xref: /linux/drivers/net/ipa/gsi.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* An initialized channel has a non-null GSI pointer */
179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 	return !!channel->gsi;
182 }
183 
184 /* Update the GSI IRQ type register with the cached value */
185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 	gsi->type_enabled_bitmap = val;
188 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190 
191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195 
196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200 
201 /* Turn off all GSI interrupts initially; there is no gsi_irq_teardown() */
202 static void gsi_irq_setup(struct gsi *gsi)
203 {
204 	/* Disable all interrupt types */
205 	gsi_irq_type_update(gsi, 0);
206 
207 	/* Clear all type-specific interrupt masks */
208 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
209 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
210 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
211 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
212 
213 	/* The inter-EE registers are in the non-adjusted address range */
214 	iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET);
215 	iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET);
216 
217 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
218 }
219 
220 /* Event ring commands are performed one at a time.  Their completion
221  * is signaled by the event ring control GSI interrupt type, which is
222  * only enabled when we issue an event ring command.  Only the event
223  * ring being operated on has this interrupt enabled.
224  */
225 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
226 {
227 	u32 val = BIT(evt_ring_id);
228 
229 	/* There's a small chance that a previous command completed
230 	 * after the interrupt was disabled, so make sure we have no
231 	 * pending interrupts before we enable them.
232 	 */
233 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
234 
235 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
236 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
237 }
238 
239 /* Disable event ring control interrupts */
240 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
241 {
242 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
243 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
244 }
245 
246 /* Channel commands are performed one at a time.  Their completion is
247  * signaled by the channel control GSI interrupt type, which is only
248  * enabled when we issue a channel command.  Only the channel being
249  * operated on has this interrupt enabled.
250  */
251 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
252 {
253 	u32 val = BIT(channel_id);
254 
255 	/* There's a small chance that a previous command completed
256 	 * after the interrupt was disabled, so make sure we have no
257 	 * pending interrupts before we enable them.
258 	 */
259 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
260 
261 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
262 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
263 }
264 
265 /* Disable channel control interrupts */
266 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
267 {
268 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
269 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
270 }
271 
272 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
273 {
274 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
275 	u32 val;
276 
277 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
278 	val = gsi->ieob_enabled_bitmap;
279 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
280 
281 	/* Enable the interrupt type if this is the first channel enabled */
282 	if (enable_ieob)
283 		gsi_irq_type_enable(gsi, GSI_IEOB);
284 }
285 
286 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
287 {
288 	u32 val;
289 
290 	gsi->ieob_enabled_bitmap &= ~event_mask;
291 
292 	/* Disable the interrupt type if this was the last enabled channel */
293 	if (!gsi->ieob_enabled_bitmap)
294 		gsi_irq_type_disable(gsi, GSI_IEOB);
295 
296 	val = gsi->ieob_enabled_bitmap;
297 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
298 }
299 
300 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
301 {
302 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
303 }
304 
305 /* Enable all GSI_interrupt types */
306 static void gsi_irq_enable(struct gsi *gsi)
307 {
308 	u32 val;
309 
310 	/* Global interrupts include hardware error reports.  Enable
311 	 * that so we can at least report the error should it occur.
312 	 */
313 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
314 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
315 
316 	/* General GSI interrupts are reported to all EEs; if they occur
317 	 * they are unrecoverable (without reset).  A breakpoint interrupt
318 	 * also exists, but we don't support that.  We want to be notified
319 	 * of errors so we can report them, even if they can't be handled.
320 	 */
321 	val = BIT(BUS_ERROR);
322 	val |= BIT(CMD_FIFO_OVRFLOW);
323 	val |= BIT(MCS_STACK_OVRFLOW);
324 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
325 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
326 }
327 
328 /* Disable all GSI interrupt types */
329 static void gsi_irq_disable(struct gsi *gsi)
330 {
331 	gsi_irq_type_update(gsi, 0);
332 
333 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
334 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
335 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
336 }
337 
338 /* Return the virtual address associated with a ring index */
339 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
340 {
341 	/* Note: index *must* be used modulo the ring count here */
342 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
343 }
344 
345 /* Return the 32-bit DMA address associated with a ring index */
346 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
347 {
348 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
349 }
350 
351 /* Return the ring index of a 32-bit ring offset */
352 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
353 {
354 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
355 }
356 
357 /* Issue a GSI command by writing a value to a register, then wait for
358  * completion to be signaled.  Returns true if the command completes
359  * or false if it times out.
360  */
361 static bool
362 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
363 {
364 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
365 
366 	reinit_completion(completion);
367 
368 	iowrite32(val, gsi->virt + reg);
369 
370 	return !!wait_for_completion_timeout(completion, timeout);
371 }
372 
373 /* Return the hardware's notion of the current state of an event ring */
374 static enum gsi_evt_ring_state
375 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
376 {
377 	u32 val;
378 
379 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
380 
381 	return u32_get_bits(val, EV_CHSTATE_FMASK);
382 }
383 
384 /* Issue an event ring command and wait for it to complete */
385 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
386 				 enum gsi_evt_cmd_opcode opcode)
387 {
388 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
389 	struct completion *completion = &evt_ring->completion;
390 	struct device *dev = gsi->dev;
391 	bool timeout;
392 	u32 val;
393 
394 	/* Enable the completion interrupt for the command */
395 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
396 
397 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
398 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
399 
400 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
401 
402 	gsi_irq_ev_ctrl_disable(gsi);
403 
404 	if (!timeout)
405 		return;
406 
407 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
408 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
409 }
410 
411 /* Allocate an event ring in NOT_ALLOCATED state */
412 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
413 {
414 	enum gsi_evt_ring_state state;
415 
416 	/* Get initial event ring state */
417 	state = gsi_evt_ring_state(gsi, evt_ring_id);
418 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
419 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
420 			evt_ring_id, state);
421 		return -EINVAL;
422 	}
423 
424 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
425 
426 	/* If successful the event ring state will have changed */
427 	state = gsi_evt_ring_state(gsi, evt_ring_id);
428 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
429 		return 0;
430 
431 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
432 		evt_ring_id, state);
433 
434 	return -EIO;
435 }
436 
437 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
438 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
439 {
440 	enum gsi_evt_ring_state state;
441 
442 	state = gsi_evt_ring_state(gsi, evt_ring_id);
443 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
444 	    state != GSI_EVT_RING_STATE_ERROR) {
445 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
446 			evt_ring_id, state);
447 		return;
448 	}
449 
450 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
451 
452 	/* If successful the event ring state will have changed */
453 	state = gsi_evt_ring_state(gsi, evt_ring_id);
454 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
455 		return;
456 
457 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
458 		evt_ring_id, state);
459 }
460 
461 /* Issue a hardware de-allocation request for an allocated event ring */
462 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
463 {
464 	enum gsi_evt_ring_state state;
465 
466 	state = gsi_evt_ring_state(gsi, evt_ring_id);
467 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
468 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
469 			evt_ring_id, state);
470 		return;
471 	}
472 
473 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
474 
475 	/* If successful the event ring state will have changed */
476 	state = gsi_evt_ring_state(gsi, evt_ring_id);
477 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
478 		return;
479 
480 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
481 		evt_ring_id, state);
482 }
483 
484 /* Fetch the current state of a channel from hardware */
485 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
486 {
487 	u32 channel_id = gsi_channel_id(channel);
488 	void __iomem *virt = channel->gsi->virt;
489 	u32 val;
490 
491 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
492 
493 	return u32_get_bits(val, CHSTATE_FMASK);
494 }
495 
496 /* Issue a channel command and wait for it to complete */
497 static void
498 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
499 {
500 	struct completion *completion = &channel->completion;
501 	u32 channel_id = gsi_channel_id(channel);
502 	struct gsi *gsi = channel->gsi;
503 	struct device *dev = gsi->dev;
504 	bool timeout;
505 	u32 val;
506 
507 	/* Enable the completion interrupt for the command */
508 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
509 
510 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
511 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
512 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
513 
514 	gsi_irq_ch_ctrl_disable(gsi);
515 
516 	if (!timeout)
517 		return;
518 
519 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
520 		opcode, channel_id, gsi_channel_state(channel));
521 }
522 
523 /* Allocate GSI channel in NOT_ALLOCATED state */
524 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
525 {
526 	struct gsi_channel *channel = &gsi->channel[channel_id];
527 	struct device *dev = gsi->dev;
528 	enum gsi_channel_state state;
529 
530 	/* Get initial channel state */
531 	state = gsi_channel_state(channel);
532 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
533 		dev_err(dev, "channel %u bad state %u before alloc\n",
534 			channel_id, state);
535 		return -EINVAL;
536 	}
537 
538 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
539 
540 	/* If successful the channel state will have changed */
541 	state = gsi_channel_state(channel);
542 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
543 		return 0;
544 
545 	dev_err(dev, "channel %u bad state %u after alloc\n",
546 		channel_id, state);
547 
548 	return -EIO;
549 }
550 
551 /* Start an ALLOCATED channel */
552 static int gsi_channel_start_command(struct gsi_channel *channel)
553 {
554 	struct device *dev = channel->gsi->dev;
555 	enum gsi_channel_state state;
556 
557 	state = gsi_channel_state(channel);
558 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
559 	    state != GSI_CHANNEL_STATE_STOPPED) {
560 		dev_err(dev, "channel %u bad state %u before start\n",
561 			gsi_channel_id(channel), state);
562 		return -EINVAL;
563 	}
564 
565 	gsi_channel_command(channel, GSI_CH_START);
566 
567 	/* If successful the channel state will have changed */
568 	state = gsi_channel_state(channel);
569 	if (state == GSI_CHANNEL_STATE_STARTED)
570 		return 0;
571 
572 	dev_err(dev, "channel %u bad state %u after start\n",
573 		gsi_channel_id(channel), state);
574 
575 	return -EIO;
576 }
577 
578 /* Stop a GSI channel in STARTED state */
579 static int gsi_channel_stop_command(struct gsi_channel *channel)
580 {
581 	struct device *dev = channel->gsi->dev;
582 	enum gsi_channel_state state;
583 
584 	state = gsi_channel_state(channel);
585 
586 	/* Channel could have entered STOPPED state since last call
587 	 * if it timed out.  If so, we're done.
588 	 */
589 	if (state == GSI_CHANNEL_STATE_STOPPED)
590 		return 0;
591 
592 	if (state != GSI_CHANNEL_STATE_STARTED &&
593 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
594 		dev_err(dev, "channel %u bad state %u before stop\n",
595 			gsi_channel_id(channel), state);
596 		return -EINVAL;
597 	}
598 
599 	gsi_channel_command(channel, GSI_CH_STOP);
600 
601 	/* If successful the channel state will have changed */
602 	state = gsi_channel_state(channel);
603 	if (state == GSI_CHANNEL_STATE_STOPPED)
604 		return 0;
605 
606 	/* We may have to try again if stop is in progress */
607 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
608 		return -EAGAIN;
609 
610 	dev_err(dev, "channel %u bad state %u after stop\n",
611 		gsi_channel_id(channel), state);
612 
613 	return -EIO;
614 }
615 
616 /* Reset a GSI channel in ALLOCATED or ERROR state. */
617 static void gsi_channel_reset_command(struct gsi_channel *channel)
618 {
619 	struct device *dev = channel->gsi->dev;
620 	enum gsi_channel_state state;
621 
622 	/* A short delay is required before a RESET command */
623 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
624 
625 	state = gsi_channel_state(channel);
626 	if (state != GSI_CHANNEL_STATE_STOPPED &&
627 	    state != GSI_CHANNEL_STATE_ERROR) {
628 		/* No need to reset a channel already in ALLOCATED state */
629 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
630 			dev_err(dev, "channel %u bad state %u before reset\n",
631 				gsi_channel_id(channel), state);
632 		return;
633 	}
634 
635 	gsi_channel_command(channel, GSI_CH_RESET);
636 
637 	/* If successful the channel state will have changed */
638 	state = gsi_channel_state(channel);
639 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
640 		dev_err(dev, "channel %u bad state %u after reset\n",
641 			gsi_channel_id(channel), state);
642 }
643 
644 /* Deallocate an ALLOCATED GSI channel */
645 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
646 {
647 	struct gsi_channel *channel = &gsi->channel[channel_id];
648 	struct device *dev = gsi->dev;
649 	enum gsi_channel_state state;
650 
651 	state = gsi_channel_state(channel);
652 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
653 		dev_err(dev, "channel %u bad state %u before dealloc\n",
654 			channel_id, state);
655 		return;
656 	}
657 
658 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
659 
660 	/* If successful the channel state will have changed */
661 	state = gsi_channel_state(channel);
662 
663 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
664 		dev_err(dev, "channel %u bad state %u after dealloc\n",
665 			channel_id, state);
666 }
667 
668 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
669  * The index argument (modulo the ring count) is the first unfilled entry, so
670  * we supply one less than that with the doorbell.  Update the event ring
671  * index field with the value provided.
672  */
673 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
674 {
675 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
676 	u32 val;
677 
678 	ring->index = index;	/* Next unused entry */
679 
680 	/* Note: index *must* be used modulo the ring count here */
681 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
682 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
683 }
684 
685 /* Program an event ring for use */
686 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
687 {
688 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
689 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
690 	u32 val;
691 
692 	/* We program all event rings as GPI type/protocol */
693 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
694 	val |= EV_INTYPE_FMASK;
695 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
696 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
697 
698 	val = ev_r_length_encoded(gsi->version, size);
699 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
700 
701 	/* The context 2 and 3 registers store the low-order and
702 	 * high-order 32 bits of the address of the event ring,
703 	 * respectively.
704 	 */
705 	val = lower_32_bits(evt_ring->ring.addr);
706 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
707 	val = upper_32_bits(evt_ring->ring.addr);
708 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
709 
710 	/* Enable interrupt moderation by setting the moderation delay */
711 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
712 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
713 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
714 
715 	/* No MSI write data, and MSI address high and low address is 0 */
716 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
717 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
718 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
719 
720 	/* We don't need to get event read pointer updates */
721 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
722 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
723 
724 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
725 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
726 }
727 
728 /* Find the transaction whose completion indicates a channel is quiesced */
729 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
730 {
731 	struct gsi_trans_info *trans_info = &channel->trans_info;
732 	const struct list_head *list;
733 	struct gsi_trans *trans;
734 
735 	spin_lock_bh(&trans_info->spinlock);
736 
737 	/* There is a small chance a TX transaction got allocated just
738 	 * before we disabled transmits, so check for that.
739 	 */
740 	if (channel->toward_ipa) {
741 		list = &trans_info->alloc;
742 		if (!list_empty(list))
743 			goto done;
744 		list = &trans_info->pending;
745 		if (!list_empty(list))
746 			goto done;
747 	}
748 
749 	/* Otherwise (TX or RX) we want to wait for anything that
750 	 * has completed, or has been polled but not released yet.
751 	 */
752 	list = &trans_info->complete;
753 	if (!list_empty(list))
754 		goto done;
755 	list = &trans_info->polled;
756 	if (list_empty(list))
757 		list = NULL;
758 done:
759 	trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
760 
761 	/* Caller will wait for this, so take a reference */
762 	if (trans)
763 		refcount_inc(&trans->refcount);
764 
765 	spin_unlock_bh(&trans_info->spinlock);
766 
767 	return trans;
768 }
769 
770 /* Wait for transaction activity on a channel to complete */
771 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
772 {
773 	struct gsi_trans *trans;
774 
775 	/* Get the last transaction, and wait for it to complete */
776 	trans = gsi_channel_trans_last(channel);
777 	if (trans) {
778 		wait_for_completion(&trans->completion);
779 		gsi_trans_free(trans);
780 	}
781 }
782 
783 /* Program a channel for use; there is no gsi_channel_deprogram() */
784 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
785 {
786 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
787 	u32 channel_id = gsi_channel_id(channel);
788 	union gsi_channel_scratch scr = { };
789 	struct gsi_channel_scratch_gpi *gpi;
790 	struct gsi *gsi = channel->gsi;
791 	u32 wrr_weight = 0;
792 	u32 val;
793 
794 	/* Arbitrarily pick TRE 0 as the first channel element to use */
795 	channel->tre_ring.index = 0;
796 
797 	/* We program all channels as GPI type/protocol */
798 	val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
799 	if (channel->toward_ipa)
800 		val |= CHTYPE_DIR_FMASK;
801 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
802 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
803 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
804 
805 	val = r_length_encoded(gsi->version, size);
806 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
807 
808 	/* The context 2 and 3 registers store the low-order and
809 	 * high-order 32 bits of the address of the channel ring,
810 	 * respectively.
811 	 */
812 	val = lower_32_bits(channel->tre_ring.addr);
813 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
814 	val = upper_32_bits(channel->tre_ring.addr);
815 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
816 
817 	/* Command channel gets low weighted round-robin priority */
818 	if (channel->command)
819 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
820 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
821 
822 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
823 
824 	/* No need to use the doorbell engine starting at IPA v4.0 */
825 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
826 		val |= USE_DB_ENG_FMASK;
827 
828 	/* v4.0 introduces an escape buffer for prefetch.  We use it
829 	 * on all but the AP command channel.
830 	 */
831 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
832 		/* If not otherwise set, prefetch buffers are used */
833 		if (gsi->version < IPA_VERSION_4_5)
834 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
835 		else
836 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
837 					       PREFETCH_MODE_FMASK);
838 	}
839 	/* All channels set DB_IN_BYTES */
840 	if (gsi->version >= IPA_VERSION_4_9)
841 		val |= DB_IN_BYTES;
842 
843 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
844 
845 	/* Now update the scratch registers for GPI protocol */
846 	gpi = &scr.gpi;
847 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
848 					GSI_RING_ELEMENT_SIZE;
849 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
850 
851 	val = scr.data.word1;
852 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
853 
854 	val = scr.data.word2;
855 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
856 
857 	val = scr.data.word3;
858 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
859 
860 	/* We must preserve the upper 16 bits of the last scratch register.
861 	 * The next sequence assumes those bits remain unchanged between the
862 	 * read and the write.
863 	 */
864 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
865 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
866 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
867 
868 	/* All done! */
869 }
870 
871 static int __gsi_channel_start(struct gsi_channel *channel, bool start)
872 {
873 	struct gsi *gsi = channel->gsi;
874 	int ret;
875 
876 	if (!start)
877 		return 0;
878 
879 	mutex_lock(&gsi->mutex);
880 
881 	ret = gsi_channel_start_command(channel);
882 
883 	mutex_unlock(&gsi->mutex);
884 
885 	return ret;
886 }
887 
888 /* Start an allocated GSI channel */
889 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
890 {
891 	struct gsi_channel *channel = &gsi->channel[channel_id];
892 	int ret;
893 
894 	/* Enable NAPI and the completion interrupt */
895 	napi_enable(&channel->napi);
896 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
897 
898 	ret = __gsi_channel_start(channel, true);
899 	if (ret) {
900 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
901 		napi_disable(&channel->napi);
902 	}
903 
904 	return ret;
905 }
906 
907 static int gsi_channel_stop_retry(struct gsi_channel *channel)
908 {
909 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
910 	int ret;
911 
912 	do {
913 		ret = gsi_channel_stop_command(channel);
914 		if (ret != -EAGAIN)
915 			break;
916 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
917 	} while (retries--);
918 
919 	return ret;
920 }
921 
922 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop)
923 {
924 	struct gsi *gsi = channel->gsi;
925 	int ret;
926 
927 	/* Wait for any underway transactions to complete before stopping. */
928 	gsi_channel_trans_quiesce(channel);
929 
930 	if (!stop)
931 		return 0;
932 
933 	mutex_lock(&gsi->mutex);
934 
935 	ret = gsi_channel_stop_retry(channel);
936 
937 	mutex_unlock(&gsi->mutex);
938 
939 	return ret;
940 }
941 
942 /* Stop a started channel */
943 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
944 {
945 	struct gsi_channel *channel = &gsi->channel[channel_id];
946 	int ret;
947 
948 	ret = __gsi_channel_stop(channel, true);
949 	if (ret)
950 		return ret;
951 
952 	/* Disable the completion interrupt and NAPI if successful */
953 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
954 	napi_disable(&channel->napi);
955 
956 	return 0;
957 }
958 
959 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
960 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
961 {
962 	struct gsi_channel *channel = &gsi->channel[channel_id];
963 
964 	mutex_lock(&gsi->mutex);
965 
966 	gsi_channel_reset_command(channel);
967 	/* Due to a hardware quirk we may need to reset RX channels twice. */
968 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
969 		gsi_channel_reset_command(channel);
970 
971 	gsi_channel_program(channel, doorbell);
972 	gsi_channel_trans_cancel_pending(channel);
973 
974 	mutex_unlock(&gsi->mutex);
975 }
976 
977 /* Stop a STARTED channel for suspend (using stop if requested) */
978 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
979 {
980 	struct gsi_channel *channel = &gsi->channel[channel_id];
981 	int ret;
982 
983 	ret = __gsi_channel_stop(channel, stop);
984 	if (ret)
985 		return ret;
986 
987 	/* Ensure NAPI polling has finished. */
988 	napi_synchronize(&channel->napi);
989 
990 	return 0;
991 }
992 
993 /* Resume a suspended channel (starting will be requested if STOPPED) */
994 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
995 {
996 	struct gsi_channel *channel = &gsi->channel[channel_id];
997 
998 	return __gsi_channel_start(channel, start);
999 }
1000 
1001 /**
1002  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
1003  * @channel:	Channel for which to report
1004  *
1005  * Report to the network stack the number of bytes and transactions that
1006  * have been queued to hardware since last call.  This and the next function
1007  * supply information used by the network stack for throttling.
1008  *
1009  * For each channel we track the number of transactions used and bytes of
1010  * data those transactions represent.  We also track what those values are
1011  * each time this function is called.  Subtracting the two tells us
1012  * the number of bytes and transactions that have been added between
1013  * successive calls.
1014  *
1015  * Calling this each time we ring the channel doorbell allows us to
1016  * provide accurate information to the network stack about how much
1017  * work we've given the hardware at any point in time.
1018  */
1019 void gsi_channel_tx_queued(struct gsi_channel *channel)
1020 {
1021 	u32 trans_count;
1022 	u32 byte_count;
1023 
1024 	byte_count = channel->byte_count - channel->queued_byte_count;
1025 	trans_count = channel->trans_count - channel->queued_trans_count;
1026 	channel->queued_byte_count = channel->byte_count;
1027 	channel->queued_trans_count = channel->trans_count;
1028 
1029 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1030 				  trans_count, byte_count);
1031 }
1032 
1033 /**
1034  * gsi_channel_tx_update() - Report completed TX transfers
1035  * @channel:	Channel that has completed transmitting packets
1036  * @trans:	Last transation known to be complete
1037  *
1038  * Compute the number of transactions and bytes that have been transferred
1039  * over a TX channel since the given transaction was committed.  Report this
1040  * information to the network stack.
1041  *
1042  * At the time a transaction is committed, we record its channel's
1043  * committed transaction and byte counts *in the transaction*.
1044  * Completions are signaled by the hardware with an interrupt, and
1045  * we can determine the latest completed transaction at that time.
1046  *
1047  * The difference between the byte/transaction count recorded in
1048  * the transaction and the count last time we recorded a completion
1049  * tells us exactly how much data has been transferred between
1050  * completions.
1051  *
1052  * Calling this each time we learn of a newly-completed transaction
1053  * allows us to provide accurate information to the network stack
1054  * about how much work has been completed by the hardware at a given
1055  * point in time.
1056  */
1057 static void
1058 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1059 {
1060 	u64 byte_count = trans->byte_count + trans->len;
1061 	u64 trans_count = trans->trans_count + 1;
1062 
1063 	byte_count -= channel->compl_byte_count;
1064 	channel->compl_byte_count += byte_count;
1065 	trans_count -= channel->compl_trans_count;
1066 	channel->compl_trans_count += trans_count;
1067 
1068 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1069 				     trans_count, byte_count);
1070 }
1071 
1072 /* Channel control interrupt handler */
1073 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1074 {
1075 	u32 channel_mask;
1076 
1077 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1078 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1079 
1080 	while (channel_mask) {
1081 		u32 channel_id = __ffs(channel_mask);
1082 		struct gsi_channel *channel;
1083 
1084 		channel_mask ^= BIT(channel_id);
1085 
1086 		channel = &gsi->channel[channel_id];
1087 
1088 		complete(&channel->completion);
1089 	}
1090 }
1091 
1092 /* Event ring control interrupt handler */
1093 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1094 {
1095 	u32 event_mask;
1096 
1097 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1098 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1099 
1100 	while (event_mask) {
1101 		u32 evt_ring_id = __ffs(event_mask);
1102 		struct gsi_evt_ring *evt_ring;
1103 
1104 		event_mask ^= BIT(evt_ring_id);
1105 
1106 		evt_ring = &gsi->evt_ring[evt_ring_id];
1107 
1108 		complete(&evt_ring->completion);
1109 	}
1110 }
1111 
1112 /* Global channel error interrupt handler */
1113 static void
1114 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1115 {
1116 	if (code == GSI_OUT_OF_RESOURCES) {
1117 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1118 		complete(&gsi->channel[channel_id].completion);
1119 		return;
1120 	}
1121 
1122 	/* Report, but otherwise ignore all other error codes */
1123 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1124 		channel_id, err_ee, code);
1125 }
1126 
1127 /* Global event error interrupt handler */
1128 static void
1129 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1130 {
1131 	if (code == GSI_OUT_OF_RESOURCES) {
1132 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1133 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1134 
1135 		complete(&evt_ring->completion);
1136 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1137 			channel_id);
1138 		return;
1139 	}
1140 
1141 	/* Report, but otherwise ignore all other error codes */
1142 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1143 		evt_ring_id, err_ee, code);
1144 }
1145 
1146 /* Global error interrupt handler */
1147 static void gsi_isr_glob_err(struct gsi *gsi)
1148 {
1149 	enum gsi_err_type type;
1150 	enum gsi_err_code code;
1151 	u32 which;
1152 	u32 val;
1153 	u32 ee;
1154 
1155 	/* Get the logged error, then reinitialize the log */
1156 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1157 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1158 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1159 
1160 	ee = u32_get_bits(val, ERR_EE_FMASK);
1161 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1162 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1163 	code = u32_get_bits(val, ERR_CODE_FMASK);
1164 
1165 	if (type == GSI_ERR_TYPE_CHAN)
1166 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1167 	else if (type == GSI_ERR_TYPE_EVT)
1168 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1169 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1170 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1171 }
1172 
1173 /* Generic EE interrupt handler */
1174 static void gsi_isr_gp_int1(struct gsi *gsi)
1175 {
1176 	u32 result;
1177 	u32 val;
1178 
1179 	/* This interrupt is used to handle completions of the two GENERIC
1180 	 * GSI commands.  We use these to allocate and halt channels on
1181 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1182 	 * allocated, the modem "owns" these channels, and as a result we
1183 	 * have no way of knowing the channel's state at any given time.
1184 	 *
1185 	 * It is recommended that we halt the modem channels we allocated
1186 	 * when shutting down, but it's possible the channel isn't running
1187 	 * at the time we issue the HALT command.  We'll get an error in
1188 	 * that case, but it's harmless (the channel is already halted).
1189 	 *
1190 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1191 	 * if we receive it.
1192 	 */
1193 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1194 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1195 
1196 	switch (result) {
1197 	case GENERIC_EE_SUCCESS:
1198 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1199 		gsi->result = 0;
1200 		break;
1201 
1202 	case GENERIC_EE_RETRY:
1203 		gsi->result = -EAGAIN;
1204 		break;
1205 
1206 	default:
1207 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1208 		gsi->result = -EIO;
1209 		break;
1210 	}
1211 
1212 	complete(&gsi->completion);
1213 }
1214 
1215 /* Inter-EE interrupt handler */
1216 static void gsi_isr_glob_ee(struct gsi *gsi)
1217 {
1218 	u32 val;
1219 
1220 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1221 
1222 	if (val & BIT(ERROR_INT))
1223 		gsi_isr_glob_err(gsi);
1224 
1225 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1226 
1227 	val &= ~BIT(ERROR_INT);
1228 
1229 	if (val & BIT(GP_INT1)) {
1230 		val ^= BIT(GP_INT1);
1231 		gsi_isr_gp_int1(gsi);
1232 	}
1233 
1234 	if (val)
1235 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1236 }
1237 
1238 /* I/O completion interrupt event */
1239 static void gsi_isr_ieob(struct gsi *gsi)
1240 {
1241 	u32 event_mask;
1242 
1243 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1244 	gsi_irq_ieob_disable(gsi, event_mask);
1245 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1246 
1247 	while (event_mask) {
1248 		u32 evt_ring_id = __ffs(event_mask);
1249 
1250 		event_mask ^= BIT(evt_ring_id);
1251 
1252 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1253 	}
1254 }
1255 
1256 /* General event interrupts represent serious problems, so report them */
1257 static void gsi_isr_general(struct gsi *gsi)
1258 {
1259 	struct device *dev = gsi->dev;
1260 	u32 val;
1261 
1262 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1263 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1264 
1265 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1266 }
1267 
1268 /**
1269  * gsi_isr() - Top level GSI interrupt service routine
1270  * @irq:	Interrupt number (ignored)
1271  * @dev_id:	GSI pointer supplied to request_irq()
1272  *
1273  * This is the main handler function registered for the GSI IRQ. Each type
1274  * of interrupt has a separate handler function that is called from here.
1275  */
1276 static irqreturn_t gsi_isr(int irq, void *dev_id)
1277 {
1278 	struct gsi *gsi = dev_id;
1279 	u32 intr_mask;
1280 	u32 cnt = 0;
1281 
1282 	/* enum gsi_irq_type_id defines GSI interrupt types */
1283 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1284 		/* intr_mask contains bitmask of pending GSI interrupts */
1285 		do {
1286 			u32 gsi_intr = BIT(__ffs(intr_mask));
1287 
1288 			intr_mask ^= gsi_intr;
1289 
1290 			switch (gsi_intr) {
1291 			case BIT(GSI_CH_CTRL):
1292 				gsi_isr_chan_ctrl(gsi);
1293 				break;
1294 			case BIT(GSI_EV_CTRL):
1295 				gsi_isr_evt_ctrl(gsi);
1296 				break;
1297 			case BIT(GSI_GLOB_EE):
1298 				gsi_isr_glob_ee(gsi);
1299 				break;
1300 			case BIT(GSI_IEOB):
1301 				gsi_isr_ieob(gsi);
1302 				break;
1303 			case BIT(GSI_GENERAL):
1304 				gsi_isr_general(gsi);
1305 				break;
1306 			default:
1307 				dev_err(gsi->dev,
1308 					"unrecognized interrupt type 0x%08x\n",
1309 					gsi_intr);
1310 				break;
1311 			}
1312 		} while (intr_mask);
1313 
1314 		if (++cnt > GSI_ISR_MAX_ITER) {
1315 			dev_err(gsi->dev, "interrupt flood\n");
1316 			break;
1317 		}
1318 	}
1319 
1320 	return IRQ_HANDLED;
1321 }
1322 
1323 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1324 {
1325 	struct device *dev = &pdev->dev;
1326 	unsigned int irq;
1327 	int ret;
1328 
1329 	ret = platform_get_irq_byname(pdev, "gsi");
1330 	if (ret <= 0)
1331 		return ret ? : -EINVAL;
1332 
1333 	irq = ret;
1334 
1335 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1336 	if (ret) {
1337 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1338 		return ret;
1339 	}
1340 	gsi->irq = irq;
1341 
1342 	return 0;
1343 }
1344 
1345 static void gsi_irq_exit(struct gsi *gsi)
1346 {
1347 	free_irq(gsi->irq, gsi);
1348 }
1349 
1350 /* Return the transaction associated with a transfer completion event */
1351 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1352 					 struct gsi_event *event)
1353 {
1354 	u32 tre_offset;
1355 	u32 tre_index;
1356 
1357 	/* Event xfer_ptr records the TRE it's associated with */
1358 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1359 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1360 
1361 	return gsi_channel_trans_mapped(channel, tre_index);
1362 }
1363 
1364 /**
1365  * gsi_evt_ring_rx_update() - Record lengths of received data
1366  * @evt_ring:	Event ring associated with channel that received packets
1367  * @index:	Event index in ring reported by hardware
1368  *
1369  * Events for RX channels contain the actual number of bytes received into
1370  * the buffer.  Every event has a transaction associated with it, and here
1371  * we update transactions to record their actual received lengths.
1372  *
1373  * This function is called whenever we learn that the GSI hardware has filled
1374  * new events since the last time we checked.  The ring's index field tells
1375  * the first entry in need of processing.  The index provided is the
1376  * first *unfilled* event in the ring (following the last filled one).
1377  *
1378  * Events are sequential within the event ring, and transactions are
1379  * sequential within the transaction pool.
1380  *
1381  * Note that @index always refers to an element *within* the event ring.
1382  */
1383 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1384 {
1385 	struct gsi_channel *channel = evt_ring->channel;
1386 	struct gsi_ring *ring = &evt_ring->ring;
1387 	struct gsi_trans_info *trans_info;
1388 	struct gsi_event *event_done;
1389 	struct gsi_event *event;
1390 	struct gsi_trans *trans;
1391 	u32 byte_count = 0;
1392 	u32 old_index;
1393 	u32 event_avail;
1394 
1395 	trans_info = &channel->trans_info;
1396 
1397 	/* We'll start with the oldest un-processed event.  RX channels
1398 	 * replenish receive buffers in single-TRE transactions, so we
1399 	 * can just map that event to its transaction.  Transactions
1400 	 * associated with completion events are consecutive.
1401 	 */
1402 	old_index = ring->index;
1403 	event = gsi_ring_virt(ring, old_index);
1404 	trans = gsi_event_trans(channel, event);
1405 
1406 	/* Compute the number of events to process before we wrap,
1407 	 * and determine when we'll be done processing events.
1408 	 */
1409 	event_avail = ring->count - old_index % ring->count;
1410 	event_done = gsi_ring_virt(ring, index);
1411 	do {
1412 		trans->len = __le16_to_cpu(event->len);
1413 		byte_count += trans->len;
1414 
1415 		/* Move on to the next event and transaction */
1416 		if (--event_avail)
1417 			event++;
1418 		else
1419 			event = gsi_ring_virt(ring, 0);
1420 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1421 	} while (event != event_done);
1422 
1423 	/* We record RX bytes when they are received */
1424 	channel->byte_count += byte_count;
1425 	channel->trans_count++;
1426 }
1427 
1428 /* Initialize a ring, including allocating DMA memory for its entries */
1429 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1430 {
1431 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1432 	struct device *dev = gsi->dev;
1433 	dma_addr_t addr;
1434 
1435 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1436 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1437 	 * be a power-of-2 number of pages, which satisfies the requirement.
1438 	 */
1439 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1440 	if (!ring->virt)
1441 		return -ENOMEM;
1442 
1443 	ring->addr = addr;
1444 	ring->count = count;
1445 
1446 	return 0;
1447 }
1448 
1449 /* Free a previously-allocated ring */
1450 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1451 {
1452 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1453 
1454 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1455 }
1456 
1457 /* Allocate an available event ring id */
1458 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1459 {
1460 	u32 evt_ring_id;
1461 
1462 	if (gsi->event_bitmap == ~0U) {
1463 		dev_err(gsi->dev, "event rings exhausted\n");
1464 		return -ENOSPC;
1465 	}
1466 
1467 	evt_ring_id = ffz(gsi->event_bitmap);
1468 	gsi->event_bitmap |= BIT(evt_ring_id);
1469 
1470 	return (int)evt_ring_id;
1471 }
1472 
1473 /* Free a previously-allocated event ring id */
1474 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1475 {
1476 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1477 }
1478 
1479 /* Ring a channel doorbell, reporting the first un-filled entry */
1480 void gsi_channel_doorbell(struct gsi_channel *channel)
1481 {
1482 	struct gsi_ring *tre_ring = &channel->tre_ring;
1483 	u32 channel_id = gsi_channel_id(channel);
1484 	struct gsi *gsi = channel->gsi;
1485 	u32 val;
1486 
1487 	/* Note: index *must* be used modulo the ring count here */
1488 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1489 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1490 }
1491 
1492 /* Consult hardware, move any newly completed transactions to completed list */
1493 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1494 {
1495 	u32 evt_ring_id = channel->evt_ring_id;
1496 	struct gsi *gsi = channel->gsi;
1497 	struct gsi_evt_ring *evt_ring;
1498 	struct gsi_trans *trans;
1499 	struct gsi_ring *ring;
1500 	u32 offset;
1501 	u32 index;
1502 
1503 	evt_ring = &gsi->evt_ring[evt_ring_id];
1504 	ring = &evt_ring->ring;
1505 
1506 	/* See if there's anything new to process; if not, we're done.  Note
1507 	 * that index always refers to an entry *within* the event ring.
1508 	 */
1509 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1510 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1511 	if (index == ring->index % ring->count)
1512 		return NULL;
1513 
1514 	/* Get the transaction for the latest completed event.  Take a
1515 	 * reference to keep it from completing before we give the events
1516 	 * for this and previous transactions back to the hardware.
1517 	 */
1518 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1519 	refcount_inc(&trans->refcount);
1520 
1521 	/* For RX channels, update each completed transaction with the number
1522 	 * of bytes that were actually received.  For TX channels, report
1523 	 * the number of transactions and bytes this completion represents
1524 	 * up the network stack.
1525 	 */
1526 	if (channel->toward_ipa)
1527 		gsi_channel_tx_update(channel, trans);
1528 	else
1529 		gsi_evt_ring_rx_update(evt_ring, index);
1530 
1531 	gsi_trans_move_complete(trans);
1532 
1533 	/* Tell the hardware we've handled these events */
1534 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1535 
1536 	gsi_trans_free(trans);
1537 
1538 	return gsi_channel_trans_complete(channel);
1539 }
1540 
1541 /**
1542  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1543  * @channel:	Channel to be polled
1544  *
1545  * Return:	Transaction pointer, or null if none are available
1546  *
1547  * This function returns the first entry on a channel's completed transaction
1548  * list.  If that list is empty, the hardware is consulted to determine
1549  * whether any new transactions have completed.  If so, they're moved to the
1550  * completed list and the new first entry is returned.  If there are no more
1551  * completed transactions, a null pointer is returned.
1552  */
1553 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1554 {
1555 	struct gsi_trans *trans;
1556 
1557 	/* Get the first transaction from the completed list */
1558 	trans = gsi_channel_trans_complete(channel);
1559 	if (!trans)	/* List is empty; see if there's more to do */
1560 		trans = gsi_channel_update(channel);
1561 
1562 	if (trans)
1563 		gsi_trans_move_polled(trans);
1564 
1565 	return trans;
1566 }
1567 
1568 /**
1569  * gsi_channel_poll() - NAPI poll function for a channel
1570  * @napi:	NAPI structure for the channel
1571  * @budget:	Budget supplied by NAPI core
1572  *
1573  * Return:	Number of items polled (<= budget)
1574  *
1575  * Single transactions completed by hardware are polled until either
1576  * the budget is exhausted, or there are no more.  Each transaction
1577  * polled is passed to gsi_trans_complete(), to perform remaining
1578  * completion processing and retire/free the transaction.
1579  */
1580 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1581 {
1582 	struct gsi_channel *channel;
1583 	int count;
1584 
1585 	channel = container_of(napi, struct gsi_channel, napi);
1586 	for (count = 0; count < budget; count++) {
1587 		struct gsi_trans *trans;
1588 
1589 		trans = gsi_channel_poll_one(channel);
1590 		if (!trans)
1591 			break;
1592 		gsi_trans_complete(trans);
1593 	}
1594 
1595 	if (count < budget && napi_complete(napi))
1596 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1597 
1598 	return count;
1599 }
1600 
1601 /* The event bitmap represents which event ids are available for allocation.
1602  * Set bits are not available, clear bits can be used.  This function
1603  * initializes the map so all events supported by the hardware are available,
1604  * then precludes any reserved events from being allocated.
1605  */
1606 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1607 {
1608 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1609 
1610 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1611 
1612 	return event_bitmap;
1613 }
1614 
1615 /* Setup function for a single channel */
1616 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1617 {
1618 	struct gsi_channel *channel = &gsi->channel[channel_id];
1619 	u32 evt_ring_id = channel->evt_ring_id;
1620 	int ret;
1621 
1622 	if (!gsi_channel_initialized(channel))
1623 		return 0;
1624 
1625 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1626 	if (ret)
1627 		return ret;
1628 
1629 	gsi_evt_ring_program(gsi, evt_ring_id);
1630 
1631 	ret = gsi_channel_alloc_command(gsi, channel_id);
1632 	if (ret)
1633 		goto err_evt_ring_de_alloc;
1634 
1635 	gsi_channel_program(channel, true);
1636 
1637 	if (channel->toward_ipa)
1638 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1639 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1640 	else
1641 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1642 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1643 
1644 	return 0;
1645 
1646 err_evt_ring_de_alloc:
1647 	/* We've done nothing with the event ring yet so don't reset */
1648 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1649 
1650 	return ret;
1651 }
1652 
1653 /* Inverse of gsi_channel_setup_one() */
1654 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1655 {
1656 	struct gsi_channel *channel = &gsi->channel[channel_id];
1657 	u32 evt_ring_id = channel->evt_ring_id;
1658 
1659 	if (!gsi_channel_initialized(channel))
1660 		return;
1661 
1662 	netif_napi_del(&channel->napi);
1663 
1664 	gsi_channel_de_alloc_command(gsi, channel_id);
1665 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1666 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1667 }
1668 
1669 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1670 			       enum gsi_generic_cmd_opcode opcode)
1671 {
1672 	struct completion *completion = &gsi->completion;
1673 	bool timeout;
1674 	u32 val;
1675 
1676 	/* The error global interrupt type is always enabled (until we
1677 	 * teardown), so we won't change that.  A generic EE command
1678 	 * completes with a GSI global interrupt of type GP_INT1.  We
1679 	 * only perform one generic command at a time (to allocate or
1680 	 * halt a modem channel) and only from this function.  So we
1681 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1682 	 */
1683 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1684 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1685 
1686 	/* First zero the result code field */
1687 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1688 	val &= ~GENERIC_EE_RESULT_FMASK;
1689 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1690 
1691 	/* Now issue the command */
1692 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1693 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1694 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1695 
1696 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1697 
1698 	/* Disable the GP_INT1 IRQ type again */
1699 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1700 
1701 	if (!timeout)
1702 		return gsi->result;
1703 
1704 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1705 		opcode, channel_id);
1706 
1707 	return -ETIMEDOUT;
1708 }
1709 
1710 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1711 {
1712 	return gsi_generic_command(gsi, channel_id,
1713 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1714 }
1715 
1716 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1717 {
1718 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1719 	int ret;
1720 
1721 	do
1722 		ret = gsi_generic_command(gsi, channel_id,
1723 					  GSI_GENERIC_HALT_CHANNEL);
1724 	while (ret == -EAGAIN && retries--);
1725 
1726 	if (ret)
1727 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1728 			ret, channel_id);
1729 }
1730 
1731 /* Setup function for channels */
1732 static int gsi_channel_setup(struct gsi *gsi)
1733 {
1734 	u32 channel_id = 0;
1735 	u32 mask;
1736 	int ret;
1737 
1738 	gsi_irq_enable(gsi);
1739 
1740 	mutex_lock(&gsi->mutex);
1741 
1742 	do {
1743 		ret = gsi_channel_setup_one(gsi, channel_id);
1744 		if (ret)
1745 			goto err_unwind;
1746 	} while (++channel_id < gsi->channel_count);
1747 
1748 	/* Make sure no channels were defined that hardware does not support */
1749 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1750 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1751 
1752 		if (!gsi_channel_initialized(channel))
1753 			continue;
1754 
1755 		ret = -EINVAL;
1756 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1757 			channel_id - 1);
1758 		channel_id = gsi->channel_count;
1759 		goto err_unwind;
1760 	}
1761 
1762 	/* Allocate modem channels if necessary */
1763 	mask = gsi->modem_channel_bitmap;
1764 	while (mask) {
1765 		u32 modem_channel_id = __ffs(mask);
1766 
1767 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1768 		if (ret)
1769 			goto err_unwind_modem;
1770 
1771 		/* Clear bit from mask only after success (for unwind) */
1772 		mask ^= BIT(modem_channel_id);
1773 	}
1774 
1775 	mutex_unlock(&gsi->mutex);
1776 
1777 	return 0;
1778 
1779 err_unwind_modem:
1780 	/* Compute which modem channels need to be deallocated */
1781 	mask ^= gsi->modem_channel_bitmap;
1782 	while (mask) {
1783 		channel_id = __fls(mask);
1784 
1785 		mask ^= BIT(channel_id);
1786 
1787 		gsi_modem_channel_halt(gsi, channel_id);
1788 	}
1789 
1790 err_unwind:
1791 	while (channel_id--)
1792 		gsi_channel_teardown_one(gsi, channel_id);
1793 
1794 	mutex_unlock(&gsi->mutex);
1795 
1796 	gsi_irq_disable(gsi);
1797 
1798 	return ret;
1799 }
1800 
1801 /* Inverse of gsi_channel_setup() */
1802 static void gsi_channel_teardown(struct gsi *gsi)
1803 {
1804 	u32 mask = gsi->modem_channel_bitmap;
1805 	u32 channel_id;
1806 
1807 	mutex_lock(&gsi->mutex);
1808 
1809 	while (mask) {
1810 		channel_id = __fls(mask);
1811 
1812 		mask ^= BIT(channel_id);
1813 
1814 		gsi_modem_channel_halt(gsi, channel_id);
1815 	}
1816 
1817 	channel_id = gsi->channel_count - 1;
1818 	do
1819 		gsi_channel_teardown_one(gsi, channel_id);
1820 	while (channel_id--);
1821 
1822 	mutex_unlock(&gsi->mutex);
1823 
1824 	gsi_irq_disable(gsi);
1825 }
1826 
1827 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1828 int gsi_setup(struct gsi *gsi)
1829 {
1830 	struct device *dev = gsi->dev;
1831 	u32 val;
1832 
1833 	/* Here is where we first touch the GSI hardware */
1834 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1835 	if (!(val & ENABLED_FMASK)) {
1836 		dev_err(dev, "GSI has not been enabled\n");
1837 		return -EIO;
1838 	}
1839 
1840 	gsi_irq_setup(gsi);		/* No matching teardown required */
1841 
1842 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1843 
1844 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1845 	if (!gsi->channel_count) {
1846 		dev_err(dev, "GSI reports zero channels supported\n");
1847 		return -EINVAL;
1848 	}
1849 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1850 		dev_warn(dev,
1851 			 "limiting to %u channels; hardware supports %u\n",
1852 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1853 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1854 	}
1855 
1856 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1857 	if (!gsi->evt_ring_count) {
1858 		dev_err(dev, "GSI reports zero event rings supported\n");
1859 		return -EINVAL;
1860 	}
1861 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1862 		dev_warn(dev,
1863 			 "limiting to %u event rings; hardware supports %u\n",
1864 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1865 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1866 	}
1867 
1868 	/* Initialize the error log */
1869 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1870 
1871 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1872 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1873 
1874 	return gsi_channel_setup(gsi);
1875 }
1876 
1877 /* Inverse of gsi_setup() */
1878 void gsi_teardown(struct gsi *gsi)
1879 {
1880 	gsi_channel_teardown(gsi);
1881 }
1882 
1883 /* Initialize a channel's event ring */
1884 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1885 {
1886 	struct gsi *gsi = channel->gsi;
1887 	struct gsi_evt_ring *evt_ring;
1888 	int ret;
1889 
1890 	ret = gsi_evt_ring_id_alloc(gsi);
1891 	if (ret < 0)
1892 		return ret;
1893 	channel->evt_ring_id = ret;
1894 
1895 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1896 	evt_ring->channel = channel;
1897 
1898 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1899 	if (!ret)
1900 		return 0;	/* Success! */
1901 
1902 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1903 		ret, gsi_channel_id(channel));
1904 
1905 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1906 
1907 	return ret;
1908 }
1909 
1910 /* Inverse of gsi_channel_evt_ring_init() */
1911 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1912 {
1913 	u32 evt_ring_id = channel->evt_ring_id;
1914 	struct gsi *gsi = channel->gsi;
1915 	struct gsi_evt_ring *evt_ring;
1916 
1917 	evt_ring = &gsi->evt_ring[evt_ring_id];
1918 	gsi_ring_free(gsi, &evt_ring->ring);
1919 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1920 }
1921 
1922 /* Init function for event rings; there is no gsi_evt_ring_exit() */
1923 static void gsi_evt_ring_init(struct gsi *gsi)
1924 {
1925 	u32 evt_ring_id = 0;
1926 
1927 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1928 	gsi->ieob_enabled_bitmap = 0;
1929 	do
1930 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1931 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1932 }
1933 
1934 static bool gsi_channel_data_valid(struct gsi *gsi,
1935 				   const struct ipa_gsi_endpoint_data *data)
1936 {
1937 #ifdef IPA_VALIDATION
1938 	u32 channel_id = data->channel_id;
1939 	struct device *dev = gsi->dev;
1940 
1941 	/* Make sure channel ids are in the range driver supports */
1942 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1943 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1944 			channel_id, GSI_CHANNEL_COUNT_MAX);
1945 		return false;
1946 	}
1947 
1948 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1949 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1950 		return false;
1951 	}
1952 
1953 	if (!data->channel.tlv_count ||
1954 	    data->channel.tlv_count > GSI_TLV_MAX) {
1955 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1956 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1957 		return false;
1958 	}
1959 
1960 	/* We have to allow at least one maximally-sized transaction to
1961 	 * be outstanding (which would use tlv_count TREs).  Given how
1962 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1963 	 * twice the TLV FIFO size to satisfy this requirement.
1964 	 */
1965 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1966 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1967 			channel_id, data->channel.tlv_count,
1968 			data->channel.tre_count);
1969 		return false;
1970 	}
1971 
1972 	if (!is_power_of_2(data->channel.tre_count)) {
1973 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1974 			channel_id, data->channel.tre_count);
1975 		return false;
1976 	}
1977 
1978 	if (!is_power_of_2(data->channel.event_count)) {
1979 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1980 			channel_id, data->channel.event_count);
1981 		return false;
1982 	}
1983 #endif /* IPA_VALIDATION */
1984 
1985 	return true;
1986 }
1987 
1988 /* Init function for a single channel */
1989 static int gsi_channel_init_one(struct gsi *gsi,
1990 				const struct ipa_gsi_endpoint_data *data,
1991 				bool command)
1992 {
1993 	struct gsi_channel *channel;
1994 	u32 tre_count;
1995 	int ret;
1996 
1997 	if (!gsi_channel_data_valid(gsi, data))
1998 		return -EINVAL;
1999 
2000 	/* Worst case we need an event for every outstanding TRE */
2001 	if (data->channel.tre_count > data->channel.event_count) {
2002 		tre_count = data->channel.event_count;
2003 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2004 			 data->channel_id, tre_count);
2005 	} else {
2006 		tre_count = data->channel.tre_count;
2007 	}
2008 
2009 	channel = &gsi->channel[data->channel_id];
2010 	memset(channel, 0, sizeof(*channel));
2011 
2012 	channel->gsi = gsi;
2013 	channel->toward_ipa = data->toward_ipa;
2014 	channel->command = command;
2015 	channel->tlv_count = data->channel.tlv_count;
2016 	channel->tre_count = tre_count;
2017 	channel->event_count = data->channel.event_count;
2018 	init_completion(&channel->completion);
2019 
2020 	ret = gsi_channel_evt_ring_init(channel);
2021 	if (ret)
2022 		goto err_clear_gsi;
2023 
2024 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2025 	if (ret) {
2026 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2027 			ret, data->channel_id);
2028 		goto err_channel_evt_ring_exit;
2029 	}
2030 
2031 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2032 	if (ret)
2033 		goto err_ring_free;
2034 
2035 	if (command) {
2036 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2037 
2038 		ret = ipa_cmd_pool_init(channel, tre_max);
2039 	}
2040 	if (!ret)
2041 		return 0;	/* Success! */
2042 
2043 	gsi_channel_trans_exit(channel);
2044 err_ring_free:
2045 	gsi_ring_free(gsi, &channel->tre_ring);
2046 err_channel_evt_ring_exit:
2047 	gsi_channel_evt_ring_exit(channel);
2048 err_clear_gsi:
2049 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2050 
2051 	return ret;
2052 }
2053 
2054 /* Inverse of gsi_channel_init_one() */
2055 static void gsi_channel_exit_one(struct gsi_channel *channel)
2056 {
2057 	if (!gsi_channel_initialized(channel))
2058 		return;
2059 
2060 	if (channel->command)
2061 		ipa_cmd_pool_exit(channel);
2062 	gsi_channel_trans_exit(channel);
2063 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2064 	gsi_channel_evt_ring_exit(channel);
2065 }
2066 
2067 /* Init function for channels */
2068 static int gsi_channel_init(struct gsi *gsi, u32 count,
2069 			    const struct ipa_gsi_endpoint_data *data)
2070 {
2071 	bool modem_alloc;
2072 	int ret = 0;
2073 	u32 i;
2074 
2075 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2076 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2077 
2078 	gsi_evt_ring_init(gsi);			/* No matching exit required */
2079 
2080 	/* The endpoint data array is indexed by endpoint name */
2081 	for (i = 0; i < count; i++) {
2082 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2083 
2084 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2085 			continue;	/* Skip over empty slots */
2086 
2087 		/* Mark modem channels to be allocated (hardware workaround) */
2088 		if (data[i].ee_id == GSI_EE_MODEM) {
2089 			if (modem_alloc)
2090 				gsi->modem_channel_bitmap |=
2091 						BIT(data[i].channel_id);
2092 			continue;
2093 		}
2094 
2095 		ret = gsi_channel_init_one(gsi, &data[i], command);
2096 		if (ret)
2097 			goto err_unwind;
2098 	}
2099 
2100 	return ret;
2101 
2102 err_unwind:
2103 	while (i--) {
2104 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2105 			continue;
2106 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2107 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2108 			continue;
2109 		}
2110 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2111 	}
2112 
2113 	return ret;
2114 }
2115 
2116 /* Inverse of gsi_channel_init() */
2117 static void gsi_channel_exit(struct gsi *gsi)
2118 {
2119 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2120 
2121 	do
2122 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2123 	while (channel_id--);
2124 	gsi->modem_channel_bitmap = 0;
2125 }
2126 
2127 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2128 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2129 	     enum ipa_version version, u32 count,
2130 	     const struct ipa_gsi_endpoint_data *data)
2131 {
2132 	struct device *dev = &pdev->dev;
2133 	struct resource *res;
2134 	resource_size_t size;
2135 	u32 adjust;
2136 	int ret;
2137 
2138 	gsi_validate_build();
2139 
2140 	gsi->dev = dev;
2141 	gsi->version = version;
2142 
2143 	/* GSI uses NAPI on all channels.  Create a dummy network device
2144 	 * for the channel NAPI contexts to be associated with.
2145 	 */
2146 	init_dummy_netdev(&gsi->dummy_dev);
2147 
2148 	/* Get GSI memory range and map it */
2149 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2150 	if (!res) {
2151 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2152 		return -ENODEV;
2153 	}
2154 
2155 	size = resource_size(res);
2156 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2157 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2158 		return -EINVAL;
2159 	}
2160 
2161 	/* Make sure we can make our pointer adjustment if necessary */
2162 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2163 	if (res->start < adjust) {
2164 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2165 			adjust);
2166 		return -EINVAL;
2167 	}
2168 
2169 	gsi->virt_raw = ioremap(res->start, size);
2170 	if (!gsi->virt_raw) {
2171 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2172 		return -ENOMEM;
2173 	}
2174 	/* Most registers are accessed using an adjusted register range */
2175 	gsi->virt = gsi->virt_raw - adjust;
2176 
2177 	init_completion(&gsi->completion);
2178 
2179 	ret = gsi_irq_init(gsi, pdev);
2180 	if (ret)
2181 		goto err_iounmap;
2182 
2183 	ret = gsi_channel_init(gsi, count, data);
2184 	if (ret)
2185 		goto err_irq_exit;
2186 
2187 	mutex_init(&gsi->mutex);
2188 
2189 	return 0;
2190 
2191 err_irq_exit:
2192 	gsi_irq_exit(gsi);
2193 err_iounmap:
2194 	iounmap(gsi->virt_raw);
2195 
2196 	return ret;
2197 }
2198 
2199 /* Inverse of gsi_init() */
2200 void gsi_exit(struct gsi *gsi)
2201 {
2202 	mutex_destroy(&gsi->mutex);
2203 	gsi_channel_exit(gsi);
2204 	gsi_irq_exit(gsi);
2205 	iounmap(gsi->virt_raw);
2206 }
2207 
2208 /* The maximum number of outstanding TREs on a channel.  This limits
2209  * a channel's maximum number of transactions outstanding (worst case
2210  * is one TRE per transaction).
2211  *
2212  * The absolute limit is the number of TREs in the channel's TRE ring,
2213  * and in theory we should be able use all of them.  But in practice,
2214  * doing that led to the hardware reporting exhaustion of event ring
2215  * slots for writing completion information.  So the hardware limit
2216  * would be (tre_count - 1).
2217  *
2218  * We reduce it a bit further though.  Transaction resource pools are
2219  * sized to be a little larger than this maximum, to allow resource
2220  * allocations to always be contiguous.  The number of entries in a
2221  * TRE ring buffer is a power of 2, and the extra resources in a pool
2222  * tends to nearly double the memory allocated for it.  Reducing the
2223  * maximum number of outstanding TREs allows the number of entries in
2224  * a pool to avoid crossing that power-of-2 boundary, and this can
2225  * substantially reduce pool memory requirements.  The number we
2226  * reduce it by matches the number added in gsi_trans_pool_init().
2227  */
2228 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2229 {
2230 	struct gsi_channel *channel = &gsi->channel[channel_id];
2231 
2232 	/* Hardware limit is channel->tre_count - 1 */
2233 	return channel->tre_count - (channel->tlv_count - 1);
2234 }
2235 
2236 /* Returns the maximum number of TREs in a single transaction for a channel */
2237 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2238 {
2239 	struct gsi_channel *channel = &gsi->channel[channel_id];
2240 
2241 	return channel->tlv_count;
2242 }
2243