_disable(&channel->napi); 958 } 959 960 return ret; 961 } 962 963 static int gsi_channel_stop_retry(struct gsi_channel *channel) 964 { 965 u32 retries = GSI_CHANNEL_STOP_RETRIES; 966 int ret; 967 968 do { 969 ret = gsi_channel_stop_command(channel); 970 if (ret != -EAGAIN) 971 break; 972 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 973 } while (retries--); 974 975 return ret; 976 } 977 978 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) 979 { 980 struct gsi *gsi = channel->gsi; 981 int ret; 982 983 /* Wait for any underway transactions to complete before stopping. */ 984 gsi_channel_trans_quiesce(channel); 985 986 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 987 if (suspend && gsi->version < IPA_VERSION_4_0) 988 return 0; 989 990 mutex_lock(&gsi->mutex); 991 992 ret = gsi_channel_stop_retry(channel); 993 994 mutex_unlock(&gsi->mutex); 995 996 return ret; 997 } 998 999 /* Stop a started channel */ 1000 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 1001 { 1002 struct gsi_channel *channel = &gsi->channel[channel_id]; 1003 int ret; 1004 1005 ret = __gsi_channel_stop(channel, false); 1006 if (ret) 1007 return ret; 1008 1009 /* Disable the completion interrupt and NAPI if successful */ 1010 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 1011 napi_disable(&channel->napi); 1012 1013 return 0; 1014 } 1015 1016 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 1017 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 1018 { 1019 struct gsi_channel *channel = &gsi->channel[channel_id]; 1020 1021 mutex_lock(&gsi->mutex); 1022 1023 gsi_channel_reset_command(channel); 1024 /* Due to a hardware quirk we may need to reset RX channels twice. */ 1025 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) 1026 gsi_channel_reset_command(channel); 1027 1028 /* Hardware assumes this is 0 following reset */ 1029 channel->tre_ring.index = 0; 1030 gsi_channel_program(channel, doorbell); 1031 gsi_channel_trans_cancel_pending(channel); 1032 1033 mutex_unlock(&gsi->mutex); 1034 } 1035 1036 /* Stop a started channel for suspend */ 1037 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) 1038 { 1039 struct gsi_channel *channel = &gsi->channel[channel_id]; 1040 int ret; 1041 1042 ret = __gsi_channel_stop(channel, true); 1043 if (ret) 1044 return ret; 1045 1046 /* Ensure NAPI polling has finished. */ 1047 napi_synchronize(&channel->napi); 1048 1049 return 0; 1050 } 1051 1052 /* Resume a suspended channel (starting if stopped) */ 1053 int gsi_channel_resume(struct gsi *gsi, u32 channel_id) 1054 { 1055 struct gsi_channel *channel = &gsi->channel[channel_id]; 1056 1057 return __gsi_channel_start(channel, true); 1058 } 1059 1060 /* Prevent all GSI interrupts while suspended */ 1061 void gsi_suspend(struct gsi *gsi) 1062 { 1063 disable_irq(gsi->irq); 1064 } 1065 1066 /* Allow all GSI interrupts again when resuming */ 1067 void gsi_resume(struct gsi *gsi) 1068 { 1069 enable_irq(gsi->irq); 1070 } 1071 1072 void gsi_trans_tx_committed(struct gsi_trans *trans) 1073 { 1074 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 1075 1076 channel->trans_count++; 1077 channel->byte_count += trans->len; 1078 1079 trans->trans_count = channel->trans_count; 1080 trans->byte_count = channel->byte_count; 1081 } 1082 1083 void gsi_trans_tx_queued(struct gsi_trans *trans) 1084 { 1085 u32 channel_id = trans->channel_id; 1086 struct gsi *gsi = trans->gsi; 1087 struct gsi_channel *channel; 1088 u32 trans_count; 1089 u32 byte_count; 1090 1091 channel = &gsi->channel[channel_id]; 1092 1093 byte_count = channel->byte_count - channel->queued_byte_count; 1094 trans_count = channel->trans_count - channel->queued_trans_count; 1095 channel->queued_byte_count = channel->byte_count; 1096 channel->queued_trans_count = channel->trans_count; 1097 1098 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); 1099 } 1100 1101 /** 1102 * gsi_trans_tx_completed() - Report completed TX transactions 1103 * @trans: TX channel transaction that has completed 1104 * 1105 * Report that a transaction on a TX channel has completed. At the time a 1106 * transaction is committed, we record *in the transaction* its channel's 1107 * committed transaction and byte counts. Transactions are completed in 1108 * order, and the difference between the channel's byte/transaction count 1109 * when the transaction was committed and when it completes tells us 1110 * exactly how much data has been transferred while the transaction was 1111 * pending. 1112 * 1113 * We report this information to the network stack, which uses it to manage 1114 * the rate at which data is sent to hardware. 1115 */ 1116 static void gsi_trans_tx_completed(struct gsi_trans *trans) 1117 { 1118 u32 channel_id = trans->channel_id; 1119 struct gsi *gsi = trans->gsi; 1120 struct gsi_channel *channel; 1121 u32 trans_count; 1122 u32 byte_count; 1123 1124 channel = &gsi->channel[channel_id]; 1125 trans_count = trans->trans_count - channel->compl_trans_count; 1126 byte_count = trans->byte_count - channel->compl_byte_count; 1127 1128 channel->compl_trans_count += trans_count; 1129 channel->compl_byte_count += byte_count; 1130 1131 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); 1132 } 1133 1134 /* Channel control interrupt handler */ 1135 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1136 { 1137 const struct reg *reg; 1138 u32 channel_mask; 1139 1140 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ); 1141 channel_mask = ioread32(gsi->virt + reg_offset(reg)); 1142 1143 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); 1144 iowrite32(channel_mask, gsi->virt + reg_offset(reg)); 1145 1146 while (channel_mask) { 1147 u32 channel_id = __ffs(channel_mask); 1148 1149 channel_mask ^= BIT(channel_id); 1150 1151 complete(&gsi->completion); 1152 } 1153 } 1154 1155 /* Event ring control interrupt handler */ 1156 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1157 { 1158 const struct reg *reg; 1159 u32 event_mask; 1160 1161 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ); 1162 event_mask = ioread32(gsi->virt + reg_offset(reg)); 1163 1164 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); 1165 iowrite32(event_mask, gsi->virt + reg_offset(reg)); 1166 1167 while (event_mask) { 1168 u32 evt_ring_id = __ffs(event_mask); 1169 1170 event_mask ^= BIT(evt_ring_id); 1171 1172 complete(&gsi->completion); 1173 } 1174 } 1175 1176 /* Global channel error interrupt handler */ 1177 static void 1178 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1179 { 1180 if (code == GSI_OUT_OF_RESOURCES) { 1181 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1182 complete(&gsi->completion); 1183 return; 1184 } 1185 1186 /* Report, but otherwise ignore all other error codes */ 1187 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1188 channel_id, err_ee, code); 1189 } 1190 1191 /* Global event error interrupt handler */ 1192 static void 1193 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1194 { 1195 if (code == GSI_OUT_OF_RESOURCES) { 1196 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1197 u32 channel_id = gsi_channel_id(evt_ring->channel); 1198 1199 complete(&gsi->completion); 1200 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1201 channel_id); 1202 return; 1203 } 1204 1205 /* Report, but otherwise ignore all other error codes */ 1206 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1207 evt_ring_id, err_ee, code); 1208 } 1209 1210 /* Global error interrupt handler */ 1211 static void gsi_isr_glob_err(struct gsi *gsi) 1212 { 1213 const struct reg *log_reg; 1214 const struct reg *clr_reg; 1215 enum gsi_err_type type; 1216 enum gsi_err_code code; 1217 u32 offset; 1218 u32 which; 1219 u32 val; 1220 u32 ee; 1221 1222 /* Get the logged error, then reinitialize the log */ 1223 log_reg = gsi_reg(gsi, ERROR_LOG); 1224 offset = reg_offset(log_reg); 1225 val = ioread32(gsi->virt + offset); 1226 iowrite32(0, gsi->virt + offset); 1227 1228 clr_reg = gsi_reg(gsi, ERROR_LOG_CLR); 1229 iowrite32(~0, gsi->virt + reg_offset(clr_reg)); 1230 1231 /* Parse the error value */ 1232 ee = reg_decode(log_reg, ERR_EE, val); 1233 type = reg_decode(log_reg, ERR_TYPE, val); 1234 which = reg_decode(log_reg, ERR_VIRT_IDX, val); 1235 code = reg_decode(log_reg, ERR_CODE, val); 1236 1237 if (type == GSI_ERR_TYPE_CHAN) 1238 gsi_isr_glob_chan_err(gsi, ee, which, code); 1239 else if (type == GSI_ERR_TYPE_EVT) 1240 gsi_isr_glob_evt_err(gsi, ee, which, code); 1241 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1242 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1243 } 1244 1245 /* Generic EE interrupt handler */ 1246 static void gsi_isr_gp_int1(struct gsi *gsi) 1247 { 1248 const struct reg *reg; 1249 u32 result; 1250 u32 val; 1251 1252 /* This interrupt is used to handle completions of GENERIC GSI 1253 * commands. We use these to allocate and halt channels on the 1254 * modem's behalf due to a hardware quirk on IPA v4.2. The modem 1255 * "owns" channels even when the AP allocates them, and have no 1256 * way of knowing whether a modem channel's state has been changed. 1257 * 1258 * We also use GENERIC commands to enable/disable channel flow 1259 * control for IPA v4.2+. 1260 * 1261 * It is recommended that we halt the modem channels we allocated 1262 * when shutting down, but it's possible the channel isn't running 1263 * at the time we issue the HALT command. We'll get an error in 1264 * that case, but it's harmless (the channel is already halted). 1265 * Similarly, we could get an error back when updating flow control 1266 * on a channel because it's not in the proper state. 1267 * 1268 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE 1269 * error if we receive it. 1270 */ 1271 reg = gsi_reg(gsi, CNTXT_SCRATCH_0); 1272 val = ioread32(gsi->virt + reg_offset(reg)); 1273 result = reg_decode(reg, GENERIC_EE_RESULT, val); 1274 1275 switch (result) { 1276 case GENERIC_EE_SUCCESS: 1277 case GENERIC_EE_INCORRECT_CHANNEL_STATE: 1278 gsi->result = 0; 1279 break; 1280 1281 case GENERIC_EE_RETRY: 1282 gsi->result = -EAGAIN; 1283 break; 1284 1285 default: 1286 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1287 gsi->result = -EIO; 1288 break; 1289 } 1290 1291 complete(&gsi->completion); 1292 } 1293 1294 /* Inter-EE interrupt handler */ 1295 static void gsi_isr_glob_ee(struct gsi *gsi) 1296 { 1297 const struct reg *reg; 1298 u32 val; 1299 1300 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS); 1301 val = ioread32(gsi->virt + reg_offset(reg)); 1302 1303 if (val & ERROR_INT) 1304 gsi_isr_glob_err(gsi); 1305 1306 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR); 1307 iowrite32(val, gsi->virt + reg_offset(reg)); 1308 1309 val &= ~ERROR_INT; 1310 1311 if (val & GP_INT1) { 1312 val ^= GP_INT1; 1313 gsi_isr_gp_int1(gsi); 1314 } 1315 1316 if (val) 1317 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1318 } 1319 1320 /* I/O completion interrupt event */ 1321 static void gsi_isr_ieob(struct gsi *gsi) 1322 { 1323 const struct reg *reg; 1324 u32 event_mask; 1325 1326 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ); 1327 event_mask = ioread32(gsi->virt + reg_offset(reg)); 1328 1329 gsi_irq_ieob_disable(gsi, event_mask); 1330 1331 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR); 1332 iowrite32(event_mask, gsi->virt + reg_offset(reg)); 1333 1334 while (event_mask) { 1335 u32 evt_ring_id = __ffs(event_mask); 1336 1337 event_mask ^= BIT(evt_ring_id); 1338 1339 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1340 } 1341 } 1342 1343 /* General event interrupts represent serious problems, so report them */ 1344 static void gsi_isr_general(struct gsi *gsi) 1345 { 1346 struct device *dev = gsi->dev; 1347 const struct reg *reg; 1348 u32 val; 1349 1350 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS); 1351 val = ioread32(gsi->virt + reg_offset(reg)); 1352 1353 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR); 1354 iowrite32(val, gsi->virt + reg_offset(reg)); 1355 1356 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1357 } 1358 1359 /** 1360 * gsi_isr() - Top level GSI interrupt service routine 1361 * @irq: Interrupt number (ignored) 1362 * @dev_id: GSI pointer supplied to request_irq() 1363 * 1364 * This is the main handler function registered for the GSI IRQ. Each type 1365 * of interrupt has a separate handler function that is called from here. 1366 */ 1367 static irqreturn_t gsi_isr(int irq, void *dev_id) 1368 { 1369 struct gsi *gsi = dev_id; 1370 const struct reg *reg; 1371 u32 intr_mask; 1372 u32 cnt = 0; 1373 u32 offset; 1374 1375 reg = gsi_reg(gsi, CNTXT_TYPE_IRQ); 1376 offset = reg_offset(reg); 1377 1378 /* enum gsi_irq_type_id defines GSI interrupt types */ 1379 while ((intr_mask = ioread32(gsi->virt + offset))) { 1380 /* intr_mask contains bitmask of pending GSI interrupts */ 1381 do { 1382 u32 gsi_intr = BIT(__ffs(intr_mask)); 1383 1384 intr_mask ^= gsi_intr; 1385 1386 /* Note: the IRQ condition for each type is cleared 1387 * when the type-specific register is updated. 1388 */ 1389 switch (gsi_intr) { 1390 case GSI_CH_CTRL: 1391 gsi_isr_chan_ctrl(gsi); 1392 break; 1393 case GSI_EV_CTRL: 1394 gsi_isr_evt_ctrl(gsi); 1395 break; 1396 case GSI_GLOB_EE: 1397 gsi_isr_glob_ee(gsi); 1398 break; 1399 case GSI_IEOB: 1400 gsi_isr_ieob(gsi); 1401 break; 1402 case GSI_GENERAL: 1403 gsi_isr_general(gsi); 1404 break; 1405 default: 1406 dev_err(gsi->dev, 1407 "unrecognized interrupt type 0x%08x\n", 1408 gsi_intr); 1409 break; 1410 } 1411 } while (intr_mask); 1412 1413 if (++cnt > GSI_ISR_MAX_ITER) { 1414 dev_err(gsi->dev, "interrupt flood\n"); 1415 break; 1416 } 1417 } 1418 1419 return IRQ_HANDLED; 1420 } 1421 1422 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ 1423 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1424 { 1425 int ret; 1426 1427 ret = platform_get_irq_byname(pdev, "gsi"); 1428 if (ret <= 0) 1429 return ret ? : -EINVAL; 1430 1431 gsi->irq = ret; 1432 1433 return 0; 1434 } 1435 1436 /* Return the transaction associated with a transfer completion event */ 1437 static struct gsi_trans * 1438 gsi_event_trans(struct gsi *gsi, struct gsi_event *event) 1439 { 1440 u32 channel_id = event->chid; 1441 struct gsi_channel *channel; 1442 struct gsi_trans *trans; 1443 u32 tre_offset; 1444 u32 tre_index; 1445 1446 channel = &gsi->channel[channel_id]; 1447 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) 1448 return NULL; 1449 1450 /* Event xfer_ptr records the TRE it's associated with */ 1451 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1452 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1453 1454 trans = gsi_channel_trans_mapped(channel, tre_index); 1455 1456 if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) 1457 return NULL; 1458 1459 return trans; 1460 } 1461 1462 /** 1463 * gsi_evt_ring_update() - Update transaction state from hardware 1464 * @gsi: GSI pointer 1465 * @evt_ring_id: Event ring ID 1466 * @index: Event index in ring reported by hardware 1467 * 1468 * Events for RX channels contain the actual number of bytes received into 1469 * the buffer. Every event has a transaction associated with it, and here 1470 * we update transactions to record their actual received lengths. 1471 * 1472 * When an event for a TX channel arrives we use information in the 1473 * transaction to report the number of requests and bytes that have 1474 * been transferred. 1475 * 1476 * This function is called whenever we learn that the GSI hardware has filled 1477 * new events since the last time we checked. The ring's index field tells 1478 * the first entry in need of processing. The index provided is the 1479 * first *unfilled* event in the ring (following the last filled one). 1480 * 1481 * Events are sequential within the event ring, and transactions are 1482 * sequential within the transaction array. 1483 * 1484 * Note that @index always refers to an element *within* the event ring. 1485 */ 1486 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) 1487 { 1488 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1489 struct gsi_ring *ring = &evt_ring->ring; 1490 struct gsi_event *event_done; 1491 struct gsi_event *event; 1492 u32 event_avail; 1493 u32 old_index; 1494 1495 /* Starting with the oldest un-processed event, determine which 1496 * transaction (and which channel) is associated with the event. 1497 * For RX channels, update each completed transaction with the 1498 * number of bytes that were actually received. For TX channels 1499 * associated with a network device, report to the network stack 1500 * the number of transfers and bytes this completion represents. 1501 */ 1502 old_index = ring->index; 1503 event = gsi_ring_virt(ring, old_index); 1504 1505 /* Compute the number of events to process before we wrap, 1506 * and determine when we'll be done processing events. 1507 */ 1508 event_avail = ring->count - old_index % ring->count; 1509 event_done = gsi_ring_virt(ring, index); 1510 do { 1511 struct gsi_trans *trans; 1512 1513 trans = gsi_event_trans(gsi, event); 1514 if (!trans) 1515 return; 1516 1517 if (trans->direction == DMA_FROM_DEVICE) 1518 trans->len = __le16_to_cpu(event->len); 1519 else 1520 gsi_trans_tx_completed(trans); 1521 1522 gsi_trans_move_complete(trans); 1523 1524 /* Move on to the next event and transaction */ 1525 if (--event_avail) 1526 event++; 1527 else 1528 event = gsi_ring_virt(ring, 0); 1529 } while (event != event_done); 1530 1531 /* Tell the hardware we've handled these events */ 1532 gsi_evt_ring_doorbell(gsi, evt_ring_id, index); 1533 } 1534 1535 /* Initialize a ring, including allocating DMA memory for its entries */ 1536 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1537 { 1538 u32 size = count * GSI_RING_ELEMENT_SIZE; 1539 struct device *dev = gsi->dev; 1540 dma_addr_t addr; 1541 1542 /* Hardware requires a 2^n ring size, with alignment equal to size. 1543 * The DMA address returned by dma_alloc_coherent() is guaranteed to 1544 * be a power-of-2 number of pages, which satisfies the requirement. 1545 */ 1546 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1547 if (!ring->virt) 1548 return -ENOMEM; 1549 1550 ring->addr = addr; 1551 ring->count = count; 1552 ring->index = 0; 1553 1554 return 0; 1555 } 1556 1557 /* Free a previously-allocated ring */ 1558 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1559 { 1560 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1561 1562 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1563 } 1564 1565 /* Allocate an available event ring id */ 1566 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1567 { 1568 u32 evt_ring_id; 1569 1570 if (gsi->event_bitmap == ~0U) { 1571 dev_err(gsi->dev, "event rings exhausted\n"); 1572 return -ENOSPC; 1573 } 1574 1575 evt_ring_id = ffz(gsi->event_bitmap); 1576 gsi->event_bitmap |= BIT(evt_ring_id); 1577 1578 return (int)evt_ring_id; 1579 } 1580 1581 /* Free a previously-allocated event ring id */ 1582 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1583 { 1584 gsi->event_bitmap &= ~BIT(evt_ring_id); 1585 } 1586 1587 /* Ring a channel doorbell, reporting the first un-filled entry */ 1588 void gsi_channel_doorbell(struct gsi_channel *channel) 1589 { 1590 struct gsi_ring *tre_ring = &channel->tre_ring; 1591 u32 channel_id = gsi_channel_id(channel); 1592 struct gsi *gsi = channel->gsi; 1593 const struct reg *reg; 1594 u32 val; 1595 1596 reg = gsi_reg(gsi, CH_C_DOORBELL_0); 1597 /* Note: index *must* be used modulo the ring count here */ 1598 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1599 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 1600 } 1601 1602 /* Consult hardware, move newly completed transactions to completed state */ 1603 void gsi_channel_update(struct gsi_channel *channel) 1604 { 1605 u32 evt_ring_id = channel->evt_ring_id; 1606 struct gsi *gsi = channel->gsi; 1607 struct gsi_evt_ring *evt_ring; 1608 struct gsi_trans *trans; 1609 struct gsi_ring *ring; 1610 const struct reg *reg; 1611 u32 offset; 1612 u32 index; 1613 1614 evt_ring = &gsi->evt_ring[evt_ring_id]; 1615 ring = &evt_ring->ring; 1616 1617 /* See if there's anything new to process; if not, we're done. Note 1618 * that index always refers to an entry *within* the event ring. 1619 */ 1620 reg = gsi_reg(gsi, EV_CH_E_CNTXT_4); 1621 offset = reg_n_offset(reg, evt_ring_id); 1622 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1623 if (index == ring->index % ring->count) 1624 return; 1625 1626 /* Get the transaction for the latest completed event. */ 1627 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); 1628 if (!trans) 1629 return; 1630 1631 /* For RX channels, update each completed transaction with the number 1632 * of bytes that were actually received. For TX channels, report 1633 * the number of transactions and bytes this completion represents 1634 * up the network stack. 1635 */ 1636 gsi_evt_ring_update(gsi, evt_ring_id, index); 1637 } 1638 1639 /** 1640 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1641 * @channel: Channel to be polled 1642 * 1643 * Return: Transaction pointer, or null if none are available 1644 * 1645 * This function returns the first of a channel's completed transactions. 1646 * If no transactions are in completed state, the hardware is consulted to 1647 * determine whether any new transactions have completed. If so, they're 1648 * moved to completed state and the first such transaction is returned. 1649 * If there are no more completed transactions, a null pointer is returned. 1650 */ 1651 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1652 { 1653 struct gsi_trans *trans; 1654 1655 /* Get the first completed transaction */ 1656 trans = gsi_channel_trans_complete(channel); 1657 if (trans) 1658 gsi_trans_move_polled(trans); 1659 1660 return trans; 1661 } 1662 1663 /** 1664 * gsi_channel_poll() - NAPI poll function for a channel 1665 * @napi: NAPI structure for the channel 1666 * @budget: Budget supplied by NAPI core 1667 * 1668 * Return: Number of items polled (<= budget) 1669 * 1670 * Single transactions completed by hardware are polled until either 1671 * the budget is exhausted, or there are no more. Each transaction 1672 * polled is passed to gsi_trans_complete(), to perform remaining 1673 * completion processing and retire/free the transaction. 1674 */ 1675 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1676 { 1677 struct gsi_channel *channel; 1678 int count; 1679 1680 channel = container_of(napi, struct gsi_channel, napi); 1681 for (count = 0; count < budget; count++) { 1682 struct gsi_trans *trans; 1683 1684 trans = gsi_channel_poll_one(channel); 1685 if (!trans) 1686 break; 1687 gsi_trans_complete(trans); 1688 } 1689 1690 if (count < budget && napi_complete(napi)) 1691 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1692 1693 return count; 1694 } 1695 1696 /* The event bitmap represents which event ids are available for allocation. 1697 * Set bits are not available, clear bits can be used. This function 1698 * initializes the map so all events supported by the hardware are available, 1699 * then precludes any reserved events from being allocated. 1700 */ 1701 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1702 { 1703 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1704 1705 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1706 1707 return event_bitmap; 1708 } 1709 1710 /* Setup function for a single channel */ 1711 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1712 { 1713 struct gsi_channel *channel = &gsi->channel[channel_id]; 1714 u32 evt_ring_id = channel->evt_ring_id; 1715 int ret; 1716 1717 if (!gsi_channel_initialized(channel)) 1718 return 0; 1719 1720 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1721 if (ret) 1722 return ret; 1723 1724 gsi_evt_ring_program(gsi, evt_ring_id); 1725 1726 ret = gsi_channel_alloc_command(gsi, channel_id); 1727 if (ret) 1728 goto err_evt_ring_de_alloc; 1729 1730 gsi_channel_program(channel, true); 1731 1732 if (channel->toward_ipa) 1733 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, 1734 gsi_channel_poll); 1735 else 1736 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1737 gsi_channel_poll); 1738 1739 return 0; 1740 1741 err_evt_ring_de_alloc: 1742 /* We've done nothing with the event ring yet so don't reset */ 1743 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1744 1745 return ret; 1746 } 1747 1748 /* Inverse of gsi_channel_setup_one() */ 1749 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1750 { 1751 struct gsi_channel *channel = &gsi->channel[channel_id]; 1752 u32 evt_ring_id = channel->evt_ring_id; 1753 1754 if (!gsi_channel_initialized(channel)) 1755 return; 1756 1757 netif_napi_del(&channel->napi); 1758 1759 gsi_channel_de_alloc_command(gsi, channel_id); 1760 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1761 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1762 } 1763 1764 /* We use generic commands only to operate on modem channels. We don't have 1765 * the ability to determine channel state for a modem channel, so we simply 1766 * issue the command and wait for it to complete. 1767 */ 1768 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1769 enum gsi_generic_cmd_opcode opcode, 1770 u8 params) 1771 { 1772 const struct reg *reg; 1773 bool timeout; 1774 u32 offset; 1775 u32 val; 1776 1777 /* The error global interrupt type is always enabled (until we tear 1778 * down), so we will keep it enabled. 1779 * 1780 * A generic EE command completes with a GSI global interrupt of 1781 * type GP_INT1. We only perform one generic command at a time 1782 * (to allocate, halt, or enable/disable flow control on a modem 1783 * channel), and only from this function. So we enable the GP_INT1 1784 * IRQ type here, and disable it again after the command completes. 1785 */ 1786 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1787 val = ERROR_INT | GP_INT1; 1788 iowrite32(val, gsi->virt + reg_offset(reg)); 1789 1790 /* First zero the result code field */ 1791 reg = gsi_reg(gsi, CNTXT_SCRATCH_0); 1792 offset = reg_offset(reg); 1793 val = ioread32(gsi->virt + offset); 1794 1795 val &= ~reg_fmask(reg, GENERIC_EE_RESULT); 1796 iowrite32(val, gsi->virt + offset); 1797 1798 /* Now issue the command */ 1799 reg = gsi_reg(gsi, GENERIC_CMD); 1800 val = reg_encode(reg, GENERIC_OPCODE, opcode); 1801 val |= reg_encode(reg, GENERIC_CHID, channel_id); 1802 val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM); 1803 if (gsi->version >= IPA_VERSION_4_11) 1804 val |= reg_encode(reg, GENERIC_PARAMS, params); 1805 1806 timeout = !gsi_command(gsi, reg_offset(reg), val); 1807 1808 /* Disable the GP_INT1 IRQ type again */ 1809 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1810 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); 1811 1812 if (!timeout) 1813 return gsi->result; 1814 1815 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1816 opcode, channel_id); 1817 1818 return -ETIMEDOUT; 1819 } 1820 1821 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1822 { 1823 return gsi_generic_command(gsi, channel_id, 1824 GSI_GENERIC_ALLOCATE_CHANNEL, 0); 1825 } 1826 1827 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1828 { 1829 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1830 int ret; 1831 1832 do 1833 ret = gsi_generic_command(gsi, channel_id, 1834 GSI_GENERIC_HALT_CHANNEL, 0); 1835 while (ret == -EAGAIN && retries--); 1836 1837 if (ret) 1838 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1839 ret, channel_id); 1840 } 1841 1842 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ 1843 void 1844 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) 1845 { 1846 u32 retries = 0; 1847 u32 command; 1848 int ret; 1849 1850 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL 1851 : GSI_GENERIC_DISABLE_FLOW_CONTROL; 1852 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable 1853 * is underway. In this case we need to retry the command. 1854 */ 1855 if (!enable && gsi->version >= IPA_VERSION_4_11) 1856 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; 1857 1858 do 1859 ret = gsi_generic_command(gsi, channel_id, command, 0); 1860 while (ret == -EAGAIN && retries--); 1861 1862 if (ret) 1863 dev_err(gsi->dev, 1864 "error %d %sabling mode channel %u flow control\n", 1865 ret, enable ? "en" : "dis", channel_id); 1866 } 1867 1868 /* Setup function for channels */ 1869 static int gsi_channel_setup(struct gsi *gsi) 1870 { 1871 u32 channel_id = 0; 1872 u32 mask; 1873 int ret; 1874 1875 gsi_irq_enable(gsi); 1876 1877 mutex_lock(&gsi->mutex); 1878 1879 do { 1880 ret = gsi_channel_setup_one(gsi, channel_id); 1881 if (ret) 1882 goto err_unwind; 1883 } while (++channel_id < gsi->channel_count); 1884 1885 /* Make sure no channels were defined that hardware does not support */ 1886 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1887 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1888 1889 if (!gsi_channel_initialized(channel)) 1890 continue; 1891 1892 ret = -EINVAL; 1893 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1894 channel_id - 1); 1895 channel_id = gsi->channel_count; 1896 goto err_unwind; 1897 } 1898 1899 /* Allocate modem channels if necessary */ 1900 mask = gsi->modem_channel_bitmap; 1901 while (mask) { 1902 u32 modem_channel_id = __ffs(mask); 1903 1904 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1905 if (ret) 1906 goto err_unwind_modem; 1907 1908 /* Clear bit from mask only after success (for unwind) */ 1909 mask ^= BIT(modem_channel_id); 1910 } 1911 1912 mutex_unlock(&gsi->mutex); 1913 1914 return 0; 1915 1916 err_unwind_modem: 1917 /* Compute which modem channels need to be deallocated */ 1918 mask ^= gsi->modem_channel_bitmap; 1919 while (mask) { 1920 channel_id = __fls(mask); 1921 1922 mask ^= BIT(channel_id); 1923 1924 gsi_modem_channel_halt(gsi, channel_id); 1925 } 1926 1927 err_unwind: 1928 while (channel_id--) 1929 gsi_channel_teardown_one(gsi, channel_id); 1930 1931 mutex_unlock(&gsi->mutex); 1932 1933 gsi_irq_disable(gsi); 1934 1935 return ret; 1936 } 1937 1938 /* Inverse of gsi_channel_setup() */ 1939 static void gsi_channel_teardown(struct gsi *gsi) 1940 { 1941 u32 mask = gsi->modem_channel_bitmap; 1942 u32 channel_id; 1943 1944 mutex_lock(&gsi->mutex); 1945 1946 while (mask) { 1947 channel_id = __fls(mask); 1948 1949 mask ^= BIT(channel_id); 1950 1951 gsi_modem_channel_halt(gsi, channel_id); 1952 } 1953 1954 channel_id = gsi->channel_count - 1; 1955 do 1956 gsi_channel_teardown_one(gsi, channel_id); 1957 while (channel_id--); 1958 1959 mutex_unlock(&gsi->mutex); 1960 1961 gsi_irq_disable(gsi); 1962 } 1963 1964 /* Turn off all GSI interrupts initially */ 1965 static int gsi_irq_setup(struct gsi *gsi) 1966 { 1967 const struct reg *reg; 1968 int ret; 1969 1970 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1971 reg = gsi_reg(gsi, CNTXT_INTSET); 1972 iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg)); 1973 1974 /* Disable all interrupt types */ 1975 gsi_irq_type_update(gsi, 0); 1976 1977 /* Clear all type-specific interrupt masks */ 1978 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 1979 iowrite32(0, gsi->virt + reg_offset(reg)); 1980 1981 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 1982 iowrite32(0, gsi->virt + reg_offset(reg)); 1983 1984 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1985 iowrite32(0, gsi->virt + reg_offset(reg)); 1986 1987 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 1988 iowrite32(0, gsi->virt + reg_offset(reg)); 1989 1990 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ 1991 if (gsi->version > IPA_VERSION_3_1) { 1992 reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK); 1993 iowrite32(0, gsi->virt + reg_offset(reg)); 1994 1995 reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK); 1996 iowrite32(0, gsi->virt + reg_offset(reg)); 1997 } 1998 1999 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 2000 iowrite32(0, gsi->virt + reg_offset(reg)); 2001 2002 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); 2003 if (ret) 2004 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 2005 2006 return ret; 2007 } 2008 2009 static void gsi_irq_teardown(struct gsi *gsi) 2010 { 2011 free_irq(gsi->irq, gsi); 2012 } 2013 2014 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ 2015 static int gsi_ring_setup(struct gsi *gsi) 2016 { 2017 struct device *dev = gsi->dev; 2018 const struct reg *reg; 2019 u32 count; 2020 u32 val; 2021 2022 if (gsi->version < IPA_VERSION_3_5_1) { 2023 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ 2024 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 2025 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 2026 2027 return 0; 2028 } 2029 2030 reg = gsi_reg(gsi, HW_PARAM_2); 2031 val = ioread32(gsi->virt + reg_offset(reg)); 2032 2033 count = reg_decode(reg, NUM_CH_PER_EE, val); 2034 if (!count) { 2035 dev_err(dev, "GSI reports zero channels supported\n"); 2036 return -EINVAL; 2037 } 2038 if (count > GSI_CHANNEL_COUNT_MAX) { 2039 dev_warn(dev, "limiting to %u channels; hardware supports %u\n", 2040 GSI_CHANNEL_COUNT_MAX, count); 2041 count = GSI_CHANNEL_COUNT_MAX; 2042 } 2043 gsi->channel_count = count; 2044 2045 if (gsi->version < IPA_VERSION_5_0) { 2046 count = reg_decode(reg, NUM_EV_PER_EE, val); 2047 } else { 2048 reg = gsi_reg(gsi, HW_PARAM_4); 2049 count = reg_decode(reg, EV_PER_EE, val); 2050 } 2051 if (!count) { 2052 dev_err(dev, "GSI reports zero event rings supported\n"); 2053 return -EINVAL; 2054 } 2055 if (count > GSI_EVT_RING_COUNT_MAX) { 2056 dev_warn(dev, 2057 "limiting to %u event rings; hardware supports %u\n", 2058 GSI_EVT_RING_COUNT_MAX, count); 2059 count = GSI_EVT_RING_COUNT_MAX; 2060 } 2061 gsi->evt_ring_count = count; 2062 2063 return 0; 2064 } 2065 2066 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 2067 int gsi_setup(struct gsi *gsi) 2068 { 2069 const struct reg *reg; 2070 u32 val; 2071 int ret; 2072 2073 /* Here is where we first touch the GSI hardware */ 2074 reg = gsi_reg(gsi, GSI_STATUS); 2075 val = ioread32(gsi->virt + reg_offset(reg)); 2076 if (!(val & reg_bit(reg, ENABLED))) { 2077 dev_err(gsi->dev, "GSI has not been enabled\n"); 2078 return -EIO; 2079 } 2080 2081 ret = gsi_irq_setup(gsi); 2082 if (ret) 2083 return ret; 2084 2085 ret = gsi_ring_setup(gsi); /* No matching teardown required */ 2086 if (ret) 2087 goto err_irq_teardown; 2088 2089 /* Initialize the error log */ 2090 reg = gsi_reg(gsi, ERROR_LOG); 2091 iowrite32(0, gsi->virt + reg_offset(reg)); 2092 2093 ret = gsi_channel_setup(gsi); 2094 if (ret) 2095 goto err_irq_teardown; 2096 2097 return 0; 2098 2099 err_irq_teardown: 2100 gsi_irq_teardown(gsi); 2101 2102 return ret; 2103 } 2104 2105 /* Inverse of gsi_setup() */ 2106 void gsi_teardown(struct gsi *gsi) 2107 { 2108 gsi_channel_teardown(gsi); 2109 gsi_irq_teardown(gsi); 2110 } 2111 2112 /* Initialize a channel's event ring */ 2113 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 2114 { 2115 struct gsi *gsi = channel->gsi; 2116 struct gsi_evt_ring *evt_ring; 2117 int ret; 2118 2119 ret = gsi_evt_ring_id_alloc(gsi); 2120 if (ret < 0) 2121 return ret; 2122 channel->evt_ring_id = ret; 2123 2124 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 2125 evt_ring->channel = channel; 2126 2127 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 2128 if (!ret) 2129 return 0; /* Success! */ 2130 2131 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 2132 ret, gsi_channel_id(channel)); 2133 2134 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 2135 2136 return ret; 2137 } 2138 2139 /* Inverse of gsi_channel_evt_ring_init() */ 2140 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 2141 { 2142 u32 evt_ring_id = channel->evt_ring_id; 2143 struct gsi *gsi = channel->gsi; 2144 struct gsi_evt_ring *evt_ring; 2145 2146 evt_ring = &gsi->evt_ring[evt_ring_id]; 2147 gsi_ring_free(gsi, &evt_ring->ring); 2148 gsi_evt_ring_id_free(gsi, evt_ring_id); 2149 } 2150 2151 static bool gsi_channel_data_valid(struct gsi *gsi, bool command, 2152 const struct ipa_gsi_endpoint_data *data) 2153 { 2154 const struct gsi_channel_data *channel_data; 2155 u32 channel_id = data->channel_id; 2156 struct device *dev = gsi->dev; 2157 2158 /* Make sure channel ids are in the range driver supports */ 2159 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 2160 dev_err(dev, "bad channel id %u; must be less than %u\n", 2161 channel_id, GSI_CHANNEL_COUNT_MAX); 2162 return false; 2163 } 2164 2165 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 2166 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 2167 return false; 2168 } 2169 2170 if (command && !data->toward_ipa) { 2171 dev_err(dev, "command channel %u is not TX\n", channel_id); 2172 return false; 2173 } 2174 2175 channel_data = &data->channel; 2176 2177 if (!channel_data->tlv_count || 2178 channel_data->tlv_count > GSI_TLV_MAX) { 2179 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 2180 channel_id, channel_data->tlv_count, GSI_TLV_MAX); 2181 return false; 2182 } 2183 2184 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { 2185 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", 2186 channel_id, IPA_COMMAND_TRANS_TRE_MAX, 2187 channel_data->tlv_count); 2188 return false; 2189 } 2190 2191 /* We have to allow at least one maximally-sized transaction to 2192 * be outstanding (which would use tlv_count TREs). Given how 2193 * gsi_channel_tre_max() is computed, tre_count has to be almost 2194 * twice the TLV FIFO size to satisfy this requirement. 2195 */ 2196 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { 2197 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2198 channel_id, channel_data->tlv_count, 2199 channel_data->tre_count); 2200 return false; 2201 } 2202 2203 if (!is_power_of_2(channel_data->tre_count)) { 2204 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2205 channel_id, channel_data->tre_count); 2206 return false; 2207 } 2208 2209 if (!is_power_of_2(channel_data->event_count)) { 2210 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2211 channel_id, channel_data->event_count); 2212 return false; 2213 } 2214 2215 return true; 2216 } 2217 2218 /* Init function for a single channel */ 2219 static int gsi_channel_init_one(struct gsi *gsi, 2220 const struct ipa_gsi_endpoint_data *data, 2221 bool command) 2222 { 2223 struct gsi_channel *channel; 2224 u32 tre_count; 2225 int ret; 2226 2227 if (!gsi_channel_data_valid(gsi, command, data)) 2228 return -EINVAL; 2229 2230 /* Worst case we need an event for every outstanding TRE */ 2231 if (data->channel.tre_count > data->channel.event_count) { 2232 tre_count = data->channel.event_count; 2233 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2234 data->channel_id, tre_count); 2235 } else { 2236 tre_count = data->channel.tre_count; 2237 } 2238 2239 channel = &gsi->channel[data->channel_id]; 2240 memset(channel, 0, sizeof(*channel)); 2241 2242 channel->gsi = gsi; 2243 channel->toward_ipa = data->toward_ipa; 2244 channel->command = command; 2245 channel->trans_tre_max = data->channel.tlv_count; 2246 channel->tre_count = tre_count; 2247 channel->event_count = data->channel.event_count; 2248 2249 ret = gsi_channel_evt_ring_init(channel); 2250 if (ret) 2251 goto err_clear_gsi; 2252 2253 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2254 if (ret) { 2255 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2256 ret, data->channel_id); 2257 goto err_channel_evt_ring_exit; 2258 } 2259 2260 ret = gsi_channel_trans_init(gsi, data->channel_id); 2261 if (ret) 2262 goto err_ring_free; 2263 2264 if (command) { 2265 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2266 2267 ret = ipa_cmd_pool_init(channel, tre_max); 2268 } 2269 if (!ret) 2270 return 0; /* Success! */ 2271 2272 gsi_channel_trans_exit(channel); 2273 err_ring_free: 2274 gsi_ring_free(gsi, &channel->tre_ring); 2275 err_channel_evt_ring_exit: 2276 gsi_channel_evt_ring_exit(channel); 2277 err_clear_gsi: 2278 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2279 2280 return ret; 2281 } 2282 2283 /* Inverse of gsi_channel_init_one() */ 2284 static void gsi_channel_exit_one(struct gsi_channel *channel) 2285 { 2286 if (!gsi_channel_initialized(channel)) 2287 return; 2288 2289 if (channel->command) 2290 ipa_cmd_pool_exit(channel); 2291 gsi_channel_trans_exit(channel); 2292 gsi_ring_free(channel->gsi, &channel->tre_ring); 2293 gsi_channel_evt_ring_exit(channel); 2294 } 2295 2296 /* Init function for channels */ 2297 static int gsi_channel_init(struct gsi *gsi, u32 count, 2298 const struct ipa_gsi_endpoint_data *data) 2299 { 2300 bool modem_alloc; 2301 int ret = 0; 2302 u32 i; 2303 2304 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2305 modem_alloc = gsi->version == IPA_VERSION_4_2; 2306 2307 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 2308 gsi->ieob_enabled_bitmap = 0; 2309 2310 /* The endpoint data array is indexed by endpoint name */ 2311 for (i = 0; i < count; i++) { 2312 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2313 2314 if (ipa_gsi_endpoint_data_empty(&data[i])) 2315 continue; /* Skip over empty slots */ 2316 2317 /* Mark modem channels to be allocated (hardware workaround) */ 2318 if (data[i].ee_id == GSI_EE_MODEM) { 2319 if (modem_alloc) 2320 gsi->modem_channel_bitmap |= 2321 BIT(data[i].channel_id); 2322 continue; 2323 } 2324 2325 ret = gsi_channel_init_one(gsi, &data[i], command); 2326 if (ret) 2327 goto err_unwind; 2328 } 2329 2330 return ret; 2331 2332 err_unwind: 2333 while (i--) { 2334 if (ipa_gsi_endpoint_data_empty(&data[i])) 2335 continue; 2336 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2337 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2338 continue; 2339 } 2340 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2341 } 2342 2343 return ret; 2344 } 2345 2346 /* Inverse of gsi_channel_init() */ 2347 static void gsi_channel_exit(struct gsi *gsi) 2348 { 2349 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2350 2351 do 2352 gsi_channel_exit_one(&gsi->channel[channel_id]); 2353 while (channel_id--); 2354 gsi->modem_channel_bitmap = 0; 2355 } 2356 2357 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2358 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2359 enum ipa_version version, u32 count, 2360 const struct ipa_gsi_endpoint_data *data) 2361 { 2362 int ret; 2363 2364 gsi_validate_build(); 2365 2366 gsi->dev = &pdev->dev; 2367 gsi->version = version; 2368 2369 /* GSI uses NAPI on all channels. Create a dummy network device 2370 * for the channel NAPI contexts to be associated with. 2371 */ 2372 init_dummy_netdev(&gsi->dummy_dev); 2373 init_completion(&gsi->completion); 2374 2375 ret = gsi_reg_init(gsi, pdev); 2376 if (ret) 2377 return ret; 2378 2379 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ 2380 if (ret) 2381 goto err_reg_exit; 2382 2383 ret = gsi_channel_init(gsi, count, data); 2384 if (ret) 2385 goto err_reg_exit; 2386 2387 mutex_init(&gsi->mutex); 2388 2389 return 0; 2390 2391 err_reg_exit: 2392 gsi_reg_exit(gsi); 2393 2394 return ret; 2395 } 2396 2397 /* Inverse of gsi_init() */ 2398 void gsi_exit(struct gsi *gsi) 2399 { 2400 mutex_destroy(&gsi->mutex); 2401 gsi_channel_exit(gsi); 2402 gsi_reg_exit(gsi); 2403 } 2404 2405 /* The maximum number of outstanding TREs on a channel. This limits 2406 * a channel's maximum number of transactions outstanding (worst case 2407 * is one TRE per transaction). 2408 * 2409 * The absolute limit is the number of TREs in the channel's TRE ring, 2410 * and in theory we should be able use all of them. But in practice, 2411 * doing that led to the hardware reporting exhaustion of event ring 2412 * slots for writing completion information. So the hardware limit 2413 * would be (tre_count - 1). 2414 * 2415 * We reduce it a bit further though. Transaction resource pools are 2416 * sized to be a little larger than this maximum, to allow resource 2417 * allocations to always be contiguous. The number of entries in a 2418 * TRE ring buffer is a power of 2, and the extra resources in a pool 2419 * tends to nearly double the memory allocated for it. Reducing the 2420 * maximum number of outstanding TREs allows the number of entries in 2421 * a pool to avoid crossing that power-of-2 boundary, and this can 2422 * substantially reduce pool memory requirements. The number we 2423 * reduce it by matches the number added in gsi_trans_pool_init(). 2424 */ 2425 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2426 { 2427 struct gsi_channel *channel = &gsi->channel[channel_id]; 2428 2429 /* Hardware limit is channel->tre_count - 1 */ 2430 return channel->tre_count - (channel->trans_tre_max - 1); 2431 } 2432