1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2024 Linaro Ltd. 5 */ 6 7 #include <linux/bits.h> 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/interrupt.h> 11 #include <linux/mutex.h> 12 #include <linux/netdevice.h> 13 #include <linux/platform_device.h> 14 #include <linux/types.h> 15 16 #include "gsi.h" 17 #include "gsi_private.h" 18 #include "gsi_reg.h" 19 #include "gsi_trans.h" 20 #include "ipa_data.h" 21 #include "ipa_gsi.h" 22 #include "ipa_version.h" 23 #include "reg.h" 24 25 /** 26 * DOC: The IPA Generic Software Interface 27 * 28 * The generic software interface (GSI) is an integral component of the IPA, 29 * providing a well-defined communication layer between the AP subsystem 30 * and the IPA core. The modem uses the GSI layer as well. 31 * 32 * -------- --------- 33 * | | | | 34 * | AP +<---. .----+ Modem | 35 * | +--. | | .->+ | 36 * | | | | | | | | 37 * -------- | | | | --------- 38 * v | v | 39 * --+-+---+-+-- 40 * | GSI | 41 * |-----------| 42 * | | 43 * | IPA | 44 * | | 45 * ------------- 46 * 47 * In the above diagram, the AP and Modem represent "execution environments" 48 * (EEs), which are independent operating environments that use the IPA for 49 * data transfer. 50 * 51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 52 * of data to or from the IPA. A channel is implemented as a ring buffer, 53 * with a DRAM-resident array of "transfer elements" (TREs) available to 54 * describe transfers to or from other EEs through the IPA. A transfer 55 * element can also contain an immediate command, requesting the IPA perform 56 * actions other than data transfer. 57 * 58 * Each TRE refers to a block of data--also located in DRAM. After writing 59 * one or more TREs to a channel, the writer (either the IPA or an EE) writes 60 * a doorbell register to inform the receiving side how many elements have 61 * been written. 62 * 63 * Each channel has a GSI "event ring" associated with it. An event ring 64 * is implemented very much like a channel ring, but is always directed from 65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 66 * events by adding an entry to the event ring associated with the channel. 67 * The GSI then writes its doorbell for the event ring, causing the target 68 * EE to be interrupted. Each entry in an event ring contains a pointer 69 * to the channel TRE whose completion the event represents. 70 * 71 * Each TRE in a channel ring has a set of flags. One flag indicates whether 72 * the completion of the transfer operation generates an entry (and possibly 73 * an interrupt) in the channel's event ring. Other flags allow transfer 74 * elements to be chained together, forming a single logical transaction. 75 * TRE flags are used to control whether and when interrupts are generated 76 * to signal completion of channel transfers. 77 * 78 * Elements in channel and event rings are completed (or consumed) strictly 79 * in order. Completion of one entry implies the completion of all preceding 80 * entries. A single completion interrupt can therefore communicate the 81 * completion of many transfers. 82 * 83 * Note that all GSI registers are little-endian, which is the assumed 84 * endianness of I/O space accesses. The accessor functions perform byte 85 * swapping if needed (i.e., for a big endian CPU). 86 */ 87 88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 89 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 90 91 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 92 93 #define GSI_CHANNEL_STOP_RETRIES 10 94 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 95 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ 96 97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 99 100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 101 102 /* An entry in an event ring */ 103 struct gsi_event { 104 __le64 xfer_ptr; 105 __le16 len; 106 u8 reserved1; 107 u8 code; 108 __le16 reserved2; 109 u8 type; 110 u8 chid; 111 }; 112 113 /** gsi_channel_scratch_gpi - GPI protocol scratch register 114 * @max_outstanding_tre: 115 * Defines the maximum number of TREs allowed in a single transaction 116 * on a channel (in bytes). This determines the amount of prefetch 117 * performed by the hardware. We configure this to equal the size of 118 * the TLV FIFO for the channel. 119 * @outstanding_threshold: 120 * Defines the threshold (in bytes) determining when the sequencer 121 * should update the channel doorbell. We configure this to equal 122 * the size of two TREs. 123 */ 124 struct gsi_channel_scratch_gpi { 125 u64 reserved1; 126 u16 reserved2; 127 u16 max_outstanding_tre; 128 u16 reserved3; 129 u16 outstanding_threshold; 130 }; 131 132 /** gsi_channel_scratch - channel scratch configuration area 133 * 134 * The exact interpretation of this register is protocol-specific. 135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 136 */ 137 union gsi_channel_scratch { 138 struct gsi_channel_scratch_gpi gpi; 139 struct { 140 u32 word1; 141 u32 word2; 142 u32 word3; 143 u32 word4; 144 } data; 145 }; 146 147 /* Check things that can be validated at build time. */ 148 static void gsi_validate_build(void) 149 { 150 /* This is used as a divisor */ 151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 152 153 /* Code assumes the size of channel and event ring element are 154 * the same (and fixed). Make sure the size of an event ring 155 * element is what's expected. 156 */ 157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 158 159 /* Hardware requires a 2^n ring size. We ensure the number of 160 * elements in an event ring is a power of 2 elsewhere; this 161 * ensure the elements themselves meet the requirement. 162 */ 163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 164 } 165 166 /* Return the channel id associated with a given channel */ 167 static u32 gsi_channel_id(struct gsi_channel *channel) 168 { 169 return channel - &channel->gsi->channel[0]; 170 } 171 172 /* An initialized channel has a non-null GSI pointer */ 173 static bool gsi_channel_initialized(struct gsi_channel *channel) 174 { 175 return !!channel->gsi; 176 } 177 178 /* Encode the channel protocol for the CH_C_CNTXT_0 register */ 179 static u32 ch_c_cntxt_0_type_encode(enum ipa_version version, 180 const struct reg *reg, 181 enum gsi_channel_type type) 182 { 183 u32 val; 184 185 val = reg_encode(reg, CHTYPE_PROTOCOL, type); 186 if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0) 187 return val; 188 189 type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL)); 190 191 return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type); 192 } 193 194 /* Update the GSI IRQ type register with the cached value */ 195 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 196 { 197 const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK); 198 199 gsi->type_enabled_bitmap = val; 200 iowrite32(val, gsi->virt + reg_offset(reg)); 201 } 202 203 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 204 { 205 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id); 206 } 207 208 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 209 { 210 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id); 211 } 212 213 /* Event ring commands are performed one at a time. Their completion 214 * is signaled by the event ring control GSI interrupt type, which is 215 * only enabled when we issue an event ring command. Only the event 216 * ring being operated on has this interrupt enabled. 217 */ 218 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 219 { 220 u32 val = BIT(evt_ring_id); 221 const struct reg *reg; 222 223 /* There's a small chance that a previous command completed 224 * after the interrupt was disabled, so make sure we have no 225 * pending interrupts before we enable them. 226 */ 227 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); 228 iowrite32(~0, gsi->virt + reg_offset(reg)); 229 230 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 231 iowrite32(val, gsi->virt + reg_offset(reg)); 232 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 233 } 234 235 /* Disable event ring control interrupts */ 236 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 237 { 238 const struct reg *reg; 239 240 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 241 242 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 243 iowrite32(0, gsi->virt + reg_offset(reg)); 244 } 245 246 /* Channel commands are performed one at a time. Their completion is 247 * signaled by the channel control GSI interrupt type, which is only 248 * enabled when we issue a channel command. Only the channel being 249 * operated on has this interrupt enabled. 250 */ 251 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 252 { 253 u32 val = BIT(channel_id); 254 const struct reg *reg; 255 256 /* There's a small chance that a previous command completed 257 * after the interrupt was disabled, so make sure we have no 258 * pending interrupts before we enable them. 259 */ 260 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); 261 iowrite32(~0, gsi->virt + reg_offset(reg)); 262 263 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 264 iowrite32(val, gsi->virt + reg_offset(reg)); 265 266 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 267 } 268 269 /* Disable channel control interrupts */ 270 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 271 { 272 const struct reg *reg; 273 274 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 275 276 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 277 iowrite32(0, gsi->virt + reg_offset(reg)); 278 } 279 280 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 281 { 282 bool enable_ieob = !gsi->ieob_enabled_bitmap; 283 const struct reg *reg; 284 u32 val; 285 286 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 287 288 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 289 val = gsi->ieob_enabled_bitmap; 290 iowrite32(val, gsi->virt + reg_offset(reg)); 291 292 /* Enable the interrupt type if this is the first channel enabled */ 293 if (enable_ieob) 294 gsi_irq_type_enable(gsi, GSI_IEOB); 295 } 296 297 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 298 { 299 const struct reg *reg; 300 u32 val; 301 302 gsi->ieob_enabled_bitmap &= ~event_mask; 303 304 /* Disable the interrupt type if this was the last enabled channel */ 305 if (!gsi->ieob_enabled_bitmap) 306 gsi_irq_type_disable(gsi, GSI_IEOB); 307 308 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 309 val = gsi->ieob_enabled_bitmap; 310 iowrite32(val, gsi->virt + reg_offset(reg)); 311 } 312 313 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 314 { 315 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 316 } 317 318 /* Enable all GSI_interrupt types */ 319 static void gsi_irq_enable(struct gsi *gsi) 320 { 321 const struct reg *reg; 322 u32 val; 323 324 /* Global interrupts include hardware error reports. Enable 325 * that so we can at least report the error should it occur. 326 */ 327 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 328 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); 329 330 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE); 331 332 /* General GSI interrupts are reported to all EEs; if they occur 333 * they are unrecoverable (without reset). A breakpoint interrupt 334 * also exists, but we don't support that. We want to be notified 335 * of errors so we can report them, even if they can't be handled. 336 */ 337 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 338 val = BUS_ERROR; 339 val |= CMD_FIFO_OVRFLOW; 340 val |= MCS_STACK_OVRFLOW; 341 iowrite32(val, gsi->virt + reg_offset(reg)); 342 343 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL); 344 } 345 346 /* Disable all GSI interrupt types */ 347 static void gsi_irq_disable(struct gsi *gsi) 348 { 349 const struct reg *reg; 350 351 gsi_irq_type_update(gsi, 0); 352 353 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 354 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 355 iowrite32(0, gsi->virt + reg_offset(reg)); 356 357 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 358 iowrite32(0, gsi->virt + reg_offset(reg)); 359 } 360 361 /* Return the virtual address associated with a ring index */ 362 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 363 { 364 /* Note: index *must* be used modulo the ring count here */ 365 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 366 } 367 368 /* Return the 32-bit DMA address associated with a ring index */ 369 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 370 { 371 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 372 } 373 374 /* Return the ring index of a 32-bit ring offset */ 375 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 376 { 377 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 378 } 379 380 /* Issue a GSI command by writing a value to a register, then wait for 381 * completion to be signaled. Returns true if the command completes 382 * or false if it times out. 383 */ 384 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) 385 { 386 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 387 struct completion *completion = &gsi->completion; 388 389 reinit_completion(completion); 390 391 iowrite32(val, gsi->virt + reg); 392 393 return !!wait_for_completion_timeout(completion, timeout); 394 } 395 396 /* Return the hardware's notion of the current state of an event ring */ 397 static enum gsi_evt_ring_state 398 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 399 { 400 const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); 401 u32 val; 402 403 val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id)); 404 405 return reg_decode(reg, EV_CHSTATE, val); 406 } 407 408 /* Issue an event ring command and wait for it to complete */ 409 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 410 enum gsi_evt_cmd_opcode opcode) 411 { 412 struct device *dev = gsi->dev; 413 const struct reg *reg; 414 bool timeout; 415 u32 val; 416 417 /* Enable the completion interrupt for the command */ 418 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 419 420 reg = gsi_reg(gsi, EV_CH_CMD); 421 val = reg_encode(reg, EV_CHID, evt_ring_id); 422 val |= reg_encode(reg, EV_OPCODE, opcode); 423 424 timeout = !gsi_command(gsi, reg_offset(reg), val); 425 426 gsi_irq_ev_ctrl_disable(gsi); 427 428 if (!timeout) 429 return; 430 431 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 432 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 433 } 434 435 /* Allocate an event ring in NOT_ALLOCATED state */ 436 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 437 { 438 enum gsi_evt_ring_state state; 439 440 /* Get initial event ring state */ 441 state = gsi_evt_ring_state(gsi, evt_ring_id); 442 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 443 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 444 evt_ring_id, state); 445 return -EINVAL; 446 } 447 448 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 449 450 /* If successful the event ring state will have changed */ 451 state = gsi_evt_ring_state(gsi, evt_ring_id); 452 if (state == GSI_EVT_RING_STATE_ALLOCATED) 453 return 0; 454 455 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 456 evt_ring_id, state); 457 458 return -EIO; 459 } 460 461 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 462 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 463 { 464 enum gsi_evt_ring_state state; 465 466 state = gsi_evt_ring_state(gsi, evt_ring_id); 467 if (state != GSI_EVT_RING_STATE_ALLOCATED && 468 state != GSI_EVT_RING_STATE_ERROR) { 469 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 470 evt_ring_id, state); 471 return; 472 } 473 474 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 475 476 /* If successful the event ring state will have changed */ 477 state = gsi_evt_ring_state(gsi, evt_ring_id); 478 if (state == GSI_EVT_RING_STATE_ALLOCATED) 479 return; 480 481 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 482 evt_ring_id, state); 483 } 484 485 /* Issue a hardware de-allocation request for an allocated event ring */ 486 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 487 { 488 enum gsi_evt_ring_state state; 489 490 state = gsi_evt_ring_state(gsi, evt_ring_id); 491 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 492 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 493 evt_ring_id, state); 494 return; 495 } 496 497 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 498 499 /* If successful the event ring state will have changed */ 500 state = gsi_evt_ring_state(gsi, evt_ring_id); 501 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 502 return; 503 504 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 505 evt_ring_id, state); 506 } 507 508 /* Fetch the current state of a channel from hardware */ 509 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 510 { 511 const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0); 512 u32 channel_id = gsi_channel_id(channel); 513 struct gsi *gsi = channel->gsi; 514 void __iomem *virt = gsi->virt; 515 u32 val; 516 517 reg = gsi_reg(gsi, CH_C_CNTXT_0); 518 val = ioread32(virt + reg_n_offset(reg, channel_id)); 519 520 return reg_decode(reg, CHSTATE, val); 521 } 522 523 /* Issue a channel command and wait for it to complete */ 524 static void 525 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 526 { 527 u32 channel_id = gsi_channel_id(channel); 528 struct gsi *gsi = channel->gsi; 529 struct device *dev = gsi->dev; 530 const struct reg *reg; 531 bool timeout; 532 u32 val; 533 534 /* Enable the completion interrupt for the command */ 535 gsi_irq_ch_ctrl_enable(gsi, channel_id); 536 537 reg = gsi_reg(gsi, CH_CMD); 538 val = reg_encode(reg, CH_CHID, channel_id); 539 val |= reg_encode(reg, CH_OPCODE, opcode); 540 541 timeout = !gsi_command(gsi, reg_offset(reg), val); 542 543 gsi_irq_ch_ctrl_disable(gsi); 544 545 if (!timeout) 546 return; 547 548 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 549 opcode, channel_id, gsi_channel_state(channel)); 550 } 551 552 /* Allocate GSI channel in NOT_ALLOCATED state */ 553 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 554 { 555 struct gsi_channel *channel = &gsi->channel[channel_id]; 556 struct device *dev = gsi->dev; 557 enum gsi_channel_state state; 558 559 /* Get initial channel state */ 560 state = gsi_channel_state(channel); 561 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 562 dev_err(dev, "channel %u bad state %u before alloc\n", 563 channel_id, state); 564 return -EINVAL; 565 } 566 567 gsi_channel_command(channel, GSI_CH_ALLOCATE); 568 569 /* If successful the channel state will have changed */ 570 state = gsi_channel_state(channel); 571 if (state == GSI_CHANNEL_STATE_ALLOCATED) 572 return 0; 573 574 dev_err(dev, "channel %u bad state %u after alloc\n", 575 channel_id, state); 576 577 return -EIO; 578 } 579 580 /* Start an ALLOCATED channel */ 581 static int gsi_channel_start_command(struct gsi_channel *channel) 582 { 583 struct device *dev = channel->gsi->dev; 584 enum gsi_channel_state state; 585 586 state = gsi_channel_state(channel); 587 if (state != GSI_CHANNEL_STATE_ALLOCATED && 588 state != GSI_CHANNEL_STATE_STOPPED) { 589 dev_err(dev, "channel %u bad state %u before start\n", 590 gsi_channel_id(channel), state); 591 return -EINVAL; 592 } 593 594 gsi_channel_command(channel, GSI_CH_START); 595 596 /* If successful the channel state will have changed */ 597 state = gsi_channel_state(channel); 598 if (state == GSI_CHANNEL_STATE_STARTED) 599 return 0; 600 601 dev_err(dev, "channel %u bad state %u after start\n", 602 gsi_channel_id(channel), state); 603 604 return -EIO; 605 } 606 607 /* Stop a GSI channel in STARTED state */ 608 static int gsi_channel_stop_command(struct gsi_channel *channel) 609 { 610 struct device *dev = channel->gsi->dev; 611 enum gsi_channel_state state; 612 613 state = gsi_channel_state(channel); 614 615 /* Channel could have entered STOPPED state since last call 616 * if it timed out. If so, we're done. 617 */ 618 if (state == GSI_CHANNEL_STATE_STOPPED) 619 return 0; 620 621 if (state != GSI_CHANNEL_STATE_STARTED && 622 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 623 dev_err(dev, "channel %u bad state %u before stop\n", 624 gsi_channel_id(channel), state); 625 return -EINVAL; 626 } 627 628 gsi_channel_command(channel, GSI_CH_STOP); 629 630 /* If successful the channel state will have changed */ 631 state = gsi_channel_state(channel); 632 if (state == GSI_CHANNEL_STATE_STOPPED) 633 return 0; 634 635 /* We may have to try again if stop is in progress */ 636 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 637 return -EAGAIN; 638 639 dev_err(dev, "channel %u bad state %u after stop\n", 640 gsi_channel_id(channel), state); 641 642 return -EIO; 643 } 644 645 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 646 static void gsi_channel_reset_command(struct gsi_channel *channel) 647 { 648 struct device *dev = channel->gsi->dev; 649 enum gsi_channel_state state; 650 651 /* A short delay is required before a RESET command */ 652 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 653 654 state = gsi_channel_state(channel); 655 if (state != GSI_CHANNEL_STATE_STOPPED && 656 state != GSI_CHANNEL_STATE_ERROR) { 657 /* No need to reset a channel already in ALLOCATED state */ 658 if (state != GSI_CHANNEL_STATE_ALLOCATED) 659 dev_err(dev, "channel %u bad state %u before reset\n", 660 gsi_channel_id(channel), state); 661 return; 662 } 663 664 gsi_channel_command(channel, GSI_CH_RESET); 665 666 /* If successful the channel state will have changed */ 667 state = gsi_channel_state(channel); 668 if (state != GSI_CHANNEL_STATE_ALLOCATED) 669 dev_err(dev, "channel %u bad state %u after reset\n", 670 gsi_channel_id(channel), state); 671 } 672 673 /* Deallocate an ALLOCATED GSI channel */ 674 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 675 { 676 struct gsi_channel *channel = &gsi->channel[channel_id]; 677 struct device *dev = gsi->dev; 678 enum gsi_channel_state state; 679 680 state = gsi_channel_state(channel); 681 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 682 dev_err(dev, "channel %u bad state %u before dealloc\n", 683 channel_id, state); 684 return; 685 } 686 687 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 688 689 /* If successful the channel state will have changed */ 690 state = gsi_channel_state(channel); 691 692 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 693 dev_err(dev, "channel %u bad state %u after dealloc\n", 694 channel_id, state); 695 } 696 697 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 698 * The index argument (modulo the ring count) is the first unfilled entry, so 699 * we supply one less than that with the doorbell. Update the event ring 700 * index field with the value provided. 701 */ 702 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 703 { 704 const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0); 705 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 706 u32 val; 707 708 ring->index = index; /* Next unused entry */ 709 710 /* Note: index *must* be used modulo the ring count here */ 711 val = gsi_ring_addr(ring, (index - 1) % ring->count); 712 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 713 } 714 715 /* Program an event ring for use */ 716 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 717 { 718 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 719 struct gsi_ring *ring = &evt_ring->ring; 720 const struct reg *reg; 721 u32 val; 722 723 reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); 724 /* We program all event rings as GPI type/protocol */ 725 val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI); 726 /* EV_EE field is 0 (GSI_EE_AP) */ 727 val |= reg_bit(reg, EV_INTYPE); 728 val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); 729 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 730 731 reg = gsi_reg(gsi, EV_CH_E_CNTXT_1); 732 val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE); 733 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 734 735 /* The context 2 and 3 registers store the low-order and 736 * high-order 32 bits of the address of the event ring, 737 * respectively. 738 */ 739 reg = gsi_reg(gsi, EV_CH_E_CNTXT_2); 740 val = lower_32_bits(ring->addr); 741 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 742 743 reg = gsi_reg(gsi, EV_CH_E_CNTXT_3); 744 val = upper_32_bits(ring->addr); 745 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 746 747 /* Enable interrupt moderation by setting the moderation delay */ 748 reg = gsi_reg(gsi, EV_CH_E_CNTXT_8); 749 val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT); 750 val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */ 751 /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */ 752 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); 753 754 /* No MSI write data, and MSI high and low address is 0 */ 755 reg = gsi_reg(gsi, EV_CH_E_CNTXT_9); 756 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 757 758 reg = gsi_reg(gsi, EV_CH_E_CNTXT_10); 759 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 760 761 reg = gsi_reg(gsi, EV_CH_E_CNTXT_11); 762 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 763 764 /* We don't need to get event read pointer updates */ 765 reg = gsi_reg(gsi, EV_CH_E_CNTXT_12); 766 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 767 768 reg = gsi_reg(gsi, EV_CH_E_CNTXT_13); 769 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); 770 771 /* Finally, tell the hardware our "last processed" event (arbitrary) */ 772 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); 773 } 774 775 /* Find the transaction whose completion indicates a channel is quiesced */ 776 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 777 { 778 struct gsi_trans_info *trans_info = &channel->trans_info; 779 u32 pending_id = trans_info->pending_id; 780 struct gsi_trans *trans; 781 u16 trans_id; 782 783 if (channel->toward_ipa && pending_id != trans_info->free_id) { 784 /* There is a small chance a TX transaction got allocated 785 * just before we disabled transmits, so check for that. 786 * The last allocated, committed, or pending transaction 787 * precedes the first free transaction. 788 */ 789 trans_id = trans_info->free_id - 1; 790 } else if (trans_info->polled_id != pending_id) { 791 /* Otherwise (TX or RX) we want to wait for anything that 792 * has completed, or has been polled but not released yet. 793 * 794 * The last completed or polled transaction precedes the 795 * first pending transaction. 796 */ 797 trans_id = pending_id - 1; 798 } else { 799 return NULL; 800 } 801 802 /* Caller will wait for this, so take a reference */ 803 trans = &trans_info->trans[trans_id % channel->tre_count]; 804 refcount_inc(&trans->refcount); 805 806 return trans; 807 } 808 809 /* Wait for transaction activity on a channel to complete */ 810 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 811 { 812 struct gsi_trans *trans; 813 814 /* Get the last transaction, and wait for it to complete */ 815 trans = gsi_channel_trans_last(channel); 816 if (trans) { 817 wait_for_completion(&trans->completion); 818 gsi_trans_free(trans); 819 } 820 } 821 822 /* Program a channel for use; there is no gsi_channel_deprogram() */ 823 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 824 { 825 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 826 u32 channel_id = gsi_channel_id(channel); 827 union gsi_channel_scratch scr = { }; 828 struct gsi_channel_scratch_gpi *gpi; 829 struct gsi *gsi = channel->gsi; 830 const struct reg *reg; 831 u32 wrr_weight = 0; 832 u32 offset; 833 u32 val; 834 835 reg = gsi_reg(gsi, CH_C_CNTXT_0); 836 837 /* We program all channels as GPI type/protocol */ 838 val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI); 839 if (channel->toward_ipa) 840 val |= reg_bit(reg, CHTYPE_DIR); 841 if (gsi->version < IPA_VERSION_5_0) 842 val |= reg_encode(reg, ERINDEX, channel->evt_ring_id); 843 val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); 844 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 845 846 reg = gsi_reg(gsi, CH_C_CNTXT_1); 847 val = reg_encode(reg, CH_R_LENGTH, size); 848 if (gsi->version >= IPA_VERSION_5_0) 849 val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id); 850 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 851 852 /* The context 2 and 3 registers store the low-order and 853 * high-order 32 bits of the address of the channel ring, 854 * respectively. 855 */ 856 reg = gsi_reg(gsi, CH_C_CNTXT_2); 857 val = lower_32_bits(channel->tre_ring.addr); 858 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 859 860 reg = gsi_reg(gsi, CH_C_CNTXT_3); 861 val = upper_32_bits(channel->tre_ring.addr); 862 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 863 864 reg = gsi_reg(gsi, CH_C_QOS); 865 866 /* Command channel gets low weighted round-robin priority */ 867 if (channel->command) 868 wrr_weight = reg_field_max(reg, WRR_WEIGHT); 869 val = reg_encode(reg, WRR_WEIGHT, wrr_weight); 870 871 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 872 873 /* No need to use the doorbell engine starting at IPA v4.0 */ 874 if (gsi->version < IPA_VERSION_4_0 && doorbell) 875 val |= reg_bit(reg, USE_DB_ENG); 876 877 /* v4.0 introduces an escape buffer for prefetch. We use it 878 * on all but the AP command channel. 879 */ 880 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { 881 /* If not otherwise set, prefetch buffers are used */ 882 if (gsi->version < IPA_VERSION_4_5) 883 val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY); 884 else 885 val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY); 886 } 887 /* All channels set DB_IN_BYTES */ 888 if (gsi->version >= IPA_VERSION_4_9) 889 val |= reg_bit(reg, DB_IN_BYTES); 890 891 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 892 893 /* Now update the scratch registers for GPI protocol */ 894 gpi = &scr.gpi; 895 gpi->max_outstanding_tre = channel->trans_tre_max * 896 GSI_RING_ELEMENT_SIZE; 897 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 898 899 reg = gsi_reg(gsi, CH_C_SCRATCH_0); 900 val = scr.data.word1; 901 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 902 903 reg = gsi_reg(gsi, CH_C_SCRATCH_1); 904 val = scr.data.word2; 905 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 906 907 reg = gsi_reg(gsi, CH_C_SCRATCH_2); 908 val = scr.data.word3; 909 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 910 911 /* We must preserve the upper 16 bits of the last scratch register. 912 * The next sequence assumes those bits remain unchanged between the 913 * read and the write. 914 */ 915 reg = gsi_reg(gsi, CH_C_SCRATCH_3); 916 offset = reg_n_offset(reg, channel_id); 917 val = ioread32(gsi->virt + offset); 918 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 919 iowrite32(val, gsi->virt + offset); 920 921 /* All done! */ 922 } 923 924 static int __gsi_channel_start(struct gsi_channel *channel, bool resume) 925 { 926 struct gsi *gsi = channel->gsi; 927 int ret; 928 929 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 930 if (resume && gsi->version < IPA_VERSION_4_0) 931 return 0; 932 933 mutex_lock(&gsi->mutex); 934 935 ret = gsi_channel_start_command(channel); 936 937 mutex_unlock(&gsi->mutex); 938 939 return ret; 940 } 941 942 /* Start an allocated GSI channel */ 943 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 944 { 945 struct gsi_channel *channel = &gsi->channel[channel_id]; 946 int ret; 947 948 /* Enable NAPI and the completion interrupt */ 949 napi_enable(&channel->napi); 950 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 951 952 ret = __gsi_channel_start(channel, false); 953 if (ret) { 954 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 955 napi_disable(&channel->napi); 956 } 957 958 return ret; 959 } 960 961 static int gsi_channel_stop_retry(struct gsi_channel *channel) 962 { 963 u32 retries = GSI_CHANNEL_STOP_RETRIES; 964 int ret; 965 966 do { 967 ret = gsi_channel_stop_command(channel); 968 if (ret != -EAGAIN) 969 break; 970 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 971 } while (retries--); 972 973 return ret; 974 } 975 976 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) 977 { 978 struct gsi *gsi = channel->gsi; 979 int ret; 980 981 /* Wait for any underway transactions to complete before stopping. */ 982 gsi_channel_trans_quiesce(channel); 983 984 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ 985 if (suspend && gsi->version < IPA_VERSION_4_0) 986 return 0; 987 988 mutex_lock(&gsi->mutex); 989 990 ret = gsi_channel_stop_retry(channel); 991 992 mutex_unlock(&gsi->mutex); 993 994 return ret; 995 } 996 997 /* Stop a started channel */ 998 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 999 { 1000 struct gsi_channel *channel = &gsi->channel[channel_id]; 1001 int ret; 1002 1003 ret = __gsi_channel_stop(channel, false); 1004 if (ret) 1005 return ret; 1006 1007 /* Disable the completion interrupt and NAPI if successful */ 1008 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 1009 napi_disable(&channel->napi); 1010 1011 return 0; 1012 } 1013 1014 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 1015 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 1016 { 1017 struct gsi_channel *channel = &gsi->channel[channel_id]; 1018 1019 mutex_lock(&gsi->mutex); 1020 1021 gsi_channel_reset_command(channel); 1022 /* Due to a hardware quirk we may need to reset RX channels twice. */ 1023 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) 1024 gsi_channel_reset_command(channel); 1025 1026 /* Hardware assumes this is 0 following reset */ 1027 channel->tre_ring.index = 0; 1028 gsi_channel_program(channel, doorbell); 1029 gsi_channel_trans_cancel_pending(channel); 1030 1031 mutex_unlock(&gsi->mutex); 1032 } 1033 1034 /* Stop a started channel for suspend */ 1035 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) 1036 { 1037 struct gsi_channel *channel = &gsi->channel[channel_id]; 1038 int ret; 1039 1040 ret = __gsi_channel_stop(channel, true); 1041 if (ret) 1042 return ret; 1043 1044 /* Ensure NAPI polling has finished. */ 1045 napi_synchronize(&channel->napi); 1046 1047 return 0; 1048 } 1049 1050 /* Resume a suspended channel (starting if stopped) */ 1051 int gsi_channel_resume(struct gsi *gsi, u32 channel_id) 1052 { 1053 struct gsi_channel *channel = &gsi->channel[channel_id]; 1054 1055 return __gsi_channel_start(channel, true); 1056 } 1057 1058 /* Prevent all GSI interrupts while suspended */ 1059 void gsi_suspend(struct gsi *gsi) 1060 { 1061 disable_irq(gsi->irq); 1062 } 1063 1064 /* Allow all GSI interrupts again when resuming */ 1065 void gsi_resume(struct gsi *gsi) 1066 { 1067 enable_irq(gsi->irq); 1068 } 1069 1070 void gsi_trans_tx_committed(struct gsi_trans *trans) 1071 { 1072 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 1073 1074 channel->trans_count++; 1075 channel->byte_count += trans->len; 1076 1077 trans->trans_count = channel->trans_count; 1078 trans->byte_count = channel->byte_count; 1079 } 1080 1081 void gsi_trans_tx_queued(struct gsi_trans *trans) 1082 { 1083 u32 channel_id = trans->channel_id; 1084 struct gsi *gsi = trans->gsi; 1085 struct gsi_channel *channel; 1086 u32 trans_count; 1087 u32 byte_count; 1088 1089 channel = &gsi->channel[channel_id]; 1090 1091 byte_count = channel->byte_count - channel->queued_byte_count; 1092 trans_count = channel->trans_count - channel->queued_trans_count; 1093 channel->queued_byte_count = channel->byte_count; 1094 channel->queued_trans_count = channel->trans_count; 1095 1096 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); 1097 } 1098 1099 /** 1100 * gsi_trans_tx_completed() - Report completed TX transactions 1101 * @trans: TX channel transaction that has completed 1102 * 1103 * Report that a transaction on a TX channel has completed. At the time a 1104 * transaction is committed, we record *in the transaction* its channel's 1105 * committed transaction and byte counts. Transactions are completed in 1106 * order, and the difference between the channel's byte/transaction count 1107 * when the transaction was committed and when it completes tells us 1108 * exactly how much data has been transferred while the transaction was 1109 * pending. 1110 * 1111 * We report this information to the network stack, which uses it to manage 1112 * the rate at which data is sent to hardware. 1113 */ 1114 static void gsi_trans_tx_completed(struct gsi_trans *trans) 1115 { 1116 u32 channel_id = trans->channel_id; 1117 struct gsi *gsi = trans->gsi; 1118 struct gsi_channel *channel; 1119 u32 trans_count; 1120 u32 byte_count; 1121 1122 channel = &gsi->channel[channel_id]; 1123 trans_count = trans->trans_count - channel->compl_trans_count; 1124 byte_count = trans->byte_count - channel->compl_byte_count; 1125 1126 channel->compl_trans_count += trans_count; 1127 channel->compl_byte_count += byte_count; 1128 1129 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); 1130 } 1131 1132 /* Channel control interrupt handler */ 1133 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1134 { 1135 const struct reg *reg; 1136 u32 channel_mask; 1137 1138 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ); 1139 channel_mask = ioread32(gsi->virt + reg_offset(reg)); 1140 1141 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); 1142 iowrite32(channel_mask, gsi->virt + reg_offset(reg)); 1143 1144 while (channel_mask) { 1145 u32 channel_id = __ffs(channel_mask); 1146 1147 channel_mask ^= BIT(channel_id); 1148 1149 complete(&gsi->completion); 1150 } 1151 } 1152 1153 /* Event ring control interrupt handler */ 1154 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1155 { 1156 const struct reg *reg; 1157 u32 event_mask; 1158 1159 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ); 1160 event_mask = ioread32(gsi->virt + reg_offset(reg)); 1161 1162 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); 1163 iowrite32(event_mask, gsi->virt + reg_offset(reg)); 1164 1165 while (event_mask) { 1166 u32 evt_ring_id = __ffs(event_mask); 1167 1168 event_mask ^= BIT(evt_ring_id); 1169 1170 complete(&gsi->completion); 1171 } 1172 } 1173 1174 /* Global channel error interrupt handler */ 1175 static void 1176 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1177 { 1178 if (code == GSI_OUT_OF_RESOURCES) { 1179 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1180 complete(&gsi->completion); 1181 return; 1182 } 1183 1184 /* Report, but otherwise ignore all other error codes */ 1185 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1186 channel_id, err_ee, code); 1187 } 1188 1189 /* Global event error interrupt handler */ 1190 static void 1191 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1192 { 1193 if (code == GSI_OUT_OF_RESOURCES) { 1194 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1195 u32 channel_id = gsi_channel_id(evt_ring->channel); 1196 1197 complete(&gsi->completion); 1198 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1199 channel_id); 1200 return; 1201 } 1202 1203 /* Report, but otherwise ignore all other error codes */ 1204 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1205 evt_ring_id, err_ee, code); 1206 } 1207 1208 /* Global error interrupt handler */ 1209 static void gsi_isr_glob_err(struct gsi *gsi) 1210 { 1211 const struct reg *log_reg; 1212 const struct reg *clr_reg; 1213 enum gsi_err_type type; 1214 enum gsi_err_code code; 1215 u32 offset; 1216 u32 which; 1217 u32 val; 1218 u32 ee; 1219 1220 /* Get the logged error, then reinitialize the log */ 1221 log_reg = gsi_reg(gsi, ERROR_LOG); 1222 offset = reg_offset(log_reg); 1223 val = ioread32(gsi->virt + offset); 1224 iowrite32(0, gsi->virt + offset); 1225 1226 clr_reg = gsi_reg(gsi, ERROR_LOG_CLR); 1227 iowrite32(~0, gsi->virt + reg_offset(clr_reg)); 1228 1229 /* Parse the error value */ 1230 ee = reg_decode(log_reg, ERR_EE, val); 1231 type = reg_decode(log_reg, ERR_TYPE, val); 1232 which = reg_decode(log_reg, ERR_VIRT_IDX, val); 1233 code = reg_decode(log_reg, ERR_CODE, val); 1234 1235 if (type == GSI_ERR_TYPE_CHAN) 1236 gsi_isr_glob_chan_err(gsi, ee, which, code); 1237 else if (type == GSI_ERR_TYPE_EVT) 1238 gsi_isr_glob_evt_err(gsi, ee, which, code); 1239 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1240 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1241 } 1242 1243 /* Generic EE interrupt handler */ 1244 static void gsi_isr_gp_int1(struct gsi *gsi) 1245 { 1246 const struct reg *reg; 1247 u32 result; 1248 u32 val; 1249 1250 /* This interrupt is used to handle completions of GENERIC GSI 1251 * commands. We use these to allocate and halt channels on the 1252 * modem's behalf due to a hardware quirk on IPA v4.2. The modem 1253 * "owns" channels even when the AP allocates them, and have no 1254 * way of knowing whether a modem channel's state has been changed. 1255 * 1256 * We also use GENERIC commands to enable/disable channel flow 1257 * control for IPA v4.2+. 1258 * 1259 * It is recommended that we halt the modem channels we allocated 1260 * when shutting down, but it's possible the channel isn't running 1261 * at the time we issue the HALT command. We'll get an error in 1262 * that case, but it's harmless (the channel is already halted). 1263 * Similarly, we could get an error back when updating flow control 1264 * on a channel because it's not in the proper state. 1265 * 1266 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE 1267 * error if we receive it. 1268 */ 1269 reg = gsi_reg(gsi, CNTXT_SCRATCH_0); 1270 val = ioread32(gsi->virt + reg_offset(reg)); 1271 result = reg_decode(reg, GENERIC_EE_RESULT, val); 1272 1273 switch (result) { 1274 case GENERIC_EE_SUCCESS: 1275 case GENERIC_EE_INCORRECT_CHANNEL_STATE: 1276 gsi->result = 0; 1277 break; 1278 1279 case GENERIC_EE_RETRY: 1280 gsi->result = -EAGAIN; 1281 break; 1282 1283 default: 1284 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1285 gsi->result = -EIO; 1286 break; 1287 } 1288 1289 complete(&gsi->completion); 1290 } 1291 1292 /* Inter-EE interrupt handler */ 1293 static void gsi_isr_glob_ee(struct gsi *gsi) 1294 { 1295 const struct reg *reg; 1296 u32 val; 1297 1298 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS); 1299 val = ioread32(gsi->virt + reg_offset(reg)); 1300 1301 if (val & ERROR_INT) 1302 gsi_isr_glob_err(gsi); 1303 1304 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR); 1305 iowrite32(val, gsi->virt + reg_offset(reg)); 1306 1307 val &= ~ERROR_INT; 1308 1309 if (val & GP_INT1) { 1310 val ^= GP_INT1; 1311 gsi_isr_gp_int1(gsi); 1312 } 1313 1314 if (val) 1315 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1316 } 1317 1318 /* I/O completion interrupt event */ 1319 static void gsi_isr_ieob(struct gsi *gsi) 1320 { 1321 const struct reg *reg; 1322 u32 event_mask; 1323 1324 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ); 1325 event_mask = ioread32(gsi->virt + reg_offset(reg)); 1326 1327 gsi_irq_ieob_disable(gsi, event_mask); 1328 1329 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR); 1330 iowrite32(event_mask, gsi->virt + reg_offset(reg)); 1331 1332 while (event_mask) { 1333 u32 evt_ring_id = __ffs(event_mask); 1334 1335 event_mask ^= BIT(evt_ring_id); 1336 1337 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1338 } 1339 } 1340 1341 /* General event interrupts represent serious problems, so report them */ 1342 static void gsi_isr_general(struct gsi *gsi) 1343 { 1344 struct device *dev = gsi->dev; 1345 const struct reg *reg; 1346 u32 val; 1347 1348 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS); 1349 val = ioread32(gsi->virt + reg_offset(reg)); 1350 1351 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR); 1352 iowrite32(val, gsi->virt + reg_offset(reg)); 1353 1354 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1355 } 1356 1357 /** 1358 * gsi_isr() - Top level GSI interrupt service routine 1359 * @irq: Interrupt number (ignored) 1360 * @dev_id: GSI pointer supplied to request_irq() 1361 * 1362 * This is the main handler function registered for the GSI IRQ. Each type 1363 * of interrupt has a separate handler function that is called from here. 1364 */ 1365 static irqreturn_t gsi_isr(int irq, void *dev_id) 1366 { 1367 struct gsi *gsi = dev_id; 1368 const struct reg *reg; 1369 u32 intr_mask; 1370 u32 cnt = 0; 1371 u32 offset; 1372 1373 reg = gsi_reg(gsi, CNTXT_TYPE_IRQ); 1374 offset = reg_offset(reg); 1375 1376 /* enum gsi_irq_type_id defines GSI interrupt types */ 1377 while ((intr_mask = ioread32(gsi->virt + offset))) { 1378 /* intr_mask contains bitmask of pending GSI interrupts */ 1379 do { 1380 u32 gsi_intr = BIT(__ffs(intr_mask)); 1381 1382 intr_mask ^= gsi_intr; 1383 1384 /* Note: the IRQ condition for each type is cleared 1385 * when the type-specific register is updated. 1386 */ 1387 switch (gsi_intr) { 1388 case GSI_CH_CTRL: 1389 gsi_isr_chan_ctrl(gsi); 1390 break; 1391 case GSI_EV_CTRL: 1392 gsi_isr_evt_ctrl(gsi); 1393 break; 1394 case GSI_GLOB_EE: 1395 gsi_isr_glob_ee(gsi); 1396 break; 1397 case GSI_IEOB: 1398 gsi_isr_ieob(gsi); 1399 break; 1400 case GSI_GENERAL: 1401 gsi_isr_general(gsi); 1402 break; 1403 default: 1404 dev_err(gsi->dev, 1405 "unrecognized interrupt type 0x%08x\n", 1406 gsi_intr); 1407 break; 1408 } 1409 } while (intr_mask); 1410 1411 if (++cnt > GSI_ISR_MAX_ITER) { 1412 dev_err(gsi->dev, "interrupt flood\n"); 1413 break; 1414 } 1415 } 1416 1417 return IRQ_HANDLED; 1418 } 1419 1420 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ 1421 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1422 { 1423 int ret; 1424 1425 ret = platform_get_irq_byname(pdev, "gsi"); 1426 if (ret <= 0) 1427 return ret ? : -EINVAL; 1428 1429 gsi->irq = ret; 1430 1431 return 0; 1432 } 1433 1434 /* Return the transaction associated with a transfer completion event */ 1435 static struct gsi_trans * 1436 gsi_event_trans(struct gsi *gsi, struct gsi_event *event) 1437 { 1438 u32 channel_id = event->chid; 1439 struct gsi_channel *channel; 1440 struct gsi_trans *trans; 1441 u32 tre_offset; 1442 u32 tre_index; 1443 1444 channel = &gsi->channel[channel_id]; 1445 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) 1446 return NULL; 1447 1448 /* Event xfer_ptr records the TRE it's associated with */ 1449 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1450 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1451 1452 trans = gsi_channel_trans_mapped(channel, tre_index); 1453 1454 if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) 1455 return NULL; 1456 1457 return trans; 1458 } 1459 1460 /** 1461 * gsi_evt_ring_update() - Update transaction state from hardware 1462 * @gsi: GSI pointer 1463 * @evt_ring_id: Event ring ID 1464 * @index: Event index in ring reported by hardware 1465 * 1466 * Events for RX channels contain the actual number of bytes received into 1467 * the buffer. Every event has a transaction associated with it, and here 1468 * we update transactions to record their actual received lengths. 1469 * 1470 * When an event for a TX channel arrives we use information in the 1471 * transaction to report the number of requests and bytes that have 1472 * been transferred. 1473 * 1474 * This function is called whenever we learn that the GSI hardware has filled 1475 * new events since the last time we checked. The ring's index field tells 1476 * the first entry in need of processing. The index provided is the 1477 * first *unfilled* event in the ring (following the last filled one). 1478 * 1479 * Events are sequential within the event ring, and transactions are 1480 * sequential within the transaction array. 1481 * 1482 * Note that @index always refers to an element *within* the event ring. 1483 */ 1484 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) 1485 { 1486 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1487 struct gsi_ring *ring = &evt_ring->ring; 1488 struct gsi_event *event_done; 1489 struct gsi_event *event; 1490 u32 event_avail; 1491 u32 old_index; 1492 1493 /* Starting with the oldest un-processed event, determine which 1494 * transaction (and which channel) is associated with the event. 1495 * For RX channels, update each completed transaction with the 1496 * number of bytes that were actually received. For TX channels 1497 * associated with a network device, report to the network stack 1498 * the number of transfers and bytes this completion represents. 1499 */ 1500 old_index = ring->index; 1501 event = gsi_ring_virt(ring, old_index); 1502 1503 /* Compute the number of events to process before we wrap, 1504 * and determine when we'll be done processing events. 1505 */ 1506 event_avail = ring->count - old_index % ring->count; 1507 event_done = gsi_ring_virt(ring, index); 1508 do { 1509 struct gsi_trans *trans; 1510 1511 trans = gsi_event_trans(gsi, event); 1512 if (!trans) 1513 return; 1514 1515 if (trans->direction == DMA_FROM_DEVICE) 1516 trans->len = __le16_to_cpu(event->len); 1517 else 1518 gsi_trans_tx_completed(trans); 1519 1520 gsi_trans_move_complete(trans); 1521 1522 /* Move on to the next event and transaction */ 1523 if (--event_avail) 1524 event++; 1525 else 1526 event = gsi_ring_virt(ring, 0); 1527 } while (event != event_done); 1528 1529 /* Tell the hardware we've handled these events */ 1530 gsi_evt_ring_doorbell(gsi, evt_ring_id, index); 1531 } 1532 1533 /* Initialize a ring, including allocating DMA memory for its entries */ 1534 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1535 { 1536 u32 size = count * GSI_RING_ELEMENT_SIZE; 1537 struct device *dev = gsi->dev; 1538 dma_addr_t addr; 1539 1540 /* Hardware requires a 2^n ring size, with alignment equal to size. 1541 * The DMA address returned by dma_alloc_coherent() is guaranteed to 1542 * be a power-of-2 number of pages, which satisfies the requirement. 1543 */ 1544 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1545 if (!ring->virt) 1546 return -ENOMEM; 1547 1548 ring->addr = addr; 1549 ring->count = count; 1550 ring->index = 0; 1551 1552 return 0; 1553 } 1554 1555 /* Free a previously-allocated ring */ 1556 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1557 { 1558 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1559 1560 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1561 } 1562 1563 /* Allocate an available event ring id */ 1564 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1565 { 1566 u32 evt_ring_id; 1567 1568 if (gsi->event_bitmap == ~0U) { 1569 dev_err(gsi->dev, "event rings exhausted\n"); 1570 return -ENOSPC; 1571 } 1572 1573 evt_ring_id = ffz(gsi->event_bitmap); 1574 gsi->event_bitmap |= BIT(evt_ring_id); 1575 1576 return (int)evt_ring_id; 1577 } 1578 1579 /* Free a previously-allocated event ring id */ 1580 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1581 { 1582 gsi->event_bitmap &= ~BIT(evt_ring_id); 1583 } 1584 1585 /* Ring a channel doorbell, reporting the first un-filled entry */ 1586 void gsi_channel_doorbell(struct gsi_channel *channel) 1587 { 1588 struct gsi_ring *tre_ring = &channel->tre_ring; 1589 u32 channel_id = gsi_channel_id(channel); 1590 struct gsi *gsi = channel->gsi; 1591 const struct reg *reg; 1592 u32 val; 1593 1594 reg = gsi_reg(gsi, CH_C_DOORBELL_0); 1595 /* Note: index *must* be used modulo the ring count here */ 1596 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1597 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); 1598 } 1599 1600 /* Consult hardware, move newly completed transactions to completed state */ 1601 void gsi_channel_update(struct gsi_channel *channel) 1602 { 1603 u32 evt_ring_id = channel->evt_ring_id; 1604 struct gsi *gsi = channel->gsi; 1605 struct gsi_evt_ring *evt_ring; 1606 struct gsi_trans *trans; 1607 struct gsi_ring *ring; 1608 const struct reg *reg; 1609 u32 offset; 1610 u32 index; 1611 1612 evt_ring = &gsi->evt_ring[evt_ring_id]; 1613 ring = &evt_ring->ring; 1614 1615 /* See if there's anything new to process; if not, we're done. Note 1616 * that index always refers to an entry *within* the event ring. 1617 */ 1618 reg = gsi_reg(gsi, EV_CH_E_CNTXT_4); 1619 offset = reg_n_offset(reg, evt_ring_id); 1620 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1621 if (index == ring->index % ring->count) 1622 return; 1623 1624 /* Get the transaction for the latest completed event. */ 1625 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); 1626 if (!trans) 1627 return; 1628 1629 /* For RX channels, update each completed transaction with the number 1630 * of bytes that were actually received. For TX channels, report 1631 * the number of transactions and bytes this completion represents 1632 * up the network stack. 1633 */ 1634 gsi_evt_ring_update(gsi, evt_ring_id, index); 1635 } 1636 1637 /** 1638 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1639 * @channel: Channel to be polled 1640 * 1641 * Return: Transaction pointer, or null if none are available 1642 * 1643 * This function returns the first of a channel's completed transactions. 1644 * If no transactions are in completed state, the hardware is consulted to 1645 * determine whether any new transactions have completed. If so, they're 1646 * moved to completed state and the first such transaction is returned. 1647 * If there are no more completed transactions, a null pointer is returned. 1648 */ 1649 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1650 { 1651 struct gsi_trans *trans; 1652 1653 /* Get the first completed transaction */ 1654 trans = gsi_channel_trans_complete(channel); 1655 if (trans) 1656 gsi_trans_move_polled(trans); 1657 1658 return trans; 1659 } 1660 1661 /** 1662 * gsi_channel_poll() - NAPI poll function for a channel 1663 * @napi: NAPI structure for the channel 1664 * @budget: Budget supplied by NAPI core 1665 * 1666 * Return: Number of items polled (<= budget) 1667 * 1668 * Single transactions completed by hardware are polled until either 1669 * the budget is exhausted, or there are no more. Each transaction 1670 * polled is passed to gsi_trans_complete(), to perform remaining 1671 * completion processing and retire/free the transaction. 1672 */ 1673 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1674 { 1675 struct gsi_channel *channel; 1676 int count; 1677 1678 channel = container_of(napi, struct gsi_channel, napi); 1679 for (count = 0; count < budget; count++) { 1680 struct gsi_trans *trans; 1681 1682 trans = gsi_channel_poll_one(channel); 1683 if (!trans) 1684 break; 1685 gsi_trans_complete(trans); 1686 } 1687 1688 if (count < budget && napi_complete(napi)) 1689 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1690 1691 return count; 1692 } 1693 1694 /* The event bitmap represents which event ids are available for allocation. 1695 * Set bits are not available, clear bits can be used. This function 1696 * initializes the map so all events supported by the hardware are available, 1697 * then precludes any reserved events from being allocated. 1698 */ 1699 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1700 { 1701 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1702 1703 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1704 1705 return event_bitmap; 1706 } 1707 1708 /* Setup function for a single channel */ 1709 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1710 { 1711 struct gsi_channel *channel = &gsi->channel[channel_id]; 1712 u32 evt_ring_id = channel->evt_ring_id; 1713 int ret; 1714 1715 if (!gsi_channel_initialized(channel)) 1716 return 0; 1717 1718 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1719 if (ret) 1720 return ret; 1721 1722 gsi_evt_ring_program(gsi, evt_ring_id); 1723 1724 ret = gsi_channel_alloc_command(gsi, channel_id); 1725 if (ret) 1726 goto err_evt_ring_de_alloc; 1727 1728 gsi_channel_program(channel, true); 1729 1730 if (channel->toward_ipa) 1731 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, 1732 gsi_channel_poll); 1733 else 1734 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1735 gsi_channel_poll); 1736 1737 return 0; 1738 1739 err_evt_ring_de_alloc: 1740 /* We've done nothing with the event ring yet so don't reset */ 1741 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1742 1743 return ret; 1744 } 1745 1746 /* Inverse of gsi_channel_setup_one() */ 1747 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1748 { 1749 struct gsi_channel *channel = &gsi->channel[channel_id]; 1750 u32 evt_ring_id = channel->evt_ring_id; 1751 1752 if (!gsi_channel_initialized(channel)) 1753 return; 1754 1755 netif_napi_del(&channel->napi); 1756 1757 gsi_channel_de_alloc_command(gsi, channel_id); 1758 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1759 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1760 } 1761 1762 /* We use generic commands only to operate on modem channels. We don't have 1763 * the ability to determine channel state for a modem channel, so we simply 1764 * issue the command and wait for it to complete. 1765 */ 1766 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1767 enum gsi_generic_cmd_opcode opcode, 1768 u8 params) 1769 { 1770 const struct reg *reg; 1771 bool timeout; 1772 u32 offset; 1773 u32 val; 1774 1775 /* The error global interrupt type is always enabled (until we tear 1776 * down), so we will keep it enabled. 1777 * 1778 * A generic EE command completes with a GSI global interrupt of 1779 * type GP_INT1. We only perform one generic command at a time 1780 * (to allocate, halt, or enable/disable flow control on a modem 1781 * channel), and only from this function. So we enable the GP_INT1 1782 * IRQ type here, and disable it again after the command completes. 1783 */ 1784 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1785 val = ERROR_INT | GP_INT1; 1786 iowrite32(val, gsi->virt + reg_offset(reg)); 1787 1788 /* First zero the result code field */ 1789 reg = gsi_reg(gsi, CNTXT_SCRATCH_0); 1790 offset = reg_offset(reg); 1791 val = ioread32(gsi->virt + offset); 1792 1793 val &= ~reg_fmask(reg, GENERIC_EE_RESULT); 1794 iowrite32(val, gsi->virt + offset); 1795 1796 /* Now issue the command */ 1797 reg = gsi_reg(gsi, GENERIC_CMD); 1798 val = reg_encode(reg, GENERIC_OPCODE, opcode); 1799 val |= reg_encode(reg, GENERIC_CHID, channel_id); 1800 val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM); 1801 if (gsi->version >= IPA_VERSION_4_11) 1802 val |= reg_encode(reg, GENERIC_PARAMS, params); 1803 1804 timeout = !gsi_command(gsi, reg_offset(reg), val); 1805 1806 /* Disable the GP_INT1 IRQ type again */ 1807 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1808 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); 1809 1810 if (!timeout) 1811 return gsi->result; 1812 1813 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1814 opcode, channel_id); 1815 1816 return -ETIMEDOUT; 1817 } 1818 1819 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1820 { 1821 return gsi_generic_command(gsi, channel_id, 1822 GSI_GENERIC_ALLOCATE_CHANNEL, 0); 1823 } 1824 1825 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1826 { 1827 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1828 int ret; 1829 1830 do 1831 ret = gsi_generic_command(gsi, channel_id, 1832 GSI_GENERIC_HALT_CHANNEL, 0); 1833 while (ret == -EAGAIN && retries--); 1834 1835 if (ret) 1836 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1837 ret, channel_id); 1838 } 1839 1840 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ 1841 void 1842 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) 1843 { 1844 u32 retries = 0; 1845 u32 command; 1846 int ret; 1847 1848 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL 1849 : GSI_GENERIC_DISABLE_FLOW_CONTROL; 1850 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable 1851 * is underway. In this case we need to retry the command. 1852 */ 1853 if (!enable && gsi->version >= IPA_VERSION_4_11) 1854 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; 1855 1856 do 1857 ret = gsi_generic_command(gsi, channel_id, command, 0); 1858 while (ret == -EAGAIN && retries--); 1859 1860 if (ret) 1861 dev_err(gsi->dev, 1862 "error %d %sabling mode channel %u flow control\n", 1863 ret, enable ? "en" : "dis", channel_id); 1864 } 1865 1866 /* Setup function for channels */ 1867 static int gsi_channel_setup(struct gsi *gsi) 1868 { 1869 u32 channel_id = 0; 1870 u32 mask; 1871 int ret; 1872 1873 gsi_irq_enable(gsi); 1874 1875 mutex_lock(&gsi->mutex); 1876 1877 do { 1878 ret = gsi_channel_setup_one(gsi, channel_id); 1879 if (ret) 1880 goto err_unwind; 1881 } while (++channel_id < gsi->channel_count); 1882 1883 /* Make sure no channels were defined that hardware does not support */ 1884 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1885 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1886 1887 if (!gsi_channel_initialized(channel)) 1888 continue; 1889 1890 ret = -EINVAL; 1891 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1892 channel_id - 1); 1893 channel_id = gsi->channel_count; 1894 goto err_unwind; 1895 } 1896 1897 /* Allocate modem channels if necessary */ 1898 mask = gsi->modem_channel_bitmap; 1899 while (mask) { 1900 u32 modem_channel_id = __ffs(mask); 1901 1902 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1903 if (ret) 1904 goto err_unwind_modem; 1905 1906 /* Clear bit from mask only after success (for unwind) */ 1907 mask ^= BIT(modem_channel_id); 1908 } 1909 1910 mutex_unlock(&gsi->mutex); 1911 1912 return 0; 1913 1914 err_unwind_modem: 1915 /* Compute which modem channels need to be deallocated */ 1916 mask ^= gsi->modem_channel_bitmap; 1917 while (mask) { 1918 channel_id = __fls(mask); 1919 1920 mask ^= BIT(channel_id); 1921 1922 gsi_modem_channel_halt(gsi, channel_id); 1923 } 1924 1925 err_unwind: 1926 while (channel_id--) 1927 gsi_channel_teardown_one(gsi, channel_id); 1928 1929 mutex_unlock(&gsi->mutex); 1930 1931 gsi_irq_disable(gsi); 1932 1933 return ret; 1934 } 1935 1936 /* Inverse of gsi_channel_setup() */ 1937 static void gsi_channel_teardown(struct gsi *gsi) 1938 { 1939 u32 mask = gsi->modem_channel_bitmap; 1940 u32 channel_id; 1941 1942 mutex_lock(&gsi->mutex); 1943 1944 while (mask) { 1945 channel_id = __fls(mask); 1946 1947 mask ^= BIT(channel_id); 1948 1949 gsi_modem_channel_halt(gsi, channel_id); 1950 } 1951 1952 channel_id = gsi->channel_count - 1; 1953 do 1954 gsi_channel_teardown_one(gsi, channel_id); 1955 while (channel_id--); 1956 1957 mutex_unlock(&gsi->mutex); 1958 1959 gsi_irq_disable(gsi); 1960 } 1961 1962 /* Turn off all GSI interrupts initially */ 1963 static int gsi_irq_setup(struct gsi *gsi) 1964 { 1965 const struct reg *reg; 1966 int ret; 1967 1968 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1969 reg = gsi_reg(gsi, CNTXT_INTSET); 1970 iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg)); 1971 1972 /* Disable all interrupt types */ 1973 gsi_irq_type_update(gsi, 0); 1974 1975 /* Clear all type-specific interrupt masks */ 1976 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); 1977 iowrite32(0, gsi->virt + reg_offset(reg)); 1978 1979 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); 1980 iowrite32(0, gsi->virt + reg_offset(reg)); 1981 1982 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); 1983 iowrite32(0, gsi->virt + reg_offset(reg)); 1984 1985 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); 1986 iowrite32(0, gsi->virt + reg_offset(reg)); 1987 1988 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ 1989 if (gsi->version > IPA_VERSION_3_1) { 1990 reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK); 1991 iowrite32(0, gsi->virt + reg_offset(reg)); 1992 1993 reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK); 1994 iowrite32(0, gsi->virt + reg_offset(reg)); 1995 } 1996 1997 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); 1998 iowrite32(0, gsi->virt + reg_offset(reg)); 1999 2000 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); 2001 if (ret) 2002 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); 2003 2004 return ret; 2005 } 2006 2007 static void gsi_irq_teardown(struct gsi *gsi) 2008 { 2009 free_irq(gsi->irq, gsi); 2010 } 2011 2012 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ 2013 static int gsi_ring_setup(struct gsi *gsi) 2014 { 2015 struct device *dev = gsi->dev; 2016 const struct reg *reg; 2017 u32 count; 2018 u32 val; 2019 2020 if (gsi->version < IPA_VERSION_3_5_1) { 2021 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ 2022 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 2023 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 2024 2025 return 0; 2026 } 2027 2028 reg = gsi_reg(gsi, HW_PARAM_2); 2029 val = ioread32(gsi->virt + reg_offset(reg)); 2030 2031 count = reg_decode(reg, NUM_CH_PER_EE, val); 2032 if (!count) { 2033 dev_err(dev, "GSI reports zero channels supported\n"); 2034 return -EINVAL; 2035 } 2036 if (count > GSI_CHANNEL_COUNT_MAX) { 2037 dev_warn(dev, "limiting to %u channels; hardware supports %u\n", 2038 GSI_CHANNEL_COUNT_MAX, count); 2039 count = GSI_CHANNEL_COUNT_MAX; 2040 } 2041 gsi->channel_count = count; 2042 2043 if (gsi->version < IPA_VERSION_5_0) { 2044 count = reg_decode(reg, NUM_EV_PER_EE, val); 2045 } else { 2046 reg = gsi_reg(gsi, HW_PARAM_4); 2047 count = reg_decode(reg, EV_PER_EE, val); 2048 } 2049 if (!count) { 2050 dev_err(dev, "GSI reports zero event rings supported\n"); 2051 return -EINVAL; 2052 } 2053 if (count > GSI_EVT_RING_COUNT_MAX) { 2054 dev_warn(dev, 2055 "limiting to %u event rings; hardware supports %u\n", 2056 GSI_EVT_RING_COUNT_MAX, count); 2057 count = GSI_EVT_RING_COUNT_MAX; 2058 } 2059 gsi->evt_ring_count = count; 2060 2061 return 0; 2062 } 2063 2064 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 2065 int gsi_setup(struct gsi *gsi) 2066 { 2067 const struct reg *reg; 2068 u32 val; 2069 int ret; 2070 2071 /* Here is where we first touch the GSI hardware */ 2072 reg = gsi_reg(gsi, GSI_STATUS); 2073 val = ioread32(gsi->virt + reg_offset(reg)); 2074 if (!(val & reg_bit(reg, ENABLED))) { 2075 dev_err(gsi->dev, "GSI has not been enabled\n"); 2076 return -EIO; 2077 } 2078 2079 ret = gsi_irq_setup(gsi); 2080 if (ret) 2081 return ret; 2082 2083 ret = gsi_ring_setup(gsi); /* No matching teardown required */ 2084 if (ret) 2085 goto err_irq_teardown; 2086 2087 /* Initialize the error log */ 2088 reg = gsi_reg(gsi, ERROR_LOG); 2089 iowrite32(0, gsi->virt + reg_offset(reg)); 2090 2091 ret = gsi_channel_setup(gsi); 2092 if (ret) 2093 goto err_irq_teardown; 2094 2095 return 0; 2096 2097 err_irq_teardown: 2098 gsi_irq_teardown(gsi); 2099 2100 return ret; 2101 } 2102 2103 /* Inverse of gsi_setup() */ 2104 void gsi_teardown(struct gsi *gsi) 2105 { 2106 gsi_channel_teardown(gsi); 2107 gsi_irq_teardown(gsi); 2108 } 2109 2110 /* Initialize a channel's event ring */ 2111 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 2112 { 2113 struct gsi *gsi = channel->gsi; 2114 struct gsi_evt_ring *evt_ring; 2115 int ret; 2116 2117 ret = gsi_evt_ring_id_alloc(gsi); 2118 if (ret < 0) 2119 return ret; 2120 channel->evt_ring_id = ret; 2121 2122 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 2123 evt_ring->channel = channel; 2124 2125 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 2126 if (!ret) 2127 return 0; /* Success! */ 2128 2129 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 2130 ret, gsi_channel_id(channel)); 2131 2132 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 2133 2134 return ret; 2135 } 2136 2137 /* Inverse of gsi_channel_evt_ring_init() */ 2138 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 2139 { 2140 u32 evt_ring_id = channel->evt_ring_id; 2141 struct gsi *gsi = channel->gsi; 2142 struct gsi_evt_ring *evt_ring; 2143 2144 evt_ring = &gsi->evt_ring[evt_ring_id]; 2145 gsi_ring_free(gsi, &evt_ring->ring); 2146 gsi_evt_ring_id_free(gsi, evt_ring_id); 2147 } 2148 2149 static bool gsi_channel_data_valid(struct gsi *gsi, bool command, 2150 const struct ipa_gsi_endpoint_data *data) 2151 { 2152 const struct gsi_channel_data *channel_data; 2153 u32 channel_id = data->channel_id; 2154 struct device *dev = gsi->dev; 2155 2156 /* Make sure channel ids are in the range driver supports */ 2157 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 2158 dev_err(dev, "bad channel id %u; must be less than %u\n", 2159 channel_id, GSI_CHANNEL_COUNT_MAX); 2160 return false; 2161 } 2162 2163 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 2164 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 2165 return false; 2166 } 2167 2168 if (command && !data->toward_ipa) { 2169 dev_err(dev, "command channel %u is not TX\n", channel_id); 2170 return false; 2171 } 2172 2173 channel_data = &data->channel; 2174 2175 if (!channel_data->tlv_count || 2176 channel_data->tlv_count > GSI_TLV_MAX) { 2177 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 2178 channel_id, channel_data->tlv_count, GSI_TLV_MAX); 2179 return false; 2180 } 2181 2182 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { 2183 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", 2184 channel_id, IPA_COMMAND_TRANS_TRE_MAX, 2185 channel_data->tlv_count); 2186 return false; 2187 } 2188 2189 /* We have to allow at least one maximally-sized transaction to 2190 * be outstanding (which would use tlv_count TREs). Given how 2191 * gsi_channel_tre_max() is computed, tre_count has to be almost 2192 * twice the TLV FIFO size to satisfy this requirement. 2193 */ 2194 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { 2195 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2196 channel_id, channel_data->tlv_count, 2197 channel_data->tre_count); 2198 return false; 2199 } 2200 2201 if (!is_power_of_2(channel_data->tre_count)) { 2202 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2203 channel_id, channel_data->tre_count); 2204 return false; 2205 } 2206 2207 if (!is_power_of_2(channel_data->event_count)) { 2208 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2209 channel_id, channel_data->event_count); 2210 return false; 2211 } 2212 2213 return true; 2214 } 2215 2216 /* Init function for a single channel */ 2217 static int gsi_channel_init_one(struct gsi *gsi, 2218 const struct ipa_gsi_endpoint_data *data, 2219 bool command) 2220 { 2221 struct gsi_channel *channel; 2222 u32 tre_count; 2223 int ret; 2224 2225 if (!gsi_channel_data_valid(gsi, command, data)) 2226 return -EINVAL; 2227 2228 /* Worst case we need an event for every outstanding TRE */ 2229 if (data->channel.tre_count > data->channel.event_count) { 2230 tre_count = data->channel.event_count; 2231 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2232 data->channel_id, tre_count); 2233 } else { 2234 tre_count = data->channel.tre_count; 2235 } 2236 2237 channel = &gsi->channel[data->channel_id]; 2238 memset(channel, 0, sizeof(*channel)); 2239 2240 channel->gsi = gsi; 2241 channel->toward_ipa = data->toward_ipa; 2242 channel->command = command; 2243 channel->trans_tre_max = data->channel.tlv_count; 2244 channel->tre_count = tre_count; 2245 channel->event_count = data->channel.event_count; 2246 2247 ret = gsi_channel_evt_ring_init(channel); 2248 if (ret) 2249 goto err_clear_gsi; 2250 2251 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2252 if (ret) { 2253 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2254 ret, data->channel_id); 2255 goto err_channel_evt_ring_exit; 2256 } 2257 2258 ret = gsi_channel_trans_init(gsi, data->channel_id); 2259 if (ret) 2260 goto err_ring_free; 2261 2262 if (command) { 2263 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2264 2265 ret = ipa_cmd_pool_init(channel, tre_max); 2266 } 2267 if (!ret) 2268 return 0; /* Success! */ 2269 2270 gsi_channel_trans_exit(channel); 2271 err_ring_free: 2272 gsi_ring_free(gsi, &channel->tre_ring); 2273 err_channel_evt_ring_exit: 2274 gsi_channel_evt_ring_exit(channel); 2275 err_clear_gsi: 2276 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2277 2278 return ret; 2279 } 2280 2281 /* Inverse of gsi_channel_init_one() */ 2282 static void gsi_channel_exit_one(struct gsi_channel *channel) 2283 { 2284 if (!gsi_channel_initialized(channel)) 2285 return; 2286 2287 if (channel->command) 2288 ipa_cmd_pool_exit(channel); 2289 gsi_channel_trans_exit(channel); 2290 gsi_ring_free(channel->gsi, &channel->tre_ring); 2291 gsi_channel_evt_ring_exit(channel); 2292 } 2293 2294 /* Init function for channels */ 2295 static int gsi_channel_init(struct gsi *gsi, u32 count, 2296 const struct ipa_gsi_endpoint_data *data) 2297 { 2298 bool modem_alloc; 2299 int ret = 0; 2300 u32 i; 2301 2302 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2303 modem_alloc = gsi->version == IPA_VERSION_4_2; 2304 2305 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 2306 gsi->ieob_enabled_bitmap = 0; 2307 2308 /* The endpoint data array is indexed by endpoint name */ 2309 for (i = 0; i < count; i++) { 2310 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2311 2312 if (ipa_gsi_endpoint_data_empty(&data[i])) 2313 continue; /* Skip over empty slots */ 2314 2315 /* Mark modem channels to be allocated (hardware workaround) */ 2316 if (data[i].ee_id == GSI_EE_MODEM) { 2317 if (modem_alloc) 2318 gsi->modem_channel_bitmap |= 2319 BIT(data[i].channel_id); 2320 continue; 2321 } 2322 2323 ret = gsi_channel_init_one(gsi, &data[i], command); 2324 if (ret) 2325 goto err_unwind; 2326 } 2327 2328 return ret; 2329 2330 err_unwind: 2331 while (i--) { 2332 if (ipa_gsi_endpoint_data_empty(&data[i])) 2333 continue; 2334 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2335 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2336 continue; 2337 } 2338 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2339 } 2340 2341 return ret; 2342 } 2343 2344 /* Inverse of gsi_channel_init() */ 2345 static void gsi_channel_exit(struct gsi *gsi) 2346 { 2347 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2348 2349 do 2350 gsi_channel_exit_one(&gsi->channel[channel_id]); 2351 while (channel_id--); 2352 gsi->modem_channel_bitmap = 0; 2353 } 2354 2355 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2356 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2357 enum ipa_version version, u32 count, 2358 const struct ipa_gsi_endpoint_data *data) 2359 { 2360 int ret; 2361 2362 gsi_validate_build(); 2363 2364 gsi->dev = &pdev->dev; 2365 gsi->version = version; 2366 2367 /* GSI uses NAPI on all channels. Create a dummy network device 2368 * for the channel NAPI contexts to be associated with. 2369 */ 2370 init_dummy_netdev(&gsi->dummy_dev); 2371 init_completion(&gsi->completion); 2372 2373 ret = gsi_reg_init(gsi, pdev); 2374 if (ret) 2375 return ret; 2376 2377 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ 2378 if (ret) 2379 goto err_reg_exit; 2380 2381 ret = gsi_channel_init(gsi, count, data); 2382 if (ret) 2383 goto err_reg_exit; 2384 2385 mutex_init(&gsi->mutex); 2386 2387 return 0; 2388 2389 err_reg_exit: 2390 gsi_reg_exit(gsi); 2391 2392 return ret; 2393 } 2394 2395 /* Inverse of gsi_init() */ 2396 void gsi_exit(struct gsi *gsi) 2397 { 2398 mutex_destroy(&gsi->mutex); 2399 gsi_channel_exit(gsi); 2400 gsi_reg_exit(gsi); 2401 } 2402 2403 /* The maximum number of outstanding TREs on a channel. This limits 2404 * a channel's maximum number of transactions outstanding (worst case 2405 * is one TRE per transaction). 2406 * 2407 * The absolute limit is the number of TREs in the channel's TRE ring, 2408 * and in theory we should be able use all of them. But in practice, 2409 * doing that led to the hardware reporting exhaustion of event ring 2410 * slots for writing completion information. So the hardware limit 2411 * would be (tre_count - 1). 2412 * 2413 * We reduce it a bit further though. Transaction resource pools are 2414 * sized to be a little larger than this maximum, to allow resource 2415 * allocations to always be contiguous. The number of entries in a 2416 * TRE ring buffer is a power of 2, and the extra resources in a pool 2417 * tends to nearly double the memory allocated for it. Reducing the 2418 * maximum number of outstanding TREs allows the number of entries in 2419 * a pool to avoid crossing that power-of-2 boundary, and this can 2420 * substantially reduce pool memory requirements. The number we 2421 * reduce it by matches the number added in gsi_trans_pool_init(). 2422 */ 2423 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2424 { 2425 struct gsi_channel *channel = &gsi->channel[channel_id]; 2426 2427 /* Hardware limit is channel->tre_count - 1 */ 2428 return channel->tre_count - (channel->trans_tre_max - 1); 2429 } 2430